51
|
Boissier F, Dumay-Odelot H, Teichmann M, Fribourg S. Structural analysis of human RPC32β-RPC62 complex. J Struct Biol 2015; 192:313-319. [PMID: 26394183 DOI: 10.1016/j.jsb.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 01/22/2023]
Abstract
Transcription initiation by eukaryotic RNA polymerase (Pol) III relies on the subcomplex RPC62/RPC39/RPC32. Two distinct isoforms of RPC32 are encoded in the human genome. RPC32α expression is highly regulated and found only in stem cells and transformed cells, whereas RPC32β is ubiquitously expressed in tissues. Here we identify a core-interacting domain of RPC32 sufficient for the interaction with RPC62. We present the crystal structure of a complex of RPC62 and the RPC32β core domain. RPC32β associates with the extended winged helix 1 and 2 and the coiled coil domain of RPC62 qualifying RPC32 as a molecular bridge in between RPC62 domains. The RPC62-RPC32 complex fit into EM data suggests a bi-functional role for RPC32 through interactions with the largest Pol III subunit and through solvent exposed residues. RPC32 positioning into Pol III suggests that subunit-specific contacts at the surface of the Pol III holoenzyme are critical for its function.
Collapse
Affiliation(s)
- Fanny Boissier
- Université de Bordeaux, Institut Européen de Chimie et Biologie, ARNA Laboratory, F-33607 Pessac, France; Institut National de la Santé Et de la Recherche Médicale, INSERM - U869, ARNA Laboratory, F-33000 Bordeaux, France
| | - Hélène Dumay-Odelot
- Université de Bordeaux, Institut Européen de Chimie et Biologie, ARNA Laboratory, F-33607 Pessac, France; INSERM, U869, ARNA Laboratory, Equipe Labellisée Contre le Cancer, F-33076 Bordeaux, France
| | - Martin Teichmann
- Université de Bordeaux, Institut Européen de Chimie et Biologie, ARNA Laboratory, F-33607 Pessac, France; INSERM, U869, ARNA Laboratory, Equipe Labellisée Contre le Cancer, F-33076 Bordeaux, France
| | - Sébastien Fribourg
- Université de Bordeaux, Institut Européen de Chimie et Biologie, ARNA Laboratory, F-33607 Pessac, France; Institut National de la Santé Et de la Recherche Médicale, INSERM - U869, ARNA Laboratory, F-33000 Bordeaux, France.
| |
Collapse
|
52
|
Cai Y, Wei YH. Distinct regulation of Maf1 for lifespan extension by Protein kinase A and Sch9. Aging (Albany NY) 2015; 7:133-43. [PMID: 25720796 PMCID: PMC4359695 DOI: 10.18632/aging.100727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Protein kinase A (PKA) and Sch9 regulates cell growth as well as lifespan in Saccharomyces cerevisiae. Maf1 is a RNA polymerase III (PolIII) inhibitor that tailors 5S rRNA and tRNA production in response to various environmental cues. Both PKA and Sch9 have been shown to phosphorylate Maf1 in vitro at similar amino acids, suggesting a redundancy in Maf1 regulation. However, here we find that activating PKA by bcy1 deletion cannot replace Sch9 for Maf1 phosphorylation and cytoplasmic retention; instead, such modulation lowers Maf1 protein levels. Consistently, loss of MAF1 or constitutive PKA activity reverses the stress resistance and the extended lifespan of sch9Δ cells. Overexpression of MAF1 partially rescues the extended lifespan of sch9Δ in bcy1Δsch9Δ mutant, suggesting that PKA suppresses sch9Δ longevity at least partly through Maf1 abundance. Constitutive PKA activity also reverses the reduced tRNA synthesis and slow growth of sch9Δ, which, however, is not attributed to Maf1 protein abundance. Therefore, regulation of lifespan and growth can be decoupled. Together, we reveal that lifespan regulation by PKA and Sch9 are mediated by Maf1 through distinct mechanisms.
Collapse
Affiliation(s)
- Ying Cai
- No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 201900, China
| | - Yue-Hua Wei
- No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 201900, China
| |
Collapse
|
53
|
Khanna A, Pradhan A, Curran SP. Emerging Roles for Maf1 beyond the Regulation of RNA Polymerase III Activity. J Mol Biol 2015; 427:2577-85. [PMID: 26173035 DOI: 10.1016/j.jmb.2015.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 01/17/2023]
Abstract
Maf1 was first identified in yeast, and studies in metazoans have primarily focused on examining its role in the repression of transcription that is dependent on RNA polymerase III. Recent work has revealed a novel and conserved function for Maf1 in the maintenance of intracellular lipid pools in Caenorhabditis elegans, mice, and cancer cell lines. Although additional Maf1 targets are likely, they have not been identified, and these recent findings begin to define specific activities for Maf1 in multicellular organisms beyond the regulation of RNA polymerase III transcription and suggest that Maf1 plays a more diverse role in organismal physiology. We will discuss these newly defined physiological roles of Maf1 that point to its placement as an important new player in lipid metabolism with implications in human metabolic diseases such as obesity and cancer, which display prominent defects in lipid homeostasis.
Collapse
Affiliation(s)
- Akshat Khanna
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ajay Pradhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
54
|
Lee J, Moir RD, Willis IM. Differential Phosphorylation of RNA Polymerase III and the Initiation Factor TFIIIB in Saccharomyces cerevisiae. PLoS One 2015; 10:e0127225. [PMID: 25970584 PMCID: PMC4430316 DOI: 10.1371/journal.pone.0127225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/13/2015] [Indexed: 11/19/2022] Open
Abstract
The production of ribosomes and tRNAs for protein synthesis has a high energetic cost and is under tight transcriptional control to ensure that the level of RNA synthesis is balanced with nutrient availability and the prevailing environmental conditions. In the RNA polymerase (pol) III system in yeast, nutrients and stress affect transcription through a bifurcated signaling pathway in which protein kinase A (PKA) and TORC1 activity directly or indirectly, through downstream kinases, alter the phosphorylation state and function of the Maf1 repressor and Rpc53, a TFIIF-like subunit of the polymerase. However, numerous lines of evidence suggest greater complexity in the regulatory network including the phosphoregulation of other pol III components. To address this issue, we systematically examined all 17 subunits of pol III along with the three subunits of the initiation factor TFIIIB for evidence of differential phosphorylation in response to inhibition of TORC1. A relatively high stoichiometry of phosphorylation was observed for several of these proteins and the Rpc82 subunit of the polymerase and the Bdp1 subunit of TFIIIB were found to be differentially phosphorylated. Bdp1 is phosphorylated on four major sites during exponential growth and the protein is variably dephosphorylated under conditions that inhibit tRNA gene transcription. PKA, the TORC1-regulated kinase Sch9 and protein kinase CK2 are all implicated in the phosphorylation of Bdp1. Alanine substitutions at the four phosphosites cause hyper-repression of transcription indicating that phosphorylation of Bdp1 opposes Maf1-mediated repression. The new findings suggest an integrated regulatory model for signaling events controlling pol III transcription.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (RDM); (IMW)
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (RDM); (IMW)
| |
Collapse
|
55
|
Nguyen NTT, Saguez C, Conesa C, Lefebvre O, Acker J. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 2015; 556:51-60. [DOI: 10.1016/j.gene.2014.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023]
|
56
|
Acker J, Nguyen NTT, Vandamme M, Tavenet A, Briand-Suleau A, Conesa C. Sub1 and Maf1, two effectors of RNA polymerase III, are involved in the yeast quiescence cycle. PLoS One 2014; 9:e114587. [PMID: 25531541 PMCID: PMC4273968 DOI: 10.1371/journal.pone.0114587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022] Open
Abstract
Sub1 and Maf1 exert an opposite effect on RNA polymerase III transcription interfering with different steps of the transcription cycle. In this study, we present evidence that Sub1 and Maf1 also exhibit an opposite role on yeast chronological life span. First, cells lacking Sub1 need more time than wild type to exit from resting and this lag in re-proliferation is correlated with a delay in transcriptional reactivation. Second, our data show that the capacity of the cells to properly establish a quiescent state is impaired in the absence of Sub1 resulting in a premature death that is dependent on the Ras/PKA and Tor1/Sch9 signalling pathways. On the other hand, we show that maf1Δ cells are long-lived mutant suggesting a connection between Pol III transcription and yeast longevity.
Collapse
Affiliation(s)
- Joël Acker
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
- * E-mail: (CC); (JA)
| | - Ngoc-Thuy-Trinh Nguyen
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Marie Vandamme
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Arounie Tavenet
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Audrey Briand-Suleau
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
| | - Christine Conesa
- iBiTec-S CEA, FRE3377, Gif-sur-Yvette, France
- CNRS, FRE3377, Gif-sur-Yvette, France
- Université Paris-Sud, FRE3377, Gif-sur-Yvette, France
- * E-mail: (CC); (JA)
| |
Collapse
|
57
|
Grewal SS. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:898-907. [PMID: 25497380 DOI: 10.1016/j.bbagrm.2014.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Transfer RNAs (tRNAs) are essential for mRNA translation. They are transcribed in the nucleus by RNA polymerase III and undergo many modifications before contributing to cytoplasmic protein synthesis. In this review I highlight our understanding of how tRNA biology may be linked to the regulation of mRNA translation, growth and tumorigenesis. First, I review how oncogenes and tumour suppressor signalling pathways, such as the PI3 kinase/TORC1, Ras/ERK, Myc, p53 and Rb pathways, regulate Pol III and tRNA synthesis. In several cases, this regulation contributes to cell, tissue and body growth, and has implications for our understanding of tumorigenesis. Second, I highlight some recent work, particularly in model organisms such as yeast and Drosophila, that shows how alterations in tRNA synthesis may be not only necessary, but also sufficient to drive changes in mRNA translation and growth. These effects may arise due to both absolute increases in total tRNA levels, but also changes in the relative levels of tRNAs in the overall pool. Finally, I review some recent studies that have revealed how tRNA modifications (amino acid acylation, base modifications, subcellular shuttling, and cleavage) can be regulated by growth and stress cues to selectively influence mRNA translation. Together these studies emphasize the importance of the regulation of tRNA synthesis and modification as critical control points in protein synthesis and growth. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Savraj S Grewal
- Department of Biochemistry and Molecular Biology, Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
58
|
|
59
|
Cieśla M, Mierzejewska J, Adamczyk M, Farrants AKÖ, Boguta M. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1103-10. [DOI: 10.1016/j.bbamcr.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
60
|
Bonhoure N, Bounova G, Bernasconi D, Praz V, Lammers F, Canella D, Willis IM, Herr W, Hernandez N, Delorenzi M. Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 2014; 24:1157-68. [PMID: 24709819 PMCID: PMC4079971 DOI: 10.1101/gr.168260.113] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.
Collapse
Affiliation(s)
- Nicolas Bonhoure
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gergana Bounova
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David Bernasconi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Fabienne Lammers
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Winship Herr
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Oncology and the Ludwig Center for Cancer Research, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | | |
Collapse
|
61
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
62
|
Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014; 2:535-62. [PMID: 24634836 PMCID: PMC3953959 DOI: 10.1016/j.redox.2014.02.006] [Citation(s) in RCA: 619] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment. Complexity of redox regulation increases along the phylogenetic tree. Complex regulatory networks allow for a high degree of H2O2 biological plasticity. H2O2 modulates gene expression at all steps from transcription to protein synthesis. Fast response (s) is mediated by sensors with high H2O2 reactivity. Low reactivity H2O2 sensors may mediate slow (h) or localized H2O2 responses.
Collapse
Affiliation(s)
- H. Susana Marinho
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Real
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Cyrne
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, IPL, Lisboa, Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Corresponding author.
| |
Collapse
|
63
|
Renaud M, Praz V, Vieu E, Florens L, Washburn MP, l'Hôte P, Hernandez N. Gene duplication and neofunctionalization: POLR3G and POLR3GL. Genome Res 2013; 24:37-51. [PMID: 24107381 PMCID: PMC3875860 DOI: 10.1101/gr.161570.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA polymerase III (Pol III) occurs in two versions, one containing the POLR3G subunit and the other the closely related POLR3GL subunit. It is not clear whether these two Pol III forms have the same function, in particular whether they recognize the same target genes. We show that the POLR3G and POLR3GL genes arose from a DNA-based gene duplication, probably in a common ancestor of vertebrates. POLR3G- as well as POLR3GL-containing Pol III are present in cultured cell lines and in normal mouse liver, although the relative amounts of the two forms vary, with the POLR3G-containing Pol III relatively more abundant in dividing cells. Genome-wide chromatin immunoprecipitations followed by high-throughput sequencing (ChIP-seq) reveal that both forms of Pol III occupy the same target genes, in very constant proportions within one cell line, suggesting that the two forms of Pol III have a similar function with regard to specificity for target genes. In contrast, the POLR3G promoter—not the POLR3GL promoter—binds the transcription factor MYC, as do all other promoters of genes encoding Pol III subunits. Thus, the POLR3G/POLR3GL duplication did not lead to neo-functionalization of the gene product (at least with regard to target gene specificity) but rather to neo-functionalization of the transcription units, which acquired different mechanisms of regulation, thus likely affording greater regulation potential to the cell.
Collapse
Affiliation(s)
- Marianne Renaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
64
|
Wichtowska D, Turowski TW, Boguta M. An interplay between transcription, processing, and degradation determines tRNA levels in yeast. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:709-22. [PMID: 24039171 DOI: 10.1002/wrna.1190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 11/06/2022]
Abstract
tRNA biogenesis in yeast involves the synthesis of the initial transcript by RNA polymerase III followed by processing and controlled degradation in both the nucleus and the cytoplasm. A vast landscape of regulatory elements controlling tRNA stability in yeast has emerged from recent studies. Diverse pathways of tRNA maturation generate multiple stable and unstable intermediates. A significant impact on tRNA stability is exerted by a variety of nucleotide modifications. Pre-tRNAs are targets of exosome-dependent surveillance in the nucleus. Some tRNAs that are hypomodified or bear specific destabilizing mutations are directed to the rapid tRNA decay pathway leading to 5'→3' exonucleolytic degradation by Rat1 and Xrn1. tRNA molecules are selectively marked for degradation by a double CCA at their 3' ends. In addition, under different stress conditions, tRNA half-molecules can be generated by independent endonucleolytic cleavage events. Recent studies reveal unexpected relationships between the subsequent steps of tRNA biosynthesis and the mechanisms controlling its quality and turnover.
Collapse
Affiliation(s)
- Dominika Wichtowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
65
|
Abstract
SIGNIFICANCE Both transfer RNA (tRNA) and cytochrome c are essential molecules for the survival of cells. tRNA decodes mRNA codons into amino-acid-building blocks in protein in all organisms, whereas cytochrome c functions in the electron transport chain that powers ATP synthesis in mitochondrion-containing eukaryotes. Additionally, in vertebrates, cytochrome c that is released from mitochondria is a potent inducer of apoptosis, activating apoptotic proteins (caspases) in the cytoplasm to dismantle cells. A better understanding of both tRNA and cytochrome c is essential for an insight into the regulation of cell life and death. RECENT ADVANCES A recent study showed that the mitochondrion-released cytochrome c can be removed from the cell-death pathway by tRNA molecules. The direct binding of cytochrome c by tRNA provides a mechanism for tRNA to regulate cell death, beyond its role in gene expression. CRITICAL ISSUES The nature of the tRNA-cytochrome c binding interaction remains unknown. The questions of how this interaction affects tRNA function, cellular metabolism, and apoptotic sensitivity are unanswered. FUTURE DIRECTIONS Investigations into the critical issues raised above will improve the understanding of tRNA in the fundamental processes of cell death and metabolism. Such knowledge will inform therapies in cell death-related diseases.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
66
|
Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing. Proc Natl Acad Sci U S A 2013; 110:E3081-9. [PMID: 23898186 DOI: 10.1073/pnas.1219946110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification.
Collapse
|
67
|
Morawiec E, Wichtowska D, Graczyk D, Conesa C, Lefebvre O, Boguta M. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae. Gene 2013; 526:16-22. [PMID: 23657116 DOI: 10.1016/j.gene.2013.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Maf1 is a negative regulator of RNA polymerase III (Pol III) in yeast. Maf1-depleted cells manifest elevated tRNA transcription and inability to grow on non-fermentable carbon source, such as glycerol. Using genomic microarray approach, we examined the effect of Maf1 deletion on expression of Pol II-transcribed genes in yeast grown in medium containing glycerol. We found that transcription of FBP1 and PCK1, two major genes controlling gluconeogenesis, was decreased in maf1Δ cells. FBP1 is located on chromosome XII in close proximity to a tRNA-Lys gene. Accordingly we hypothesized that decreased FBP1 mRNA level could be due to the effect of Maf1 on tgm silencing (tRNA gene mediated silencing). Two approaches were used to verify this hypothesis. First, we inactivated tRNA-Lys gene on chromosome XII by inserting a deletion cassette in a control wild type strain and in maf1Δ mutant. Second, we introduced a point mutation in the promoter of the tRNA-Lys gene cloned with the adjacent FBP1 in a plasmid and expressed in fbp1Δ or fbp1Δ maf1Δ cells. The levels of FBP1 mRNA were determined by RT-qPCR in each strain. Although the inactivation of the chromosomal tRNA-Lys gene increased expression of the neighboring FBP1, the mutation preventing transcription of the plasmid-born tRNA-Lys gene had no significant effect on FBP1 transcription. Taken together, those results do not support the concept of tgm silencing of FBP1. Other possible mechanisms are discussed.
Collapse
Affiliation(s)
- Ewa Morawiec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
68
|
Turowski TW. The impact of transcription on posttranscriptional processes in yeast. Gene 2013; 526:23-9. [PMID: 23639960 DOI: 10.1016/j.gene.2013.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/06/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
In eukaryotes, three RNA polymerases are responsible for transcription. These complex enzymes show many similarities with one another, such as several common or highly homologue subunits, while some other features, such as transcript length, diversity, processing, and transcription regulation, are unique to each polymerase. The present article reviews recent publications focusing on the impact of transcription of various RNA species in yeast on posttranscriptional steps such as pre-RNA processing, transport and decay. Two major conclusions emerge from a critical analysis of the current knowledge. (1) The kinetics of transcription elongation affects cotranscriptional pre-RNA processing. (2) The efficiency of transcription, by saturating the proteins interacting with RNA, indirectly affects the processing, export and decay of transcripts.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
69
|
Maf1, a general negative regulator of RNA polymerase III in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23201230 DOI: 10.1016/j.bbagrm.2012.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
tRNA synthesis by yeast RNA polymerase III (Pol III) is down-regulated under growth-limiting conditions. This control is mediated by Maf1, a global negative regulator of Pol III transcription. Conserved from yeast to man, Maf1 was originally discovered in Saccharomyces cerevisiae by a genetic approach. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from the recently reported structural and biochemical data on Pol III and Maf1. The phosphorylation status of Maf1 determines its nuclear localization and interaction with the Pol III complex and several Maf1 kinases have been identified to be involved in Pol III control. Moreover, Maf1 indirectly affects tRNA maturation and decay. Here I discuss the current understanding of the mechanisms that oversee the Maf1-mediated regulation of Pol III activity and the role of Maf1 in the control of tRNA biosynthesis in yeast. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
70
|
Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:361-75. [PMID: 23165150 DOI: 10.1016/j.bbagrm.2012.11.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/29/2022]
Abstract
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
71
|
Dieci G, Bosio MC, Fermi B, Ferrari R. Transcription reinitiation by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:331-41. [PMID: 23128323 DOI: 10.1016/j.bbagrm.2012.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/11/2023]
Abstract
The retention of transcription proteins at an actively transcribed gene contributes to maintenance of the active transcriptional state and increases the rate of subsequent transcription cycles relative to the initial cycle. This process, called transcription reinitiation, generates the abundant RNAs in living cells. The persistence of stable preinitiation intermediates on activated genes representing at least a subset of basal transcription components has long been recognized as a shared feature of RNA polymerase (Pol) I, II and III-dependent transcription in eukaryotes. Studies of the Pol III transcription machinery and its target genes in eukaryotic genomes over the last fifteen years, has uncovered multiple details on transcription reinitiation. In addition to the basal transcription factors that recruit the polymerase, Pol III itself can be retained on the same gene through multiple transcription cycles by a facilitated recycling pathway. The molecular bases for facilitated recycling are progressively being revealed with advances in structural and functional studies. At the same time, progress in our understanding of Pol III transcriptional regulation in response to different environmental cues points to the specific mechanism of Pol III reinitiation as a key target of signaling pathway regulation of cell growth. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy.
| | | | | | | |
Collapse
|
72
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
73
|
Turowski TW, Karkusiewicz I, Kowal J, Boguta M. Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway. RNA (NEW YORK, N.Y.) 2012; 18:1823-32. [PMID: 22919049 PMCID: PMC3446706 DOI: 10.1261/rna.033597.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
tRNA precursors, which are transcribed by RNA polymerase III, undergo end-maturation, splicing, and base modifications. Hypomodified tRNAs, such as tRNA(Val(AAC)), lacking 7-methylguanosine and 5-methylcytidine modifications, are subject to degradation by a rapid tRNA decay pathway. Here we searched for genes which, when overexpressed, restored stability of tRNA(Val(AAC)) molecules in a modification-deficient trm4Δtrm8Δ mutant. We identified TEF1 and VAS1, encoding elongation factor eEF1A and valyl-tRNA synthetase respectively, which likely protect hypomodified tRNA(Val(AAC)) by direct interactions. We also identified MAF1 whose product is a general negative regulator of RNA polymerase III. Expression of a Maf1-7A mutant that constitutively repressed RNA polymerase III transcription resulted in increased stability of hypomodified tRNA(Val(AAC)). Strikingly, inhibition of tRNA transcription in a Maf1-independent manner, either by point mutation in RNA polymerase III subunit Rpc128 or decreased expression of Rpc17 subunit, also suppressed the turnover of the hypomodified tRNA(Val(AAC)). These results support a model where inhibition of tRNA transcription leads to stabilization of hypomodified tRNA(Val(AAC)) due to more efficient protection by tRNA-interacting proteins.
Collapse
Affiliation(s)
- Tomasz W. Turowski
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Iwona Karkusiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Justyna Kowal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Corresponding authorE-mail
| |
Collapse
|
74
|
Vannini A. A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:258-64. [PMID: 23031840 DOI: 10.1016/j.bbagrm.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
RNA polymerase I and III are responsible for the bulk of nuclear transcription in actively growing cells and their activity impacts the cellular biosynthetic capacity. As a consequence, RNA polymerase I and III deregulation has been directly linked to cancer development. The complexity of RNA polymerase I and III transcription apparatuses has hampered their structural characterization. However, in the last decade tremendous progresses have been made, providing insights into the molecular and functional architecture of these multi-subunit transcriptional machineries. Here we summarize the available structural data on RNA polymerase I and III, including specific transcription factors and global regulators. Despite the overall scarcity of detailed structural data, the recent advances in the structural biology of RNA polymerase I and III represent the first step towards a comprehensive understanding of the molecular mechanism underlying RNA polymerase I and III transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alessandro Vannini
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
75
|
Abstract
Availability of key nutrients, such as sugars, amino acids, and nitrogen compounds, dictates the developmental programs and the growth rates of yeast cells. A number of overlapping signaling networks--those centered on Ras/protein kinase A, AMP-activated kinase, and target of rapamycin complex I, for instance--inform cells on nutrient availability and influence the cells' transcriptional, translational, posttranslational, and metabolic profiles as well as their developmental decisions. Here I review our current understanding of the structures of the networks responsible for assessing the quantity and quality of carbon and nitrogen sources. I review how these signaling pathways impinge on transcriptional, metabolic, and developmental programs to optimize survival of cells under different environmental conditions. I highlight the profound knowledge we have gained on the structure of these signaling networks but also emphasize the limits of our current understanding of the dynamics of these signaling networks. Moreover, the conservation of these pathways has allowed us to extrapolate our finding with yeast to address issues of lifespan, cancer metabolism, and growth control in more complex organisms.
Collapse
Affiliation(s)
- James R Broach
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
76
|
Moir RD, Lee J, Willis IM. Recovery of RNA polymerase III transcription from the glycerol-repressed state: revisiting the role of protein kinase CK2 in Maf1 phosphoregulation. J Biol Chem 2012; 287:30833-41. [PMID: 22810236 DOI: 10.1074/jbc.m112.378828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maf1 is a conserved regulator of RNA polymerase (pol) III transcription and is required for transcriptional repression under diverse stress conditions. In yeast, Maf1 function is negatively regulated at seven phosphosites by the overlapping action of protein kinase A (PKA) and the TORC1-regulated kinase Sch9. Under stress conditions, Maf1 is dephosphorylated at these sites leading to its nuclear accumulation, increased association with pol III genes and direct physical interactions with the polymerase which ultimately inhibit transcription. These changes are reversed upon return to optimal growth conditions. Transcription in this system is also regulated by protein kinase CK2. CK2 stimulates pol III transcription in yeast and human cells via phosphorylation of the initiation factor TFIIIB. Recently it was proposed that CK2 phosphorylation of Maf1 is required for reactivation of pol III transcription following growth on glycerol. We have examined this hypothesis using two Maf1 mutants (Maf1-id S388A and Maf1-ck2(0)) which lack all of the CK2 phosphosites implicated in the response. Both mutant proteins are phosphoregulated, function normally during repression and transcription is fully restored to the wild-type level upon transfer from glycerol to glucose. Additionally, phos-tag gel analysis of Maf1 7SA, a functional mutant that cannot be phosphorylated by PKA/Sch9, did not reveal any evidence for differential phosphorylation of Maf1 during carbon source switching. Together, these data do not support the proposed requirement for CK2 phosphorylation of Maf1 during derepression of pol III transcription.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
77
|
|
78
|
Oler AJ, Cairns BR. PP4 dephosphorylates Maf1 to couple multiple stress conditions to RNA polymerase III repression. EMBO J 2012; 31:1440-52. [PMID: 22333918 PMCID: PMC3321174 DOI: 10.1038/emboj.2011.501] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/16/2011] [Indexed: 12/22/2022] Open
Abstract
Maf1 is the 'master' repressor of RNA polymerase III (Pol III) transcription in yeast, and is conserved in eukaryotes. Maf1 is a phospho-integrator, with unfavourable growth conditions leading to rapid Maf1 dephosphorylation, nuclear accumulation, binding to RNA Pol III at Pol III genes and transcriptional repression. Here, we establish the protein phosphatase 4 (PP4) complex as the main Maf1 phosphatase, and define the involved catalytic (Pph3), scaffold (Psy2) and regulatory subunits (Rrd1, Tip41), as well as uninvolved subunits (Psy4, Rrd2). Multiple approaches support a central role for PP4 in Maf1 dephosphorylation, Maf1 nuclear localization and the rapid repression of Pol III in the nucleus. PP4 action is likely direct, as a portion of PP4 co-precipitates with Maf1, and purified PP4 dephosphorylates Maf1 in vitro. Furthermore, Pph3 mediates (either largely or fully) rapid Maf1 dephosphorylation in response to diverse stresses, suggesting PP4 plays a key role in the integration of cell nutrition and stress conditions by Maf1 to enable Pol III regulation.
Collapse
Affiliation(s)
- Andrew J Oler
- HHMI, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
79
|
Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011; 189:1177-201. [PMID: 22174183 PMCID: PMC3241408 DOI: 10.1534/genetics.111.133363] [Citation(s) in RCA: 661] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/12/2011] [Indexed: 12/16/2022] Open
Abstract
TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae.
Collapse
Affiliation(s)
- Robbie Loewith
- Department of Molecular Biology and National Centers of Competence in Research and Frontiers in Genetics and Chemical Biology, University of Geneva, Geneva, CH-1211, Switzerland
| | | |
Collapse
|
80
|
Karkusiewicz I, Turowski TW, Graczyk D, Towpik J, Dhungel N, Hopper AK, Boguta M. Maf1 protein, repressor of RNA polymerase III, indirectly affects tRNA processing. J Biol Chem 2011; 286:39478-88. [PMID: 21940626 DOI: 10.1074/jbc.m111.253310] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1Δ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1Δ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1-mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner.
Collapse
Affiliation(s)
- Iwona Karkusiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02 106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
81
|
Fernández-Tornero C, Böttcher B, Rashid UJ, Müller CW. Analyzing RNA polymerase III by electron cryomicroscopy. RNA Biol 2011; 8:760-5. [PMID: 21881405 DOI: 10.4161/rna.8.5.16021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent electron cryomicroscopy reconstructions have provided new insights into the overall organization of yeast RNA polymerase (Pol) III, responsible for the synthesis of small, non-translated RNAs. The structure of the free Pol III enzyme at 10 Å resolution provides an accurate framework to better understand its overall architecture and the structural organization and functional role of two Pol III-specific subcomplexes. Cryo-EM structures of elongating Pol III bound to DNA/RNA scaffolds show the rearrangement of the Pol III-specific subcomplexes that enclose incoming DNA. In one reconstruction downstream DNA and newly transcribed RNA can be followed over considerably longer distances as in the crystal structure of elongating Pol II. The Pol III transcription machinery is increasingly recognized as a possible target for cancer therapy. The recent cryo-EM reconstructions contribute to the molecular understanding of Pol III transcription as a prerequisite for targeting its components.
Collapse
|
82
|
RNA polymerase III under control: repression and de-repression. Trends Biochem Sci 2011; 36:451-6. [PMID: 21816617 DOI: 10.1016/j.tibs.2011.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/17/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
The synthesis of tRNA by yeast RNA polymerase III (Pol III) is regulated in response to changing environmental conditions. This control is mediated by Maf1, the global negative regulator of Pol III transcription conserved from yeast to humans. Details regarding the molecular basis of Pol III repression by Maf1 are now emerging from recently reported structural and biochemical data on Pol III and Maf1. Efficient Pol III transcription, following the shift of cells from a non-fermentable carbon source to glucose, requires phosphorylation of Maf1. One of the newly identified Maf1 kinases is the chromatin-bound casein kinase II (CK2). Current studies have allowed us to propose an innovative mechanism of Pol III regulation. We suggest that CK2-mediated phosphorylation of Maf1, occurring directly on tDNA chromatin, controls Pol III recycling.
Collapse
|
83
|
Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO J 2011; 30:3052-64. [PMID: 21730963 PMCID: PMC3160192 DOI: 10.1038/emboj.2011.221] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/08/2011] [Indexed: 01/22/2023] Open
Abstract
TORC1 is a conserved multisubunit kinase complex that regulates many aspects of eukaryotic growth including the biosynthesis of ribosomes. The TOR protein kinase resident in TORC1 is responsive to environmental cues and is potently inhibited by the natural product rapamycin. Recent characterization of the rapamycin-sensitive phosphoproteome in yeast has yielded insights into how TORC1 regulates growth. Here, we show that Sch9, an AGC family kinase and direct substrate of TORC1, promotes ribosome biogenesis (Ribi) and ribosomal protein (RP) gene expression via direct inhibitory phosphorylation of the transcriptional repressors Stb3, Dot6 and Tod6. Deletion of STB3, DOT6 and TOD6 partially bypasses the growth and cell size defects of an sch9 strain and reveals interdependent regulation of both Ribi and RP gene expression, and other aspects of Ribi. Dephosphorylation of Stb3, Dot6 and Tod6 enables recruitment of the RPD3L histone deacetylase complex to repress Ribi/RP gene promoters. Taken together with previous studies, these results suggest that Sch9 is a master regulator of ribosome biogenesis through the control of Ribi, RP, ribosomal RNA and tRNA gene transcription.
Collapse
|
84
|
Abstract
Yeast and mammalian MAF1 are both regulated by the TOR (target of rapamycin) pathway. However, the exact mechanisms of regulation diverge at TOR, with yeast Maf1 phosphorylated mainly by the TORC1 (TOR complex 1) substrate Sch9 kinase and mammalian MAF1 by mTORC1 (mammalian target of rapamycin complex 1) itself. Sch9 phosphorylation of yeast Maf1 regulates Maf1 localization, but it is less clear whether phosphorylation of human MAF1 regulates its localization. Replacement of phosphosites with alanine decreases Pol III (RNA polymerase III) transcription, but the effect is much more pronounced for human MAF1 than for the yeast protein. In both cases, Pol III repression can be further increased by rapamycin treatment or, in mammalian cells, serum starvation, suggesting that the TOR pathway controls another aspect of Pol III transcription that is closely linked to MAF1, as it depends on the presence of MAF1.
Collapse
|
85
|
Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation. Proc Natl Acad Sci U S A 2011; 108:4926-31. [PMID: 21383183 DOI: 10.1073/pnas.1010010108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maf1 protein is a global negative regulator of RNA polymerase (Pol) III transcription conserved from yeast to man. We report that phosphorylation of Maf1 by casein kinase II (CK2), a highly evolutionarily conserved eukaryotic kinase, is required for efficient Pol III transcription. Both recombinant human and yeast CK2 were able to phosphorylate purified human or yeast Maf1, indicating that Maf1 can be a direct substrate of CK2. Upon transfer of Saccharomyces cerevisiae from repressive to favorable growth conditions, CK2 activity is required for the release of Maf1 from Pol III bound to a tRNA gene and for subsequent activation of tRNA transcription. In a yeast strain lacking Maf1, CK2 inhibition showed no effect on tRNA synthesis, confirming that CK2 activates Pol III via Maf1. Additionally, CK2 was found to associate with tRNA genes, and this association is enhanced in absence of Maf1, especially under repressive conditions. These results corroborate the previously reported TFIIIB-CK2 interaction and indicate an important role of CK2-mediated Maf1 phosphorylation in triggering Pol III activation.
Collapse
|
86
|
Vannini A, Ringel R, Kusser AG, Berninghausen O, Kassavetis GA, Cramer P. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell 2010; 143:59-70. [PMID: 20887893 DOI: 10.1016/j.cell.2010.09.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/06/2010] [Accepted: 08/11/2010] [Indexed: 11/19/2022]
Abstract
RNA polymerase III (Pol III) transcribes short RNAs required for cell growth. Under stress conditions, the conserved protein Maf1 rapidly represses Pol III transcription. We report the crystal structure of Maf1 and cryo-electron microscopic structures of Pol III, an active Pol III-DNA-RNA complex, and a repressive Pol III-Maf1 complex. Binding of DNA and RNA causes ordering of the Pol III-specific subcomplex C82/34/31 that is required for transcription initiation. Maf1 binds the Pol III clamp and rearranges C82/34/31 at the rim of the active center cleft. This impairs recruitment of Pol III to a complex of promoter DNA with the initiation factors Brf1 and TBP and thus prevents closed complex formation. Maf1 does however not impair binding of a DNA-RNA scaffold and RNA synthesis. These results explain how Maf1 specifically represses transcription initiation from Pol III promoters and indicate that Maf1 also prevents reinitiation by binding Pol III during transcription elongation.
Collapse
Affiliation(s)
- Alessandro Vannini
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
87
|
Galdieri L, Mehrotra S, Yu S, Vancura A. Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:629-38. [PMID: 20863251 DOI: 10.1089/omi.2010.0069] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The preferred source of carbon and energy for yeast cells is glucose. When yeast cells are grown in liquid cultures, they metabolize glucose predominantly by glycolysis, releasing ethanol in the medium. When glucose becomes limiting, the cells enter diauxic shift characterized by decreased growth rate and by switching metabolism from glycolysis to aerobic utilization of ethanol. When ethanol is depleted from the medium, cells enter quiescent or stationary phase G(0). Cells in diauxic shift and stationary phase are stressed by the lack of nutrients and by accumulation of toxic metabolites, primarily from the oxidative metabolism, and are differentiated in ways that allow them to maintain viability for extended periods of time. The transition of yeast cells from exponential phase to quiescence is regulated by protein kinase A, TOR, Snf1p, and Rim15p pathways that signal changes in availability of nutrients, converge on transcriptional factors Msn2p, Msn4p, and Gis1p, and elicit extensive reprogramming of the transcription machinery. However, the events in transcriptional regulation during diauxic shift and quiescence are incompletely understood. Because cells from multicellular eukaryotic organisms spend most of their life in G(0) phase, understanding transcriptional regulation in quiescence will inform other fields, such as cancer, development, and aging.
Collapse
Affiliation(s)
- Luciano Galdieri
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | | | | | | |
Collapse
|
88
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
89
|
Gajda A, Towpik J, Steuerwald U, Müller CW, Lefebvre O, Boguta M. Full repression of RNA polymerase III transcription requires interaction between two domains of its negative regulator Maf1. J Biol Chem 2010; 285:35719-27. [PMID: 20817737 DOI: 10.1074/jbc.m110.125286] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Maf1, first identified in yeast Saccharomyces cerevisiae, is a general negative regulator of RNA polymerase III (Pol III). Transcription regulation by Maf1 is important under stress conditions and during the switch between fermentation and respiration. Maf1 is composed of two domains conserved during evolution. We report here that these two domains of human Maf1 are resistant to mild proteolysis and interact together as shown by pull-down and size-exclusion chromatography and that the comparable domains of yeast Maf1 interact in a two-hybrid assay. Additionally, in yeast, a mutation in the N-terminal domain is compensated by mutations in the C-terminal domain. Integrity of both domains and their direct interaction are necessary for Maf1 dephosphorylation and subsequent inhibition of Pol III transcription on a nonfermentable carbon source. These data relate Pol III transcription inhibition to Maf1 structural changes.
Collapse
Affiliation(s)
- Anna Gajda
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
90
|
Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687-99. [PMID: 20890107 DOI: 10.4161/cc.9.18.13203] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.
Collapse
Affiliation(s)
- Hélène Dumay-Odelot
- Institut Européen de Chimie et Biologie (I.E.C.B.), Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) U869, Pessac, France
| | | | | | | | | |
Collapse
|
91
|
Replication stress checkpoint signaling controls tRNA gene transcription. Nat Struct Mol Biol 2010; 17:976-81. [DOI: 10.1038/nsmb.1857] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/20/2010] [Indexed: 01/21/2023]
|
92
|
mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci U S A 2010; 107:11823-8. [PMID: 20543138 DOI: 10.1073/pnas.1005188107] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Synthesis of tRNA and 5S rRNA by RNA polymerase (pol) III is regulated by the mTOR pathway in mammalian cells. The mTOR kinase localizes to tRNA and 5S rRNA genes, providing an opportunity for direct control. Its presence at these sites can be explained by interaction with TFIIIC, a DNA-binding factor that recognizes the promoters of these genes. TFIIIC contains a TOR signaling motif that facilitates its association with mTOR. Maf1, a repressor that binds and inhibits pol III, is phosphorylated in a mTOR-dependent manner both in vitro and in vivo at serine 75, a site that contributes to its function as a transcriptional inhibitor. Proximity ligation assays confirm the interaction of mTOR with Maf1 and TFIIIC in nuclei. In contrast to Maf1 regulation in yeast, no evidence is found for nuclear export of Maf1 in response to mTOR signaling in HeLa cells. We conclude that mTOR associates with TFIIIC, is recruited to pol III-transcribed genes, and relieves their repression by Maf1.
Collapse
|
93
|
Abstract
mTORC1 is a central regulator of growth in response to nutrient availability, but few direct targets have been identified. RNA polymerase (pol) III produces a number of essential RNA molecules involved in protein synthesis, RNA maturation, and other processes. Its activity is highly regulated, and deregulation can lead to cell transformation. The human phosphoprotein MAF1 becomes dephosphorylated and represses pol III transcription after various stresses, but neither the significance of the phosphorylations nor the kinase involved is known. We find that human MAF1 is absolutely required for pol III repression in response to serum starvation or TORC1 inhibition by rapamycin or Torin1. The protein is phosphorylated mainly on residues S60, S68, and S75, and this inhibits its pol III repression function. The responsible kinase is mTORC1, which phosphorylates MAF1 directly. Our results describe molecular mechanisms by which mTORC1 controls human MAF1, a key repressor of RNA polymerase III transcription, and add a new branch to the signal transduction cascade immediately downstream of TORC1.
Collapse
|
94
|
Moqtaderi Z, Wang J, Raha D, White RJ, Snyder M, Weng Z, Struhl K. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat Struct Mol Biol 2010; 17:635-40. [PMID: 20418883 PMCID: PMC3350333 DOI: 10.1038/nsmb.1794] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/25/2010] [Indexed: 12/24/2022]
Abstract
Genome-wide occupancy profiles of five components of the RNA Polymerase III (Pol III) machinery in human cells identified the expected tRNA and non-coding RNA targets and revealed many additional Pol III-associated loci, mostly near SINEs. Several genes are targets of an alternative TFIIIB containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike non-expressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.
Collapse
Affiliation(s)
- Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
96
|
Shor B, Wu J, Shakey Q, Toral-Barza L, Shi C, Follettie M, Yu K. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J Biol Chem 2010; 285:15380-15392. [PMID: 20233713 DOI: 10.1074/jbc.m109.071639] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) regulates growth via promoting translation and transcription. Here, employing an mTOR active-site inhibitor WYE-125132 (WYE-132), we have performed quantitative phospho-proteomics and identified a Ser-75-containing phosphopeptide from Maf1, a known repressor of RNA polymerase III (Pol III) transcription. Treatment of cancer cells with WYE-132 or the rapamycin analog CCI-779 led to a rapid loss of the phosphorylation at Ser-75, whereas this effect was not seen in cells treated with cytotoxic agents or unrelated inhibitors. WYE-132-induced Maf1 dephosphorylation correlated with its accumulation in the nucleus and a marked decline in the cellular levels of pre-tRNAs. Depletion of cellular Maf1 via small interfering RNA increased basal pre-tRNA and rendered tRNA synthesis refractory to mTOR inhibitors. Maf1 mutant proteins carrying S75A alone or with S60A, T64A, and S68A (Maf1-S75A, Maf1-4A) progressively enhanced basal repression of tRNA in actively proliferating cells and attenuated amino acid-induced tRNA transcription. Gene alignment revealed conservation of all four Ser/Thr sites in high eukaryotes, further supporting a critical role of these residues in Maf1 function. Interestingly, mTOR inhibition led to an increase in the occupancy of Maf1 on a set of Pol III-dependent genes, with concomitant reduction in the binding of Pol III and Brf1. Unexpectedly, mTORC1 itself was also enriched at the same set of Pol III templates, but this association was not influenced by mTOR inhibitor treatment. Our results highlight a new and unique mode of regulation of Pol III transcription by mTOR and suggest that normalization of Pol III activity may contribute to the therapeutic efficacy of mTOR inhibitors.
Collapse
Affiliation(s)
- Boris Shor
- Discovery Oncology, Wyeth Research, Pearl River, New York 10965.
| | - Jiang Wu
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | - Quazi Shakey
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | | | - Celine Shi
- Discovery Oncology, Wyeth Research, Pearl River, New York 10965
| | - Max Follettie
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts 02140
| | - Ker Yu
- Discovery Oncology, Wyeth Research, Pearl River, New York 10965.
| |
Collapse
|
97
|
Albrecht D, Guthke R, Brakhage AA, Kniemeyer O. Integrative analysis of the heat shock response in Aspergillus fumigatus. BMC Genomics 2010; 11:32. [PMID: 20074381 PMCID: PMC2820008 DOI: 10.1186/1471-2164-11-32] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/15/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Aspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA) in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30 degrees C to 48 degrees C by 2D-fluorescence difference gel electrophoresis (DIGE). To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs) in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock. RESULTS 91 differentially regulated protein spots, representing 64 different proteins, were identified by mass spectrometry (MS). They showed a continuous up-, down- or an oscillating regulation. Many of the identified proteins were involved in protein folding (chaperones), oxidative stress response, signal transduction, transcription, translation, carbohydrate and nitrogen metabolism. A correlation between alteration of transcript levels and corresponding proteins was detected for half of the differentially regulated proteins. Interestingly, some previously undescribed putative targets for the heat shock regulator Hsf1 were identified. This provides evidence for Hsf1-dependent regulation of mannitol biosynthesis, translation, cytoskeletal dynamics and cell division in A. fumigatus. Furthermore, computational analysis of promoters revealed putative binding sites for an AP-2alpha-like transcription factor upstream of some heat shock induced genes. Until now, this factor has only been found in vertebrates. CONCLUSIONS Our newly established DIGE data analysis workflow yields improved data quality and is widely applicable for other DIGE datasets. Our findings suggest that the heat shock response in A. fumigatus differs from already well-studied yeasts and other filamentous fungi.
Collapse
Affiliation(s)
- Daniela Albrecht
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| |
Collapse
|
98
|
Wei Y, Zheng XS. Maf1 regulation: a model of signal transduction inside the nucleus. Nucleus 2010; 1:162-5. [PMID: 21326948 DOI: 10.4161/nucl.1.2.11179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase III (Pol III) is responsible for the synthesis of 5S ribosomal RNA (rRNA) and transfer RNAs (tRNAs) essential for protein synthesis and cell growth. Pol III is tightly controlled by growth signals such as nutrients and deregulation of Pol III-dependent transcription can lead to oncogenic transformation. In response to extracellular stimuli, the target of rapamycin complex 1 (TORC1) regulates Pol III activity through Maf1, a key conserved Pol III repressor. Recent studies have unraveled intricate mechanisms by which Maf1 activity is controlled at multiple levels, including nuclear transport and phoshorylation at specific chromatin loci. These studies suggest an emerging mode of gene regulation by extracellular signals inside the nucleus.
Collapse
Affiliation(s)
- Yuehua Wei
- Department of Pharmacology and Cancer Institute of New Jersey, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | |
Collapse
|
99
|
Dempsey JM, Mahoney SJ, Blenis J. mTORC1-Mediated Control of Protein Translation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1874-6047(10)28001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
100
|
Wei Y, Zheng XFS. Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis. Cell Cycle 2009; 8:4085-90. [PMID: 19823048 DOI: 10.4161/cc.8.24.10170] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
TORC1 is a central regulator of ribosomal RNA synthesis. Here we report that Sch9 partially mediates TORC1 signaling to regulate Pol I- and Pol III-dependent transcription. Mechanistically, Sch9 is involved in hyperphosphorylation and cytoplasmic localization of Maf1, and for optimal synthesis of rRNAs and tRNAs. Interestingly, sch9Delta does not affect Maf1 basal phosphorylation and nucleolar localization. In addition, TORC1 is still capable of regulating rRNAs and tRNAs in the absence of Sch9. Moreover, the hyperactive Sch9(2D3E) mutant does not confer significant rapamycin resistance in cell growth. Together, these observations indicate that Sch9 is involved in optimal regulation of ribosome biogenesis by TORC1, but is dispensable for the essential aspects of ribosome biogenesis and cell growth, suggesting that TORC1 controls cell growth through Sch9-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Yuehua Wei
- Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | |
Collapse
|