51
|
Maiorano D, Lutzmann M, Méchali M. MCM proteins and DNA replication. Curr Opin Cell Biol 2006; 18:130-6. [PMID: 16495042 DOI: 10.1016/j.ceb.2006.02.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/09/2006] [Indexed: 12/30/2022]
Abstract
The MCM proteins identify a group of ten conserved factors functioning in the replication of the genomes of archae and eukaryotic organisms. Among these, MCM2-7 proteins are related to each other and form a family of DNA helicases implicated at the initiation step of DNA synthesis. Recently this family expanded by the identification of two additional members that appear to be present only in multicellular organisms, MCM8 and MCM9. The function of MCM8 is distinct from that of MCM2-7 proteins, while the function of MCM9 is unknown. MCM1 and MCM10 are not related to this family, nor to each other, but also function in DNA synthesis.
Collapse
Affiliation(s)
- Domenico Maiorano
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier, France.
| | | | | |
Collapse
|
52
|
Zhu W, Abbas T, Dutta A. DNA replication and genomic instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:249-79. [PMID: 18727504 DOI: 10.1007/1-4020-3764-3_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
53
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
54
|
Abstract
DNA replication is tightly regulated at the initiation step by both the cell cycle machinery and checkpoint pathways. Here, we discuss recent advances in understanding how replication is initiated in metazoans at the correct chromosome positions, at the appropriate time, and only once per cell cycle.
Collapse
Affiliation(s)
- Yuichi J Machida
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
55
|
May NR, Thomer M, Murnen KF, Calvi BR. Levels of the origin-binding protein Double parked and its inhibitor Geminin increase in response to replication stress. J Cell Sci 2005; 118:4207-17. [PMID: 16141238 DOI: 10.1242/jcs.02534] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The regulation of a pre-replicative complex (pre-RC) at origins ensures that the genome is replicated only once per cell cycle. Cdt1 is an essential component of the pre-RC that is rapidly degraded at G1-S and also inhibited by Geminin (Gem) protein to prevent re-replication. We have previously shown that destruction of the Drosophila homolog of Cdt1, Double-parked (Dup), at G1-S is dependent upon cyclin-E/CDK2 and important to prevent re-replication and cell death. Dup is phosphorylated by cyclin-E/Cdk2, but this direct phosphorylation was not sufficient to explain the rapid destruction of Dup at G1-S. Here, we present evidence that it is DNA replication itself that triggers rapid Dup destruction. We find that a range of defects in DNA replication stabilize Dup protein and that this stabilization is not dependent on ATM/ATR checkpoint kinases. This response to replication stress was cell-type specific, with neuroblast stem cells of the larval brain having the largest increase in Dup protein. Defects at different steps in replication also increased Dup protein during an S-phase-like amplification cell cycle in the ovary, suggesting that Dup stabilization is sensitive to DNA replication and not an indirect consequence of a cell-cycle arrest. Finally, we find that cells with high levels of Dup also have elevated levels of Gem protein. We propose that, in cycling cells, Dup destruction is coupled to DNA replication and that increased levels of Gem balance elevated Dup levels to prevent pre-RC reformation when Dup degradation fails.
Collapse
Affiliation(s)
- Noah R May
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd, Philadelphia, PA 19104-6145, USA
| | | | | | | |
Collapse
|
56
|
Seo S, Herr A, Lim JW, Richardson GA, Richardson H, Kroll KL. Geminin regulates neuronal differentiation by antagonizing Brg1 activity. Genes Dev 2005; 19:1723-34. [PMID: 16024661 PMCID: PMC1176010 DOI: 10.1101/gad.1319105] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Precise control of cell proliferation and differentiation is critical for organogenesis. Geminin (Gem) has been proposed to link cell cycle exit and differentiation as a prodifferentiation factor and plays a role in neural cell fate acquisition. Here, we identified the SWI/SNF chromatin-remodeling protein Brg1 as an interacting partner of Gem. Brg1 has been implicated in cell cycle withdrawal and cellular differentiation. Surprisingly, we discovered that Gem antagonizes Brg1 activity during neurogenesis to maintain the undifferentiated cell state. Down-regulation of Gem expression normally precedes neuronal differentiation, and gain- and loss-of-function experiments in Xenopus embryos and mouse P19 cells demonstrated that Gem was essential to prevent premature neurogenesis. Misexpression of Gem also suppressed ectopic neurogenesis driven by Ngn and NeuroD. Gem's activity to block differentiation depended upon its ability to bind Brg1 and could be mediated by Gem's inhibition of proneural basic helix-loop-helix (bHLH)-Brg1 interactions required for bHLH target gene activation. Our data demonstrate a novel mechanism of Gem activity, through regulation of SWI/SNF chromatin-remodeling proteins, and indicate that Gem is an essential regulator of neurogenesis that can control the timing of neural progenitor differentiation and maintain the undifferentiated cell state.
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
To ensure its duplication, chromosomal DNA must be precisely duplicated in each cell cycle, with no sections left unreplicated, and no sections replicated more than once. Eukaryotic cells achieve this by dividing replication into two non-overlapping phases. During late mitosis and G1, replication origins are 'licensed' for replication by loading the minichromosome maintenance (Mcm) 2-7 proteins to form a pre-replicative complex. Mcm2-7 proteins are then essential for initiating and elongating replication forks during S phase. Recent data have provided biochemical and structural insight into the process of replication licensing and the mechanisms that regulate it during the cell cycle.
Collapse
Affiliation(s)
- J Julian Blow
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|
58
|
Abstract
Initiation and completion of DNA replication defines the beginning and ending of S phase of the cell cycle. Successful progression through S phase requires that replication be properly regulated and monitored to ensure that the entire genome is duplicated exactly once, without errors, in a timely fashion. Given the immense size and complexity of eukaryotic genomes, this presents a significant challenge for the cell. As a result, DNA replication has evolved into a tightly regulated process involving the coordinated action of numerous factors that function in all phases of the cell cycle. We will review our current understanding of these processes from the formation of prereplicative complexes in preparation for S phase to the series of events that culminate in the loading of DNA polymerases during S phase. We will incorporate structural data from archaeal and bacterial replication proteins and discuss their implications for understanding the mechanism of action of their corresponding eukaryotic homologues. We will also describe the concept of replication licensing which protects against genomic instability by limiting initiation events to once per cell cycle. Lastly, we will review our knowledge of checkpoint pathways that maintain the integrity of stalled forks and relay defects in replication to the rest of the cell cycle.
Collapse
Affiliation(s)
- David Y Takeda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
59
|
Yanagi KI, Mizuno T, Tsuyama T, Tada S, Iida Y, Sugimoto A, Eki T, Enomoto T, Hanaoka F. Caenorhabditis elegans Geminin Homologue Participates in Cell Cycle Regulation and Germ Line Development. J Biol Chem 2005; 280:19689-94. [PMID: 15811859 DOI: 10.1074/jbc.c500070200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cdt1 is an essential component for the assembly of a pre-replicative complex. Cdt1 activity is inhibited by geminin, which also participates in neural development and embryonic differentiation in many eukaryotes. Although Cdt1 homologues have been identified in organisms ranging from yeast to human, geminin homologues had not been described for Caenorhabditis elegans and fungi. Here, we identify the C. elegans geminin, GMN-1. Biochemical analysis reveals that GMN-1 associates with C. elegans CDT-1, the Hox protein NOB-1, and the Six protein CEH-32. GMN-1 inhibits not only the interaction between mouse Cdt1 and Mcm6 but also licensing activity in Xenopus egg extracts. RNA interference-mediated reduction of GMN-1 is associated with enlarged germ nuclei with aberrant nucleolar morphology, severely impaired gametogenesis, and chromosome bridging in intestinal cells. We conclude that the Cdt1-geminin system is conserved throughout metazoans and that geminin has evolved in these taxa to regulate proliferation and differentiation by directly interacting with Cdt1 and homeobox proteins.
Collapse
Affiliation(s)
- Ken-ichiro Yanagi
- Cellular Physiology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Ferenbach A, Li A, Brito-Martins M, Blow JJ. Functional domains of the Xenopus replication licensing factor Cdt1. Nucleic Acids Res 2005; 33:316-24. [PMID: 15653632 PMCID: PMC546161 DOI: 10.1093/nar/gki176] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 12/20/2004] [Accepted: 12/20/2004] [Indexed: 12/21/2022] Open
Abstract
During late mitosis and early G1, replication origins are licensed for subsequent replication by loading heterohexamers of the mini-chromosome maintenance proteins (Mcm2-7). To prevent re-replication of DNA, the licensing system is down-regulated at other cell cycle stages. A small protein called geminin plays an important role in this down-regulation by binding and inhibiting the Cdt1 component of the licensing system. We examine here the organization of Xenopus Cdt1, delimiting regions of Cdt1 required for licensing and regions required for geminin interaction. The C-terminal 377 residues of Cdt1 are required for licensing and the extreme C-terminus contains a domain that interacts with an Mcm(2,4,6,7) complex. Two regions of Cdt1 interact with geminin: one at the N-terminus, and one in the centre of the protein. Only the central region binds geminin tightly enough to successfully compete with full-length Cdt1 for geminin binding. This interaction requires a predicted coiled-coil domain that is conserved amongst metazoan Cdt1 homologues. Geminin forms a homodimer, with each dimer binding one molecule of Cdt1. Separation of the domains necessary for licensing activity from domains required for a strong interaction with geminin generated a construct, whose licensing activity was partially insensitive to geminin inhibition.
Collapse
Affiliation(s)
- Andrew Ferenbach
- Wellcome Trust Biocentre, University of Dundee Dow Street, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
61
|
Green BM, Li JJ. Loss of rereplication control in Saccharomyces cerevisiae results in extensive DNA damage. Mol Biol Cell 2004; 16:421-32. [PMID: 15537702 PMCID: PMC539184 DOI: 10.1091/mbc.e04-09-0833] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To maintain genome stability, the entire genome of a eukaryotic cell must be replicated once and only once per cell cycle. In many organisms, multiple overlapping mechanisms block rereplication, but the consequences of deregulating these mechanisms are poorly understood. Here, we show that disrupting these controls in the budding yeast Saccharomyces cerevisiae rapidly blocks cell proliferation. Rereplicating cells activate the classical DNA damage-induced checkpoint response, which depends on the BRCA1 C-terminus checkpoint protein Rad9. In contrast, Mrc1, a checkpoint protein required for recognition of replication stress, does not play a role in the response to rereplication. Strikingly, rereplicating cells accumulate subchromosomal DNA breakage products. These rapid and severe consequences suggest that even limited and sporadic rereplication could threaten the genome with significant damage. Hence, even subtle disruptions in the cell cycle regulation of DNA replication may predispose cells to the genomic instability associated with tumorigenesis.
Collapse
Affiliation(s)
- Brian M Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-2200, USA
| | | |
Collapse
|
62
|
Kulartz M, Knippers R. The replicative regulator protein geminin on chromatin in the HeLa cell cycle. J Biol Chem 2004; 279:41686-94. [PMID: 15284237 DOI: 10.1074/jbc.m405798200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Geminin is believed to have a major function in the regulation of genome replication and cell proliferation. Published evidence shows that geminin specifically interacts with Cdt1 to block its function in the assembly of prereplication complexes. However, in proliferating HeLa cells geminin and Cdt1 are co-expressed during a relatively short time at the G(1)-to-S phase transition. Under these conditions, nearly all Cdt1 and a major part of geminin are bound to chromatin and reside at the same or closely adjacent sites as shown here by chromatin immunoprecipitation. Cdt1 is rapidly degraded early in S phase, but geminin remains bound to the chromatin sites. One function that chromatin-bound geminin could perform is to prevent access to Cdt1 that may escape S phase-dependent degradation or is synthesized in excess. Indeed, Cdt1 continues to be synthesized in HeLa cells in S phase but never accumulates because of the efficient degradation. Therefore, geminin can be eliminated by RNA interference without detectable effects on cell cycle parameters.
Collapse
Affiliation(s)
- Monika Kulartz
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | |
Collapse
|
63
|
Kusser W, Zimmer K, Fiedler F. Characteristics of the binding of aminoglycoside antibiotics to teichoic acids. A potential model system for interaction of aminoglycosides with polyanions. Dev Dyn 1985; 243:117-31. [PMID: 2411558 DOI: 10.1002/dvdy.24060] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022] Open
Abstract
The binding of the aminoglycoside antibiotic dihydrostreptomycin to defined cell-wall teichoic acids and to lipoteichoic acid isolated from various gram-positive eubacteria was followed by equilibrium dialysis. Dihydrostreptomycin was used at a wide range of concentration under different conditions of ionic strength, concentration of teichoic acid, presence of cationic molecules like Mg2+, spermidine, other aminoglycoside antibiotics (gentamicin, neomycin, paromomycin). Interaction of dihydrostreptomycin with teichoic acid was found to be a cooperative binding process. The binding characteristics seem to be dependent on structural features of teichoic acid and are influenced by cationic molecules. Mg2+, spermidine and other aminoglycosides antibiotics inhibit the binding of dihydrostreptomycin to teichoic acid competitively. The binding of aminoglycosides to teichoic acids is considered as a model system for the interaction of aminoglycoside antibiotics with cellular polyanions. Conclusions of physiological significance are drawn.
Collapse
|