51
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|
52
|
Bochman ML, Schwacha A. The Mcm2-7 Complex Has In Vitro Helicase Activity. Mol Cell 2008; 31:287-93. [DOI: 10.1016/j.molcel.2008.05.020] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/31/2008] [Accepted: 05/12/2008] [Indexed: 10/21/2022]
|
53
|
Evidence for a structural relationship between BRCT domains and the helicase domains of the replication initiators encoded by the Polyomaviridae and Papillomaviridae families of DNA tumor viruses. J Virol 2008; 82:8849-62. [PMID: 18579587 DOI: 10.1128/jvi.00553-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of DNA tumor viruses have provided important insights into fundamental cellular processes and oncogenic transformation. They have revealed, for example, that upon expression of virally encoded proteins, cellular pathways involved in DNA repair and cell cycle control are disrupted. Herein, evidence is presented that BRCT-related regions are present in the helicase domains of the viral initiators encoded by the Polyomaviridae and Papillomaviridae viral families. Of interest, BRCT domains in cellular proteins recruit factors involved in diverse pathways, including DNA repair and the regulation of cell cycle progression. Therefore, the viral BRCT-related regions may compete with host BRCT domains for particular cellular ligands, a process that would help to explain the pleiotropic effects associated with infections with many DNA tumor viruses.
Collapse
|
54
|
Enemark EJ, Joshua-Tor L. On helicases and other motor proteins. Curr Opin Struct Biol 2008; 18:243-57. [PMID: 18329872 DOI: 10.1016/j.sbi.2008.01.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 01/30/2023]
Abstract
Helicases are molecular machines that utilize energy derived from ATP hydrolysis to move along nucleic acids and to separate base-paired nucleotides. The movement of the helicase can also be described as a stationary helicase that pumps nucleic acid. Recent structural data for the hexameric E1 helicase of papillomavirus in complex with single-stranded DNA and MgADP has provided a detailed atomic and mechanistic picture of its ATP-driven DNA translocation. The structural and mechanistic features of this helicase are compared with the hexameric helicase prototypes T7gp4 and SV40 T-antigen. The ATP-binding site architectures of these proteins are structurally similar to the sites of other prototypical ATP-driven motors such as F1-ATPase, suggesting related roles for the individual site residues in the ATPase activity.
Collapse
Affiliation(s)
- Eric J Enemark
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | | |
Collapse
|
55
|
Sanders CM. A DNA-binding activity in BPV initiator protein E1 required for melting duplex ori DNA but not processive helicase activity initiated on partially single-stranded DNA. Nucleic Acids Res 2008; 36:1891-9. [PMID: 18267969 PMCID: PMC2330243 DOI: 10.1093/nar/gkn041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The papillomavirus replication protein E1 assembles on the viral origin of replication (ori) as a series of complexes. It has been proposed that the ori DNA is first melted by a head-to-tail double trimer of E1 that evolves into two hexamers that encircle and unwind DNA bi-directionally. Here the role of a conserved lysine residue in the smaller tier or collar of the E1 helicase domain in ori processing is described. Unlike the residues of the AAA+ domain DNA-binding segments (β-hairpin and hydrophobic loop; larger tier), this residue functions in the initial melting of duplex ori DNA but not in the processive DNA unwinding of partially single-stranded test substrates. These data therefore define a new DNA-binding related activity in the E1 protein and demonstrate that separate functional elements for DNA melting and helicase activity can be distinguished. New insights into the mechanism of ori melting are elaborated, suggesting the coordinated involvement of rigid and flexible DNA-binding components in E1.
Collapse
Affiliation(s)
- Cyril M Sanders
- Institute for Cancer Studies, University of Sheffield, Beech Hill Rd, Sheffield, S10 2RX, UK.
| |
Collapse
|
56
|
Abstract
Human papillomaviruses complete their life cycle in differentiating epithelial cells that would not normally be competent for either cellular or viral DNA replication. To overcome this, papillomaviruses encode two groups of proteins that work together in the upper epithelial layers to amplify viral genomes. The E6 and E7 proteins play a critical role in driving differentiating epithelial cells that have left the basal layer, back into the cell cycle, in order to produce a replication-competent environment that can be used by the virus for genome amplification. Papillomavirus replication is heavily dependent on cellular replication proteins, but in addition needs the viral E1 and E2 proteins, which act to unwind viral DNA around the origin of replication, and to recruit essential cellular proteins to the replication site. Recent work using mutant viral genomes has suggested that two other viral proteins, E4 and E5, contribute to efficient replication in the upper epithelial layers, although the mechanisms by which they do this have not yet been clearly established. Genome amplification in the upper epithelial layers differs from maintenance replication in the basal layer, where viral genome replication appears coupled to that of the cellular genome. The onset of genome amplification during differentiation is thought to be triggered at least in part by an increase in E1 and E2 levels, and possibly also by a change in the relative levels of the two proteins. The role of E6 and E7 in basal cell replication is, however, uncertain and there is even some question as to the exact requirement for E1. Although similarities in papillomavirus lifecycle organization and protein function suggest a common mechanism by which viral DNA replication is regulated, differences in the site of infection and transmission route appear to manifest themselves as differences in the timing and extent of genome amplification. Understanding the patterns of protein expression seen during natural infection will be important in fully understanding how these differences arise.
Collapse
Affiliation(s)
- John Doorbar
- National Institute for Medical Research, Division of Virology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Kenneth Raj
- National Institute for Medical Research, Division of Virology, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
57
|
Abstract
The origin recognition complex (ORC) was initially discovered in budding yeast extracts as a protein complex that binds with high affinity to autonomously replicating sequences in an ATP-dependent manner. We have cloned and expressed the human homologs of the ORC subunits as recombinant proteins. In contrast to other eukaryotic initiators examined thus far, assembly of human ORC in vitro is dependent on ATP binding. Mutations in the ATP-binding sites of Orc4 or Orc5 impair complex assembly, whereas Orc1 ATP binding is not required. Immunofluorescence staining of human cells with anti-Orc3 antibodies demonstrate cell cycle-dependent association with a nuclear structure. Immunoprecipitation experiments show that ORC disassembles as cells progress through S phase. The Orc6 protein binds directly to the Orc3 subunit and interacts as part of ORC in vivo. These data suggest that the assembly and disassembly of ORC in human cells is uniquely regulated and may contribute to restricting DNA replication to once in every cell division cycle.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
58
|
Liu X, Schuck S, Stenlund A. Adjacent residues in the E1 initiator beta-hairpin define different roles of the beta-hairpin in Ori melting, helicase loading, and helicase activity. Mol Cell 2007; 25:825-37. [PMID: 17386260 DOI: 10.1016/j.molcel.2007.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 12/22/2006] [Accepted: 02/05/2007] [Indexed: 11/30/2022]
Abstract
We have analyzed two residues in the helicase domain of the E1 initiator protein. These residues are part of a highly conserved structural motif, the beta-hairpin, which is present in the helicase domain of all papovavirus initiator proteins. These proteins are unique in their ability to transition from local template melting activity to unwinding. We demonstrate that the beta-hairpin has two functions. First, it is the tool used by the E1 double trimer (DT) to pry open and melt double-stranded DNA. Second, it is required for the unwinding activity of the hexameric E1 helicase. The fact that the same structural element, but not the same residues, contacts both dsDNA in the DT for melting and ssDNA in the double hexamer (DH) for helicase activity provides a link between local origin melting and DNA helicase activity and suggests how the transition between these two states comes about.
Collapse
Affiliation(s)
- Xiaofei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
59
|
Fradet-Turcotte A, Archambault J. Recent Advances in the Search for Antiviral Agents against Human Papillomaviruses. Antivir Ther 2007. [DOI: 10.1177/135965350701200417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infection by human papillomavirus (HPV) is extremely common and associated with the development of benign warts or malignant lesions of the skin and mucosa. Infection by a high-risk (oncogenic) anogenital HPV type, most often through sexual contacts, is the starting point of virtually all cases of cervical cancers and the majority of anal cancers. The same viral types are also increasingly being linked with a subset of head-and-neck and non-melanoma skin cancers. Although prophylactic vaccines are now available to protect against the four types most commonly found in cervical and anal cancers (HPV16 and HPV18) and anogenital warts (HPV6 and HPV11), these neither protect against all genital HPVs nor are of therapeutic utility for already infected patients. Thus, the need for antiviral agents to treat HPV-associated diseases remains great, but none currently exist. This article reviews the recent progress made towards the development of antiviral agents to treat HPV infections, from target identification and validation to the discovery of lead compounds with therapeutic potential. Emphasis has been placed on novel low-molecular-weight compounds that antagonize HPV proteins or, alternatively, inhibit cellular proteins which have been usurped by papillomaviruses and are mediating their pathogenic effects.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Jacques Archambault
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
60
|
Yu JH, Lin BY, Deng W, Broker TR, Chow LT. Mitogen-activated protein kinases activate the nuclear localization sequence of human papillomavirus type 11 E1 DNA helicase to promote efficient nuclear import. J Virol 2007; 81:5066-78. [PMID: 17344281 PMCID: PMC1900230 DOI: 10.1128/jvi.02480-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human and animal papillomavirus DNA replicates as multicopy nuclear plasmids. Replication requires two viral proteins, the origin-recognition protein E2 and the replicative DNA helicase E1. Using genetic, biochemical, and immunofluorescence assays, we demonstrated that efficient nuclear import of the human papillomavirus (HPV) type 11 E1 protein depends on a codominant bipartite nuclear localization sequence (NLS) and on phosphorylation of the serine residues S89 and S93 by the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase, and c-Jun N-terminal protein kinase. The NLS and the MAPK substrates are located within a 50-amino-acid-long peptide near the amino terminus, previously designated the localization regulatory region (LRR). The downstream NLS overlaps the cyclin-binding motif RRL, which is necessary for phosphorylation by the cyclin-dependent kinases to inactivate a dominant nuclear export sequence, also in the LRR. Alanine mutations of the MAPK substrates significantly impaired nuclear import, whereas phospho-mimetic mutations partially restored nuclear import. We further identified two MAPK docking motifs near the C terminus of E1 that are conserved among E1 proteins of many HPVs and bovine papillomavirus type 1. Mutations of these MAPK docking motifs or addition of specific MAPK inhibitors significantly reduced nuclear import. Interestingly, a fraction of the NLS-minus E1 protein was cotransported with the E2 protein into the nucleus and supported transient viral DNA replication. In contrast, E1 proteins mutated in the MAPK docking motifs were completely inactive in transient replication, an indication that additional properties were adversely affected by those changes.
Collapse
Affiliation(s)
- Jei-Hwa Yu
- Department of Biochemistry and Molecular Genetics, McCallum Building, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | |
Collapse
|
61
|
Wang W, Manna D, Simmons DT. Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication. J Virol 2007; 81:4510-9. [PMID: 17301125 PMCID: PMC1900167 DOI: 10.1128/jvi.00003-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.
Collapse
Affiliation(s)
- Weiping Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716-2590, USA
| | | | | |
Collapse
|
62
|
Kumar A, Meinke G, Reese DK, Moine S, Phelan PJ, Fradet-Turcotte A, Archambault J, Bohm A, Bullock PA. Model for T-antigen-dependent melting of the simian virus 40 core origin based on studies of the interaction of the beta-hairpin with DNA. J Virol 2007; 81:4808-18. [PMID: 17287270 PMCID: PMC1900137 DOI: 10.1128/jvi.02451-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of simian virus 40 (SV40) T antigen (T-ag) with the viral origin has served as a model for studies of site-specific recognition of a eukaryotic replication origin and the mechanism of DNA unwinding. These studies have revealed that a motif termed the "beta-hairpin" is necessary for assembly of T-ag on the SV40 origin. Herein it is demonstrated that residues at the tip of the "beta-hairpin" are needed to melt the origin-flanking regions and that the T-ag helicase domain selectively assembles around one of the newly generated single strands in a manner that accounts for its 3'-to-5' helicase activity. Furthermore, T-ags mutated at the tip of the "beta-hairpin" are defective for oligomerization on duplex DNA; however, they can assemble on hybrid duplex DNA or single-stranded DNA (ssDNA) substrates provided the strand containing the 3' extension is present. Collectively, these experiments indicate that residues at the tip of the beta-hairpin generate ssDNA in the core origin and that the ssDNA is essential for subsequent oligomerization events.
Collapse
Affiliation(s)
- Anuradha Kumar
- Department of Biochemistry A703, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Meinke G, Phelan P, Moine S, Bochkareva E, Bochkarev A, Bullock PA, Bohm A. The crystal structure of the SV40 T-antigen origin binding domain in complex with DNA. PLoS Biol 2007; 5:e23. [PMID: 17253903 PMCID: PMC1779811 DOI: 10.1371/journal.pbio.0050023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/17/2006] [Indexed: 01/07/2023] Open
Abstract
DNA replication is initiated upon binding of "initiators" to origins of replication. In simian virus 40 (SV40), the core origin contains four pentanucleotide binding sites organized as pairs of inverted repeats. Here we describe the crystal structures of the origin binding domain (obd) of the SV40 large T-antigen (T-ag) both with and without a subfragment of origin-containing DNA. In the co-structure, two T-ag obds are oriented in a head-to-head fashion on the same face of the DNA, and each T-ag obd engages the major groove. Although the obds are very close to each other when bound to this DNA target, they do not contact one another. These data provide a high-resolution structural model that explains site-specific binding to the origin and suggests how these interactions help direct the oligomerization events that culminate in assembly of the helicase-active dodecameric complex of T-ag.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Paul Phelan
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Stephanie Moine
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Elena Bochkareva
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Bochkarev
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter A Bullock
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Andrew Bohm
- Department of Biochemistry, School of Medicine, and the Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
64
|
Parish JL, Bean AM, Park RB, Androphy EJ. ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell 2007; 24:867-76. [PMID: 17189189 DOI: 10.1016/j.molcel.2006.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/08/2006] [Accepted: 11/01/2006] [Indexed: 02/07/2023]
Abstract
Autonomously replicating DNA viruses must evade mitotic checkpoints and actively partition their genomes to maintain persistent infection. The E2 protein serves these functions by tethering papillomavirus episomes to mitotic chromosomes; however, the mechanism remains unresolved. We show that E2 binds ChlR1, a DNA helicase that plays a role in sister chromatid cohesion. The E2 mutation W130R fails to bind ChlR1 and correspondingly does not associate with mitotic chromosomes. Viral genomes encoding this E2 mutation are not episomally maintained in cell culture. Notably, E2 W130R binds Brd4, which reportedly acts as a mitotic tether, indicating this interaction is insufficient for E2 association with mitotic chromosomes. RNAi-induced depletion of ChlR1 significantly reduced E2 localization to mitotic chromosomes. These studies provide compelling evidence that ChlR1 association is required for loading the papillomavirus E2 protein onto mitotic chromosomes and represents a kinetochore-independent mechanism for viral genome maintenance and segregation.
Collapse
Affiliation(s)
- Joanna L Parish
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
65
|
Schuck S, Stenlund A. ATP-dependent minor groove recognition of TA base pairs is required for template melting by the E1 initiator protein. J Virol 2007; 81:3293-302. [PMID: 17202221 PMCID: PMC1866042 DOI: 10.1128/jvi.02432-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Template melting is an essential step in the initiation of DNA replication, but the mechanism of template melting is unknown for any replicon. Here we demonstrate that melting of the bovine papillomavirus type 1 ori is a sequence-dependent process which relies on specific recognition of TA base pairs in the minor groove by the E1 initiator. We show that correct template melting is a prerequisite for the formation of a stable double hexamer with helicase activity and that ori mutants that fail to melt correctly are defective for ori unwinding and DNA replication in vivo. Our results also indicate that melting of the DNA is achieved by destabilization of the double helix along its length through multiple interactions with E1, each of which is responsible for melting of a few base pairs, resulting in the extensive melting that is required for initiation of DNA replication.
Collapse
Affiliation(s)
- Stephen Schuck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
66
|
Bochkareva E, Martynowski D, Seitova A, Bochkarev A. Structure of the origin-binding domain of simian virus 40 large T antigen bound to DNA. EMBO J 2006; 25:5961-9. [PMID: 17139255 PMCID: PMC1698898 DOI: 10.1038/sj.emboj.7601452] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 10/26/2006] [Indexed: 11/10/2022] Open
Abstract
The large T antigen (T-ag) protein binds to and activates DNA replication from the origin of DNA replication (ori) in simian virus 40 (SV40). Here, we determined the crystal structures of the T-ag origin-binding domain (OBD) in apo form, and bound to either a 17 bp palindrome (sites 1 and 3) or a 23 bp ori DNA palindrome comprising all four GAGGC binding sites for OBD. The T-ag OBDs were shown to interact with the DNA through a loop comprising Ser147-Thr155 (A1 loop), a combination of a DNA-binding helix and loop (His203-Asn210), and Asn227. The A1 loop traveled back-and-forth along the major groove and accounted for most of the sequence-determining contacts with the DNA. Unexpectedly, in both T-ag-DNA structures, the T-ag OBDs bound DNA independently and did not make direct protein-protein contacts. The T-ag OBD was also captured bound to a non-consensus site ATGGC even in the presence of its canonical site GAGGC. Our observations taken together with the known biochemical and structural features of the T-ag-origin interaction suggest a model for origin unwinding.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral, Tumor/chemistry
- Antigens, Viral, Tumor/metabolism
- Base Sequence
- Crystallography, X-Ray
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Replication Origin
- Simian virus 40/chemistry
- Virus Replication/physiology
Collapse
Affiliation(s)
- Elena Bochkareva
- Banting and Best Department of Medical Research & Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Dariusz Martynowski
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Almagoul Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Alexey Bochkarev
- Banting and Best Department of Medical Research & Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
67
|
Reese DK, Meinke G, Kumar A, Moine S, Chen K, Sudmeier JL, Bachovchin W, Bohm A, Bullock PA. Analyses of the interaction between the origin binding domain from simian virus 40 T antigen and single-stranded DNA provide insights into DNA unwinding and initiation of DNA replication. J Virol 2006; 80:12248-59. [PMID: 17005644 PMCID: PMC1676264 DOI: 10.1128/jvi.01201-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA helicases are essential for DNA metabolism; however, at the molecular level little is known about how they assemble or function. Therefore, as a model for a eukaryotic helicase, we are analyzing T antigen (T-ag) the helicase encoded by simian virus 40. In this study, nuclear magnetic resonance (NMR) methods were used to investigate the transit of single-stranded DNA (ssDNA) through the T-ag origin-binding domain (T-ag OBD). When the residues that interact with ssDNA are viewed in terms of the structure of a hexamer of the T-ag OBD, comprised of residues 131 to 260, they indicate that ssDNA passes over one face of the T-ag OBD and then transits through a gap in the open ring structure. The NMR-based conclusions are supported by an analysis of previously described mutations that disrupt critical steps during the initiation of DNA replication. These and related observations are discussed in terms of the threading of DNA through T-ag hexamers and the initiation of viral DNA replication.
Collapse
Affiliation(s)
- Danielle K Reese
- Department of Biochemistry A703, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Schuck S, Stenlund A. Surface mutagenesis of the bovine papillomavirus E1 DNA binding domain reveals residues required for multiple functions related to DNA replication. J Virol 2006; 80:7491-9. [PMID: 16840329 PMCID: PMC1563737 DOI: 10.1128/jvi.00435-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1 protein from papillomaviruses is a multifunctional protein with complex functions required for the initiation of viral DNA replication. We have performed a surface mutagenesis of the well-characterized E1 DNA binding domain (DBD). We demonstrate that substitutions of multiple residues on the surface of the E1 DBD are defective for DNA replication without affecting the DNA binding activity of the protein. The defects of individual substitutions include failure to form the double trimer that melts the ori and failure to form the double hexamer that unwinds the ori. These results demonstrate that the DBD plays an essential role in multiple DNA replication-related processes apart from DNA binding.
Collapse
Affiliation(s)
- Stephen Schuck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
69
|
Enemark EJ, Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006; 442:270-5. [PMID: 16855583 DOI: 10.1038/nature04943] [Citation(s) in RCA: 414] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 06/01/2006] [Indexed: 11/09/2022]
Abstract
The E1 protein of papillomavirus is a hexameric ring helicase belonging to the AAA + family. The mechanism that couples the ATP cycle to DNA translocation has been unclear. Here we present the crystal structure of the E1 hexamer with single-stranded DNA discretely bound within the hexamer channel and nucleotides at the subunit interfaces. This structure demonstrates that only one strand of DNA passes through the hexamer channel and that the DNA-binding hairpins of each subunit form a spiral 'staircase' that sequentially tracks the oligonucleotide backbone. Consecutively grouped ATP, ADP and apo configurations correlate with the height of the hairpin, suggesting a straightforward DNA translocation mechanism. Each subunit sequentially progresses through ATP, ADP and apo states while the associated DNA-binding hairpin travels from the top staircase position to the bottom, escorting one nucleotide of single-stranded DNA through the channel. These events permute sequentially around the ring from one subunit to the next.
Collapse
Affiliation(s)
- Eric J Enemark
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
70
|
Castella S, Burgin D, Sanders CM. Role of ATP hydrolysis in the DNA translocase activity of the bovine papillomavirus (BPV-1) E1 helicase. Nucleic Acids Res 2006; 34:3731-41. [PMID: 16893956 PMCID: PMC1557793 DOI: 10.1093/nar/gkl554] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The E1 protein of bovine papillomavirus type-1 is the viral replication initiator protein and replicative helicase. Here we show that the C-terminal approximately 300 amino acids of E1, that share homology with members of helicase superfamily 3 (SF3), can act as an autonomous helicase. E1 is monomeric in the absence of ATP but assembles into hexamers in the presence of ATP, single-stranded DNA (ssDNA) or both. A 16 base sequence is the minimum for efficient hexamerization, although the complex protects approximately 30 bases from nuclease digestion, supporting the notion that the DNA is bound within the protein complex. In the absence of ATP, or in the presence of ADP or the non-hydrolysable ATP analogue AMP-PNP, the interaction with short ssDNA oligonucleotides is exceptionally tight (T(1/2) > 6 h). However, in the presence of ATP, the interaction with DNA is destabilized (T(1/2) approximately 60 s). These results suggest that during the ATP hydrolysis cycle an internal DNA-binding site oscillates from a high to a low-affinity state, while protein-protein interactions switch from low to high affinity. This reciprocal change in protein-protein and protein-DNA affinities could be part of a mechanism for tethering the protein to its substrate while unidirectional movement along DNA proceeds.
Collapse
Affiliation(s)
| | | | - Cyril M. Sanders
- To whom correspondence should be addressed. Tel: +44 114 2712482; Fax: +44 114 2713892;
| |
Collapse
|
71
|
Castella S, Bingham G, Sanders CM. Common determinants in DNA melting and helicase-catalysed DNA unwinding by papillomavirus replication protein E1. Nucleic Acids Res 2006; 34:3008-19. [PMID: 16738139 PMCID: PMC1474052 DOI: 10.1093/nar/gkl384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
E1 and T-antigen of the tumour viruses bovine papillomavirus (BPV-1) and Simian virus 40 (SV40) are the initiator proteins that recognize and melt their respective origins of replication in the initial phase of DNA replication. These proteins then assemble into processive hexameric helicases upon the single-stranded DNA that they create. In T-antigen, a characteristic loop and hairpin structure (the pre-sensor 1β hairpin, PS1βH) project into a central cavity generated by protein hexamerization. This channel undergoes large ATP-dependent conformational changes, and the loop/PS1βH is proposed to form a DNA binding site critical for helicase activity. Here, we show that conserved residues in BPV E1 that probably form a similar loop/hairpin structure are required for helicase activity and also origin (ori) DNA melting. We propose that DNA melting requires the cooperation of the E1 helicase domain (E1HD) and the origin binding domain (OBD) tethered to DNA. One possible mechanism is that with the DNA locked in the loop/PS1βH DNA binding site, ATP-dependent conformational changes draw the DNA inwards in a twisting motion to promote unwinding.
Collapse
Affiliation(s)
| | | | - Cyril M. Sanders
- To whom correspondence should be addressed. Tel: +1 14 2712482; Fax: +1 14 2713892;
| |
Collapse
|