51
|
Abstract
Cyclin-dependent kinases (CDKs) play essential roles in cell proliferation and gene expression. Although distinct sets of CDKs work in cell division and transcription by RNA polymerase II (Pol II), they share a CDK-activating kinase (CAK), which is itself a CDK-Cdk7-in metazoans. Thus a unitary CDK network controls and may coordinate cycles of cell division and gene expression. Recent work reveals decisive roles for Cdk7 in both pathways. The CAK function of Cdk7 helps determine timing of activation and cyclin-binding preferences of different CDKs during the cell cycle. In the transcription cycle, Cdk7 is both an effector kinase, which phosphorylates Pol II and other proteins and helps establish promoter-proximal pausing; and a CAK for Cdk9 (P-TEFb), which releases Pol II from the pause. By governing the transition from initiation to elongation, Cdk7, Cdk9 and their substrates influence expression of genes important for developmental and cell-cycle decisions, and ensure co-transcriptional maturation of Pol II transcripts. Cdk7 engaged in transcription also appears to be regulated by phosphorylation within its own activation (T) loop. Here I review recent studies of CDK regulation in cell division and gene expression, and propose a model whereby mitogenic signals trigger a cascade of CDK T-loop phosphorylation that drives cells past the restriction (R) point, when continued cell-cycle progression becomes growth factor-independent. Because R-point control is frequently deregulated in cancer, the CAK-CDK pathway is an attractive target for chemical inhibition aimed at impeding the inappropriate commitment to cell division.
Collapse
|
52
|
Venkatesh S, Workman JL. Set2 mediated H3 lysine 36 methylation: regulation of transcription elongation and implications in organismal development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:685-700. [PMID: 24014454 DOI: 10.1002/wdev.109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Set2 is a RNA polymerase II (RNAPII) associated histone methyltransferase involved in the cotranscriptional methylation of the H3 K36 residue (H3K36me). It is responsible for multiple degrees of methylation (mono-, di-, and trimethylation), each of which has a distinct functional consequence. The extent of methylation and its genomic distribution is determined by different factors that coordinate to achieve a functional outcome. In yeast, the Set2-mediated H3K36me is involved in suppressing histone exchange, preventing hyperacetylation and promoting maintenance of well-spaced chromatin structure over the coding regions. In metazoans, separation of this enzymatic activity affords greater functional diversity extending beyond the control of transcription elongation to developmental gene regulation. This review focuses on the molecular aspects of the Set2 distribution and function, and discusses the role played by H3 K36 methyl mark in organismal development.
Collapse
|
53
|
The yeast cap binding complex modulates transcription factor recruitment and establishes proper histone H3K36 trimethylation during active transcription. Mol Cell Biol 2012; 33:785-99. [PMID: 23230273 DOI: 10.1128/mcb.00947-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent studies have revealed a close relationship between transcription, histone modification, and RNA processing. In fact, genome-wide analyses that correlate histone marks with RNA processing signals raise the possibility that specific RNA processing factors may modulate transcription and help to "write" chromatin marks. Here we show that the nuclear cap binding complex (CBC) directs recruitment of transcription elongation factors and establishes proper histone marks during active transcription. A directed genetic screen revealed that deletion of either subunit of the CBC confers a synthetic growth defect when combined with deletion of genes encoding either Ctk2 or Bur2, a component of the Saccharomyces cerevisiae ortholog of P-TEFb. The CBC physically associates with these complexes to recruit them during transcription and mediates phosphorylation at Ser-2 of the C-terminal domain (CTD) of RNA polymerase II. To understand how these interactions influence downstream events, histone H3K36me3 was examined, and we demonstrate that CBCΔ affects proper Set2-dependent H3K36me3. Consistent with this, the CBC and Set2 have similar effects on the ability to rapidly induce and sustain activated gene expression, and these effects are distinct from other histone methyltransferases. This work provides evidence for an emerging model that RNA processing factors can modulate the recruitment of transcription factors and influence histone modification during elongation.
Collapse
|
54
|
Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23202475 DOI: 10.1016/j.bbagrm.2012.11.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) were originally identified as factors responsible for transcriptional inhibition by 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB) and were later found to control transcription elongation, together with P-TEFb, at the promoter-proximal region. Although there is ample evidence that these factors play roles throughout the genome, other data also suggest gene- or tissue-specific roles for these factors. In this review, we discuss how these apparently conflicting data can be reconciled. In light of recent findings, we also discuss the detailed mechanism by which these factors control the elongation process at the molecular level. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
55
|
Effects of the Paf1 complex and histone modifications on snoRNA 3'-end formation reveal broad and locus-specific regulation. Mol Cell Biol 2012; 33:170-82. [PMID: 23109428 DOI: 10.1128/mcb.01233-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Across diverse eukaryotes, the Paf1 complex (Paf1C) plays critical roles in RNA polymerase II transcription elongation and regulation of histone modifications. Beyond these roles, the human and Saccharomyces cerevisiae Paf1 complexes also interact with RNA 3'-end processing components to affect transcript 3'-end formation. Specifically, the Saccharomyces cerevisiae Paf1C functions with the RNA binding proteins Nrd1 and Nab3 to regulate the termination of at least two small nucleolar RNAs (snoRNAs). To determine how Paf1C-dependent functions regulate snoRNA formation, we used high-density tiling arrays to analyze transcripts in paf1Δ cells and uncover new snoRNA targets of Paf1. Detailed examination of Paf1-regulated snoRNA genes revealed locus-specific requirements for Paf1-dependent posttranslational histone modifications. We also discovered roles for the transcriptional regulators Bur1-Bur2, Rad6, and Set2 in snoRNA 3'-end formation. Surprisingly, at some snoRNAs, this function of Rad6 appears to be primarily independent of its role in histone H2B monoubiquitylation. Cumulatively, our work reveals a broad requirement for the Paf1C in snoRNA 3'-end formation in S. cerevisiae, implicates the participation of transcriptional proteins and histone modifications in this process, and suggests that the Paf1C contributes to the fine tuning of nuanced levels of regulation that exist at individual loci.
Collapse
|
56
|
García A, Collin A, Calvo O. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate. Mol Biol Cell 2012; 23:4297-312. [PMID: 22973055 PMCID: PMC3484106 DOI: 10.1091/mbc.e12-04-0331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transcriptional coactivator Sub1 has been implicated in several steps of mRNA metabolism in yeast, such as the activation of transcription, termination, and 3'-end formation. In addition, Sub1 globally regulates RNA polymerase II phosphorylation, and most recently it has been shown that it is a functional component of the preinitiation complex. Here we present evidence that Sub1 plays a significant role in transcription elongation by RNA polymerase II (RNAPII). We show that SUB1 genetically interacts with the gene encoding the elongation factor Spt5, that Sub1 influences Spt5 phosphorylation of the carboxy-terminal domain of RNAPII largest subunit by the kinase Bur1, and that both Sub1 and Spt5 copurify in the same complex, likely during early transcription elongation. Indeed, our data indicate that Sub1 influences Spt5-Rpb1 interaction. In addition, biochemical and molecular data show that Sub1 influences transcription elongation of constitutive and inducible genes and associates with coding regions in a transcription-dependent manner. Taken together, our results indicate that Sub1 associates with Spt5 and influences Spt5-Rpb1 complex levels and consequently transcription elongation rate.
Collapse
Affiliation(s)
- Alicia García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
57
|
Smolle M, Workman JL. Transcription-associated histone modifications and cryptic transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:84-97. [PMID: 22982198 DOI: 10.1016/j.bbagrm.2012.08.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022]
Abstract
Eukaryotic genomes are packaged into chromatin, a highly organized structure consisting of DNA and histone proteins. All nuclear processes take place in the context of chromatin. Modifications of either DNA or histone proteins have fundamental effects on chromatin structure and function, and thus influence processes such as transcription, replication or recombination. In this review we highlight histone modifications specifically associated with gene transcription by RNA polymerase II and summarize their genomic distributions. Finally, we discuss how (mis-)regulation of these histone modifications perturbs chromatin organization over coding regions and results in the appearance of aberrant, intragenic transcription. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Michaela Smolle
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
58
|
The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:116-26. [PMID: 22982193 DOI: 10.1016/j.bbagrm.2012.08.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/18/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022]
Abstract
The Paf1 complex was originally identified over fifteen years ago in budding yeast through its physical association with RNA polymerase II. The Paf1 complex is now known to be conserved throughout eukaryotes and is well studied for promoting RNA polymerase II transcription elongation and transcription-coupled histone modifications. Through these critical regulatory functions, the Paf1 complex participates in numerous cellular processes such as gene expression and silencing, RNA maturation, DNA repair, cell cycle progression and prevention of disease states in higher eukaryotes. In this review, we describe the historic and current research involving the eukaryotic Paf1 complex to explain the cellular roles that underlie its conservation and functional importance. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
59
|
Hartzog GA, Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:105-15. [PMID: 22982195 DOI: 10.1016/j.bbagrm.2012.08.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of MCD Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
60
|
|
61
|
Sansó M, Lee KM, Viladevall L, Jacques PÉ, Pagé V, Nagy S, Racine A, St. Amour CV, Zhang C, Shokat KM, Schwer B, Robert F, Fisher RP, Tanny JC. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast. PLoS Genet 2012; 8:e1002822. [PMID: 22876190 PMCID: PMC3410854 DOI: 10.1371/journal.pgen.1002822] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022] Open
Abstract
Transcript elongation by RNA polymerase II (RNAPII) is accompanied by conserved patterns of histone modification. Whereas histone modifications have established roles in transcription initiation, their functions during elongation are not understood. Mono-ubiquitylation of histone H2B (H2Bub1) plays a key role in coordinating co-transcriptional histone modification by promoting site-specific methylation of histone H3. H2Bub1 also regulates gene expression through an unidentified, methylation-independent mechanism. Here we reveal bidirectional communication between H2Bub1 and Cdk9, the ortholog of metazoan positive transcription elongation factor b (P-TEFb), in the fission yeast Schizosaccharomyces pombe. Chemical and classical genetic analyses indicate that lowering Cdk9 activity or preventing phosphorylation of its substrate, the transcription processivity factor Spt5, reduces H2Bub1 in vivo. Conversely, mutations in the H2Bub1 pathway impair Cdk9 recruitment to chromatin and decrease Spt5 phosphorylation. Moreover, an Spt5 phosphorylation-site mutation, combined with deletion of the histone H3 Lys4 methyltransferase Set1, phenocopies morphologic and growth defects due to H2Bub1 loss, suggesting independent, partially redundant roles for Cdk9 and Set1 downstream of H2Bub1. Surprisingly, mutation of the histone H2B ubiquitin-acceptor residue relaxes the Cdk9 activity requirement in vivo, and cdk9 mutations suppress cell-morphology defects in H2Bub1-deficient strains. Genome-wide analyses by chromatin immunoprecipitation also demonstrate opposing effects of Cdk9 and H2Bub1 on distribution of transcribing RNAPII. Therefore, whereas mutual dependence of H2Bub1 and Spt5 phosphorylation indicates positive feedback, mutual suppression by cdk9 and H2Bub1-pathway mutations suggests antagonistic functions that must be kept in balance to regulate elongation. Loss of H2Bub1 disrupts that balance and leads to deranged gene expression and aberrant cell morphologies, revealing a novel function of a conserved, co-transcriptional histone modification. Modification of histone proteins is an important transcriptional regulatory mechanism in eukaryotic cells. Although various histone modifications are found primarily within the coding regions of transcribed genes, how they influence transcription elongation remains unclear. Among these modifications is mono-ubiquitylation of histone H2B (H2Bub1), which is needed for co-transcriptional methylation of histone H3 at specific sites. Here we show that H2Bub1 and Cdk9, the kinase component of positive transcription elongation factor b (P-TEFb), are jointly regulated by a positive feedback loop: Cdk9 activity is needed for co-transcriptional H2Bub1, and H2Bub1 in turn stimulates Cdk9 activity toward one of its major substrates, the conserved elongation factor Spt5. We provide genetic evidence that the combined action of H2Bub1 on Spt5 phosphorylation and histone methylation accounts for the gene-regulatory effects of this modification. Surprisingly, our genetic and genome-wide studies indicate that P-TEFb and H2Bub1 act in opposition on elongating RNA polymerase. We suggest that the positive feedback linking P-TEFb and H2Bub1 helps to maintain a balance between their opposing actions. These results highlight a novel regulatory role for a conserved histone modification during transcription elongation.
Collapse
Affiliation(s)
- Miriam Sansó
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Karen M. Lee
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Laia Viladevall
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | | | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Stephen Nagy
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Ariane Racine
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Courtney V. St. Amour
- Programs in Biochemistry, Cell and Molecular Biology, Weill Cornell Medical College, New York, New York, United States of America
| | - Chao Zhang
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Kevan M. Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - François Robert
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Robert P. Fisher
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail: (RPF); (JCT)
| | - Jason C. Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
- * E-mail: (RPF); (JCT)
| |
Collapse
|
62
|
Qiu H, Hu C, Gaur NA, Hinnebusch AG. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J 2012; 31:3494-505. [PMID: 22796944 DOI: 10.1038/emboj.2012.188] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 06/20/2012] [Indexed: 11/09/2022] Open
Abstract
Paf1 complex (Paf1C) is a transcription elongation factor whose recruitment is stimulated by Spt5 and the CDKs Kin28 and Bur1, which phosphorylate the Pol II C-terminal domain (CTD) on Serines 2, 5, and 7. Bur1 promotes Paf1C recruitment by phosphorylating C-terminal repeats (CTRs) in Spt5, and we show that Kin28 enhances Spt5 phosphorylation by promoting Bur1 recruitment. It was unclear, however, whether CTD phosphorylation by Kin28 or Bur1 also stimulates Paf1C recruitment. We find that Paf1C and its Cdc73 subunit bind diphosphorylated CTD repeats (pCTD) and phosphorylated Spt5 CTRs (pCTRs) in vitro, and that cdc73 mutations eliminating both activities reduce Paf1C recruitment in vivo. Phosphomimetic (acidic) substitutions in the Spt5 CTR sustain high-level Paf1C recruitment in otherwise wild-type cells, but not following inactivation of Bur1 or Kin28. Furthermore, inactivating the pCTD/pCTR-interaction domain (PCID) in Cdc73 decreases Paf1C-dependent histone methylation in cells containing non-phosphorylatable Spt5 CTRs. These results identify an Spt5 pCTR-independent pathway of Paf1C recruitment requiring Kin28, Bur1, and the Cdc73 PCID. We propose that pCTD repeats and Spt5 pCTRs provide separate interaction surfaces that cooperate to ensure high-level Paf1C recruitment.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | | | | |
Collapse
|
63
|
Lee JS, Garrett AS, Yen K, Takahashi YH, Hu D, Jackson J, Seidel C, Pugh BF, Shilatifard A. Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes Dev 2012; 26:914-9. [PMID: 22549955 DOI: 10.1101/gad.186841.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Monoubiquitination of histone H2B on Lys 123 (H2BK123ub) is a transient histone modification considered to be essential for establishing H3K4 and H3K79 trimethylation by Set1/COMPASS and Dot1, respectively. Here, we identified Chd1 as a factor that is required for the maintenance of high levels of H2B monoubiquitination, but not for H3K4 and H3K79 trimethylation. Loss of Chd1 results in a substantial loss of H2BK123ub levels with little to no effect on the genome-wide pattern of H3K4 and H3K79 trimethylation. Our data show that nucleosomal occupancy is reduced in gene bodies in both chd1Δ and, as has been shown, K123A mutant backgrounds. We also demonstrated that Chd1's function in maintaining H2BK123ub levels is conserved from yeast to humans. Our study provides evidence that only small levels of H2BK123ub are necessary for full levels of H3K4 and H3K79 trimethylation in vivo and points to a possible role for Chd1 in positively regulating gene expression through promoting nucleosome reassembly coupled with H2B monoubiquitination.
Collapse
Affiliation(s)
- Jung-Shin Lee
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
65
|
Johnsen SA. The enigmatic role of H2Bub1 in cancer. FEBS Lett 2012; 586:1592-601. [PMID: 22564770 DOI: 10.1016/j.febslet.2012.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 12/19/2022]
Abstract
The post-translational modification of histone proteins plays an important role in controlling cell fate by directing essentially all DNA-associated nuclear processes. Misregulation and mutation of histone modifying enzymes is a hallmark of tumorigenesis. However, how these different epigenetic modifications lead to tumor initiation and/or progression remains poorly understood. Recent studies have uncovered a potential tumor suppressor role for histone H2B monoubiquitination (H2Bub1). Like many other histone modifications, H2Bub1 has diverse functions and plays roles both in transcriptional activation and repression as well as in controlling mRNA processing and directing DNA repair processes. Notably, H2Bub1 has been linked to transcriptional elongation and is preferentially found in the transcribed region of active genes. Its activity is intimately connected to active transcription and the transcriptional elongation regulatory protein cyclin-dependent kinase-9 (CDK9) and the facilitates chromatin transcription (FACT) complex. This review provides an overview of the current understanding of H2Bub1 function in mammalian systems with a particular emphasis on its role in cancer and potential options for exploiting this knowledge for the treatment of cancer.
Collapse
Affiliation(s)
- Steven A Johnsen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
66
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
67
|
Abstract
Post-translational modification of proteins with ubiquitin regulates a variety of eukaryotic cellular processes. Ubiquitin can be conjugated to substrates either as a single moiety (monoubiquitination) or as isopeptide bond-linked chains (polyubiquitination), creating an array of ubiquitin signals. It has been established that monoubiquitination can serve important functions in many biological processes such as the regulation of gene transcription, protein trafficking, and DNA repair. Surprisingly, little is known about the mechanisms by which monoubiquitin signals are produced in the cell. Here, we discuss the potential cellular strategies for generating monoubiquitinated proteins using a few, relatively well characterized examples of monoubiquitinated proteins. These strategies include coupling ubiquitination to low affinity ubiquitin binding, using monoubiquitination-dedicated E2 conjugating enzymes, and restricting ubiquitin chain elongation. Some of these principles may be applicable to protein modifications involving ubiquitin like proteins (UBLs), which often occur in monomeric form.
Collapse
Affiliation(s)
- Harish N Ramanathan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
68
|
Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 2011; 25:2254-65. [PMID: 22056671 DOI: 10.1101/gad.177238.111] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).
Collapse
Affiliation(s)
- Kiran Batta
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| | | | | | | | | |
Collapse
|
69
|
RAD6 regulates the dosage of p53 by a combination of transcriptional and posttranscriptional mechanisms. Mol Cell Biol 2011; 32:576-87. [PMID: 22083959 DOI: 10.1128/mcb.05966-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintaining an appropriate cellular concentration of p53 is critical for cell survival and normal development in various organisms. In this study, we provide evidence that the human E2 ubiquitin-conjugating enzyme RAD6 plays a critical role in regulating p53 protein levels under both normal and stress conditions. Knockdown and overexpression of RAD6 affected p53 turnover and transcription. We showed that RAD6 can form a ternary complex with MDM2 and p53 that contributes to the degradation of p53. Chromatin immunoprecipitation (ChIP) analysis showed that RAD6 also binds to the promoter and coding regions of the p53 gene and modulates the levels of H3K4 and K79 methylation on local chromatin. When the cells were exposed to stress stimuli, the RAD6-MDM2-p53 ternary complex was disrupted; RAD6 was then recruited to the chromatin of the p53 gene, resulting in an increase in histone methylation and p53 transcription. Further studies showed that stress-induced p53 transcriptional activation, cell apoptosis, and disrupted cell cycle progression are all RAD6 dependent. Overall, this work demonstrates that RAD6 regulates p53 levels in a "yin-yang" manner through a combination of two distinct mechanisms in mammalian cells.
Collapse
|
70
|
Cocklin R, Goebl M. Nutrient sensing kinases PKA and Sch9 phosphorylate the catalytic domain of the ubiquitin-conjugating enzyme Cdc34. PLoS One 2011; 6:e27099. [PMID: 22087249 PMCID: PMC3210133 DOI: 10.1371/journal.pone.0027099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/10/2011] [Indexed: 11/18/2022] Open
Abstract
Cell division is controlled in part by the timely activation of the CDK, Cdc28, through its association with G1 and G2 cyclins. Cdc28 complexes are regulated in turn by the ubiquitin conjugating enzyme Cdc34 and SCF ubiquitin ligase complexes of the ubiquitin-proteasome system (UPS) to control the initiation of DNA replication. Here we demonstrate that the nutrient sensing kinases PKA and Sch9 phosphorylate S97 of Cdc34. S97 is conserved across species and restricted to the catalytic domain of Cdc34/Ubc7-like E2s. Cdc34-S97 phosphorylation is cell cycle regulated, elevated during active cell growth and division and decreased during cell cycle arrest. Cell growth and cell division are orchestrated to maintain cell size homeostasis over a wide range of nutrient conditions. Cells monitor changes in their environment through nutrient sensing protein kinases. Thus Cdc34 phosphorylation by PKA and Sch9 provides a direct tether between G1 cell division events and cell growth.
Collapse
Affiliation(s)
- Ross Cocklin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mark Goebl
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
71
|
Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal 2011; 24:410-421. [PMID: 22033037 DOI: 10.1016/j.cellsig.2011.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Rivaling or cooperating with other post-translational modifications, ubiquitination plays central roles in regulating numerous cellular processes. Not surprisingly, gain- or loss-of-function mutations in several components of the ubiquitin system are causally linked to human pathologies including cancer. The covalent attachment of ubiquitin to target proteins occurs in sequential steps and involves ubiquitin ligases (E3s) which are the most abundant enzymes of the ubiquitin system. Although often associated with proteasomal degradation, ubiquitination is also involved in regulatory events in a proteasome-independent manner. Moreover, ubiquitination is reversible and specific proteases, termed deubiquitinases (DUBs), remove ubiquitin from protein substrates. While we now appreciate the importance of ubiquitin signaling in coordinating a plethora of physio-pathological processes, the molecular mechanisms are not fully understood. This review summarizes current findings on the critical functions exerted by E3s and DUBs in transcriptional control, particularly chromatin remodeling and transcription initiation/elongation.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada.
| |
Collapse
|
72
|
Stevens JR, O'Donnell AF, Perry TE, Benjamin JJR, Barnes CA, Johnston GC, Singer RA. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation. PLoS One 2011; 6:e25644. [PMID: 22022426 PMCID: PMC3192111 DOI: 10.1371/journal.pone.0025644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 02/03/2023] Open
Abstract
Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of ‘cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome.
Collapse
Affiliation(s)
- Jennifer R. Stevens
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Allyson F. O'Donnell
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Troy E. Perry
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeremy J. R. Benjamin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christine A. Barnes
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gerald C. Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard A. Singer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
73
|
The Paf1 complex represses SER3 transcription in Saccharomyces cerevisiae by facilitating intergenic transcription-dependent nucleosome occupancy of the SER3 promoter. EUKARYOTIC CELL 2011; 10:1283-94. [PMID: 21873510 DOI: 10.1128/ec.05141-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies have shown that repression of the Saccharomyces cerevisiae SER3 gene is dependent on transcription of SRG1 from noncoding DNA initiating within the intergenic region 5' of SER3 and extending across the SER3 promoter region. By a mechanism dependent on the activities of the Swi/Snf chromatin remodeling factor, the HMG-like factor Spt2, and the Spt6 and Spt16 histone chaperones, SRG1 transcription deposits nucleosomes over the SER3 promoter to prevent transcription factors from binding and activating SER3. In this study, we uncover a role for the Paf1 transcription elongation complex in SER3 repression. We find that SER3 repression is primarily dependent on the Paf1 and Ctr9 subunits of this complex, with minor contributions by the Rtf1, Cdc73, and Leo1 subunits. We show that the Paf1 complex localizes to the SRG1 transcribed region under conditions that repress SER3, consistent with it having a direct role in mediating SRG1 transcription-dependent SER3 repression. Importantly, we show that the defect in SER3 repression in strains lacking Paf1 subunits is not a result of reduced SRG1 transcription or reduced levels of known Paf1 complex-dependent histone modifications. Rather, we find that strains lacking subunits of the Paf1 complex exhibit reduced nucleosome occupancy and reduced recruitment of Spt16 and, to a lesser extent, Spt6 at the SER3 promoter. Taken together, our results suggest that Paf1 and Ctr9 repress SER3 by maintaining SRG1 transcription-dependent nucleosome occupancy.
Collapse
|
74
|
The specificity and topology of chromatin interaction pathways in yeast. Mol Cell 2011; 42:536-49. [PMID: 21596317 DOI: 10.1016/j.molcel.2011.03.026] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/12/2011] [Accepted: 03/18/2011] [Indexed: 01/07/2023]
Abstract
Packaging of DNA into chromatin has a profound impact on gene expression. To understand how changes in chromatin influence transcription, we analyzed 165 mutants of chromatin machinery components in Saccharomyces cerevisiae. mRNA expression patterns change in 80% of mutants, always with specific effects, even for loss of widespread histone marks. The data are assembled into a network of chromatin interaction pathways. The network is function based, has a branched, interconnected topology, and lacks strict one-to-one relationships between complexes. Chromatin pathways are not separate entities for different gene sets, but share many components. The study evaluates which interactions are important for which genes and predicts additional interactions, for example between Paf1C and Set3C, as well as a role for Mediator in subtelomeric silencing. The results indicate the presence of gene-dependent effects that go beyond context-dependent binding of chromatin factors and provide a framework for understanding how specificity is achieved through regulating chromatin.
Collapse
|
75
|
Shiloh Y, Shema E, Moyal L, Oren M. RNF20-RNF40: A ubiquitin-driven link between gene expression and the DNA damage response. FEBS Lett 2011; 585:2795-802. [PMID: 21827756 DOI: 10.1016/j.febslet.2011.07.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/25/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
The DNA damage response (DDR) is emerging as a vast signaling network that temporarily modulates numerous aspects of cellular metabolism in the face of DNA lesions, especially critical ones such as the double strand break (DSB). The DDR involves extensive dynamics of protein post-translational modifications, most notably phosphorylation and ubiquitylation. The DSB response is mobilized primarily by the ATM protein kinase, which phosphorylates a plethora of key players in its various branches. It is based on a core of proteins dedicated to the damage response, and a cadre of proteins borrowed temporarily from other cellular processes to help meet the challenge. A recently identified novel component of the DDR pathway - histone H2B monoubiquitylation - exemplifies this principle. In mammalian cells, H2B monoubiquitylation is driven primarily by an E3 ubiquitin ligase composed of the two RING finger proteins RNF20 and RNF40. Generation of monoubiquitylated histone H2B (H2Bub) has been known to be coupled to gene transcription, presumably modulating chromatin decondensation at transcribed regions. New evidence indicates that the regulatory function of H2Bub on gene expression can selectively enhance or suppress the expression of distinct subsets of genes through a mechanism involving the hPAF1 complex and the TFIIS protein. This delicate regulatory process specifically affects genes that control cell growth and genome stability, and places RNF20 and RNF40 in the realm of tumor suppressor proteins. In parallel, it was found that following DSB induction, the H2B monoubiquitylation module is recruited to damage sites where it induces local H2Bub, which in turn is required for timely recruitment of DSB repair protein and, subsequently, timely DSB repair. This pathway represents a crossroads of the DDR and chromatin organization, and is a typical example of how the DDR calls to action functional modules that in unprovoked cells regulate other processes.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
76
|
The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123. PLoS One 2011; 6:e22209. [PMID: 21829450 PMCID: PMC3146481 DOI: 10.1371/journal.pone.0022209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/17/2011] [Indexed: 12/11/2022] Open
Abstract
Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved.
Collapse
|
77
|
Ma MKW, Heath C, Hair A, West AG. Histone crosstalk directed by H2B ubiquitination is required for chromatin boundary integrity. PLoS Genet 2011; 7:e1002175. [PMID: 21811414 PMCID: PMC3140996 DOI: 10.1371/journal.pgen.1002175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/23/2011] [Indexed: 12/21/2022] Open
Abstract
Genomic maps of chromatin modifications have provided evidence for the partitioning of genomes into domains of distinct chromatin states, which assist coordinated gene regulation. The maintenance of chromatin domain integrity can require the setting of boundaries. The HS4 insulator element marks the 3′ boundary of a heterochromatin region located upstream of the chicken β-globin gene cluster. Here we show that HS4 recruits the E3 ligase RNF20/BRE1A to mediate H2B mono-ubiquitination (H2Bub1) at this insulator. Knockdown experiments show that RNF20 is required for H2Bub1 and processive H3K4 methylation. Depletion of RNF20 results in a collapse of the active histone modification signature at the HS4 chromatin boundary, where H2Bub1, H3K4 methylation, and hyperacetylation of H3, H4, and H2A.Z are rapidly lost. A remarkably similar set of events occurs at the HSA/HSB regulatory elements of the FOLR1 gene, which mark the 5′ boundary of the same heterochromatin region. We find that persistent H2Bub1 at the HSA/HSB and HS4 elements is required for chromatin boundary integrity. The loss of boundary function leads to the sequential spreading of H3K9me2, H3K9me3, and H4K20me3 over the entire 50 kb FOLR1 and β-globin region and silencing of FOLR1 expression. These findings show that the HSA/HSB and HS4 boundary elements direct a cascade of active histone modifications that defend the FOLR1 and β-globin gene loci from the pervasive encroachment of an adjacent heterochromatin domain. We propose that many gene loci employ H2Bub1-dependent boundaries to prevent heterochromatin spreading. The transcription of genes in eukaryotes occurs within the context of chromatin, a complex of DNA, histone proteins, and regulatory factors. Whole-genome profiling of chromatin proteins and histones that are post-translationally modified has revealed that genomes are organized into domains of distinct chromatin states that coordinate gene regulation. The integrity of chromatin domains can require the setting of their boundaries. DNA sequences known as chromatin insulator or boundary elements can establish boundaries between transcriptionally permissive and repressive chromatin domains. We have studied two chromatin boundary elements that flank a condensed chromatin region located between the chicken FOLR1 and β-globin genes, respectively. These elements recruit enzymes that mediate the ubiquitination of histone H2B. Histone H2B ubiquitination directs a cascade of so-called “active” histone modification events that favor chromatin accessibility. We observe a striking collapse of the active histone modification signature at both chromatin boundaries following the depletion of ubiquitinated H2B. This loss of boundary function leads to the comprehensive spreading of repressive chromatin over the entire FOLR1 and β-globin gene region, resulting in gene silencing. We propose that chromatin boundaries at many gene loci employ H2B ubiquitination to restrict the encroachment of repressive chromatin.
Collapse
Affiliation(s)
- Meiji Kit-Wan Ma
- Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
78
|
Zhang F, Yu X. WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell 2011; 41:384-97. [PMID: 21329877 DOI: 10.1016/j.molcel.2011.01.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/11/2010] [Accepted: 12/22/2010] [Indexed: 10/24/2022]
Abstract
Histone H2B ubiquitination plays an important role in regulating chromatin organization during gene transcription. It has been shown that RNF20/40 regulates H2B ubiquitination. Here, using protein affinity purification, we have identified WAC as a functional partner of RNF20/40. Depletion of WAC abolishes H2B ubiquitination. WAC interacts with RNF20/40 through its C-terminal coiled-coil region and promotes RNF20/40 s E3 ligase activity for H2B ubiquitination. The N-terminal WW domain of WAC recognizes RNA polymerase II. During gene transcription, WAC targets RNF20/40 to associate with RNA polymerase II complex for H2B ubiquitination at active transcription sites, which regulates transcription. Moreover, WAC-dependent transcription is important for cell-cycle checkpoint activation in response to genotoxic stress. Taken together, our results demonstrate an important regulator for transcription-coupled histone H2B ubiquitination.
Collapse
Affiliation(s)
- Feng Zhang
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
79
|
Leung A, Cajigas I, Jia P, Ezhkova E, Brickner JH, Zhao Z, Geng F, Tansey WP. Histone H2B ubiquitylation and H3 lysine 4 methylation prevent ectopic silencing of euchromatic loci important for the cellular response to heat. Mol Biol Cell 2011; 22:2741-53. [PMID: 21680712 PMCID: PMC3145549 DOI: 10.1091/mbc.e11-05-0426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, ubiquitylation of histone H2B signals methylation of histone H3 at lysine residues 4 (K4) and 79. These modifications occur at active genes but are believed to stabilize silent chromatin by limiting movement of silencing proteins away from heterochromatin domains. In the course of studying atypical phenotypes associated with loss of H2B ubiquitylation/H3K4 methylation, we discovered that these modifications are also required for cell wall integrity at high temperatures. We identified the silencing protein Sir4 as a dosage suppressor of loss of H2B ubiquitylation, and we showed that elevated Sir4 expression suppresses cell wall integrity defects by inhibiting the function of the Sir silencing complex. Using comparative transcriptome analysis, we identified a set of euchromatic genes-enriched in those required for the cellular response to heat-whose expression is attenuated by loss of H2B ubiquitylation but restored by disruption of Sir function. Finally, using DNA adenine methyltransferase identification, we found that Sir3 and Sir4 associate with genes that are silenced in the absence of H3K4 methylation. Our data reveal that H2B ubiquitylation/H3K4 methylation play an important role in limiting ectopic association of silencing proteins with euchromatic genes important for cell wall integrity and the response to heat.
Collapse
Affiliation(s)
- Amy Leung
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Costas C, Desvoyes B, Gutierrez C. A chromatin perspective of plant cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:379-87. [PMID: 21453801 DOI: 10.1016/j.bbagrm.2011.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 12/27/2022]
Abstract
The finely regulated series of events that span from the birth of a cell to the production of two new born cells encompass the cell cycle. Cell cycle progression occurs in a unidirectional manner and requires passing through a number of stages in response to cellular, developmental and environmental cues. In addition to these signaling cascades, transcriptional regulation plays a major role and acts coordinately with genome duplication during S-phase and chromosome segregation during mitosis. In this context, chromatin is revealing as a highly dynamic and major player in cell cycle regulation not only owing to the changes that occur as a consequence of cell cycle progression but also because some specific chromatin modifications are crucial to move across the cell cycle. These are particularly relevant for controlling transcriptional activation and repression as well as initiation of DNA replication and chromosome compaction. As a consequence the epigenetic landscape of a proliferating cell is very complex throughout the cell cycle. These aspects of chromatin dynamics together with the impact of epigenetic modifications on cell proliferation will be discussed in this article. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Celina Costas
- Centro de Biologia Molecukar Severo Ochoa, Madrid, Spain
| | | | | |
Collapse
|
81
|
Chen S, Wei HM, Lv WW, Wang DL, Sun FL. E2 ligase dRad6 regulates DMP53 turnover in Drosophila. J Biol Chem 2011; 286:9020-30. [PMID: 21205821 PMCID: PMC3058994 DOI: 10.1074/jbc.m110.190314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/27/2010] [Indexed: 11/06/2022] Open
Abstract
The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP53 accumulation, whereas overexpression of dRad6 causes enhanced DMP53 degradation. We show that dRad6 specifically interacts with DMP53 at the transcriptional activation domain and regulates DMP53 ubiquitination. Loss of dRad6 function in transgenic flies leads to lethalities and altered morphogenesis. The dRad6-induced defects in cell proliferation and apoptosis are found to be DMP53-dependent. The loss of dRad6 induces an accumulation of DMP53 that enhances the activation of apoptotic genes and leads to apoptosis in the presence of stress stimuli. In contrast to that, the E3 ligase is the primary factor that regulates p53 turnover in mammals, and this work demonstrates that the E2 ligase dRad6 is critical for the control of DMP53 degradation in Drosophila.
Collapse
Affiliation(s)
- Su Chen
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Hui-Min Wei
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Wen-Wen Lv
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Da-Liang Wang
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
| | - Fang-Lin Sun
- From the Institute of Epigenetics and Cancer Research, Medical Science Building C-315, School of Medicine, and
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
82
|
Hewawasam G, Shivaraju M, Mattingly M, Venkatesh S, Martin-Brown S, Florens L, Workman JL, Gerton JL. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell 2010; 40:444-54. [PMID: 21070970 DOI: 10.1016/j.molcel.2010.10.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/02/2010] [Accepted: 09/24/2010] [Indexed: 01/10/2023]
Abstract
Cse4 is a variant of histone H3 that is incorporated into a single nucleosome at each centromere in budding yeast. We have discovered an E3 ubiquitin ligase, called Psh1, which controls the cellular level of Cse4 via ubiquitylation and proteolysis. The activity of Psh1 is dependent on both its RING and zinc finger domains. We demonstrate the specificity of the ubiquitylation activity of Psh1 toward Cse4 in vitro and map the sites of ubiquitylation. Mutation of key lysines prevents ubiquitylation of Cse4 by Psh1 in vitro and stabilizes Cse4 in vivo. While deletion of Psh1 stabilizes Cse4, elimination of the Cse4-specific chaperone Scm3 destabilizes Cse4, and the addition of Scm3 to the Psh1-Cse4 ubiquitylation reaction prevents Cse4 ubiquitylation, together suggesting Scm3 may protect Cse4 from ubiquitylation. Without Psh1, Cse4 overexpression is toxic and Cse4 is found at ectopic locations. Our results suggest Psh1 functions to prevent the mislocalization of Cse4.
Collapse
Affiliation(s)
- Geetha Hewawasam
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Clausing E, Mayer A, Chanarat S, Müller B, Germann SM, Cramer P, Lisby M, Strässer K. The transcription elongation factor Bur1-Bur2 interacts with replication protein A and maintains genome stability during replication stress. J Biol Chem 2010; 285:41665-74. [PMID: 21075850 DOI: 10.1074/jbc.m110.193292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Multiple DNA-associated processes such as DNA repair, replication, and recombination are crucial for the maintenance of genome integrity. Here, we show a novel interaction between the transcription elongation factor Bur1-Bur2 and replication protein A (RPA), the eukaryotic single-stranded DNA-binding protein with functions in DNA repair, recombination, and replication. Bur1 interacted via its C-terminal domain with RPA, and bur1-ΔC mutants showed a deregulated DNA damage response accompanied by increased sensitivity to DNA damage and replication stress as well as increased levels of persisting Rad52 foci. Interestingly, the DNA damage sensitivity of an rfa1 mutant was suppressed by bur1 mutation, further underscoring a functional link between these two protein complexes. The transcription elongation factor Bur1-Bur2 interacts with RPA and maintains genome integrity during DNA replication stress.
Collapse
Affiliation(s)
- Emanuel Clausing
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-Universität Münich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
84
|
DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet 2010; 6:e1001173. [PMID: 21060864 PMCID: PMC2965751 DOI: 10.1371/journal.pgen.1001173] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/21/2010] [Indexed: 01/17/2023] Open
Abstract
Histone deacetylase Rpd3 is part of two distinct complexes: the large (Rpd3L) and small (Rpd3S) complexes. While Rpd3L targets specific promoters for gene repression, Rpd3S is recruited to ORFs to deacetylate histones in the wake of RNA polymerase II, to prevent cryptic initiation within genes. Methylation of histone H3 at lysine 36 by the Set2 methyltransferase is thought to mediate the recruitment of Rpd3S. Here, we confirm by ChIP–Chip that Rpd3S binds active ORFs. Surprisingly, however, Rpd3S is not recruited to all active genes, and its recruitment is Set2-independent. However, Rpd3S complexes recruited in the absence of H3K36 methylation appear to be inactive. Finally, we present evidence implicating the yeast DSIF complex (Spt4/5) and RNA polymerase II phosphorylation by Kin28 and Ctk1 in the recruitment of Rpd3S to active genes. Taken together, our data support a model where Set2-dependent histone H3 methylation is required for the activation of Rpd3S following its recruitment to the RNA polymerase II C-terminal domain. Acetylation of histone N-terminal tails occurs on nucleosomes as a gene is being transcribed, therefore helping the RNA polymerase II traveling through nucleosomes. Histone acetylation, however, has to be reversed in the wake of the polymerase in order to prevent transcription from initiating at the wrong place. Rpd3S is a histone deacetylase complex recruited to transcribed genes to fulfill this function. The Rpd3S complex contains a chromodomain that is thought to be responsible for the association of Rpd3S with genes since it interacts with methylated histones, a feature found on transcribed genes. Here, we show that the recruitment of Rpd3S to transcribed genes does not require histone methylation. We found that Rpd3S is actually recruited by a mechanism implicating the phosphorylation of the RNA polymerase II C-terminal domain and that this mechanism is regulated by a transcriptional elongation complex called DSIF. We propose that the interaction between the Rpd3S chromodomain and methylated histones helps anchoring the deacetylase to its substrate only after it has been recruited to the elongating RNA polymerase.
Collapse
|
85
|
Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation. Mol Cell Biol 2010; 30:5180-93. [PMID: 20823273 DOI: 10.1128/mcb.00819-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The transcriptional coactivator Sub1 has been implicated in several aspects of mRNA metabolism in yeast, such as activation of transcription, termination, and 3'-end formation. Here, we present evidence that Sub1 plays a significant role in controlling phosphorylation of the RNA polymerase II large subunit C-terminal domain (CTD). We show that SUB1 genetically interacts with the genes encoding all four known CTD kinases, SRB10, KIN28, BUR1, and CTK1, suggesting that Sub1 acts to influence CTD phosphorylation at more than one step of the transcription cycle. To address this directly, we first used in vitro kinase assays, and we show that, on the one hand, SUB1 deletion increased CTD phosphorylation by Kin28, Bur1, and Ctk1 but, on the other, it decreased CTD phosphorylation by Srb10. Second, chromatin immunoprecipitation assays revealed that SUB1 deletion decreased Srb10 chromatin association on the inducible GAL1 gene but increased Kin28 and Ctk1 chromatin association on actively transcribed genes. Taken together, our data point to multiple roles for Sub1 in the regulation of CTD phosphorylation throughout the transcription cycle.
Collapse
|
86
|
Mulugeta Achame E, Wassenaar E, Hoogerbrugge JW, Sleddens-Linkels E, Ooms M, Sun ZW, van IJcken WFJ, Grootegoed JA, Baarends WM. The ubiquitin-conjugating enzyme HR6B is required for maintenance of X chromosome silencing in mouse spermatocytes and spermatids. BMC Genomics 2010; 11:367. [PMID: 20537150 PMCID: PMC3091626 DOI: 10.1186/1471-2164-11-367] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/10/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The ubiquitin-conjugating enzyme HR6B is required for spermatogenesis in mouse. Loss of HR6B results in aberrant histone modification patterns on the trancriptionally silenced X and Y chromosomes (XY body) and on centromeric chromatin in meiotic prophase. We studied the relationship between these chromatin modifications and their effects on global gene expression patterns, in spermatocytes and spermatids. RESULTS HR6B is enriched on the XY body and on centromeric regions in pachytene spermatocytes. Global gene expression analyses revealed that spermatid-specific single- and multicopy X-linked genes are prematurely expressed in Hr6b knockout spermatocytes. Very few other differences in gene expression were observed in these cells, except for upregulation of major satellite repeat transcription. In contrast, in Hr6b knockout spermatids, 7298 genes were differentially expressed; 65% of these genes was downregulated, but we observed a global upregulation of gene transcription from the X chromosome. In wild type spermatids, approximately 20% of the single-copy X-linked genes reach an average expression level that is similar to the average expression from autosomes. CONCLUSIONS Spermatids maintain an enrichment of repressive chromatin marks on the X chromosome, originating from meiotic prophase, but this does not interfere with transcription of the single-copy X-linked genes that are reactivated or specifically activated in spermatids. HR6B represses major satellite repeat transcription in spermatocytes, and functions in the maintenance of X chromosome silencing in spermatocytes and spermatids. It is discussed that these functions involve modification of chromatin structure, possibly including H2B ubiquitylation.
Collapse
|
87
|
Abstract
Regulation of eukaryotic gene expression is far more complex than one might have imagined 30 years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: (1) a well-defined organization of nucleosomes and modification states at most genes; (2) regulatory networks of sequence-specific transcription factors; (3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II; and (4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
88
|
Lau NC, Mulder KW, Brenkman AB, Mohammed S, van den Broek NJF, Heck AJR, Timmers HTM. Phosphorylation of Not4p functions parallel to BUR2 to regulate resistance to cellular stresses in Saccharomyces cerevisiae. PLoS One 2010; 5:e9864. [PMID: 20386698 PMCID: PMC2851644 DOI: 10.1371/journal.pone.0009864] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/02/2010] [Indexed: 11/19/2022] Open
Abstract
Background The evolutionarily conserved Ccr4-Not and Bur1/2 kinase complexes are functionally related in Saccharomyces cerevisiae. In this study, we further explore the relationship between the subunits Not4p and Bur2p. Methodology/Principal Findings First, we investigated the presence of post-translational modifications on the Ccr4-Not complex. Using mass spectrometry analyses we identified several SP/TP phosphorylation sites on its Not4p, Not1p and Caf1p subunits. Secondly, the influence of Not4p phosphorylation on global H3K4 tri-methylation status was examined by immunoblotting. This histone mark is severely diminished in the absence of Not4p or of Bur2p, but did not require the five identified Not4p phosphorylation sites. Thirdly, we found that Not4p phosphorylation is not affected by the kinase-defective bur1-23 mutant. Finally, phenotypic analyses of the Not4p phosphomutant (not4S/T5A) and bur2Δ strains showed overlapping sensitivities to drugs that abolish cellular stress responses. The double-mutant not4S/T5A and bur2Δ strain even revealed enhanced phenotypes, indicating that phosphorylation of Not4p and BUR2 are active in parallel pathways for drug tolerance. Conclusions Not4p is a phospho-protein with five identified phosphorylation sites that are likely targets of a cyclin-dependent kinase(s) other than the Bur1/2p complex. Not4p phosphorylation on the five Not4 S/T sites is not required for global H3K4 tri-methylation. In contrast, Not4p phosphorylation is involved in tolerance to cellular stresses and acts in pathways parallel to BUR2 to affect stress responses in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Nga-Chi Lau
- Department of Physiological Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Klaas W. Mulder
- Department of Physiological Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arjan B. Brenkman
- Department of Physiological Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Shabaz Mohammed
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Albert J. R. Heck
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - H. Th. Marc Timmers
- Department of Physiological Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
89
|
Newey PJ, Bowl MR, Cranston T, Thakker RV. Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat 2010; 31:295-307. [DOI: 10.1002/humu.21188] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
90
|
Abstract
Chromatin is a highly regulated nucleoprotein complex through which genetic material is structured and maneuvered to elicit cellular processes, including transcription, cell division, differentiation, and DNA repair. In eukaryotes, the core of this structure is composed of nucleosomes, or repetitive histone octamer units typically enfolded by 147 base pairs of DNA. DNA is arranged and indexed through these nucleosomal structures to adjust local chromatin compaction and accessibility. Histones are subject to multiple covalent posttranslational modifications, some of which alter intrinsic chromatin properties, others of which present or hinder binding modules for non-histone, chromatin-modifying complexes. Although certain histone marks correlate with different biological outputs, we have yet to fully appreciate their effects on transcription and other cellular processes. Tremendous advancements over the past years have uncovered intriguing histone-related matters and raised important related questions. This review revisits past breakthroughs and discusses novel developments that pertain to histone posttranslational modifications and the affects they have on transcription and DNA packaging.
Collapse
Affiliation(s)
- Eric I Campos
- Department of Biochemistry, Howard Hughes Medical Institute, NYU School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
91
|
Eissenberg JC, Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 2009; 339:240-9. [PMID: 19703438 DOI: 10.1016/j.ydbio.2009.08.017] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 12/29/2022]
Abstract
Covalent modification of histones on chromatin is a dynamic mechanism by which various nuclear processes are regulated. Methylation of histone H3 on lysine 4 (H3K4) implemented by the macromolecular complex COMPASS and its related complexes is associated with transcriptionally active regions of chromatin. Enzymes that catalyze H3K4 methylation were initially characterized genetically as regulators of Hox loci, long before their catalytic functions were recognized. Since their discovery, genetic and biochemical studies of H3K4 methylases and demethylases have provided important mechanistic insight into the role of H3K4 methylation in HOX gene regulation during development.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St. Louis, MO 63104, USA.
| | | |
Collapse
|
92
|
Hossain MA, Claggett JM, Nguyen T, Johnson TL. The cap binding complex influences H2B ubiquitination by facilitating splicing of the SUS1 pre-mRNA. RNA (NEW YORK, N.Y.) 2009; 15:1515-27. [PMID: 19561118 PMCID: PMC2714748 DOI: 10.1261/rna.1540409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pre-messenger RNA splicing is carried out by a large ribonucleoprotein complex called the spliceosome. Despite the striking evolutionary conservation of the spliceosomal components and their functions, controversy persists about the relative importance of splicing in Saccharomyces cerevisiae-particularly given the paucity of intron-containing genes in yeast. Here we show that splicing of one pre-messenger RNA, SUS1, a component of the histone H2B ubiquitin protease machinery, is essential for establishing the proper modification state of chromatin. One protein complex that is intimately involved in pre-mRNA splicing, the yeast cap-binding complex, appears to be particularly important, as evidenced by its extensive and unique genetic interactions with enzymes that catalyze histone H2B ubiquitination. Microarray studies show that cap binding complex (CBC) deletion has a global effect on gene expression, and for approximately 20% of these genes, this effect is suppressed when ubiquitination of histone H2B is eliminated. Consistent with this finding of histone H2B dependent effects on gene expression, deletion of the yeast cap binding complex leads to overubiquitination of histone H2B. A key component of the ubiquitin-protease module of the SAGA complex, Sus1, is encoded by a gene that contains two introns and is misspliced when the CBC is deleted, leading to destabilization of the ubiquitin protease complex and defective modulation of cellular H2B levels. These data demonstrate that pre-mRNA splicing plays a critical role in histone H2B ubiquitination and that the CBC in particular helps to establish the proper state of chromatin and proper expression of genes that are regulated at the level of histone H2B ubiquitination.
Collapse
Affiliation(s)
- Munshi Azad Hossain
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
93
|
Jackson J, Shilatifard A. Global proteomic analysis of Saccharomyces cerevisiae identifies molecular pathways of histone modifications. Methods Mol Biol 2009; 548:175-86. [PMID: 19521825 DOI: 10.1007/978-1-59745-540-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The very long DNA of the eukaryotic cells must remain functional when packaged into the cell nucleus. Although we know very little about this process, it is clear at this time that chromatin and its post-translational modifications play a pivotal role. Yeast Saccharomyces cerevisiae provides a powerful genetic and biochemical model system for deciphering the molecular machinery involved in chromatin modification and transcriptional regulation. In this chapter, we describe a novel method, the Global Proteomic analysis in S. cerevisiae (GPS), for the global analysis of the molecular machinery required for proper histone modifications. Since many of the molecular machineries involved in chromatin biology are highly conserved from yeast to humans, GPS has proven to be an outstanding method for the identification of the molecular pathways involved in chromatin modifications.
Collapse
Affiliation(s)
- Jessica Jackson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
94
|
Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 2009; 29:4852-63. [PMID: 19581288 DOI: 10.1128/mcb.00609-09] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Saccharomyces cerevisiae kinase Bur1 is involved in coupling transcription elongation to chromatin modification, but not all important Bur1 targets in the elongation complex are known. Using a chemical genetics strategy wherein Bur1 kinase was engineered to be regulated by a specific inhibitor, we found that Bur1 phosphorylates the Spt5 C-terminal repeat domain (CTD) both in vivo and in isolated elongation complexes in vitro. Deletion of the Spt5 CTD or mutation of the Spt5 serines targeted by Bur1 reduces recruitment of the PAF complex, which functions to recruit factors involved in chromatin modification and mRNA maturation to elongating polymerase II (Pol II). Deletion of the Spt5 CTD showed the same defect in PAF recruitment as rapid inhibition of Bur1 kinase activity, and this Spt5 mutation led to a decrease in histone H3K4 trimethylation. Brief inhibition of Bur1 kinase activity in vivo also led to a significant decrease in phosphorylation of the Pol II CTD at Ser-2, showing that Bur1 also contributes to Pol II Ser-2 phosphorylation. Genetic results suggest that Bur1 is essential for growth because it targets multiple factors that play distinct roles in transcription.
Collapse
|
95
|
Abstract
Parafibromin is a predominantly nuclear protein with a tumour suppressor role in the development of hereditary and nonhereditary parathyroid carcinomas, and the hyperparathyroidism-jaw tumour syndrome, which is associated with renal and uterine tumours. Parafibromin is a component of the highly conserved PAF1 complex, which regulates transcriptional events and histone modifications. The parafibromin/PAF1 complex regulates genes involved in cell growth and survival, and via these, parafibromin plays a pivotal role in embryonic development and survival of adults.
Collapse
Affiliation(s)
- P J Newey
- The Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, UK
| | | | | |
Collapse
|
96
|
Kim T, Buratowski S. Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5' transcribed regions. Cell 2009; 137:259-72. [PMID: 19379692 DOI: 10.1016/j.cell.2009.02.045] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/08/2008] [Accepted: 02/26/2009] [Indexed: 11/18/2022]
Abstract
Cotranscriptional histone methylations by Set1 and Set2 have been shown to affect histone acetylation at promoters and 3' regions of genes, respectively. While histone H3K4 trimethylation (H3K4me3) is thought to promote nucleosome acetylation and remodeling near promoters, we show here that H3K4 dimethylation (H3K4me2) by Set1 leads to reduced histone acetylation levels near 5' ends of genes. H3K4me2 recruits the Set3 complex via the Set3 PHD finger, localizing the Hos2 and Hst1 subunits to deacetylate histones in 5' transcribed regions. Cells lacking the Set1-Set3 complex pathway are sensitive to mycophenolic acid and have reduced polymerase levels at a Set3 target gene, suggesting a positive role in transcription. We propose that Set1 establishes two distinct chromatin zones on genes: H3K4me3 leads to high levels of acetylation and low nucleosome density at promoters, while H3K4me2 just downstream recruits the Set3 complex to suppress nucleosome acetylation and remodeling.
Collapse
Affiliation(s)
- TaeSoo Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
97
|
Yousef AF, Brandl CJ, Mymryk JS. Requirements for E1A dependent transcription in the yeast Saccharomyces cerevisiae. BMC Mol Biol 2009; 10:32. [PMID: 19374760 PMCID: PMC2674444 DOI: 10.1186/1471-2199-10-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/17/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The human adenovirus type 5 early region 1A (E1A) gene encodes proteins that are potent regulators of transcription. E1A does not bind DNA directly, but is recruited to target promoters by the interaction with sequence specific DNA binding proteins. In mammalian systems, E1A has been shown to contain two regions that can independently induce transcription when fused to a heterologous DNA binding domain. When expressed in Saccharomyces cerevisiae, each of these regions of E1A also acts as a strong transcriptional activator. This allows yeast to be used as a model system to study mechanisms by which E1A stimulates transcription. RESULTS Using 81 mutant yeast strains, we have evaluated the effect of deleting components of the ADA, COMPASS, CSR, INO80, ISW1, NuA3, NuA4, Mediator, PAF, RSC, SAGA, SAS, SLIK, SWI/SNF and SWR1 transcriptional regulatory complexes on E1A dependent transcription. In addition, we examined the role of histone H2B ubiquitylation by Rad6/Bre1 on transcriptional activation. CONCLUSION Our analysis indicates that the two activation domains of E1A function via distinct mechanisms, identify new factors regulating E1A dependent transcription and suggest that yeast can serve as a valid model system for at least some aspects of E1A function.
Collapse
Affiliation(s)
- Ahmed F Yousef
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
98
|
TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol Cell 2009; 33:738-51. [PMID: 19328067 DOI: 10.1016/j.molcel.2009.01.029] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/08/2008] [Accepted: 01/30/2009] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) are subunits of transcription factor (TF) IIH and positive transcription elongation factor b (P-TEFb). To define their functions, we mutated the TFIIH-associated kinase Mcs6 and P-TEFb homologs Cdk9 and Lsk1 of fission yeast, making them sensitive to inhibition by bulky purine analogs. Selective inhibition of Mcs6 or Cdk9 blocks cell division, alters RNA polymerase (Pol) II carboxyl-terminal domain (CTD) phosphorylation, and represses specific, overlapping subsets of transcripts. At a common target gene, both CDKs must be active for normal Pol II occupancy, and Spt5-a CDK substrate and regulator of elongation-accumulates disproportionately to Pol II when either kinase is inhibited. In contrast, Mcs6 activity is sufficient-and necessary-to recruit the Cdk9/Pcm1 (mRNA cap methyltransferase) complex. In vitro, phosphorylation of the CTD by Mcs6 stimulates subsequent phosphorylation by Cdk9. We propose that TFIIH primes the CTD and promotes recruitment of P-TEFb/Pcm1, serving to couple elongation and capping of select pre-mRNAs.
Collapse
|
99
|
Qiu H, Hu C, Hinnebusch AG. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell 2009; 33:752-62. [PMID: 19328068 DOI: 10.1016/j.molcel.2009.02.018] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/15/2009] [Accepted: 02/20/2009] [Indexed: 11/19/2022]
Abstract
Cyclin-dependent kinase BUR1/BUR2 appears to be the yeast ortholog of P-TEFb, which phosphorylates Ser2 of the RNA Pol II CTD, but the importance of BUR1/BUR2 in CTD phosphorylation is unclear. We show that BUR1/BUR2 is cotranscriptionally recruited to the 5' end of ARG1 in a manner stimulated by interaction of the BUR1 C terminus with CTD repeats phosphorylated on Ser5 by KIN28. Impairing BUR1/BUR2 function, or removing the CTD-interaction domain in BUR1, reduces Ser2 phosphorylation in bulk Pol II and eliminates the residual Ser2P in cells lacking the major Ser2 CTD kinase, CTK1. Impairing BUR1/BUR2 or CTK1 evokes a similar reduction of Ser2P in Pol II phosphorylated on Ser5 and in elongating Pol II near the ARG1 promoter. By contrast, CTK1 is responsible for the bulk of Ser2P in total Pol II and at promoter-distal sites. In addition to phosphorylating Ser2 near promoters, BUR1/BUR2 also stimulates Ser2P formation by CTK1 during transcription elongation.
Collapse
Affiliation(s)
- Hongfang Qiu
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
100
|
Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc Natl Acad Sci U S A 2009; 106:6956-61. [PMID: 19365074 DOI: 10.1073/pnas.0806302106] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elongation by RNA polymerase II (RNAPII) is a finely regulated process in which many elongation factors contribute to gene regulation. Among these factors are the polymerase-associated factor (PAF) complex, which associates with RNAPII, and several cyclin-dependent kinases, including positive transcription elongation factor b (P-TEFb) in humans and BUR kinase (Bur1-Bur2) and C-terminal domain (CTD) kinase 1 (CTDK1) in Saccharomyces cerevisiae. An important target of P-TEFb and CTDK1, but not BUR kinase, is the CTD of the Rpb1 subunit of RNAPII. Although the essential BUR kinase phosphorylates Rad6, which is required for histone H2B ubiquitination on K123, Rad6 is not essential, leaving a critical substrate(s) of BUR kinase unidentified. Here we show that BUR kinase is important for the phosphorylation in vivo of Spt5, a subunit of the essential yeast RNAPII elongation factor Spt4/Spt5, whose human orthologue is DRB sensitivity-inducing factor. BUR kinase can also phosphorylate the C-terminal region (CTR) of Spt5 in vitro. Like BUR kinase, the Spt5 CTR is important for promoting elongation by RNAPII and recruiting the PAF complex to transcribed regions. Also like BUR kinase and the PAF complex, the Spt5 CTR is important for histone H2B K123 monoubiquitination and histone H3 K4 and K36 trimethylation during transcription elongation. Our results suggest that the Spt5 CTR, which contains 15 repeats of a hexapeptide whose consensus sequence is S[T/A]WGG[A/Q], is a substrate of BUR kinase and a platform for the association of proteins that promote both transcription elongation and histone modification in transcribed regions.
Collapse
|