51
|
Daniotti JL, Pedro MP, Valdez Taubas J. The role of S-acylation in protein trafficking. Traffic 2017; 18:699-710. [DOI: 10.1111/tra.12510] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jose L. Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Maria P. Pedro
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
52
|
Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868:456-483. [PMID: 28923280 DOI: 10.1016/j.bbcan.2017.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Nishi Kumari
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Azad Saei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | | | | | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
53
|
A simple toolset to identify endogenous post-translational modifications for a target protein: a snapshot of the EGFR signaling pathway. Biosci Rep 2017; 37:BSR20170919. [PMID: 28724604 PMCID: PMC6192658 DOI: 10.1042/bsr20170919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Identification of a novel post-translational modification (PTM) for a target protein, defining its physiologic role, and studying its potential crosstalk with other PTMs is a challenging process. A set of highly sensitive tools termed Signal-Seeker kits was developed, which enables rapid and simple detection of post-translational modifications on any target protein. The methodology for these tools utilizes affinity purification of modified proteins from a cell or tissue lysate and immunoblot analysis. These tools utilize a single lysis system that is effective at identifying endogenous, dynamic PTM changes, as well as the potential crosstalk between PTMs. As a proof-of-concept experiment, the acetylation, tyrosine phosphorylation, SUMOylation 2/3, and ubiquitination profiles of the EGFR - Ras - c-Fos axis were examined in response to EGF stimulation. All 10 previously identified PTMs of this signaling axis were confirmed using these tools, and it also identified acetylation as a novel modification of c-Fos. This axis in the EGF/EGFR signaling pathway was chosen because it is a well-established signaling pathway with proteins localized in the membrane, cytoplasmic, and nuclear compartments that ranged in abundance from 4.18x108 (EGFR) to 1.35x104 (c-Fos) molecules per A431 cell. These tools enabled the identification of low abundance PTMs, such as c-Fos Ac, at 17 molecules per cell. These studies highlight how pervasive PTMs are, and how stimulants like EGF induce multiple PTM changes on downstream signaling axis. Identification of endogenous changes and potential crosstalk between multiple PTMs for a target protein or signaling axis will provide regulatory mechanistic insight to investigators.
Collapse
|
54
|
The spatiotemporal regulation of RAS signalling. Biochem Soc Trans 2017; 44:1517-1522. [PMID: 27911734 DOI: 10.1042/bst20160127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Nearly 30% of human tumours harbour mutations in RAS family members. Post-translational modifications and the localisation of RAS within subcellular compartments affect RAS interactions with regulator, effector and scaffolding proteins. New insights into the control of spatiotemporal RAS signalling reveal that activation kinetics and subcellular compartmentalisation are tightly coupled to the generation of specific biological outcomes. Computational modelling can help utilising these insights for the identification of new targets and design of new therapeutic approaches.
Collapse
|
55
|
Lin YH, Machner MP. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci 2017; 130:1985-1996. [PMID: 28476939 PMCID: PMC5482977 DOI: 10.1242/jcs.188482] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
56
|
Dwane L, Gallagher WM, Ní Chonghaile T, O'Connor DP. The Emerging Role of Non-traditional Ubiquitination in Oncogenic Pathways. J Biol Chem 2017; 292:3543-3551. [PMID: 28154183 DOI: 10.1074/jbc.r116.755694] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The addition of ubiquitin to a target protein has long been implicated in the process of degradation and is the primary mediator of protein turnover in the cell. Recently, however, many non-proteolytic functions of ubiquitination have emerged as key regulators of cellular homeostasis. In this review, we will describe the various non-traditional functions of ubiquitination, with particular focus on how they can be used as signaling entities in cancer formation and progression. Elaboration of this topic can lead to a better understanding of oncogenic mechanisms, as well as the discovery of novel druggable proteins within the ubiquitin pathway.
Collapse
Affiliation(s)
- Lisa Dwane
- From Molecular and Cellular Therapeutics and
| | - William M Gallagher
- the Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Tríona Ní Chonghaile
- the Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland and
| | | |
Collapse
|
57
|
Nakhaeizadeh H, Amin E, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. The RAS-Effector Interface: Isoform-Specific Differences in the Effector Binding Regions. PLoS One 2016; 11:e0167145. [PMID: 27936046 PMCID: PMC5147862 DOI: 10.1371/journal.pone.0167145] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
RAS effectors specifically interact with the GTP-bound form of RAS in response to extracellular signals and link them to downstream signaling pathways. The molecular nature of effector interaction by RAS is well-studied but yet still incompletely understood in a comprehensive and systematic way. Here, structure-function relationships in the interaction between different RAS proteins and various effectors were investigated in detail by combining our in vitro data with in silico data. Equilibrium dissociation constants were determined for the binding of HRAS, KRAS, NRAS, RRAS1 and RRAS2 to both the RAS binding (RB) domain of CRAF and PI3Kα, and the RAS association (RA) domain of RASSF5, RALGDS and PLCε, respectively, using fluorescence polarization. An interaction matrix, constructed on the basis of available crystal structures, allowed identification of hotspots as critical determinants for RAS-effector interaction. New insights provided by this study are the dissection of the identified hotspots in five distinct regions (R1 to R5) in spite of high sequence variability not only between, but also within, RB/RA domain-containing effectors proteins. Finally, we propose that intermolecular β-sheet interaction in R1 is a central recognition region while R3 may determine specific contacts of RAS versus RRAS isoforms with effectors.
Collapse
Affiliation(s)
- Hossein Nakhaeizadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Ehsan Amin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
58
|
Knyphausen P, Lang F, Baldus L, Extra A, Lammers M. Insights into K-Ras 4B regulation by post-translational lysine acetylation. Biol Chem 2016; 397:1071-85. [DOI: 10.1515/hsz-2016-0118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/03/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Ras is a molecular switch cycling between an active, GTP-bound and an inactive, GDP-bound state. Mutations in Ras, mostly affecting the off-switch, are found in many human tumours. Recently, it has been shown that K-Ras 4B is targeted by lysine acetylation at K104. Based on results obtained for an acetylation mimetic Ras mutant (K104Q), it was hypothesised that K104-acetylation might interfere with its oncogenicity by impairing SOS-catalysed guanine-nucleotide exchange. We prepared site-specifically K104-acetylated K-Ras 4B and the corresponding oncogenic mutant protein G12V using the genetic-code expansion concept. We found that SOS-catalysed nucleotide exchange, also of allosterically activated SOS, was neither affected by acetylation of K104 in wildtype K-Ras 4B nor in the G12V mutant, suggesting that glutamine is a poor mimetic for acetylation at this site. In vitro, the lysine-acetyltransferases CBP and p300 were able to acetylate both, wildtype and G12V K-Ras 4B. In addition to K104 we identified further acetylation sites in K-Ras 4B, including K147, within the important G5/SAK-motif. However, the intrinsic and the SOS-catalysed nucleotide exchange was not affected by K147-acetylation of K-Ras 4B. Finally, we show that Sirt2 and HDAC6 do neither deacetylate K-Ras 4B if acetylated at K104 nor if acetylated at K147 in vitro.
Collapse
|
59
|
Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc Natl Acad Sci U S A 2016; 113:E4639-47. [PMID: 27385826 DOI: 10.1073/pnas.1608644113] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The "canonical" proteasomal degradation signal is a substrate-anchored polyubiquitin chain. However, a handful of proteins were shown to be targeted following monoubiquitination. In this study, we established-in both human and yeast cells-a systematic approach for the identification of monoubiquitination-dependent proteasomal substrates. The cellular wild-type polymerizable ubiquitin was replaced with ubiquitin that cannot form chains. Using proteomic analysis, we screened for substrates that are nevertheless degraded under these conditions compared with those that are stabilized, and therefore require polyubiquitination for their degradation. For randomly sampled representative substrates, we confirmed that their cellular stability is in agreement with our screening prediction. Importantly, the two groups display unique features: monoubiquitinated substrates are smaller than the polyubiquitinated ones, are enriched in specific pathways, and, in humans, are structurally less disordered. We suggest that monoubiquitination-dependent degradation is more widespread than assumed previously, and plays key roles in various cellular processes.
Collapse
|
60
|
Girnita L, Takahashi SI, Crudden C, Fukushima T, Worrall C, Furuta H, Yoshihara H, Hakuno F, Girnita A. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:277-311. [PMID: 27378760 DOI: 10.1016/bs.pmbts.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states.
Collapse
Affiliation(s)
- L Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - S-I Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - C Crudden
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - T Fukushima
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - C Worrall
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - H Furuta
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Yoshihara
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - F Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - A Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
61
|
Baldassarre G, Belletti B. Meet me in the cytoplasm: A role for p27(Kip1) in the control of H-Ras. Small GTPases 2016; 7:71-5. [PMID: 27057815 DOI: 10.1080/21541248.2016.1171279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The small GTPases of the Ras family play a pivotal role in the regulation of cell proliferation and motility, both in normal and transformed cells. In particular, the 3 genes encoding for the N-, H- and K-Ras are frequently mutated in human cancer and their inappropriate regulation, expression and subcellular localization can drive tumor onset and progression. Activation of the Ras-MAPK pathway directly signals on the cell cycle machinery by regulating the expression and/or localization of 2 key cell cycle player, Cyclin D1 and p27(Kip1). We recently reported that in normal fibroblasts, following mitogenic stimuli, p27(Kip1) translocates to the cytoplasm where it regulates H-Ras localization and activity. This regulatory mechanism ensures that cells pass beyond the restriction point of the cell cycle only when the proper level of stimulation is reached. Here, we comment on this new evidence that possibly represents one of the ways that cells have developed during evolution to ensure that the cell decision to divide is taken only when time and context are appropriate.
Collapse
Affiliation(s)
- Gustavo Baldassarre
- a Division of Experimental Oncology 2, Department of Translational Research, C.R.O. Aviano IRCCS, National Cancer Institute , Aviano , Italy
| | - Barbara Belletti
- a Division of Experimental Oncology 2, Department of Translational Research, C.R.O. Aviano IRCCS, National Cancer Institute , Aviano , Italy
| |
Collapse
|
62
|
Abstract
This review discusses our current understanding of the small ubiquitin-like modifier (SUMO) pathway and how it functionally intersects with Ras signaling in cancer. The Ras family of small GTPases are frequently mutated in cancer. The role of the SUMO pathway in cancer and in Ras signaling is currently not well understood. Recent studies have shown that the SUMO pathway can both regulate Ras/MAPK pathway activity directly and support Ras-driven oncogenesis through the regulation of proteins that are not direct Ras effectors. We recently discovered that in Ras mutant cancer cells, the SUMOylation status of a subset of proteins is altered and one such protein, KAP1, is required for Ras-driven transformation. A better understanding of the functional interaction between the SUMO and Ras pathways could lead to new insights into the mechanism of Ras-driven oncogenesis.
Collapse
Affiliation(s)
- Haibo Zhang
- a Laboratory of Canter Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Ji Luo
- a Laboratory of Canter Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
63
|
Abstract
RAS proteins (KRAS4A, KRAS4B, NRAS and HRAS) function as GDP-GTP-regulated binary on-off switches, which regulate cytoplasmic signaling networks that control diverse normal cellular processes. Gain-of-function missense mutations in RAS genes are found in ∼25% of human cancers, prompting interest in identifying anti-RAS therapeutic strategies for cancer treatment. However, despite more than three decades of intense effort, no anti-RAS therapies have reached clinical application. Contributing to this failure has been an underestimation of the complexities of RAS. First, there is now appreciation that the four human RAS proteins are not functionally identical. Second, with >130 different missense mutations found in cancer, there is an emerging view that there are mutation-specific consequences on RAS structure, biochemistry and biology, and mutation-selective therapeutic strategies are needed. In this Cell Science at a Glance article and accompanying poster, we provide a snapshot of the differences between RAS isoforms and mutations, as well as the current status of anti-RAS drug-discovery efforts.
Collapse
Affiliation(s)
- G Aaron Hobbs
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27514, USA
| | - Channing J Der
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27514, USA
| | - Kent L Rossman
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27514, USA
| |
Collapse
|
64
|
Baietti MF, Simicek M, Abbasi Asbagh L, Radaelli E, Lievens S, Crowther J, Steklov M, Aushev VN, Martínez García D, Tavernier J, Sablina AA. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Mol Med 2016; 8:288-303. [PMID: 26881969 PMCID: PMC4772950 DOI: 10.15252/emmm.201505972] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Activation of the RAS oncogenic pathway, frequently ensuing from mutations in RAS genes, is a common event in human cancer. Recent reports demonstrate that reversible ubiquitination of RAS GTPases dramatically affects their activity, suggesting that enzymes involved in regulating RAS ubiquitination may contribute to malignant transformation. Here, we identified the de-ubiquitinase OTUB1 as a negative regulator of RAS mono- and di-ubiquitination. OTUB1 inhibits RAS ubiquitination independently of its catalytic activity resulting in sequestration of RAS on the plasma membrane. OTUB1 promotes RAS activation and tumorigenesis in wild-type RAS cells. An increase of OTUB1 expression is commonly observed in non-small-cell lung carcinomas harboring wild-type KRAS and is associated with increased levels of ERK1/2 phosphorylation, high Ki67 score, and poorer patient survival. Our results strongly indicate that dysregulation of RAS ubiquitination represents an alternative mechanism of RAS activation during lung cancer development.
Collapse
Affiliation(s)
- Maria Francesca Baietti
- Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Michal Simicek
- Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Layka Abbasi Asbagh
- Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Enrico Radaelli
- Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Sam Lievens
- Department of Medical Protein Research, VIB, Leuven, Belgium Department of Biochemistry, Gent University, Gent, Belgium
| | - Jonathan Crowther
- Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Mikhail Steklov
- Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Vasily N Aushev
- Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Moscow, Russia
| | - David Martínez García
- Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, Leuven, Belgium Department of Biochemistry, Gent University, Gent, Belgium
| | - Anna A Sablina
- Center for the Biology of Disease, VIB, Leuven, Belgium Center for Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
65
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
66
|
Torres M. Chapter Two - Heterotrimeric G Protein Ubiquitination as a Regulator of G Protein Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:57-83. [PMID: 27378755 DOI: 10.1016/bs.pmbts.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ubiquitin-mediated regulation of G proteins has been known for over 20 years as a result of discoveries made independently in yeast and vertebrate model systems for pheromone and photoreception, respectively. Since that time, several details underlying the cause and effect of G protein ubiquitination have been determined-including the initiating signals, responsible enzymes, trafficking pathways, and their effects on protein structure, function, interactions, and cell signaling. The collective body of evidence suggests that Gα subunits are the primary targets of ubiquitination. However, longstanding and recent results suggest that Gβ and Gγ subunits are also ubiquitinated, in some cases impacting cell polarization-a process essential for chemotaxis and polarized cell growth. More recently, evidence from mass spectrometry (MS)-based proteomics coupled with advances in PTM bioinformatics have revealed that protein families representing G protein subunits contain several structural hotspots for ubiquitination-most of which have not been investigated for a functional role in signal transduction. Taken together, our knowledge and understanding of heterotrimeric G protein ubiquitination as a regulator of G protein signaling-despite 20 years of research-is still emerging.
Collapse
Affiliation(s)
- M Torres
- Georgia Institute of Technology, School of Biology, Atlanta, GA, United States.
| |
Collapse
|
67
|
Ting PY, Johnson CW, Fang C, Cao X, Graeber TG, Mattos C, Colicelli J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. FASEB J 2015; 29:3750-61. [PMID: 25999467 PMCID: PMC4550377 DOI: 10.1096/fj.15-271510] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/07/2023]
Abstract
RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr(137). Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr(137) phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr(137) is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRAS(Y137F) and HRAS(Y137E) revealed conformation changes radiating from the mutated residue. Although consistent with Tyr(137) participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr(137) phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRAS(G12V) with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr(137) allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Colicelli
- Correspondence: University of California, Los Angeles, Box 951737, 350C BSRB, Los Angeles, CA 90095-1737, USA. E-mail:
| |
Collapse
|
68
|
Nakagawa T, Nakayama K. Protein monoubiquitylation: targets and diverse functions. Genes Cells 2015; 20:543-62. [PMID: 26085183 PMCID: PMC4744734 DOI: 10.1111/gtc.12250] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/14/2022]
Abstract
Ubiquitin is a 76-amino acid protein whose conjugation to protein targets is a form of post-translational modification. Protein ubiquitylation is characterized by the covalent attachment of the COOH-terminal carboxyl group of ubiquitin to an amino group of the substrate protein. Given that the NH2 -terminal amino group is usually masked, internal lysine residues are most often targeted for ubiquitylation. Polyubiquitylation refers to the formation of a polyubiquitin chain on the substrate as a result of the ubiquitylation of conjugated ubiquitin. The structures of such polyubiquitin chains depend on the specific lysine residues of ubiquitin targeted for ubiquitylation. Most of the polyubiquitin chains other than those linked via lysine-63 and methionine-1 of ubiquitin are recognized by the proteasome and serve as a trigger for substrate degradation. In contrast, polyubiquitin chains linked via lysine-63 and methionine-1 serve as a binding platform for proteins that function in immune signal transduction or DNA repair. With the exception of a few targets such as histones, the functions of protein monoubiquitylation have remained less clear. However, recent proteomics analysis has shown that monoubiquitylation occurs more frequently than polyubiquitylation, and studies are beginning to provide insight into its biologically important functions. Here, we summarize recent findings on protein monoubiquitylation to provide an overview of the targets and molecular functions of this modification.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| |
Collapse
|
69
|
Satpathy S, Wagner SA, Beli P, Gupta R, Kristiansen TA, Malinova D, Francavilla C, Tolar P, Bishop GA, Hostager BS, Choudhary C. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol Syst Biol 2015; 11:810. [PMID: 26038114 PMCID: PMC4501846 DOI: 10.15252/msb.20145880] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/02/2022] Open
Abstract
B-cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry-based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation of the receptor-proximal signaling components, many of which are co-regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR-induced phosphorylation of RAB7A at S72 prevents its association with effector proteins and with endo-lysosomal compartments. In addition, we show that BCL10 is modified by LUBAC-mediated linear ubiquitylation, and demonstrate an important function of LUBAC in BCR-induced NF-κB signaling. Our results offer a global and integrated view of BCR signaling, and the provided datasets can serve as a valuable resource for further understanding BCR signaling networks.
Collapse
Affiliation(s)
- Shankha Satpathy
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian A Wagner
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petra Beli
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rajat Gupta
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine A Kristiansen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dessislava Malinova
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | - Chiara Francavilla
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Tolar
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | - Gail A Bishop
- Department of Microbiology, Graduate Program in Immunology and Department of Internal Medicine, University of Iowa, Iowa City, IA, USA VAMC, Iowa City, IA, USA
| | - Bruce S Hostager
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
70
|
Schmick M, Kraemer A, Bastiaens PIH. Ras moves to stay in place. Trends Cell Biol 2015; 25:190-7. [PMID: 25759176 DOI: 10.1016/j.tcb.2015.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 10/23/2022]
Abstract
Ras is a major intracellular signaling hub. This elevated position comes at a precarious cost: a single point mutation can cause aberrant signaling. The capacity of Ras for signaling is inextricably linked to its enrichment at the plasma membrane (PM). This PM localization is dynamically maintained by three essential elements: alteration of membrane affinities via lipidation and membrane-interaction motifs; trapping on specific membranes coupled with unidirectional vesicular transport to the PM; and regulation of diffusion via interaction with a solubilization factor. This system constitutes a cycle that primarily corrects for the entropic equilibration of Ras to all membranes that dilutes its signaling capacity. We illuminate how this reaction-diffusion system maintains an out-of-equilibrium localization of Ras GTPases and thereby confers signaling functionality to the PM.
Collapse
Affiliation(s)
- Malte Schmick
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Astrid Kraemer
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.
| |
Collapse
|
71
|
Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014; 3:1027-88. [PMID: 25396681 PMCID: PMC4276913 DOI: 10.3390/cells3041027] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. In addition, we address emerging and unanticipated roles of UbK63 chains in various recycling pathways that function by activating nucleators required for actin polymerization, as well as in the transient recruitment of signaling molecules at the plasma or ER membrane. In this review, we describe recent advances that converge to elucidate the mechanisms underlying the wealth of trafficking functions of UbK63 chains.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Olivier Walker
- Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France.
| | - Rosine Haguenauer-Tsapis
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
72
|
Taguchi T, Misaki R. Palmitoylation pilots ras to recycling endosomes. Small GTPases 2014; 2:82-84. [PMID: 21776406 DOI: 10.4161/sgtp.2.2.15245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
We recently showed that palmitoylated Ras proteins (H-Ras and N-Ras) localize intracellularly at recycling endosomes (REs) and that REs act as a way-station for Ras proteins as they move along the post-Golgi exocytic pathway to the plasma membrane (PM). Palmitoylation is essential for H-Ras/N-Ras targeting to REs. H-Ras requires two palmitoyl groups for RE targeting. A lack of either or both palmitoyl groups causes H-Ras to be mislocalized to the endoplasmic reticulum (ER), the Golgi apparatus, or the PM. In this commentary, we summarize recent progress about the Ras trafficking cycle between the endomembranes (endosomes/ER/Golgi) and the PM. We further discuss (1) the critical determinants of RE targeting of lipidated proteins and (2) possible Ras-mediated signaling pathways that originate from REs.
Collapse
Affiliation(s)
- Tomohiko Taguchi
- Institute for Molecular Bioscience; University of Queensland; Brisbane, Queensland Australia
| | | |
Collapse
|
73
|
Reiner DJ. Ras effector switching as a developmental strategy. Small GTPases 2014; 2:109-112. [PMID: 21776412 DOI: 10.4161/sgtp.2.2.15775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/28/2022] Open
Abstract
Organisms pattern and specify cell fates with remarkably high fidelity and robustness, and cancer may be considered in part to be a disease of fate specification gone awry. During C. elegans vulval development an initial EGF signal prompts Ras to activate its canonical effector pathway, Raf-MEK-ERK, to induce a primary cell, which subsequently signals its 2 neighbors via Notch to develop as secondary cells. We have shown that Ras signaling through an alternate effector pathway, RalGEF-Ral, antagonizes Ras-Raf pro-primary signaling. Ras-RalGEF-Ral instead promotes secondary fate in support of Notch. We validated a previous model that EGF can also contribute to secondary fate, and argue that Ras-RalGEF-Ral mediates this EGF pro-secondary activity. Ras-Raf-MEK-ERK signaling was previously shown to be extinguished from secondary cells by secondary-specific expression of MAP kinase phosphatase, and we found that Ral expression is transcriptionally restricted to secondary cells. Thus during vulval development Ras switches effectors from Raf to RalGEF to promote divergent and mutually antagonistic cell fates, perhaps mirroring divergent effector usage in Ras-dependent tumors with differential pharmacological responsiveness.
Collapse
Affiliation(s)
- David J Reiner
- Department of Pharmacology and Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| |
Collapse
|
74
|
Cox AD, Der CJ. Ras history: The saga continues. Small GTPases 2014; 1:2-27. [PMID: 21686117 DOI: 10.4161/sgtp.1.1.12178] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 12/24/2022] Open
Abstract
Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years.
Collapse
Affiliation(s)
- Adrienne D Cox
- Department of Radiation Oncology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | | |
Collapse
|
75
|
Abstract
Despite more than three decades of intensive effort, no effective pharmacological inhibitors of the RAS oncoproteins have reached the clinic, prompting the widely held perception that RAS proteins are 'undruggable'. However, recent data from the laboratory and the clinic have renewed our hope for the development of RAS-inhibitory molecules. In this Review, we summarize the progress and the promise of five key approaches. Firstly, we focus on the prospects of using direct inhibitors of RAS. Secondly, we address the issue of whether blocking RAS membrane association is a viable approach. Thirdly, we assess the status of targeting RAS downstream effector signalling, which is arguably the most favourable current approach. Fourthly, we address whether the search for synthetic lethal interactors of mutant RAS still holds promise. Finally, RAS-mediated changes in cell metabolism have recently been described and we discuss whether these changes could be exploited for new therapeutic directions. We conclude with perspectives on how additional complexities, which are not yet fully understood, may affect each of these approaches.
Collapse
|
76
|
Colón-Bolea P, Crespo P. Lysine methylation in cancer: SMYD3-MAP3K2 teaches us new lessons in the Ras-ERK pathway. Bioessays 2014; 36:1162-9. [PMID: 25382779 DOI: 10.1002/bies.201400120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lysine methylation has been traditionally associated with histones and epigenetics. Recently, lysine methyltransferases and demethylases - which are involved in methylation of non-histone substrates - have been frequently found deregulated in human tumours. In this realm, a new discovery has unveiled the methyltransferase SMYD3 as an enhancer of Ras-driven cancer. SMYD3 is up-regulated in different types of tumours. SMYD3-mediated methylation of MAP3K2 increases mutant K-Ras-induced activation of ERK1/2. Methylation of MAP3K2 prevents it from binding to the phosphatase PP2A, thereby impeding the impact of this negative regulator on Ras-ERK1/2 signals, leading to the formation of lung and pancreatic adenocarcinomas. Furthermore, depletion of SMYD3 synergises with a MEK inhibitor, currently in clinical trials, to block Ras-driven pancreatic neoplasia. These results underscore the importance of lysine methylation in the regulation of signalling pathways relevant for tumourigenesis and endorse the development of drugs targeting unregulated lysine methylation as therapeutic agents in the struggle against cancer.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
77
|
Hobbs GA, Zhou B, Cox AD, Campbell SL. Rho GTPases, oxidation, and cell redox control. Small GTPases 2014; 5:e28579. [PMID: 24809833 DOI: 10.4161/sgtp.28579] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
While numerous studies support regulation of Ras GTPases by reactive oxygen and nitrogen species, the Rho subfamily has received considerably less attention. Over the last few years, increasing evidence is emerging that supports the redox sensitivity of Rho GTPases. Moreover, as Rho GTPases regulate the cellular redox state by controlling enzymes that generate and convert reactive oxygen and nitrogen species, redox feedback loops likely exist. Here, we provide an overview of cellular oxidants, Rho GTPases, and their inter-dependence.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA
| | - Bingying Zhou
- Department of Pharmacology; University of North Carolina; Chapel Hill, NC USA
| | - Adrienne D Cox
- Department of Pharmacology; University of North Carolina; Chapel Hill, NC USA; Department of Radiation Oncology, University of North Carolina; Chapel Hill, NC USA; Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA; Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| |
Collapse
|
78
|
An L, Jia W, Yu Y, Zou N, Liang L, Zhao Y, Fan Y, Cheng J, Shi Z, Xu G, Li G, Yang J, Zhang H. Lys63-linked polyubiquitination of BRAF at lysine 578 is required for BRAF-mediated signaling. Sci Rep 2014; 3:2344. [PMID: 23907581 PMCID: PMC3731650 DOI: 10.1038/srep02344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/15/2013] [Indexed: 01/13/2023] Open
Abstract
The RAF kinase family is essential in mediating signal transduction from RAS to ERK. BRAF constitutively active mutations correlate with human cancer development. However, the precise molecular regulation of BRAF activation is not fully understood. Here we report that BRAF is modified by Lys63-linked polyubiquitination at lysine 578 within its kinase domain once it is activated by gain of constitutively active mutation or epidermal growth factor (EGF) stimulation. Substitution of BRAF lysine 578 with arginine (K578R) inhibited BRAF-mediated ERK activation. Furthermore, ectopic expression of BRAF K578R mutant inhibited anchorage-independent colony formation of MCF7 breast cancer cell line. Our studies have identified a previously unrecognized regulatory role of Lys63-linked polyubiquitination in BRAF-mediated normal and oncogenic signalings.
Collapse
Affiliation(s)
- Lei An
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Integrated RAS signaling defined by parallel NMR detection of effectors and regulators. Nat Chem Biol 2014; 10:223-30. [DOI: 10.1038/nchembio.1435] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/26/2013] [Indexed: 12/16/2022]
|
80
|
A bimolecular fluorescent complementation screen reveals complex roles of endosomes in Ras-mediated signaling. Methods Enzymol 2014; 535:25-38. [PMID: 24377915 DOI: 10.1016/b978-0-12-397925-4.00002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
While Ras GTPases are best known for mediating growth factor signaling on the plasma membrane, these proteins also have surprisingly complex activities in the endosome. Assisted by a method called bimolecular fluorescent complementation (BiFC), which can detect weak and transient protein-protein interactions and reveal where the binding takes place in live cells, we have identified three effectors, Cdc42, CHMP6, and VPS4A that interact with Ras proteins in endosomes. These effectors are all necessary for Ras-induced transformation, suggesting that for Ras proteins to efficiently induce tumor formation, they must also activate effectors in cytoplasm, such as those in endosomes. Here, we describe how BiFC can be used to detect and screen for Ras effectors and for readily revealing where in the cell the binding occurs.
Collapse
|
81
|
Ras. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
82
|
Sumita K, Yoshino H, Sasaki M, Majd N, Kahoud ER, Takahashi H, Takeuchi K, Kuroda T, Lee S, Charest PG, Takeda K, Asara JM, Firtel RA, Anastasiou D, Sasaki AT. Degradation of activated K-Ras orthologue via K-Ras-specific lysine residues is required for cytokinesis. J Biol Chem 2013; 289:3950-9. [PMID: 24338482 DOI: 10.1074/jbc.m113.531178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers.
Collapse
Affiliation(s)
- Kazutaka Sumita
- From the Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati Cancer Institute, Department of Neurosurgery, University of Cincinnati Neuroscience Institute, Brain Tumor Center University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Baker R, Wilkerson EM, Sumita K, Isom DG, Sasaki AT, Dohlman HG, Campbell SL. Differences in the regulation of K-Ras and H-Ras isoforms by monoubiquitination. J Biol Chem 2013; 288:36856-62. [PMID: 24247240 DOI: 10.1074/jbc.c113.525691] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation.
Collapse
Affiliation(s)
- Rachael Baker
- From the Departments of Biochemistry and Biophysics and
| | | | | | | | | | | | | |
Collapse
|
84
|
Hobbs GA, Gunawardena HP, Baker R, Campbell SL. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Small GTPases 2013; 4:186-92. [PMID: 24030601 DOI: 10.4161/sgtp.26270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
KRas has recently been shown to be activated by monoubiquitination (mUb). Similar to oncogenic mutations, mUb of Ras at position 147 activates Ras by causing a defect in GTPase activating protein (GAP) function. To characterize the mechanism by which mUb impairs GAP-mediated downregulation of Ras, we made various modifications at position 147 of Ras and examined the impact on Ras sensitivity to GAP function. Whereas small modifications (iodoacetamide and glutathione) at position 147 of Ras do not affect GAP-mediated hydrolysis, ligation of Ras to Ub(G76C) (native linker), Ub(X77C) (one residue longer), and PDZ2 (with a native ubiquitin linker) was defective in GAP-mediated GTP hydrolysis. However, restoration of GAP activity was observed for Ras modified with the PDZ2 domain containing a shorter and stiffer linker region than ubiquitin. Therefore, the properties of the linker region dictate whether modification affects GAP-mediated hydrolysis, and our data indicate that the GAP defect requires a minimum linker length of 7 to 8 residues.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA
| | - Harsha P Gunawardena
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA
| | - Rachael Baker
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics; University of North Carolina; Chapel Hill, NC USA; Lineberger Comprehensive Cancer Center; University of North Carolina; Chapel Hill, NC USA
| |
Collapse
|
85
|
When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun Signal 2013; 11:52. [PMID: 23902637 PMCID: PMC3734146 DOI: 10.1186/1478-811x-11-52] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/26/2013] [Indexed: 11/10/2022] Open
Abstract
Ubiquitination, the covalent attachment of ubiquitin to target proteins, has emerged as a ubiquitous post-translational modification (PTM) whose function extends far beyond its original role as a tag for protein degradation identified three decades ago. Although sharing parallel properties with phosphorylation, ubiquitination distinguishes itself in important ways. Nevertheless, the interplay and crosstalk between ubiquitination and phosphorylation events have become a recurrent theme in cell signalling regulation. Understanding how these two major PTMs intersect to regulate signal transduction is an important research question. In this review, we first discuss the involvement of ubiquitination in the regulation of the EGF-mediated ERK signalling pathway via the EGF receptor, highlighting the interplay between ubiquitination and phosphorylation in this cancer-implicated system and addressing open questions. The roles of ubiquitination in pathways crosstalking to EGFR/MAPK signalling will then be discussed. In the final part of the review, we demonstrate the rich and versatile dynamics of crosstalk between ubiquitination and phosphorylation by using quantitative modelling and analysis of network motifs commonly observed in cellular processes. We argue that given the overwhelming complexity arising from inter-connected PTMs, a quantitative framework based on systems biology and mathematical modelling is needed to efficiently understand their roles in cell signalling.
Collapse
|
86
|
|
87
|
Piispanen AE, Grahl N, Hollomon JM, Hogan DA. Regulated proteolysis of Candida albicans Ras1 is involved in morphogenesis and quorum sensing regulation. Mol Microbiol 2013; 89:166-78. [PMID: 23692372 DOI: 10.1111/mmi.12268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 12/23/2022]
Abstract
In Candida albicans, a fungal pathogen, the small G-protein Ras1 regulates many important behaviors including white-opaque switching, biofilm formation, and the induction and maintenance of hyphal growth. Like other Ras proteins, Ras1 is activated upon guanine triphosphate binding, and its activity is further modulated by post-translational lipid modifications. Here, we report that the levels of membrane-associated, full-length Ras1 were higher in hyphae than in yeast, and that yeast contained a shorter, soluble Ras1 species that resulted from cleavage. Deletion of the putative cleavage site led to more rapid induction of hyphal growth and delayed hypha-to-yeast transitions. The cleaved Ras1 species was less able to activate its effector, adenylate cyclase (Cyr1), unless tethered to the membrane by a heterologous membrane-targeting domain. Ras1 cleavage was repressed by cAMP-signalling, indicating the presence of a positive feedback loop in which Cyr1 and cAMP influence Ras1. The C. albicans quorum sensing molecule farnesol, which inhibits Cyr1 and represses filamentation, caused an increase in the fraction of Ras1 in the cleaved form, particularly in nascent yeast formed from hyphae. This newly recognized mode of Ras regulation may control C. albicans Ras1 activity in important ways.
Collapse
Affiliation(s)
- Amy E Piispanen
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
88
|
Compartmentalized Ras signaling differentially contributes to phenotypic outputs. Cell Signal 2013; 25:1748-53. [PMID: 23707528 PMCID: PMC3776226 DOI: 10.1016/j.cellsig.2013.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/07/2013] [Indexed: 12/30/2022]
Abstract
Ras isoforms are membrane bound proteins that differentially localize to the plasma membrane and subcellular compartments within the cell. Whilst the cell surface is the main site for Ras activity the extent to which intracellular pools contribute to Ras function is debated. We have generated Ras chimeras targeting Ras to the ER, Golgi, mitochondria and endosomes to compare the capacity of each of these locations to support activity equivalent to normal Ras function. We find that all locations are capable of regulating the MAP kinase and Akt pathways. Furthermore, whilst endomembranous Ras pools show location-specific competence to support proliferation and transformation, Golgi-Ras is as potent as N-Ras.
Collapse
|
89
|
Human parainfluenza virus type 2 V protein inhibits TRAF6-mediated ubiquitination of IRF7 to prevent TLR7- and TLR9-dependent interferon induction. J Virol 2013; 87:7966-76. [PMID: 23678181 DOI: 10.1128/jvi.03525-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Paramyxovirus V proteins block Toll-like receptor 7 (TLR7)- and TLR9-dependent signaling leading to alpha interferon production. Our recent study has provided evidence that interaction of the V proteins with IRF7 is important for the blockade. However, the detailed mechanisms still remain unclear. Here we reexamined the interaction of the human parainfluenza virus type 2 (HPIV2) V protein with signaling molecules involved in TLR7/9-dependent signaling. Immunoprecipitation experiments in HEK293T cells transfected with V protein and one of the signaling molecules revealed that the V protein interacted with not only IRF7 but also TRAF6, IKKα, and MyD88. Whereas overexpression of TRAF6 markedly enhanced the level of V protein associating with IRF7, IKKα, and MyD88 in HEK293T cells, the level of V protein associating with TRAF6 was little affected by overexpression of IRF7, IKKα, and MyD88. Moreover, knockdown or knockout of endogenous TRAF6 in HEK293T or mouse embryonic fibroblast cells resulted in dissociation of the V protein from IRF7, IKKα, and MyD88. These results demonstrate that binding of the V protein to IRF7, IKKα, and MyD88 is largely indirect and mediated by endogenous TRAF6. It was found that the V protein inhibited TRAF6-mediated lysine 63 (K63)-linked polyubiquitination of IRF7, which is prerequisite for IRF7 activation. Disruption of the tryptophan-rich motif of the V protein significantly affected its TRAF6-binding efficiency, which correlated well with the magnitude of inhibition of K63-linked polyubiquitination and the resultant activation of IRF7. Taken together, these results suggest that the HPIV2 V protein prevents TLR7/9-dependent interferon induction by inhibiting TRAF6-mediated K63-linked polyubiquitination of IRF7.
Collapse
|
90
|
Liu HY, Pfleger CM. Mutation in E1, the ubiquitin activating enzyme, reduces Drosophila lifespan and results in motor impairment. PLoS One 2013; 8:e32835. [PMID: 23382794 PMCID: PMC3558519 DOI: 10.1371/journal.pone.0032835] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/31/2012] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases cause tremendous suffering for those afflicted and their families. Many of these diseases involve accumulation of mis-folded or aggregated proteins thought to play a causal role in disease pathology. Ubiquitinated proteins are often found in these protein aggregates, and the aggregates themselves have been shown to inhibit the activity of the proteasome. These and other alterations in the Ubiquitin Pathway observed in neurodegenerative diseases have led to the question of whether impairment of the Ubiquitin Pathway on its own can increase mortality or if ongoing neurodegeneration alters Ubiquitin Pathway function as a side-effect. To address the role of the Ubiquitin Pathway in vivo, we studied loss-of-function mutations in the Drosophila Ubiquitin Activating Enzyme, Uba1 or E1, the most upstream enzyme in the Ubiquitin Pathway. Loss of only one functional copy of E1 caused a significant reduction in adult lifespan. Rare homozygous hypomorphic E1 mutants reached adulthood. These mutants exhibited further reduced lifespan and showed inappropriate Ras activation in the brain. Removing just one functional copy of Ras restored the lifespan of heterozygous E1 mutants to that of wild-type flies and increased the survival of homozygous E1 mutants. E1 homozygous mutants also showed severe motor impairment. Our findings suggest that processes that impair the Ubiquitin Pathway are sufficient to cause early mortality. Reduced lifespan and motor impairment are seen in the human disease X-linked Infantile Spinal Muscular Atrophy, which is associated with mutation in human E1 warranting further analysis of these mutants as a potential animal model for study of this disease.
Collapse
Affiliation(s)
- Hsiu-Yu Liu
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Cathie M. Pfleger
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
91
|
Baker R, Lewis SM, Sasaki AT, Wilkerson EM, Locasale JW, Cantley LC, Kuhlman B, Dohlman HG, Campbell SL. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nat Struct Mol Biol 2012. [PMID: 23178454 PMCID: PMC3537887 DOI: 10.1038/nsmb.2430] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell growth and differentiation are controlled by growth factor receptors coupled to the GTPase Ras. Oncogenic mutations disrupt GTPase activity leading to persistent Ras signaling and cancer progression. Recent evidence indicates that monoubiquitination of Ras leads to Ras activation. Mutation of the primary site of monoubiquitination impairs the ability of activated K–Ras to promote tumor growth. To determine the mechanism of human Ras activation we chemically ubiquitinated the protein and analyzed its function by NMR, computational modeling, and biochemical activity measurements. We established that monoubiquitination has little effect on Ras GTP binding, GTP hydrolysis, or exchange factor activation, but severely abrogates the response to GTPase activating proteins in a site–specific manner. These findings reveal a new mechanism by which Ras can trigger persistent signaling in the absence of receptor activation or an oncogenic mutation.
Collapse
Affiliation(s)
- Rachael Baker
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Oxidative stress posttranslationally regulates the expression of Ha-Ras and Ki-Ras in cultured astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:792705. [PMID: 23213349 PMCID: PMC3504475 DOI: 10.1155/2012/792705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/20/2012] [Accepted: 09/20/2012] [Indexed: 01/15/2023]
Abstract
Addition of hydrogen peroxide to cultured astrocytes induced a rapid and transient increase in the expression of Ha-Ras and Ki-Ras. Pull-down experiments with the GTP-Ras-binding domain of Raf-1 showed that oxidative stress substantially increased the activation of Ha-Ras, whereas a putative farnesylated activated form of Ki-Ras was only slightly increased. The increase in both Ha-Ras and Ki-Ras was insensitive to the protein synthesis inhibitor, cycloheximide, and was occluded by the proteasomal inhibitor, MG-132. In addition, exposure to hydrogen peroxide reduced the levels of ubiquitinated Ras protein, indicating that oxidative stress leads to a reduced degradation of both isoforms through the ubiquitin/proteasome pathway. Indeed, the late reduction in Ha-Ras and Ki-Ras was due to a recovery of proteasomal degradation because it was sensitive to MG-132. The late reduction of Ha-Ras levels was abrogated by compound PD98059, which inhibits the MAP kinase pathway, whereas the late reduction of Ki-Ras was unaffected by PD98059. We conclude that oxidative stress differentially regulates the expression of Ha-Ras and Ki-Ras in cultured astrocytes, and that activation of the MAP kinase pathway by oxidative stress itself or by additional factors may act as a fail-safe mechanism limiting a sustained expression of the potentially detrimental Ha-Ras.
Collapse
|
93
|
Hayes SD, Liu H, MacDonald E, Sanderson CM, Coulson JM, Clague MJ, Urbé S. Direct and indirect control of mitogen-activated protein kinase pathway-associated components, BRAP/IMP E3 ubiquitin ligase and CRAF/RAF1 kinase, by the deubiquitylating enzyme USP15. J Biol Chem 2012; 287:43007-18. [PMID: 23105109 PMCID: PMC3522295 DOI: 10.1074/jbc.m112.386938] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The opposing regulators of ubiquitylation status, E3 ligases and deubiquitylases, are often found to be associated in complexes. Here we report on a novel interaction between the E3 ligase BRAP (also referred to as IMP), a negative regulator of the MAPK scaffold protein KSR, and two closely related deubiquitylases, USP15 and USP4. We map the interaction to the N-terminal DUSP-UBL domain of USP15 and the coiled coil region of BRAP. USP15 as well as USP4 oppose the autoubiquitylation of BRAP, whereas BRAP promotes the ubiquitylation of USP15. Importantly, USP15 but not USP4 depletion destabilizes BRAP by promoting its proteasomal degradation, and BRAP-protein levels can be rescued by reintroducing catalytically active but not inactive mutant USP15. Unexpectedly, USP15 depletion results in a decrease in amplitude of MAPK signaling in response to EGF and PDGF. We provide evidence for a model in which the dominant effect of prolonged USP15 depletion upon signal amplitude is due to a decrease in CRAF levels while allowing for the possibility that USP15 may also function to dampen MAPK signaling through direct stabilization of a negative regulator, the E3 ligase BRAP.
Collapse
Affiliation(s)
- Sebastian D Hayes
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
94
|
Luo G, Gu H, Liu J, Qu LJ. Four closely-related RING-type E3 ligases, APD1-4, are involved in pollen mitosis II regulation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:814-27. [PMID: 22897245 DOI: 10.1111/j.1744-7909.2012.01152.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ubiquitination of proteins is one of the critical regulatory mechanisms in eukaryotes. In higher plants, protein ubiquitination plays an essential role in many biological processes, including hormone signaling, photomorphogenesis, and pathogen defense. However, the roles of protein ubiquitination in the reproductive process are not clear. In this study, we identified four plant-specific RING-finger genes designated Aberrant Pollen Development 1 (APD1) to APD4, as regulators of pollen mitosis II (PMII) in Arabidopsis thaliana (L.). The apd1 apd2 double mutant showed a significantly increased percentage of bicellular-like pollen at the mature pollen stage. Further downregulation of the APD3 and APD4 transcripts in apd1 apd2 by RNA interference (RNAi) resulted in more severe abnormal bicellular-like pollen phenotypes than in apd1 apd2, suggesting that cell division was defective in male gametogenesis. All of the four genes were expressed in multiple stages at different levels during male gametophyte development. Confocal analysis using green florescence fusion proteins (GFP) GFP-APD1 and GFP-APD2 showed that APDs are associated with intracellular membranes. Furthermore, APD2 had E2-dependent E3 ligase activity in vitro, and five APD2-interacting proteins were identified. Our results suggest that these four genes may be involved, redundantly, in regulating the PMII process during male gametogenesis.
Collapse
Affiliation(s)
- Guo Luo
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
95
|
Kulathu Y, Komander D. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012; 13:508-23. [PMID: 22820888 DOI: 10.1038/nrm3394] [Citation(s) in RCA: 522] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitylation is one of the most abundant and versatile post-translational modifications (PTMs) in cells. Its versatility arises from the ability of ubiquitin to form eight structurally and functionally distinct polymers, in which ubiquitin moieties are linked via one of seven Lys residues or the amino terminus. Whereas the roles of Lys48- and Lys63-linked polyubiquitin in protein degradation and cellular signalling are well characterized, the functions of the remaining six 'atypical' ubiquitin chain types (linked via Lys6, Lys11, Lys27, Lys29, Lys33 and Met1) are less well defined. Recent developments provide insights into the mechanisms of ubiquitin chain assembly, recognition and hydrolysis and allow detailed analysis of the functions of atypical ubiquitin chains. The importance of Lys11 linkages and Met1 linkages in cell cycle regulation and nuclear factor-κB activation, respectively, highlight that the different ubiquitin chain types should be considered as functionally independent PTMs.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
96
|
Abstract
Ras proteins are best known to function on the plasma membrane to mediate growth factor signaling. Controlling the length of time that Ras proteins stay on the plasma membrane is an effective way to properly modulate the intensity and duration of growth factor signaling. It has been shown previously that H- and N-Ras proteins in the GTP-bound state can be ubiquitylated via a K-63 linkage, which leads to endosome internalization and results in a negative-feedback loop for efficient signal attenuation. In a more recent study, two new Ras effectors have been isolated, CHMP6 and VPS4A, which are components of the ESCRT-III complex, best known for mediating protein sorting in the endosomes. Surprisingly, these molecules are required for efficient Ras-induced transformation. They apparently do so by controlling recycling of components of the Ras pathway back to the plasma membrane, thus creating a positive-feedback loop to enhance growth factor signaling. These results suggest the fates of endosomal Ras proteins are complex and dynamic — they can be either stored and/or destroyed or recycled. Further work is needed to decipher how the fate of these endosomal Ras proteins is determined.
Collapse
Affiliation(s)
- Ze-Yi Zheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
97
|
Abstract
Members of the RAS small GTPase family regulate cellular responses to extracellular stimuli by mediating the flux through downstream signal transduction cascades. RAS activity is strongly dependent on its subcellular localization and its nucleotide-binding status, both of which are modulated by posttranslational modification. We have determined that RAS is posttranslationally acetylated on lysine 104. Molecular dynamics simulations suggested that this modification affects the conformational stability of the Switch II domain, which is critical for the ability of RAS to interact with guanine nucleotide exchange factors. Consistent with this model, an acetylation-mimetic mutation in K-RAS4B suppressed guanine nucleotide exchange factor-induced nucleotide exchange and inhibited in vitro transforming activity. These data suggest that lysine acetylation is a negative regulatory modification on RAS. Because mutations in RAS family members are extremely common in cancer, modulation of RAS acetylation may constitute a therapeutic approach.
Collapse
|
98
|
Neyraud V, Aushev VN, Hatzoglou A, Meunier B, Cascone I, Camonis J. RalA and RalB proteins are ubiquitinated GTPases, and ubiquitinated RalA increases lipid raft exposure at the plasma membrane. J Biol Chem 2012; 287:29397-405. [PMID: 22700969 DOI: 10.1074/jbc.m112.357764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ras GTPases signal by orchestrating a balance among several effector pathways, of which those driven by the GTPases RalA and RalB are essential to Ras oncogenic functions. RalA and RalB share the same effectors but support different aspects of oncogenesis. One example is the importance of active RalA in anchorage-independent growth and membrane raft trafficking. This study has shown a new post-translational modification of Ral GTPases: nondegradative ubiquitination. RalA (but not RalB) ubiquitination increases in anchorage-independent conditions in a caveolin-dependent manner and when lipid rafts are endocytosed. Forcing RalA mono-ubiquitination (by expressing a protein fusion consisting of ubiquitin fused N-terminally to RalA) leads to RalA enrichment at the plasma membrane and increases raft exposure. This study suggests the existence of an ubiquitination/de-ubiquitination cycle superimposed on the GDP/GTP cycle of RalA, involved in the regulation of RalA activity as well as in membrane raft trafficking.
Collapse
Affiliation(s)
- Vincent Neyraud
- From the Analysis of Transduction Pathways (ATP) Group, Institut Curie, INSERM U830, Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
All mammalian cells express 3 closely related Ras proteins, termed H-Ras, K-Ras, and N-Ras, that promote oncogenesis when they are mutationally activated at codon 12, 13, or 61. Although there is a high degree of similarity among the isoforms, K-Ras mutations are far more frequently observed in cancer, and each isoform displays preferential coupling to particular cancer types. We examined the mutational spectra of Ras isoforms curated from large-scale tumor profiling and found that each isoform exhibits surprisingly distinctive codon mutation and amino-acid substitution biases. These findings were unexpected given that these mutations occur in regions that share 100% amino-acid sequence identity among the 3 isoforms. Of importance, many of these mutational biases were not due to differences in exposure to mutagens, because the patterns were still evident when compared within specific cancer types. We discuss potential genetic and epigenetic mechanisms, as well as isoform-specific differences in protein structure and signaling, that may promote these distinct mutation patterns and differential coupling to specific cancers.
Collapse
Affiliation(s)
- Ian A. Prior
- Physiological Laboratory, Dept. of Molecular and Cellular Physiology, Institute of Translational Research, University of Liverpool, Liverpool, L69 3BX, UK
| | - Paul D. Lewis
- Cancer Informatics Group, Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK. Tel: +44-1792-295-222
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, 102 Hurtig Hall, 360 Huntington Ave., Boston, MA 02115, USA Tel: +1-617-373-2822
| |
Collapse
|
100
|
Jeong WJ, Yoon J, Park JC, Lee SH, Lee SH, Kaduwal S, Kim H, Yoon JB, Choi KY. Ras Stabilization Through Aberrant Activation of Wnt/ -Catenin Signaling Promotes Intestinal Tumorigenesis. Sci Signal 2012; 5:ra30. [DOI: 10.1126/scisignal.2002242] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|