51
|
Lorkova L, Scigelova M, Arrey TN, Vit O, Pospisilova J, Doktorova E, Klanova M, Alam M, Vockova P, Maswabi B, Klener P, Petrak J. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells. PLoS One 2015; 10:e0135314. [PMID: 26285204 PMCID: PMC4540412 DOI: 10.1371/journal.pone.0135314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/20/2015] [Indexed: 11/28/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a chronically relapsing aggressive type of B-cell non-Hodgkin lymphoma considered incurable by currently used treatment approaches. Fludarabine is a purine analog clinically still widely used in the therapy of relapsed MCL. Molecular mechanisms of fludarabine resistance have not, however, been studied in the setting of MCL so far. We therefore derived fludarabine-resistant MCL cells (Mino/FR) and performed their detailed functional and proteomic characterization compared to the original fludarabine sensitive cells (Mino). We demonstrated that Mino/FR were highly cross-resistant to other antinucleosides (cytarabine, cladribine, gemcitabine) and to an inhibitor of Bruton tyrosine kinase (BTK) ibrutinib. Sensitivity to other types of anti-lymphoma agents was altered only mildly (methotrexate, doxorubicin, bortezomib) or remained unaffacted (cisplatin, bendamustine). The detailed proteomic analysis of Mino/FR compared to Mino cells unveiled over 300 differentially expressed proteins. Mino/FR were characterized by the marked downregulation of deoxycytidine kinase (dCK) and BTK (thus explaining the observed crossresistance to antinucleosides and ibrutinib), but also by the upregulation of several enzymes of de novo nucleotide synthesis, as well as the up-regulation of the numerous proteins of DNA repair and replication. The significant upregulation of the key antiapoptotic protein Bcl-2 in Mino/FR cells was associated with the markedly increased sensitivity of the fludarabine-resistant MCL cells to Bcl-2-specific inhibitor ABT199 compared to fludarabine-sensitive cells. Our data thus demonstrate that a detailed molecular analysis of drug-resistant tumor cells can indeed open a way to personalized therapy of resistant malignancies.
Collapse
Affiliation(s)
- Lucie Lorkova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | - Ondrej Vit
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Pospisilova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Eliska Doktorova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Magdalena Klanova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- First Department of Medicine—Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Mahmudul Alam
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Vockova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- First Department of Medicine—Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Bokang Maswabi
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- First Department of Medicine—Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Jiri Petrak
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
52
|
Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation. Mol Cell 2015; 59:188-202. [PMID: 26166704 DOI: 10.1016/j.molcel.2015.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/11/2015] [Accepted: 06/02/2015] [Indexed: 11/21/2022]
Abstract
Enhancers instruct spatio-temporally specific gene expression in a manner tightly linked to higher-order chromatin architecture. Critical chromatin architectural regulators condensin I and condensin II play non-redundant roles controlling mitotic chromosomes. But the chromosomal locations of condensins and their functional roles in interphase are poorly understood. Here we report that both condensin complexes exhibit an unexpected, dramatic estrogen-induced recruitment to estrogen receptor α (ER-α)-bound eRNA(+) active enhancers in interphase breast cancer cells, exhibiting non-canonical interaction with ER-α via its DNA-binding domain (DBD). Condensins positively regulate ligand-dependent enhancer activation at least in part by recruiting an E3 ubiquitin ligase, HECTD1, to modulate the binding of enhancer-associated coactivators/corepressors, including p300 and RIP140, permitting full eRNA transcription, formation of enhancer:promoter looping, and the resultant coding gene activation. Collectively, our results reveal an important, unanticipated transcriptional role of interphase condensins in modulating estrogen-regulated enhancer activation and coding gene transcriptional program.
Collapse
|
53
|
Roy MA, Dhanaraman T, D'Amours D. The Smc5-Smc6 heterodimer associates with DNA through several independent binding domains. Sci Rep 2015; 5:9797. [PMID: 25984708 PMCID: PMC4434891 DOI: 10.1038/srep09797] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/20/2015] [Indexed: 12/12/2022] Open
Abstract
The Smc5-6 complex is required for the maintenance of genome integrity through its
functions in DNA repair and chromosome biogenesis. However, the specific mode of
action of Smc5 and Smc6 in these processes remains largely unknown. We previously
showed that individual components of the Smc5-Smc6 complex bind strongly to DNA as
monomers, despite the absence of a canonical DNA-binding domain (DBD) in these
proteins. How heterodimerization of Smc5-6 affects its binding to DNA, and which
parts of the SMC molecules confer DNA-binding activity is not known at present. To
address this knowledge gap, we characterized the functional domains of the Smc5-6
heterodimer and identify two DBDs in each SMC molecule. The first DBD is located
within the SMC hinge region and its adjacent coiled-coil arms, while the second is
found in the conserved ATPase head domain. These DBDs can independently recapitulate
the substrate preference of the full-length Smc5 and Smc6 proteins. We also show
that heterodimerization of full-length proteins specifically increases the affinity
of the resulting complex for double-stranded DNA substrates. Collectively, our
findings provide critical insights into the structural requirements for effective
binding of the Smc5-6 complex to DNA repair substrates in vitro and in live
cells.
Collapse
Affiliation(s)
- Marc-André Roy
- Institute for Research in Immunology and Cancer, and Département de Pathologie et biologie cellulaire, Université de Montréal P.O. Box 6128, Succursale Centre-Ville Montréal, QC, H3C 3J7, Canada
| | - Thillaivillalan Dhanaraman
- Institute for Research in Immunology and Cancer, and Département de Pathologie et biologie cellulaire, Université de Montréal P.O. Box 6128, Succursale Centre-Ville Montréal, QC, H3C 3J7, Canada
| | - Damien D'Amours
- Institute for Research in Immunology and Cancer, and Département de Pathologie et biologie cellulaire, Université de Montréal P.O. Box 6128, Succursale Centre-Ville Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
54
|
Na Z, Peng B, Ng S, Pan S, Lee JS, Shen HM, Yao SQ. A small-molecule protein-protein interaction inhibitor of PARP1 that targets its BRCT domain. Angew Chem Int Ed Engl 2015; 54:2515-9. [PMID: 25565365 DOI: 10.1002/anie.201410678] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/07/2014] [Indexed: 01/01/2023]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP1) is a BRCT-containing enzyme (BRCT = BRCA1 C-terminus) mainly involved in DNA repair and damage response and a validated target for cancer treatment. Small-molecule inhibitors that target the PARP1 catalytic domain have been actively pursued as anticancer drugs, but are potentially problematic owing to a lack of selectivity. Compounds that are capable of disrupting protein-protein interactions of PARP1 provide an alternative by inhibiting its activities with improved selectivity profiles. Herein, by establishing a high-throughput microplate-based assay suitable for screening potential PPI inhibitors of the PARP1 BRCT domain, we have discovered that (±)-gossypol, a natural product with a number of known biological activities, possesses novel PARP1 inhibitory activity both in vitro and in cancer cells and presumably acts through disruption of protein-protein interactions. As the first known cell-permeable small-molecule PPI inhibitor of PAPR1, we further established that (-)-gossypol was likely the causative agent of PARP1 inhibition by promoting the formation of a 1:2 compound/PARP1 complex by reversible formation of a covalent imine linkage.
Collapse
Affiliation(s)
- Zhenkun Na
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore) http://staff.science.nus.edu.sg/∼syao
| | | | | | | | | | | | | |
Collapse
|
55
|
Na Z, Peng B, Ng S, Pan S, Lee JS, Shen HM, Yao SQ. A Small-Molecule Protein-Protein Interaction Inhibitor of PARP1 That Targets Its BRCT Domain. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
56
|
Li P, Jin H, Yu HG. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast. Mol Biol Cell 2014; 25:2934-47. [PMID: 25103240 PMCID: PMC4230583 DOI: 10.1091/mbc.e14-05-0957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Condensin undergoes a sequestration, release, and reloading cycle at the rDNA array in budding yeast meiosis. It regulates rDNA stability by suppressing double-strand break (DSB) formation and promoting DSB processing. During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity.
Collapse
Affiliation(s)
- Ping Li
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370
| | - Hui Jin
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370
| |
Collapse
|
57
|
Silva BA, Stambaugh JR, Yokomori K, Shah JV, Berns MW. DNA damage to a single chromosome end delays anaphase onset. J Biol Chem 2014; 289:22771-22784. [PMID: 24982423 DOI: 10.1074/jbc.m113.535955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chromosome ends contain nucleoprotein structures known as telomeres. Damage to chromosome ends during interphase elicits a DNA damage response (DDR) resulting in cell cycle arrest. However, little is known regarding the signaling from damaged chromosome ends (designated here as "TIPs") during mitosis. In the present study, we investigated the consequences of DNA damage induced at a single TIP in mitosis. We used laser microirradiation to damage mitotic TIPs or chromosome arms (non-TIPs) in PtK2 kidney epithelial cells. We found that damage to a single TIP, but not a non-TIP, delays anaphase onset. This TIP-specific checkpoint response is accompanied by differential recruitment of DDR proteins. Although phosphorylation of H2AX and the recruitment of several repair factors, such as Ku70-Ku80, occur in a comparable manner at both TIP and non-TIP damage sites, DDR factors such as ataxia telangiectasia mutated (ATM), MDC1, WRN, and FANCD2 are specifically recruited to TIPs but not to non-TIPs. In addition, Nbs1, BRCA1, and ubiquitin accumulate at damaged TIPs more rapidly than at damaged non-TIPs. ATR and 53BP1 are not detected at either TIPs or non-TIPs in mitosis. The observed delay in anaphase onset is dependent on the activity of DDR kinases ATM and Chk1, and the spindle assembly checkpoint kinase Mps1. Cells damaged at a single TIP or non-TIP eventually exit mitosis with unrepaired lesions. Damaged TIPs are segregated into micronuclei at a significantly higher frequency than damaged non-TIPs. Together, these findings reveal a mitosis-specific DDR uniquely associated with chromosome ends.
Collapse
Affiliation(s)
- Bárbara Alcaraz Silva
- Beckman Laser Institute and Medical Clinic, Irvine, California 92612,; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92617
| | | | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, and.
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115.
| | - Michael W Berns
- Beckman Laser Institute and Medical Clinic, Irvine, California 92612,; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92617,; Department of Biomedical Engineering, University of California, Irvine, California 92617,.
| |
Collapse
|
58
|
Pardo I, Lillemoe HA, Blosser RJ, Choi M, Sauder CAM, Doxey DK, Mathieson T, Hancock BA, Baptiste D, Atale R, Hickenbotham M, Zhu J, Glasscock J, Storniolo AMV, Zheng F, Doerge RW, Liu Y, Badve S, Radovich M, Clare SE. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Res 2014; 16:R26. [PMID: 24636070 PMCID: PMC4053088 DOI: 10.1186/bcr3627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 03/10/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.
Collapse
|
59
|
Kim HS, Mukhopadhyay R, Rothbart SB, Silva AC, Vanoosthuyse V, Radovani E, Kislinger T, Roguev A, Ryan CJ, Xu J, Jahari H, Hardwick KG, Greenblatt JF, Krogan NJ, Fillingham JS, Strahl BD, Bouhassira EE, Edelmann W, Keogh MC. Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function. Cell Rep 2014; 6:892-905. [PMID: 24565511 DOI: 10.1016/j.celrep.2014.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 10/20/2013] [Accepted: 01/23/2014] [Indexed: 11/26/2022] Open
Abstract
Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Rituparna Mukhopadhyay
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Scott B Rothbart
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrea C Silva
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Vincent Vanoosthuyse
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, Scotland
| | - Ernest Radovani
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | | | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Colm J Ryan
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; School of Medicine & Medical Science, University College, Dublin 4, Ireland
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
| | - Harlizawati Jahari
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; Malaysian Institute of Pharmaceuticals and Nutraceuticals, 11800 USM Penang, Malaysia
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, Scotland
| | - Jack F Greenblatt
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey S Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
| | | |
Collapse
|
60
|
Murakami-Tonami Y, Kishida S, Takeuchi I, Katou Y, Maris JM, Ichikawa H, Kondo Y, Sekido Y, Shirahige K, Murakami H, Kadomatsu K. Inactivation of SMC2 shows a synergistic lethal response in MYCN-amplified neuroblastoma cells. Cell Cycle 2014; 13:1115-31. [PMID: 24553121 PMCID: PMC4013162 DOI: 10.4161/cc.27983] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The condensin complex is required for chromosome condensation during mitosis; however, the role of this complex during interphase is unclear. Neuroblastoma is the most common extracranial solid tumor of childhood, and it is often lethal. In human neuroblastoma, MYCN gene amplification is correlated with poor prognosis. This study demonstrates that the gene encoding the condensin complex subunit SMC2 is transcriptionally regulated by MYCN. SMC2 also transcriptionally regulates DNA damage response genes in cooperation with MYCN. Downregulation of SMC2 induced DNA damage and showed a synergistic lethal response in MYCN-amplified/overexpression cells, leading to apoptosis in human neuroblastoma cells. Finally, this study found that patients bearing MYCN-amplified tumors showed improved survival when SMC2 expression was low. These results identify novel functions of SMC2 in DNA damage response, and we propose that SMC2 (or the condensin complex) is a novel molecular target for the treatment of MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Yuko Murakami-Tonami
- Department of Molecular Biology; Nagoya University Graduate School of Medicine; Nagoya, Japan
| | - Satoshi Kishida
- Department of Molecular Biology; Nagoya University Graduate School of Medicine; Nagoya, Japan
| | - Ichiro Takeuchi
- Department of Computer Science/Scientific and Engineering Simulation; Nagoya Institute of Technology; Nagoya, Japan
| | - Yuki Katou
- Laboratory of Genome Structure & Function; Institute of Molecular and Cellular Biosciences; The University of Tokyo; Tokyo, Japan
| | - John M Maris
- Department of Pediatrics and Center for Childhood Cancer Research; Children's Hospital of Philadelphia; University of Pennsylvania; Philadelphia, PA USA
| | | | - Yutaka Kondo
- Division of Molecular Oncology; Aichi Cancer Center Research Institute; Nagoya, Japan; Division of Epigenomics; Aichi Cancer Center Research Institute; Nagoya, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology; Aichi Cancer Center Research Institute; Nagoya, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure & Function; Institute of Molecular and Cellular Biosciences; The University of Tokyo; Tokyo, Japan
| | - Hiroshi Murakami
- Department of Biological Science; Faculty of Science and Engineering; Chuo University; Tokyo, Japan
| | - Kenji Kadomatsu
- Department of Molecular Biology; Nagoya University Graduate School of Medicine; Nagoya, Japan
| |
Collapse
|
61
|
Kong X, Ball AR, Pham HX, Zeng W, Chen HY, Schmiesing JA, Kim JS, Berns M, Yokomori K. Distinct functions of human cohesin-SA1 and cohesin-SA2 in double-strand break repair. Mol Cell Biol 2014; 34:685-98. [PMID: 24324008 PMCID: PMC3911484 DOI: 10.1128/mcb.01503-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 11/20/2022] Open
Abstract
Cohesin is an essential multiprotein complex that mediates sister chromatid cohesion critical for proper segregation of chromosomes during cell division. Cohesin is also involved in DNA double-strand break (DSB) repair. In mammalian cells, cohesin is involved in both DSB repair and the damage checkpoint response, although the relationship between these two functions is unclear. Two cohesins differing by one subunit (SA1 or SA2) are present in somatic cells, but their functional specificities with regard to DNA repair remain enigmatic. We found that cohesin-SA2 is the main complex corecruited with the cohesin-loading factor NIPBL to DNA damage sites in an S/G(2)-phase-specific manner. Replacing the diverged C-terminal region of SA1 with the corresponding region of SA2 confers this activity on SA1. Depletion of SA2 but not SA1 decreased sister chromatid homologous recombination repair and affected repair pathway choice, indicating that DNA repair activity is specifically associated with cohesin recruited to damage sites. In contrast, both cohesin complexes function in the intra-S checkpoint, indicating that cell cycle-specific damage site accumulation is not a prerequisite for cohesin's intra-S checkpoint function. Our findings reveal the unique ways in which cohesin-SA1 and cohesin-SA2 participate in the DNA damage response, coordinately protecting genome integrity in human cells.
Collapse
Affiliation(s)
- Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Alexander R. Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Hoang Xuan Pham
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Hsiao-Yuan Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - John A. Schmiesing
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Jong-Soo Kim
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Michael Berns
- Beckman Laser Institute, University of California, Irvine, California, USA
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, California, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
62
|
Loss of Caenorhabditis elegans BRCA1 promotes genome stability during replication in smc-5 mutants. Genetics 2014; 196:985-99. [PMID: 24424777 PMCID: PMC3982690 DOI: 10.1534/genetics.113.158295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA damage by ultraviolet (UV) light poses a risk for mutagenesis and a potential hindrance for cell cycle progression. Cells cope with UV-induced DNA damage through two general strategies to repair the damaged nucleotides and to promote cell cycle progression in the presence of UV-damaged DNA. Defining the genetic pathways and understanding how they function together to enable effective tolerance to UV remains an important area of research. The structural maintenance of chromosomes (SMC) proteins form distinct complexes that maintain genome stability during chromosome segregation, homologous recombination, and DNA replication. Using a forward genetic screen, we identified two alleles of smc-5 that exacerbate UV sensitivity in Caenorhabditis elegans. Germ cells of smc-5-defective animals show reduced proliferation, sensitivity to perturbed replication, chromatin bridge formation, and accumulation of RAD-51 foci that indicate the activation of homologous recombination at DNA double-strand breaks. Mutations in the translesion synthesis polymerase polh-1 act synergistically with smc-5 mutations in provoking genome instability after UV-induced DNA damage. In contrast, the DNA damage accumulation and sensitivity of smc-5 mutant strains to replication impediments are suppressed by mutations in the C. elegans BRCA1/BARD1 homologs, brc-1 and brd-1. We propose that SMC-5/6 promotes replication fork stability and facilitates recombination-dependent repair when the BRC-1/BRD-1 complex initiates homologous recombination at stalled replication forks. Our data suggest that BRC-1/BRD-1 can both promote and antagonize genome stability depending on whether homologous recombination is initiated during DNA double-strand break repair or during replication stalling.
Collapse
|
63
|
Localisation of the SMC loading complex Nipbl/Mau2 during mammalian meiotic prophase I. Chromosoma 2013; 123:239-52. [PMID: 24287868 PMCID: PMC4031387 DOI: 10.1007/s00412-013-0444-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
Abstract
Evidence from lower eukaryotes suggests that the chromosomal associations of all the structural maintenance of chromosome (SMC) complexes, cohesin, condensin and Smc5/6, are influenced by the Nipbl/Mau2 heterodimer. Whether this function is conserved in mammals is currently not known. During mammalian meiosis, very different localisation patterns have been reported for the SMC complexes, and the localisation of Nipbl/Mau2 has just recently started to be investigated. Here, we show that Nipbl/Mau2 binds on chromosomal axes from zygotene to mid-pachytene in germ cells of both sexes. In spermatocytes, Nipbl/Mau2 then relocalises to chromocenters, whereas in oocytes it remains bound to chromosomal axes throughout prophase to dictyate arrest. The localisation pattern of Nipbl/Mau2, together with those seen for cohesin, condensin and Smc5/6 subunits, is consistent with a role as a loading factor for cohesin and condensin I, but not for Smc5/6. We also demonstrate that Nipbl/Mau2 localises next to Rad51 and γH2AX foci. NIPBL gene deficiencies are associated with the Cornelia de Lange syndrome in humans, and we find that haploinsufficiency of the orthologous mouse gene results in an altered distribution of double-strand breaks marked by γH2AX during prophase I. However, this is insufficient to result in major meiotic malfunctions, and the chromosomal associations of the synaptonemal complex proteins and the three SMC complexes appear cytologically indistinguishable in wild-type and Nipbl+/− spermatocytes.
Collapse
|
64
|
Wallace HA, Bosco G. Condensins and 3D Organization of the Interphase Nucleus. CURRENT GENETIC MEDICINE REPORTS 2013; 1:219-229. [PMID: 24563825 DOI: 10.1007/s40142-013-0024-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Condensins are conserved multi-subunit protein complexes that participate in eukaryotic genome organization. Well known for their role in mitotic chromosome condensation, condensins have recently emerged as integral components of diverse interphase processes. Recent evidence shows that condensins are involved in chromatin organization, gene expression, and DNA repair and indicates similarities between the interphase and mitotic functions of condensin. Recent work has enhanced our knowledge of how chromatin architecture is dynamically regulated by condensin to impact essential cellular processes.
Collapse
Affiliation(s)
- Heather A Wallace
- Department of Genetics, Geisel School of Medicine at Dartmouth, 609 Vail, HB 7400, Hanover, NH 03755, USA
| | - Giovanni Bosco
- Department of Genetics, Geisel School of Medicine at Dartmouth, 609 Vail, HB 7400, Hanover, NH 03755, USA
| |
Collapse
|
65
|
Comparative transcriptome profiling of an SV40-transformed human fibroblast (MRC5CVI) and its untransformed counterpart (MRC-5) in response to UVB irradiation. PLoS One 2013; 8:e73311. [PMID: 24019915 PMCID: PMC3760899 DOI: 10.1371/journal.pone.0073311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
Simian virus 40 (SV40) transforms cells through the suppression of tumor-suppressive responses by large T and small t antigens; studies on the effects of these two oncoproteins have greatly improved our knowledge of tumorigenesis. Large T antigen promotes cellular transformation by binding and inactivating p53 and pRb tumor suppressor proteins. Previous studies have shown that not all of the tumor-suppressive responses were inactivated in SV40-transformed cells; however, the underlying cause is not fully studied. In this study, we investigated the UVB-responsive transcriptome of an SV40-transformed fibroblast (MRC5CVI) and that of its untransformed counterpart (MRC-5). We found that, in response to UVB irradiation, MRC-5 and MRC5CVI commonly up-regulated the expression of oxidative phosphorylation genes. MRC-5 up-regulated the expressions of chromosome condensation, DNA repair, cell cycle arrest, and apoptotic genes, but MRC5CVI did not. Further cell death assays indicated that MRC5CVI was more sensitive than MRC-5 to UVB-induced cell death with increased caspase-3 activation; combining with the transcriptomic results suggested that MRC5CVI may undergo UVB-induced cell death through mechanisms other than transcriptional regulation. Our study provides a further understanding of the effects of SV40 transformation on cellular stress responses, and emphasizes the value of SV40-transformed cells in the researches of sensitizing neoplastic cells to radiations.
Collapse
|
66
|
Niu Y, Zhang X, Zheng Y, Zhang R. XRCC1 deficiency increased the DNA damage induced by γ-ray in HepG2 cell: Involvement of DSB repair and cell cycle arrest. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:311-319. [PMID: 23708312 DOI: 10.1016/j.etap.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
γ-ray irradiation can induce DNA damages which include base damages, single-strand breaks and double-strand breaks in various type cells. The DNA repair protein XRCC1, as a part of the BER pathway, forms complexes with DNA polymerase beta, DNA ligase III and poly-ADP-ribose polymerase (PARP) in the repair of DNA single strand breaks and also affects the repair of double strand breaks. However, it is still not known well whether XRCC1 contributes to affect the irradiation sensitivity and DNA damage in HepG2 cell and the potential mechanism. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by shRNA could reduce DNA repair and thus sensitize HepG2 cells to γ-ray. Cell viability was measured by Trypan blue staining and cloning efficiency assay. The DNA damage was detected by Comet assay. Apoptosis and cell cycle were detected by flow cytometry. The DNA-PKcs and gadd153 mRNA expression were determined by Real-time PCR. Our results showed that abrogation of XRCC 1 could sensitize HepG2 cells to γ-ray. This enhanced sensitivity could be attributed to the increased DNA damage and increased cell cycle arrest, which might be related with the increasing of DNA-PKcs and gadd153 mRNA expression. Therefore, our results suggested that the γ-ray irradiation sensitivity could be increased by targeting inhibition of XRCC1 in HepG2 cell.
Collapse
Affiliation(s)
- Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China; Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Xing Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xuanwu District, Beijing 100050, People's Republic of China
| | - Yuxin Zheng
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xuanwu District, Beijing 100050, People's Republic of China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| |
Collapse
|
67
|
Piazza I, Haering CH, Rutkowska A. Condensin: crafting the chromosome landscape. Chromosoma 2013; 122:175-90. [DOI: 10.1007/s00412-013-0405-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 02/06/2023]
|
68
|
Robert I, Karicheva O, Reina San Martin B, Schreiber V, Dantzer F. Functional aspects of PARylation in induced and programmed DNA repair processes: preserving genome integrity and modulating physiological events. Mol Aspects Med 2013; 34:1138-52. [PMID: 23454615 DOI: 10.1016/j.mam.2013.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 12/24/2022]
Abstract
To cope with the devastating insults constantly inflicted to their genome by intrinsic and extrinsic DNA damaging sources, cells have evolved a sophisticated network of interconnected DNA caretaking mechanisms that will detect, signal and repair the lesions. Among the underlying molecular mechanisms that regulate these events, PARylation catalyzed by Poly(ADP-ribose) polymerases (PARPs), appears as one of the earliest post-translational modification at the site of the lesion that is known to elicit recruitment and regulation of many DNA damage response proteins. In this review we discuss how the complex PAR molecule operates in stress-induced DNA damage signaling and genome maintenance but also in various physiological settings initiated by developmentally programmed DNA breakage. To illustrate the latter, particular emphasis will be placed on the emerging contribution of PARPs to B cell receptor assembly and diversification.
Collapse
Affiliation(s)
- Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM), Centre National de Recherche Scientifique (CNRS), UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | | | | | | | | |
Collapse
|
69
|
Kraus WL, Hottiger MO. PARP-1 and gene regulation: progress and puzzles. Mol Aspects Med 2013; 34:1109-23. [PMID: 23357755 DOI: 10.1016/j.mam.2013.01.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), also referred to as ADP-ribosyltransferase Diphtheria toxin-like 1 (ARTD1), is an abundant nuclear protein that plays key roles in a variety of nuclear processes, including the regulation of transcription. PARP-1 possesses an intrinsic enzymatic activity that catalyzes the transfer of ADP-ribose (ADPR) units from nicotinamide adenine dinucleotide (NAD(+)) onto target gene regulatory proteins, thereby modulating their activities. Although great strides have been made in the past decade in deciphering the seemingly opposing and varied roles of PARP-1 in gene regulation, many puzzles remain. In this review, we discuss the current state of understanding in this area, especially how PARP-1 interfaces with various components of gene regulatory pathways (e.g., the basal transcription machinery, DNA-binding transcription factors, coregulators, chromatin remodeling, histone modifications, and DNA methylation). In addition, we discuss some gene-specific, cell type-specific, and cell state-specific effects of PARP-1 on gene regulation, which might contribute to its biological functions. Finally, we review some of the recent progress targeting PARPs using chemical inhibitors, some of which may alter PARP-1-dependent gene regulatory programs to promote therapeutic outcomes.
Collapse
Affiliation(s)
- W Lee Kraus
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and the Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8511, United States.
| | | |
Collapse
|
70
|
Abstract
Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.
Collapse
|
71
|
Hanssen-Bauer A, Solvang-Garten K, Akbari M, Otterlei M. X-ray repair cross complementing protein 1 in base excision repair. Int J Mol Sci 2012; 13:17210-29. [PMID: 23247283 PMCID: PMC3546746 DOI: 10.3390/ijms131217210] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
X-ray Repair Cross Complementing protein 1 (XRCC1) acts as a scaffolding protein in the converging base excision repair (BER) and single strand break repair (SSBR) pathways. XRCC1 also interacts with itself and rapidly accumulates at sites of DNA damage. XRCC1 can thus mediate the assembly of large multiprotein DNA repair complexes as well as facilitate the recruitment of DNA repair proteins to sites of DNA damage. Moreover, XRCC1 is present in constitutive DNA repair complexes, some of which associate with the replication machinery. Because of the critical role of XRCC1 in DNA repair, its common variants Arg194Trp, Arg280His and Arg399Gln have been extensively studied. However, the prevalence of these variants varies strongly in different populations, and their functional influence on DNA repair and disease remains elusive. Here we present the current knowledge about the role of XRCC1 and its variants in BER and human disease/cancer.
Collapse
Affiliation(s)
- Audun Hanssen-Bauer
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; E-Mails: (A.H.-B.); (K.S.-G.)
| | - Karin Solvang-Garten
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; E-Mails: (A.H.-B.); (K.S.-G.)
| | - Mansour Akbari
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 N, Denmark; E-Mail:
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway; E-Mails: (A.H.-B.); (K.S.-G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +47-72573075; Fax: +47-72576400
| |
Collapse
|
72
|
Abstract
Condensins are multisubunit protein complexes that play a fundamental role in the structural and functional organization of chromosomes in the three domains of life. Most eukaryotic species have two different types of condensin complexes, known as condensins I and II, that fulfill nonoverlapping functions and are subjected to differential regulation during mitosis and meiosis. Recent studies revealed that the two complexes contribute to a wide variety of interphase chromosome functions, such as gene regulation, recombination, and repair. Also emerging are their cell type- and tissue-specific functions and relevance to human disease. Biochemical and structural analyses of eukaryotic and bacterial condensins steadily uncover the mechanisms of action of this class of highly sophisticated molecular machines. Future studies on condensins will not only enhance our understanding of chromosome architecture and dynamics, but also help address a previously underappreciated yet profound set of questions in chromosome biology.
Collapse
Affiliation(s)
- Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
73
|
Arnold M, Ellwanger DC, Hartsperger ML, Pfeufer A, Stümpflen V. Cis-acting polymorphisms affect complex traits through modifications of microRNA regulation pathways. PLoS One 2012; 7:e36694. [PMID: 22606281 PMCID: PMC3350471 DOI: 10.1371/journal.pone.0036694] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/05/2012] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS) have become an effective tool to map genes and regions contributing to multifactorial human diseases and traits. A comparably small number of variants identified by GWAS are known to have a direct effect on protein structure whereas the majority of variants is thought to exert their moderate influences on the phenotype through regulatory changes in mRNA expression. MicroRNAs (miRNAs) have been identified as powerful posttranscriptional regulators of mRNAs. Binding to their target sites, which are mostly located within the 3'-untranslated region (3'-UTR) of mRNA transcripts, they modulate mRNA expression and stability. Until today almost all human mRNA transcripts are known to harbor at least one miRNA target site with an average of over 20 miRNA target sites per transcript. Among 5,101 GWAS-identified sentinel single nucleotide polymorphisms (SNPs) that correspond to 18,884 SNPs in linkage disequilibrium (LD) with the sentinels (r2 ≥ 0.8) we identified a significant overrepresentation of SNPs that affect the 3'-UTR of genes (OR = 2.33, 95% CI = 2.12-2.57, P < 10(-52)). This effect was even stronger considering all SNPs in one LD bin a single signal (OR = 4.27, 95% CI = 3.84-4.74, P < 10(-114)). Based on crosslinking immunoprecipitation data we identified four mechanisms affecting miRNA regulation by 3'-UTR mutations: (i) deletion or (ii) creation of miRNA recognition elements within validated RNA-induced silencing complex binding sites, (iii) alteration of 3'-UTR splicing leading to a loss of binding sites, and (iv) change of binding affinity due to modifications of 3'-UTR folding. We annotated 53 SNPs of a total of 288 trait-associated 3'-UTR SNPs as mediating at least one of these mechanisms. Using a qualitative systems biology approach, we demonstrate how our findings can be used to support biological interpretation of GWAS results as well as to provide new experimentally testable hypotheses.
Collapse
Affiliation(s)
- Matthias Arnold
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel C. Ellwanger
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genome-Oriented Bioinformatics, Technische Universität München, Center of Life and Food Science, Freising-Weihenstephan, Germany
| | - Mara L. Hartsperger
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Arne Pfeufer
- Institute for Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German National Research Center for Environmental Health, Neuherberg, Germany
- Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of the University Lübeck, Germany
| | - Volker Stümpflen
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
74
|
Sharma S, Phatak P, Stortchevoi A, Jasin M, Larocque JR. RECQ1 plays a distinct role in cellular response to oxidative DNA damage. DNA Repair (Amst) 2012; 11:537-49. [PMID: 22542292 DOI: 10.1016/j.dnarep.2012.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
RECQ1 is the most abundant RecQ homolog in humans but its functions have remained mostly elusive. Biochemically, RECQ1 displays distinct substrate specificities from WRN and BLM, indicating that these RecQ helicases likely perform non-overlapping functions. Our earlier work demonstrated that RECQ1-deficient cells display spontaneous genomic instability. We have obtained key evidence suggesting a unique role of RECQ1 in repair of oxidative DNA damage. We show that similar to WRN, RECQ1 associates with PARP-1 in nuclear extracts and exhibits direct protein interaction in vitro. Deficiency in WRN or BLM helicases have been shown to result in reduced homologous recombination and hyperactivation of PARP under basal condition. However, RECQ1-deficiency did not lead to PARP activation in undamaged cells and nor did it result in reduction in homologous recombination repair. In stark contrast to what is seen in WRN-deficiency, RECQ1-deficient cells hyperactivate PARP in a specific response to H₂O₂treatment. RECQ1-deficient cells are more sensitive to oxidative DNA damage and exposure to oxidative stress results in a rapid and reversible recruitment of RECQ1 to chromatin. Chromatin localization of RECQ1 precedes WRN helicase, which has been shown to function in oxidative DNA damage repair. However, oxidative DNA damage-induced chromatin recruitment of these RecQ helicases is independent of PARP activity. As other RecQ helicases are known to interact with PARP-1, this study provides a paradigm to delineate specialized and redundant functions of RecQ homologs in repair of oxidative DNA damage.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA.
| | | | | | | | | |
Collapse
|
75
|
De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 2012; 84:137-46. [PMID: 22469522 DOI: 10.1016/j.bcp.2012.03.018] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/17/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) catalyzed poly(ADP-ribosyl)ation is one of the earliest post-translational modification of proteins detectable at sites of DNA strand interruptions. The considerable recent progress in the science of PARP in the last decade and the discovery of a PARP superfamily (17 members) has introduced this modification as a key mechanism regulating a wide variety of cellular processes including among others transcription, regulation of chromatin dynamics, telomere homeostasis, differentiation and cell death. However, the most extensive studied and probably the best characterized role is in DNA repair where it plays pivotal roles in the processing and resolution of the damaged DNA. Although much of the focus has been on PARP1 in DNA repair, recent advances highlight the emergence of other DNA-dependent PARPs (i.e. PARP2, PARP3 and possibly Tankyrase) in this process. Here we will summarize the recent insights into the molecular functions of these PARPs in different DNA repair pathways in which they emerge as specific actors. Furthermore, the DNA repair functions of PARP1 have stimulated another area of intense research in the field with the development of potent and selective PARP1 inhibitors to promote genome instability and cell death in tumor cells. Their current use in clinical trials have demonstrated potentiation of antitumoral drugs and cytotoxicity in repair deficient tumor cells.
Collapse
Affiliation(s)
- Mike De Vos
- UMR7242-CNRS-Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg, bld. S. Brant, BP10413, 67412 Illkirch, France
| | | | | |
Collapse
|
76
|
Pic E, Gagné JP, Poirier GG. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1. Expert Rev Proteomics 2012; 8:759-74. [PMID: 22087659 DOI: 10.1586/epr.11.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.
Collapse
Affiliation(s)
- Emilie Pic
- Centre de Recherche du CHUQ ? Pavillon CHUL, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | | | | |
Collapse
|
77
|
Sousa FG, Matuo R, Soares DG, Escargueil AE, Henriques JAP, Larsen AK, Saffi J. PARPs and the DNA damage response. Carcinogenesis 2012; 33:1433-40. [PMID: 22431722 DOI: 10.1093/carcin/bgs132] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is an important posttranslational modification catalyzed by a variety of enzymes, including poly (ADP ribose) polymerases (PARPs), which use nicotinamide adenine dinucleotide (NAD(+)) as a substrate to synthesize and transfer ADP-ribose units to acceptor proteins. The PARP family members possess a variety of structural domains, span a wide range of functions and localize to various cellular compartments. Among the molecular actions attributed to PARPs, their role in the DNA damage response (DDR) has been widely documented. In particular, PARPs 1-3 are involved in several cellular processes that respond to DNA lesions, which include DNA damage recognition, signaling and repair as well as local transcriptional blockage, chromatin remodeling and cell death induction. However, how these enzymes are able to participate in such numerous and diverse mechanisms in response to DNA damage is not fully understood. Herein, the DDR functions of PARPs 1-3 and the emerging roles of poly (ADP ribose) polymers in DNA damage are reviewed. The development of PARP inhibitors, their applications and mechanisms of action are also discussed in the context of the DDR.
Collapse
Affiliation(s)
- Fabricio G Sousa
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
78
|
Wu N, Yu H. The Smc complexes in DNA damage response. Cell Biosci 2012; 2:5. [PMID: 22369641 PMCID: PMC3329402 DOI: 10.1186/2045-3701-2-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 02/03/2023] Open
Abstract
The structural maintenance of chromosomes (Smc) proteins regulate nearly all aspects of chromosome biology and are critical for genomic stability. In eukaryotes, six Smc proteins form three heterodimers--Smc1/3, Smc2/4, and Smc5/6--which together with non-Smc proteins form cohesin, condensin, and the Smc5/6 complex, respectively. Cohesin is required for proper chromosome segregation. It establishes and maintains sister-chromatid cohesion until all sister chromatids achieve bipolar attachment to the mitotic spindle. Condensin mediates chromosome condensation during mitosis. The Smc5/6 complex has multiple roles in DNA repair. In addition to their major functions in chromosome cohesion and condensation, cohesin and condensin also participate in the cellular DNA damage response. Here we review recent progress on the functions of all three Smc complexes in DNA repair and their cell cycle regulation by posttranslational modifications, such as acetylation, phosphorylation, and sumoylation. An in-depth understanding of the mechanisms by which these complexes promote DNA repair and genomic stability may help us to uncover the molecular basis of genomic instability in human cancers and devise ways that exploit this instability to treat cancers.
Collapse
Affiliation(s)
- Nan Wu
- Department of Pharmacology, Howard Hughes Medical Institute, 6001 Forest Park Road, Dallas, TX 75390, USA.
| | | |
Collapse
|
79
|
Warmoes M, Jaspers JE, Pham TV, Piersma SR, Oudgenoeg G, Massink MPG, Waisfisz Q, Rottenberg S, Boven E, Jonkers J, Jimenez CR. Proteomics of mouse BRCA1-deficient mammary tumors identifies DNA repair proteins with potential diagnostic and prognostic value in human breast cancer. Mol Cell Proteomics 2012; 11:M111.013334. [PMID: 22366898 DOI: 10.1074/mcp.m111.013334] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Breast cancer 1, early onset (BRCA1) hereditary breast cancer, a type of cancer with defects in the homology-directed DNA repair pathway, would benefit from the identification of proteins for diagnosis, which might also be of potential use as screening, prognostic, or predictive markers. Sporadic breast cancers with defects in the BRCA1 pathway might also be diagnosed. We employed proteomics based on one-dimensional gel electrophoresis in combination with nano-LC-MS/MS and spectral counting to compare the protein profiles of mammary tumor tissues of genetic mouse models either deficient or proficient in BRCA1. We identified a total of 3,545 proteins, of which 801 were significantly differentially regulated between the BRCA1-deficient and -proficient breast tumors. Pathway and protein complex analysis identified DNA repair and related functions as the major processes associated with the up-regulated proteins in the BRCA1-deficient tumors. In addition, by selecting highly connected nodes, we identified a BRCA1 deficiency signature of 45 proteins that enriches for homology-directed DNA repair deficiency in human gene expression breast cancer data sets. This signature also exhibits prognostic power across multiple data sets, with optimal performance in a data set enriched in tumors deficient in homology-directed DNA repair. In conclusion, by comparing mouse proteomes from BRCA1-proficient and -deficient mammary tumors, we were able to identify several markers associated with BRCA1 deficiency and a prognostic signature for human breast cancer deficient in homology-directed DNA repair.
Collapse
Affiliation(s)
- Marc Warmoes
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
SRY (sex determining region Y)-box2 (Sox2)/poly ADP-ribose polymerase 1 (Parp1) complexes regulate pluripotency. Proc Natl Acad Sci U S A 2012; 109:3772-7. [PMID: 22362888 DOI: 10.1073/pnas.1108595109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To gain insight into mechanisms controlling SRY (sex determining region Y)-box 2 (Sox2) protein activity in mouse embryonic stem cells (ESCs), the endogenous Sox2 gene was tagged with FLAG/Hemagglutinin (HA) sequences by homologous recombination. Sox2 protein complexes were purified from Sox2/FLAG/HA knockin ESCs, and interacting proteins were defined by mass spectrometry. One protein in the complex was poly ADP-ribose polymerase I (Parp1). The results presented below demonstrate that Parp1 regulates Sox2 protein activity. In response to fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) signaling, Parp1 auto-poly ADP-ribosylation enhances Sox2-Parp1 interactions, and this complex inhibits Sox2 binding to octamer-binding transcription factor 4 (Oct4)/Sox2 enhancers. Based on these results, we propose a unique mechanism in which FGF signaling fine-tunes Sox2 activity through posttranslational modification of a critical interacting protein, Parp1, and balances the maintenance of ESC pluripotency and differentiation. In addition, we demonstrate that regulation of Sox2 activity by Parp1 is critical for efficient generation of induced pluripotent stem cells.
Collapse
|
81
|
Abstract
The kinesin motor protein KIF4 performs essential functions in mitosis. Like other mitotic kinesins, loss of KIF4 causes spindle defects, aneuploidy, genomic instability and ultimately tumor formation. However, KIF4 is unique among molecular motors in that it resides in the cell nucleus throughout interphase, suggesting a non-mitotic function as well. Here we identify a novel cellular function for a molecular motor protein by demonstrating that KIF4 acts as a modulator of large-scale chromatin architecture during interphase. KIF4 binds globally to chromatin and its absence leads to chromatin decondensation and loss of heterochromatin domains. KIF4-dependent chromatin decondensation has functional consequences by causing replication defects and global mis-regulation of gene expression programs. KIF4 exerts its function in chromatin architecture via regulation of ADP-ribosylation of core and linker histones and by physical interaction and recruitment of chromatin assembly proteins during S-phase. These observations document a novel function for a molecular motor protein in establishment and maintenance of higher order chromatin structure.
Collapse
Affiliation(s)
- Manjari Mazumdar
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN, USA.
| | | | | |
Collapse
|
82
|
Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells. Cell Biol Int 2011; 35:735-40. [PMID: 21395557 DOI: 10.1042/cbi20100646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Condensin, a major non-histone protein complex on chromosomes, is responsible for the formation of rod-shaped chromosome in mitosis. A heterodimer composed of SMC2 (structural maintenance of chromosomes) and SMC4 subunits constitutes the core part of condensin. Although extensive studies have been done in yeast, fruit fly and Xenopus to uncover the mechanisms and molecular nature of SMC proteins, little is known about the complex in mammalian cells. We have conducted a series of experiments to unveil the nature of condensin complex in human chromosome formation. The results show that overexpression of the C-terminal domain of SMC subunits disturbs chromosome condensation, leading to formation of swollen chromosomes, while knockdown of SMC subunits severely disturbs mitotic chromosome formation, resulting in chromatin bridges between daughter cells and multiple nuclei in single cells. The salt extraction assay indicates that a fraction of the condensin complex is bound to chromatin in interphase, but most of the condensin bind to chromatin at the onset of mitosis. Thus, disturbance in condensin function or expression affects chromosome condensation and influences mitotic progression.
Collapse
|
83
|
Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T. Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. THE PLANT CELL 2011; 23:3533-46. [PMID: 21917552 PMCID: PMC3203421 DOI: 10.1105/tpc.111.086314] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/07/2011] [Accepted: 08/29/2011] [Indexed: 05/18/2023]
Abstract
Although excess boron (B) is known to negatively affect plant growth, its molecular mechanism of toxicity is unknown. We previously isolated two Arabidopsis thaliana mutants, hypersensitive to excess B (heb1-1 and heb2-1). In this study, we found that HEB1 and HEB2 encode the CAP-G2 and CAP-H2 subunits, respectively, of the condensin II protein complex, which functions in the maintenance of chromosome structure. Growth of Arabidopsis seedlings in medium containing excess B induced expression of condensin II subunit genes. Simultaneous treatment with zeocin, which induces DNA double-strand breaks (DSBs), and aphidicolin, which blocks DNA replication, mimicked the effect of excess B on root growth in the heb mutants. Both excess B and the heb mutations upregulated DSBs and DSB-inducible gene transcription, suggesting that DSBs are a cause of B toxicity and that condensin II reduces the incidence of DSBs. The Arabidopsis T-DNA insertion mutant atr-2, which is sensitive to replication-blocking reagents, was also sensitive to excess B. Taken together, these data suggest that the B toxicity mechanism in plants involves DSBs and possibly replication blocks and that plant condensin II plays a role in DNA damage repair or in protecting the genome from certain genotoxic stressors, particularly excess B.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yayoi Tsujimoto Inui
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shimpei Uraguchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeshi Yoshizumi
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Minami Mastui
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0101, Japan
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Core Research for Evolutional Science and Technology, Japan Science and 21 Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
- Address correspondence to
| |
Collapse
|
84
|
Plummer R. Poly(ADP-ribose) polymerase inhibition: a new direction for BRCA and triple-negative breast cancer? Breast Cancer Res 2011; 13:218. [PMID: 21884642 PMCID: PMC3236327 DOI: 10.1186/bcr2877] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARP)-mediated DNA repair have shown promise in early clinical studies in the treatment of specific subgroups of breast cancer. Notably, phase II trials indicate that olaparib, an oral PARP inhibitor, has activity as a single agent in BRCA-related tumours, and that a combination of iniparib, an intravenous PARP inhibitor, and chemotherapy offers a survival advantage, compared with chemotherapy alone, in triple-negative breast cancer. Phase III data on the latter indication are expected in 2011. Intriguingly, iniparib does not increase toxicity when used as a chemo-potentiating agent, suggesting that it differs in its mechanism of action from other agents in this class. Overall, PARP inhibitors represent a potentially important new class of anti-cancer agents with two potential modes of action, as single agents causing synthetic lethality and as chemo-potentiating agents.
Collapse
Affiliation(s)
- Ruth Plummer
- Northern Institute for Cancer Research, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
85
|
Kong X, Stephens J, Ball AR, Heale JT, Newkirk DA, Berns MW, Yokomori K. Condensin I recruitment to base damage-enriched DNA lesions is modulated by PARP1. PLoS One 2011; 6:e23548. [PMID: 21858164 PMCID: PMC3155556 DOI: 10.1371/journal.pone.0023548] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Condensin I is important for chromosome organization and segregation in mitosis. We previously showed that condensin I also interacts with PARP1 in response to DNA damage and plays a role in single-strand break repair. However, whether condensin I physically associates with DNA damage sites and how PARP1 may contribute to this process were unclear. We found that condensin I is preferentially recruited to DNA damage sites enriched for base damage. This process is dictated by PARP1 through its interaction with the chromosome-targeting domain of the hCAP-D2 subunit of condensin I.
Collapse
Affiliation(s)
- Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Jared Stephens
- Department of Developmental and Cell Biology, Beckman Laser Institute, University of California Irvine, Irvine, California, United States of America
| | - Alexander R. Ball
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Jason T. Heale
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Daniel A. Newkirk
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Michael W. Berns
- Department of Developmental and Cell Biology, Beckman Laser Institute, University of California Irvine, Irvine, California, United States of America
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
86
|
Griese JJ, Hopfner KP. Structure and DNA-binding activity of the Pyrococcus furiosus SMC protein hinge domain. Proteins 2011; 79:558-68. [PMID: 21117236 DOI: 10.1002/prot.22903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Structural Maintenance of Chromosomes (SMC) proteins are essential for a wide range of processes including chromosome structure and dynamics, gene regulation, and DNA repair. While bacteria and archaea have one SMC protein that forms a homodimer, eukaryotes possess three distinct SMC complexes, consisting of heterodimeric pairs of six different SMC proteins. SMC holocomplexes additionally contain several specific regulatory subunits. The bacterial SMC complex is required for chromosome condensation and segregation. In eukaryotes, this function is carried out by the condensin (SMC2-SMC4) complex. SMC proteins consist of N-terminal and C-terminal domains that fold back onto each other to create an ATPase "head" domain, connected to a central "hinge" domain via a long coiled-coil region. The hinge domain mediates dimerization of SMC proteins and binds DNA. This activity implicates a direct involvement of the hinge domain in the action of SMC proteins on DNA. We studied the SMC hinge domain from the thermophilic archaeon Pyrococcus furiosus. Its crystal structure shows that the SMC hinge domain fold is largely conserved between archaea and bacteria as well as eukarya. Like the eukaryotic condensin hinge domain, the P. furiosus SMC hinge domain preferentially binds single-stranded DNA (ssDNA), but its affinity for DNA is weaker than that of its eukaryotic counterpart, and point mutations reveal that its DNA-binding surface is more confined. The ssDNA-binding activity of its hinge domain might play a role in the DNA-loading process of the prokaryotic SMC complex during replication.
Collapse
Affiliation(s)
- Julia J Griese
- Department of Biochemistry, Gene Center, Center for Integrated Protein Sciences and Munich Center for Advanced Photonics, Ludwig-Maximilians University Munich, Feodor-Lynen-Str 25, D-81377 Munich, Germany
| | | |
Collapse
|
87
|
Huambachano O, Herrera F, Rancourt A, Satoh MS. Double-stranded DNA binding domain of poly(ADP-ribose) polymerase-1 and molecular insight into the regulation of its activity. J Biol Chem 2010; 286:7149-60. [PMID: 21183686 DOI: 10.1074/jbc.m110.175190] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) modifies various proteins, including itself, with ADP-ribose polymers (automodification). Polymer synthesis is triggered by binding of its zinc finger 1 (Zn1) and 2 (Zn2) to DNA breaks and is followed by inactivation through automodification. The multiple functional domains of PARP-1 appear to regulate activation and automodification-mediated inactivation of PARP-1. However, the roles of these domains in activation-inactivation processes are not well understood. Our results suggest that Zn1, Zn2, and a domain identified in this study, the double-stranded DNA binding (DsDB) domain, are involved in DNA break-dependent activation of PARP-1. We found that binding of the DsDB domain to double-stranded DNA and DNA break recognition by Zn1 and Zn2, whose actual binding targets are likely to be single-stranded DNA, lead to the activation of PARP-1. In turn, the displacement of single- and double-stranded DNA from Zn2 and the DsDB domain caused by ADP-ribose polymer synthesis results in the dissociation of PARP-1 from DNA breaks and thus its inactivation. We also found that the WGR domain is one of the domains involved in the RNA-dependent activation of PARP-1. Furthermore, because zinc finger 3 (Zn3) has the ability to bind to single-stranded RNA, it may have an indirect role in RNA-dependent activation. PARP-1 functional domains, which are involved in oligonucleic acid binding, therefore coordinately regulate PARP-1 activity depending on the status of the neighboring oligonucleic acids. Based on these results, we proposed a model for the regulation of PARP-1 activity.
Collapse
Affiliation(s)
- Orlando Huambachano
- Laboratory of DNA Damage Responses and Bioimaging, Faculty of Medicine, Laval University Medical Centre (CHUQ), Laval University, Québec, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
88
|
Escherichia coli condensin MukB stimulates topoisomerase IV activity by a direct physical interaction. Proc Natl Acad Sci U S A 2010; 107:18832-7. [PMID: 20921377 DOI: 10.1073/pnas.1008678107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In contrast to the current state of knowledge in the field of eukaryotic chromosome segregation, relatively little is known about the mechanisms coordinating the appropriate segregation of bacterial chromosomes. In Escherichia coli, the MukB/E/F complex and topoisomerase IV (Topo IV) are both crucial players in this process. Topo IV removes DNA entanglements following the replication of the chromosome, whereas MukB, a member of the structural maintenance of chromosomes protein family, serves as a bacterial condensin. We demonstrate here a direct physical interaction between the dimerization domain of MukB and the C-terminal domain of the ParC subunit of Topo IV. In addition, we find that MukB alters the activity of Topo IV in vitro. Finally, we isolate a MukB mutant, D692A, that is deficient in its interaction with ParC and show that this mutant fails to rescue the temperature-sensitive growth phenotype of a mukB(-) strain. These results show that MukB and Topo IV are linked physically and functionally and indicate that the activities of these proteins are not limited to chromosome segregation but likely also play a key role in the control of higher-order bacterial chromosome structure.
Collapse
|
89
|
Kriegs M, Kasten-Pisula U, Rieckmann T, Holst K, Saker J, Dahm-Daphi J, Dikomey E. The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining. DNA Repair (Amst) 2010; 9:889-97. [DOI: 10.1016/j.dnarep.2010.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/28/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
|
90
|
Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 2010; 39:8-24. [PMID: 20603072 DOI: 10.1016/j.molcel.2010.06.017] [Citation(s) in RCA: 687] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/05/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023]
Abstract
The abundant nuclear enzyme PARP-1, a multifunctional regulator of chromatin structure, transcription, and genomic integrity, plays key roles in a wide variety of processes in the nucleus. Recent studies have begun to connect the molecular functions of PARP-1 to specific physiological and pathological outcomes, many of which can be altered by an expanding array of chemical inhibitors of PARP enzymatic activity.
Collapse
Affiliation(s)
- Raga Krishnakumar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
91
|
Coschi CH, Martens AL, Ritchie K, Francis SM, Chakrabarti S, Berube NG, Dick FA. Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive. Genes Dev 2010; 24:1351-63. [PMID: 20551166 DOI: 10.1101/gad.1917610] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Condensation and segregation of mitotic chromosomes is a critical process for cellular propagation, and, in mammals, mitotic errors can contribute to the pathogenesis of cancer. In this report, we demonstrate that the retinoblastoma protein (pRB), a well-known regulator of progression through the G1 phase of the cell cycle, plays a critical role in mitotic chromosome condensation that is independent of G1-to-S-phase regulation. Using gene targeted mutant mice, we studied this aspect of pRB function in isolation, and demonstrate that it is an essential part of pRB-mediated tumor suppression. Cancer-prone Trp53(-/-) mice succumb to more aggressive forms of cancer when pRB's ability to condense chromosomes is compromised. Furthermore, we demonstrate that defective mitotic chromosome structure caused by mutant pRB accelerates loss of heterozygosity, leading to earlier tumor formation in Trp53(+/-) mice. These data reveal a new mechanism of tumor suppression, facilitated by pRB, in which genome stability is maintained by proper condensation of mitotic chromosomes.
Collapse
Affiliation(s)
- Courtney H Coschi
- London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
92
|
Griese JJ, Witte G, Hopfner KP. Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins. Nucleic Acids Res 2010; 38:3454-65. [PMID: 20139420 PMCID: PMC2879519 DOI: 10.1093/nar/gkq038] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 01/13/2023] Open
Abstract
Structural Maintenance of Chromosomes (SMC) proteins are vital for a wide range of processes including chromosome structure and dynamics, gene regulation and DNA repair. Eukaryotes have three SMC complexes, consisting of heterodimeric pairs of six different SMC proteins along with several specific regulatory subunits. In addition to their other functions, all three SMC complexes play distinct roles in DNA repair. Cohesin (SMC1-SMC3) is involved in DNA double-strand break repair, condensin (SMC2-SMC4) participates in single-strand break (SSB) repair, and the SMC5-SMC6 complex functions in various DNA repair pathways. SMC proteins consist of N- and C-terminal domains that fold back onto each other to create an ATPase 'head' domain, connected to a central 'hinge' domain via long coiled-coils. The hinge domain mediates dimerization of SMC proteins and binds DNA, but it is not clear to what purpose this activity serves. We studied the structure and function of the condensin hinge domain from mouse. While the SMC hinge domain structure is largely conserved from prokaryotes to eukaryotes, its function seems to have diversified throughout the course of evolution. The condensin hinge domain preferentially binds single-stranded DNA. We propose that this activity plays a role in the SSB repair function of the condensin complex.
Collapse
Affiliation(s)
| | | | - Karl-Peter Hopfner
- Department of Biochemistry, Gene Center, Center for Integrated Protein Sciences and Munich Center for Advanced Photonics, Ludwig-Maximilians University Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| |
Collapse
|
93
|
Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M. Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev 2010; 20:239-44. [PMID: 20211558 PMCID: PMC2885452 DOI: 10.1016/j.gde.2010.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 01/22/2023]
Abstract
Recent advances in human genome studies have opened new avenues for the identification of susceptibility genes for many complex genetic disorders, especially in the field of rare cancers such as glioma. To date, eight glioma susceptibility loci have been identified by candidate gene-association studies: PRKDC G6721T, XRCC1 W399R, PARP1 A762V, MGMT F84L, ERCC1 A8092C, ERCC2 Q751K, EGF +61 A/G, and IL13 R110G. Five loci have been identified by genome-wide association studies: TERT rs2736100, CCDC26 rs4295627, CDKN2A-CDKN2B rs4977756, PHLDB1 rs498872, and RTEL1 rs6010620. Using the Ingenuity Pathway Analysis tool, we investigated whether these 13 susceptibility genes are biologically related. Our data provide not only networks for understanding the biological properties of gliomagenesis but also useful pathway maps for future understanding of disease.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
94
|
Schettino G, Al Rashid ST, Prise KM. Radiation microbeams as spatial and temporal probes of subcellular and tissue response. Mutat Res 2010; 704:68-77. [PMID: 20079877 DOI: 10.1016/j.mrrev.2010.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/22/2009] [Accepted: 01/06/2010] [Indexed: 11/29/2022]
Abstract
Understanding the effects of ionizing radiations are key to determining their optimal use in therapy and assessing risks from exposure. The development of microbeams where radiations can be delivered in a highly temporal and spatially constrained manner has been a major advance. Several different types of radiation microbeams have been developed using X-rays, charged particles and electrons. For charged particles, beams can be targeted with sub-micron accuracy into biological samples and the lowest possible dose of a single particle track can be delivered with high reproducibility. Microbeams have provided powerful tools for understanding the kinetics of DNA damage and formation under conditions of physiological relevance and have significant advantages over other approaches for producing localized DNA damage, such as variable wavelength laser beam approaches. Recent studies have extended their use to probing for radiosensitive sites outside the cell nucleus, and testing for mechanisms underpinning bystander responses where irradiated and non-irradiated cells communicate with each other. Ongoing developments include the ability to locally target regions of 3D tissue models and ultimately to target localized regions in vivo. With future advances in radiation delivery and imaging microbeams will continue to be applied in a range of biological studies.
Collapse
Affiliation(s)
- Giuseppe Schettino
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT97BL, UK
| | | | | |
Collapse
|
95
|
Buelow B, Uzunparmak B, Paddock M, Scharenberg AM. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation. PLoS One 2009; 4:e6339. [PMID: 19641624 PMCID: PMC2713433 DOI: 10.1371/journal.pone.0006339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 06/16/2009] [Indexed: 11/18/2022] Open
Abstract
Poly adenosine diphosphate-ribose polymerase-1 (PARP-1) is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N) stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR), and formation of the soluble 2(nd) messenger monomeric adenosine diphosphate-ribose (mADPR). Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd) messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.
Collapse
Affiliation(s)
- Ben Buelow
- Departments of Pediatrics and Immunology, University of Washington, Seattle, Washington, United States of America
- Division of Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Burak Uzunparmak
- Division of Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Marcia Paddock
- Departments of Pediatrics and Immunology, University of Washington, Seattle, Washington, United States of America
- Division of Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Andrew M. Scharenberg
- Departments of Pediatrics and Immunology, University of Washington, Seattle, Washington, United States of America
- Division of Immunology, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
96
|
Zeng W, de Greef JC, Chen YY, Chien R, Kong X, Gregson HC, Winokur ST, Pyle A, Robertson KD, Schmiesing JA, Kimonis VE, Balog J, Frants RR, Ball AR, Lock LF, Donovan PJ, van der Maarel SM, Yokomori K. Specific loss of histone H3 lysine 9 trimethylation and HP1gamma/cohesin binding at D4Z4 repeats is associated with facioscapulohumeral dystrophy (FSHD). PLoS Genet 2009; 5:e1000559. [PMID: 19593370 PMCID: PMC2700282 DOI: 10.1371/journal.pgen.1000559] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 06/12/2009] [Indexed: 12/11/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed "phenotypic" FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4-specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)-treated cells. We found that SUV39H1-mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1gamma and cohesin are co-recruited to D4Z4 in an H3K9me3-dependent and cell type-specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type-specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1gamma/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis.
Collapse
Affiliation(s)
- Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Jessica C. de Greef
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Heather C. Gregson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Sara T. Winokur
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - April Pyle
- Institute for Stem Cell Biology and Medicine, Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Keith D. Robertson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - John A. Schmiesing
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Virginia E. Kimonis
- Division of Medical Genetics and Metabolism, Department of Pediatrics, University of California Irvine Medical Center, Orange, California, United States of America
| | - Judit Balog
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | - Rune R. Frants
- Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | - Alexander R. Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Leslie F. Lock
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | - Peter J. Donovan
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| | | | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, United States of America
| |
Collapse
|
97
|
Abstract
In interphase, chromosomes are associated with proteins and RNAs that participate in many processes, such as DNA replication, transcription, recombination and repair of DNA damage. These components (for example, cohesin) might have to be removed during mitosis, as they might become obstacles that inhibit chromosome segregation or reduce its fidelity. Such a clearing mechanism that operates along mitotic chromosomes might require proteins that are implicated in chromosome segregation. I propose that condensin and DNA topoisomerase II (TOP2), as well as separase, help to clear the way for mitosis.
Collapse
Affiliation(s)
- Mitsuhiro Yanagida
- Mitsuhiro Yanagida is at the CREST Research Program, Japan Science Technology Corporation, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
98
|
Pan Y, Yuan D, Zhang J, Xu P, Chen H, Shao C. Cadmium-Induced Adaptive Response in Cells of Chinese Hamster Ovary Cell Lines with Varying DNA Repair Capacity. Radiat Res 2009; 171:446-53. [DOI: 10.1667/rr1491.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
99
|
PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 2009; 113:2416-25. [PMID: 19147789 DOI: 10.1182/blood-2008-03-144121] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Poly(ADP-ribos)ylation is one of the longest-known but most enigmatic posttranslational modifications transducing specific signals. The enzyme responsible for the majority of poly(ADP-ribose) polymerization in cells, PARP-1, promotes DNA repair but also mediates a caspase-independent form of apoptosis in response to stressors such as irradiation. However, the biologic function of most other PARPs is not known. Macro-PARPs constitute one branch of the large family of PARP-like proteins also designated as B aggressive lymphoma proteins (BAL1, 2a/2b, 3, or PARP-9, PARP-14, and PARP-15). To elucidate biologic role(s) of a BAL-family macro-PARP, we analyzed mice deficient in PARP-14, a binding partner of the IL-4-induced transcription factor Stat6. We show here that PARP-14 plays a fundamental role mediating protection against apoptosis in IL-4-treated B cells, including that after DNA damage, and mediates IL-4 effects on the levels of gene products that regulate cell survival, proliferation, and lymphomagenesis. Collectively, the results establish that PARP-14 mediates regulation of gene expression and lymphocyte physiology by IL-4 and has a function distinct from PARP-1. Furthermore, the findings suggest mechanisms by which BAL-family proteins might influence pathologic processes involving B lymphocytes.
Collapse
|
100
|
Rancourt A, Satoh MS. Delocalization of nucleolar poly(ADP-ribose) polymerase-1 to the nucleoplasm and its novel link to cellular sensitivity to DNA damage. DNA Repair (Amst) 2009; 8:286-97. [PMID: 19144573 DOI: 10.1016/j.dnarep.2008.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 09/30/2008] [Accepted: 11/04/2008] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme activated by binding to DNA breaks, which causes PARP-1 automodification. PARP-1 activation is required for regulating various cellular processes, including DNA repair and cell death induction. PARP-1 involved in these regulations is localized in the nucleoplasm, but approximately 40% of PARP-1 can be found in the nucleolus. Previously, we have reported that nucleolar PARP-1 is delocalized to the nucleoplasm in cells exposed to DNA-damaging agents. However, the functional roles of this delocalization in cellular response to DNA damage is not well understood, since this approach simultaneously induces the delocalization of PARP-1 and its automodification. We therefore devised an approach for separating these processes. Unmodified PARP-1 was first delocalized from the nucleolus using camptothecin. Then, PARP-1 was activated by exposure of cells to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In contrast to treatment with MNNG alone, delocalization of PARP-1 by CPT, prior to its activation by MNNG, induced extensive automodification of PARP-1. DNA repair activity and consumption of intracellular NAD(+) were not affected by this activation. On the other hand, activation led to an increased formation of apoptotic cells, and this effect was suppressed by inhibition of PARP-1 activity. These results suggest that delocalization of PARP-1 from the nucleolus to the nucleoplasm sensitizes cells to DNA damage-induced apoptosis. As it has been suggested that the nucleolus has a role in stress sensing, nucleolar PARP-1 could participate in a process involved in nucleolus-mediated stress sensing.
Collapse
Affiliation(s)
- Ann Rancourt
- Department of Anatomy and Physiology, Division of Health and Environmental Research, Faculty of Medicine, Laval University Medical Centre (CHUQ), Laval University, Quebec, Canada
| | | |
Collapse
|