51
|
Shigi N. Recent Advances in Our Understanding of the Biosynthesis of Sulfur Modifications in tRNAs. Front Microbiol 2018; 9:2679. [PMID: 30450093 PMCID: PMC6225789 DOI: 10.3389/fmicb.2018.02679] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Sulfur is an essential element in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, introduced post-transcriptionally, that function to ensure proper codon recognition or stabilization of tRNA structure, thereby enabling accurate and efficient translation. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems that are closely related to cellular sulfur metabolism, and “modification enzymes” that incorporate sulfur atoms into tRNA. Herein, recent biochemical and structural characterization of the biosynthesis of sulfur modifications in tRNA is reviewed, with special emphasis on the reaction mechanisms of modification enzymes. It was recently revealed that TtuA/Ncs6-type 2-thiouridylases from thermophilic bacteria/archaea/eukaryotes are oxygen-sensitive iron-sulfur proteins that utilize a quite different mechanism from other 2-thiouridylase subtypes lacking iron-sulfur clusters such as bacterial MnmA. The various reaction mechanisms of RNA sulfurtransferases are also discussed, including tRNA methylthiotransferase MiaB (a radical S-adenosylmethionine-type iron-sulfur enzyme) and other sulfurtransferases involved in both primary and secondary sulfur-containing metabolites.
Collapse
Affiliation(s)
- Naoki Shigi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
52
|
Bruch A, Klassen R, Schaffrath R. Unfolded Protein Response Suppression in Yeast by Loss of tRNA Modifications. Genes (Basel) 2018; 9:genes9110516. [PMID: 30360492 PMCID: PMC6275073 DOI: 10.3390/genes9110516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/28/2022] Open
Abstract
Modifications in the anticodon loop of transfer RNAs (tRNAs) have been shown to ensure optimal codon translation rates and prevent protein homeostasis defects that arise in response to translational pausing. Consequently, several yeast mutants lacking important anticodon loop modifications were shown to accumulate protein aggregates. Here we analyze whether this includes the activation of the unfolded protein response (UPR), which is commonly triggered by protein aggregation within the endoplasmic reticulum (ER). We demonstrate that two different aggregation prone tRNA modification mutants (elp6 ncs2; elp3 deg1) lacking combinations of 5-methoxycarbonylmethyl-2-thiouridine (mcm⁵s²U: elp3; elp6; ncs2) and pseudouridine (Ψ: deg1) reduce, rather than increase, splicing of HAC1 mRNA, an event normally occurring as a precondition of UPR induction. In addition, tunicamycin (TM) induced HAC1 splicing is strongly impaired in the elp3 deg1 mutant. Strikingly, this mutant displays UPR independent resistance against TM, a phenotype we found to be rescued by overexpression of tRNAGln(UUG), the tRNA species usually carrying the mcm⁵s²U34 and Ψ38 modifications. Our data indicate that proper tRNA anticodon loop modifications promote rather than impair UPR activation and reveal that protein synthesis and homeostasis defects in their absence do not routinely result in UPR induction but may relieve endogenous ER stress.
Collapse
Affiliation(s)
- Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| |
Collapse
|
53
|
Elongator mutation in mice induces neurodegeneration and ataxia-like behavior. Nat Commun 2018; 9:3195. [PMID: 30097576 PMCID: PMC6086839 DOI: 10.1038/s41467-018-05765-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/05/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebellar ataxias are severe neurodegenerative disorders with an early onset and progressive and inexorable course of the disease. Here, we report a single point mutation in the gene encoding Elongator complex subunit 6 causing Purkinje neuron degeneration and an ataxia-like phenotype in the mutant wobbly mouse. This mutation destabilizes the complex and compromises its function in translation regulation, leading to protein misfolding, proteotoxic stress, and eventual neuronal death. In addition, we show that substantial microgliosis is triggered by the NLRP3 inflammasome pathway in the cerebellum and that blocking NLRP3 function in vivo significantly delays neuronal degeneration and the onset of ataxia in mutant animals. Our data provide a mechanistic insight into the pathophysiology of a cerebellar ataxia caused by an Elongator mutation, substantiating the increasing body of evidence that alterations of this complex are broadly implicated in the onset of a number of diverse neurological disorders. Elp6 is a component of the Elongator complex that regulates tRNAs and translation. Here the authors identify a mutation in the Elp6 gene that contributes to the cerebellar ataxia-like phenotype in a mutant mouse.
Collapse
|
54
|
Salani M, Urbina F, Brenner A, Morini E, Shetty R, Gallagher CS, Law EA, Sunshine S, Finneran DJ, Johnson G, Minor L, Slaugenhaupt SA. Development of a Screening Platform to Identify Small Molecules That Modify ELP1 Pre-mRNA Splicing in Familial Dysautonomia. SLAS DISCOVERY 2018; 24:57-67. [PMID: 30085848 DOI: 10.1177/2472555218792264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Familial dysautonomia (FD) is an autonomic and sensory neuropathy caused by a mutation in the splice donor site of intron 20 of the ELP1 gene. Variable skipping of exon 20 leads to a tissue-specific reduction in the level of ELP1 protein. We have shown that the plant cytokinin kinetin is able to increase cellular ELP1 protein levels in vivo and in vitro through correction of ELP1 splicing. Studies in FD patients determined that kinetin is not a practical therapy due to low potency and rapid elimination. To identify molecules with improved potency and efficacy, we developed a cell-based luciferase splicing assay by inserting renilla (Rluc) and firefly (Fluc) luciferase reporters into our previously well-characterized ELP1 minigene construct. Evaluation of the Fluc/Rluc signal ratio enables a fast and accurate way to measure exon 20 inclusion. Further, we developed a secondary assay that measures ELP1 splicing in FD patient-derived fibroblasts. Here we demonstrate the quality and reproducibility of our screening method. Development and implementation of this screening platform has allowed us to efficiently screen for new compounds that robustly and specifically enhance ELP1 pre-mRNA splicing.
Collapse
Affiliation(s)
- Monica Salani
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Fabio Urbina
- 2 Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony Brenner
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Elisabetta Morini
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.,3 Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Ranjit Shetty
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - C Scott Gallagher
- 3 Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Emily A Law
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sara Sunshine
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Dylan J Finneran
- 4 Byrd Alzheimer's Institute College of Medicine Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | | | - Lisa Minor
- 6 In Vitro Strategies LLC, Flemington, NJ, USA
| | - Susan A Slaugenhaupt
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.,3 Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
55
|
Pereira JA, Yu F, Zhang Y, Jones JB, Mou Z. The Arabidopsis Elongator Subunit ELP3 and ELP4 Confer Resistance to Bacterial Speck in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1066. [PMID: 30087688 PMCID: PMC6066517 DOI: 10.3389/fpls.2018.01066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Although production of tomato (Solanum lycopersicum) is threatened by a number of major diseases worldwide, it has been difficult to identify effective and durable management measures against these diseases. In this study, we attempted to improve tomato disease resistance by transgenic overexpression of genes encoding the Arabidopsis thaliana Elongator (AtELP) complex subunits AtELP3 and AtELP4. We show that overexpression of AtELP3 and AtELP4 significantly enhanced resistance to tomato bacterial speck caused by the Pseudomonas syringae pv. tomato strain J4 (Pst J4) without clear detrimental effects on plant growth and development. Interestingly, the transgenic plants exhibited resistance to Pst J4 only when inoculated through foliar sprays but not through infiltration into the leaf apoplast. Although this result suggested possible involvement of stomatal immunity, we found that Pst J4 inoculation did not induce stomatal closure and there were no differences in stomatal apertures and conductance between the transgenic and control plants. Further RNA sequencing and real-time quantitative PCR analyses revealed a group of defense-related genes to be induced to higher levels after infection in the AtELP4 transgenic tomato plants than in the control, suggesting that the enhanced disease resistance of the transgenic plants may be attributed to elevated induction of defense responses. Additionally, we show that the tomato genome contains single-copy genes encoding all six Elongator subunits (SlELPs), which share high identities with the AtELP proteins, and that SlELP3 and SlELP4 complemented the Arabidopsis Atelp3 and Atelp4 mutants, respectively, indicating that the function of tomato Elongator is probably conserved. Taken together, our results not only shed new light on the tomato Elongator complex, but also revealed potential candidate genes for engineering disease resistance in tomato.
Collapse
Affiliation(s)
- Juliana A. Pereira
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
56
|
Protein Phosphatase Sit4 Affects Lipid Droplet Synthesis and Soraphen A Resistance Independent of Its Role in Regulating Elongator Dependent tRNA Modification. Biomolecules 2018; 8:biom8030049. [PMID: 29997346 PMCID: PMC6165401 DOI: 10.3390/biom8030049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The protein phosphatase Sit4 has been shown to be required for lipogenesis and resistance against the acetyl-CoA carboxylase inhibitor soraphen A. Since Sit4 is also required for biosynthesis of Elongator dependent tRNA modifications such as 5-methoxycarbonylmethyluridine (mcm5U), we investigated the relevance of tRNA modifications in lipogenesis and soraphen A response. While sit4 and Elongator (elp3) mutants copy defects in mcm5U formation and stress sensitivity, they do not share soraphen A sensitivity and low lipid droplet (LD) phenotypes. In contrast to sit4, we found elp3 mutants to display partial soraphen A resistance and a high LD phenotype. Screening a collection of tRNA modification mutants additionally identified the tRNA pseudo-uridine synthase gene DEG1 to be required for soraphen A sensitivity. Since deg1 and elp3 share high LD and soraphen A resistance phenotypes, these are likely caused by translational defects. In support of this notion, we observe overexpression of tRNAGlnUUG suppresses lipolysis defects of deg1 mutants. Hence, the sit4 mutation results in a composite defect including tRNA modification deficiency and loss of Snf1 kinase dephosphorylation, which induce opposite effects on LD regulation. Importantly, however, the Snf1 kinase regulatory defects of the phosphatase mutant dominate over effects on LD regulation imposed by loss of the tRNA modification alone.
Collapse
|
57
|
McMahon M, Ruggero D. A wobbly road to drug resistance in melanoma: tRNA-modifying enzymes in translation reprogramming. EMBO J 2018; 37:embj.201899978. [PMID: 29967029 DOI: 10.15252/embj.201899978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| |
Collapse
|
58
|
New insights into donor directionality of mating-type switching in Schizosaccharomyces pombe. PLoS Genet 2018; 14:e1007424. [PMID: 29852001 PMCID: PMC6007933 DOI: 10.1371/journal.pgen.1007424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/19/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
Mating-type switching in Schizosaccharomyces pombe entails programmed gene conversion events regulated by DNA replication, heterochromatin, and the HP1-like chromodomain protein Swi6. The whole mechanism remains to be fully understood. Using a gene deletion library, we screened ~ 3400 mutants for defects in the donor selection step where a heterochromatic locus, mat2-P or mat3-M, is chosen to convert the expressed mat1 locus. By measuring the biases in mat1 content that result from faulty directionality, we identified in total 20 factors required for donor selection. Unexpectedly, these included the histone H3 lysine 4 (H3K4) methyltransferase complex subunits Set1, Swd1, Swd2, Swd3, Spf1 and Ash2, the BRE1-like ubiquitin ligase Brl2 and the Elongator complex subunit Elp6. The mutant defects were investigated in strains with reversed donor loci (mat2-M mat3-P) or when the SRE2 and SRE3 recombination enhancers, adjacent to the donors, were deleted or transposed. Mutants in Set1C, Brl2 or Elp6 altered balanced donor usage away from mat2 and the SRE2 enhancer, towards mat3 and the SRE3 enhancer. The defects in these mutants were qualitatively similar to heterochromatin mutants lacking Swi6, the NAD+-dependent histone deacetylase Sir2, or the Clr4, Raf1 or Rik1 subunits of the histone H3 lysine 9 (H3K9) methyltransferase complex, albeit not as extreme. Other mutants showed clonal biases in switching. This was the case for mutants in the NAD+-independent deacetylase complex subunits Clr1, Clr2 and Clr3, the casein kinase CK2 subunit Ckb1, the ubiquitin ligase component Pof3, and the CENP-B homologue Cbp1, as well as for double mutants lacking Swi6 and Brl2, Pof3, or Cbp1. Thus, we propose that Set1C cooperates with Swi6 and heterochromatin to direct donor choice to mat2-P in M cells, perhaps by inhibiting the SRE3 recombination enhancer, and that in the absence of Swi6 other factors are still capable of imposing biases to donor choice. Effects of chromatin structure on recombination can be studied in the fission yeast S. pombe where two heterochromatic loci, mat2 and mat3, are chosen in a cell-type specific manner to convert the expressed mat1 locus and switch the yeast mating-type. The system has previously revealed the determining role of heterochromatin, histone H3K9 methylation and HP1 family protein Swi6, in donor selection. Here, we find that other chromatin modifiers and protein complexes, including components of the histone H3K4 methyltransferase complex Set1C, the histone H2B ubiquitin ligase HULC and Elongator, also participate in donor selection. Our findings open up new research paths to study mating-type switching in fission yeast and the roles of these complexes in recombination.
Collapse
|
59
|
Dalwadi U, Yip CK. Structural insights into the function of Elongator. Cell Mol Life Sci 2018; 75:1613-1622. [PMID: 29332244 PMCID: PMC11105301 DOI: 10.1007/s00018-018-2747-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/09/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Conserved from yeast to humans, Elongator is a protein complex implicated in multiple processes including transcription regulation, α-tubulin acetylation, and tRNA modification, and its defects have been shown to cause human diseases such as familial dysautonomia. Elongator consists of two copies of six core subunits (Elp1, Elp2, Elp3, Elp4, Elp5, and Elp6) that are organized into two subcomplexes: Elp1/2/3 and Elp4/5/6 and form a stable assembly of ~ 850 kDa in size. Although the catalytic subunit of Elongator is Elp3, which contains a radical S-adenosyl-L-methionine (SAM) domain and a putative histone acetyltransferase domain, the Elp4/5/6 subcomplex also possesses ATP-modulated tRNA binding activity. How at the molecular level, Elongator performs its multiple functions and how the different subunits regulate Elongator's activities remains poorly understood. Here, we provide an overview of the proposed functions of Elongator and describe how recent structural studies provide new insights into the mechanism of action of this multifunctional complex.
Collapse
Affiliation(s)
- Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
60
|
Lentini JM, Ramos J, Fu D. Monitoring the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification in eukaryotic tRNAs via the γ-toxin endonuclease. RNA (NEW YORK, N.Y.) 2018; 24:749-758. [PMID: 29440318 PMCID: PMC5900570 DOI: 10.1261/rna.065581.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The post-transcriptional modification of tRNA at the wobble position is a universal process occurring in all domains of life. In eukaryotes, the wobble uridine of particular tRNAs is transformed to the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification which is critical for proper mRNA decoding and protein translation. However, current methods to detect mcm5s2U are technically challenging and/or require specialized instrumental expertise. Here, we show that γ-toxin endonuclease from the yeast Kluyveromyces lactis can be used as a probe for assaying mcm5s2U status in the tRNA of diverse eukaryotic organisms ranging from protozoans to mammalian cells. The assay couples the mcm5s2U-dependent cleavage of tRNA by γ-toxin with standard molecular biology techniques such as northern blot analysis or quantitative PCR to monitor mcm5s2U levels in multiple tRNA isoacceptors. The results gained from the γ-toxin assay reveals the evolutionary conservation of the mcm5s2U modification across eukaryotic species. Moreover, we have used the γ-toxin assay to verify uncharacterized eukaryotic Trm9 and Trm112 homologs that catalyze the formation of mcm5s2U. These findings demonstrate the use of γ-toxin as a detection method to monitor mcm5s2U status in diverse eukaryotic cell types for cellular, genetic, and biochemical studies.
Collapse
Affiliation(s)
- Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
61
|
Koh CS, Sarin LP. Transfer RNA modification and infection – Implications for pathogenicity and host responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:419-432. [DOI: 10.1016/j.bbagrm.2018.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
|
62
|
Yu D, Tan Y, Chakraborty M, Tomchik S, Davis RL. Elongator complex is required for long-term olfactory memory formation in Drosophila. Learn Mem 2018; 25:183-196. [PMID: 29545390 PMCID: PMC5855525 DOI: 10.1101/lm.046557.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Abstract
The evolutionarily conserved Elongator Complex associates with RNA polymerase II for transcriptional elongation. Elp3 is the catalytic subunit, contains histone acetyltransferase activity, and is associated with neurodegeneration in humans. Elp1 is a scaffolding subunit and when mutated causes familial dysautonomia. Here, we show that elp3 and elp1 are required for aversive long-term olfactory memory in Drosophila RNAi knockdown of elp3 in adult mushroom bodies impairs long-term memory (LTM) without affecting earlier forms of memory. RNAi knockdown with coexpression of elp3 cDNA reverses the impairment. Similarly, RNAi knockdown of elp1 impairs LTM and coexpression of elp1 cDNA reverses this phenotype. The LTM deficit in elp3 and elp1 knockdown flies is accompanied by the abolishment of a LTM trace, which is registered as increased calcium influx in response to the CS+ odor in the α-branch of mushroom body neurons. Coexpression of elp1 or elp3 cDNA rescues the memory trace in parallel with LTM. These data show that the Elongator complex is required in adult mushroom body neurons for long-term behavioral memory and the associated long-term memory trace.
Collapse
Affiliation(s)
- Dinghui Yu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Ying Tan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Molee Chakraborty
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, Florida 33458, USA
| | - Seth Tomchik
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, Florida 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, Florida 33458, USA
| |
Collapse
|
63
|
Han L, Guy MP, Kon Y, Phizicky EM. Lack of 2'-O-methylation in the tRNA anticodon loop of two phylogenetically distant yeast species activates the general amino acid control pathway. PLoS Genet 2018; 14:e1007288. [PMID: 29596413 PMCID: PMC5892943 DOI: 10.1371/journal.pgen.1007288] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/10/2018] [Accepted: 03/05/2018] [Indexed: 01/03/2023] Open
Abstract
Modification defects in the tRNA anticodon loop often impair yeast growth and cause human disease. In the budding yeast Saccharomyces cerevisiae and the phylogenetically distant fission yeast Schizosaccharomyces pombe, trm7Δ mutants grow poorly due to lack of 2'-O-methylation of C32 and G34 in the tRNAPhe anticodon loop, and lesions in the human TRM7 homolog FTSJ1 cause non-syndromic X-linked intellectual disability (NSXLID). However, it is unclear why trm7Δ mutants grow poorly. We show here that despite the fact that S. cerevisiae trm7Δ mutants had no detectable tRNAPhe charging defect in rich media, the cells constitutively activated a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. Consistent with reduced available charged tRNAPhe, the trm7Δ growth defect was suppressed by spontaneous mutations in phenylalanyl-tRNA synthetase (PheRS) or in the pol III negative regulator MAF1, and by overexpression of tRNAPhe, PheRS, or EF-1A; all of these also reduced GAAC activation. Genetic analysis also demonstrated that the trm7Δ growth defect was due to the constitutive robust GAAC activation as well as to the reduced available charged tRNAPhe. Robust GAAC activation was not observed with several other anticodon loop modification mutants. Analysis of S. pombe trm7 mutants led to similar observations. S. pombe Trm7 depletion also resulted in no observable tRNAPhe charging defect and a robust GAAC response, and suppressors mapped to PheRS and reduced GAAC activation. We speculate that GAAC activation is widely conserved in trm7 mutants in eukaryotes, including metazoans, and might play a role in FTSJ1-mediated NSXLID. The ubiquitous tRNA anticodon loop modifications have important but poorly understood functions in decoding mRNAs in the ribosome to ensure accurate and efficient protein synthesis, and their lack often impairs yeast growth and causes human disease. Here we investigate why ribose methylation of residues 32 and 34 in the anticodon loop is important. Mutations in the corresponding methyltransferase Trm7/FTSJ1 cause poor growth in the budding yeast Saccharomyces cerevisiae and near lethality in the evolutionarily distant fission yeast Schizosaccharomyces pombe, each due to reduced functional tRNAPhe. We previously showed that tRNAPhe anticodon loop modification in yeast and humans required two evolutionarily conserved Trm7 interacting proteins for Cm32 and Gm34 modification, which then stimulated G37 modification. We show here that both S. cerevisiae and S. pombe trm7Δ mutants have apparently normal tRNAPhe charging, but constitutively activate a robust general amino acid control (GAAC) response, acting through Gcn2, which senses uncharged tRNA. We also show that S. cerevisiae trm7Δ mutants grow poorly due in part to constitutive GAAC activation as well as to the uncharged tRNAPhe. We propose that TRM7 is important to prevent constitutive GAAC activation throughout eukaryotes, including metazoans, which may explain non-syndromic X-linked intellectual disability associated with human FTSJ1 mutations.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Michael P. Guy
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, KY, United States of America
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
64
|
Schaefer M, Kapoor U, Jantsch MF. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'. Open Biol 2018; 7:rsob.170077. [PMID: 28566301 PMCID: PMC5451548 DOI: 10.1098/rsob.170077] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
The discovery of mechanisms that alter genetic information via RNA editing or introducing covalent RNA modifications points towards a complexity in gene expression that challenges long-standing concepts. Understanding the biology of RNA modifications represents one of the next frontiers in molecular biology. To this date, over 130 different RNA modifications have been identified, and improved mass spectrometry approaches are still adding to this list. However, only recently has it been possible to map selected RNA modifications at single-nucleotide resolution, which has created a number of exciting hypotheses about the biological function of RNA modifications, culminating in the proposition of the ‘epitranscriptome’. Here, we review some of the technological advances in this rapidly developing field, identify the conceptual challenges and discuss approaches that are needed to rigorously test the biological function of specific RNA modifications.
Collapse
Affiliation(s)
- Matthias Schaefer
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Utkarsh Kapoor
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| |
Collapse
|
65
|
Jung Y, Goldman D. Role of RNA modifications in brain and behavior. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12444. [PMID: 29244246 PMCID: PMC6233296 DOI: 10.1111/gbb.12444] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
Much progress in our understanding of RNA metabolism has been made since the first RNA nucleoside modification was identified in 1957. Many of these modifications are found in noncoding RNAs but recent interest has focused on coding RNAs. Here, we summarize current knowledge of cellular consequences of RNA modifications, with a special emphasis on neuropsychiatric disorders. We present evidence for the existence of an "RNA code," similar to the histone code, that fine-tunes gene expression in the nervous system by using combinations of different RNA modifications. Unlike the relatively stable genetic code, this combinatorial RNA epigenetic code, or epitranscriptome, may be dynamically reprogrammed as a cause or consequence of psychiatric disorders. We discuss potential mechanisms linking disregulation of the epitranscriptome with brain disorders and identify potential new avenues of research.
Collapse
Affiliation(s)
- Y. Jung
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - D. Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
66
|
Goffena J, Lefcort F, Zhang Y, Lehrmann E, Chaverra M, Felig J, Walters J, Buksch R, Becker KG, George L. Elongator and codon bias regulate protein levels in mammalian peripheral neurons. Nat Commun 2018; 9:889. [PMID: 29497044 PMCID: PMC5832791 DOI: 10.1038/s41467-018-03221-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/29/2018] [Indexed: 12/16/2022] Open
Abstract
Familial dysautonomia (FD) results from mutation in IKBKAP/ELP1, a gene encoding the scaffolding protein for the Elongator complex. This highly conserved complex is required for the translation of codon-biased genes in lower organisms. Here we investigate whether Elongator serves a similar function in mammalian peripheral neurons, the population devastated in FD. Using codon-biased eGFP sensors, and multiplexing of codon usage with transcriptome and proteome analyses of over 6,000 genes, we identify two categories of genes, as well as specific gene identities that depend on Elongator for normal expression. Moreover, we show that multiple genes in the DNA damage repair pathway are codon-biased, and that with Elongator loss, their misregulation is correlated with elevated levels of DNA damage. These findings link Elongator's function in the translation of codon-biased genes with both the developmental and neurodegenerative phenotypes of FD, and also clarify the increased risk of cancer associated with the disease.
Collapse
Affiliation(s)
- Joy Goffena
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marta Chaverra
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Jehremy Felig
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Joseph Walters
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Richard Buksch
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA.
| |
Collapse
|
67
|
Wang C, Zhang X, Li J, Zhang Y, Mou Z. The Elongator complex-associated protein DRL1 plays a positive role in immune responses against necrotrophic fungal pathogens in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2018; 19:286-299. [PMID: 27868335 PMCID: PMC6637984 DOI: 10.1111/mpp.12516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 05/24/2023]
Abstract
DEFORMED ROOT AND LEAVES1 (DRL1) is an Arabidopsis homologue of the yeast TOXIN TARGET4 (TOT4)/KILLER TOXIN-INSENSITIVE12 (KTI12) protein that is physically associated with the RNA polymerase II-interacting protein complex named Elongator. Mutations in DRL1 and Elongator lead to similar morphological and molecular phenotypes, suggesting that DRL1 and Elongator may functionally overlap in Arabidopsis. We have shown previously that Elongator plays an important role in both salicylic acid (SA)- and jasmonic acid (JA)/ethylene (ET)-mediated defence responses. Here, we tested whether DRL1 also plays a similar role as Elongator in plant immune responses. Our results show that, although DRL1 partially contributes to SA-induced cytotoxicity, it does not play a significant role in SA-mediated expression of PATHOGENESIS-RELATED genes and resistance to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. In contrast, DRL1 is required for JA/ET- and necrotrophic fungal pathogen Botrytis cinerea-induced defence gene expression and for resistance to B. cinerea and Alternaria brassicicola. Furthermore, unlike the TOT4/KTI12 gene which, when overexpressed in yeast, confers zymocin resistance, a phenotype of the tot4/kti12 mutant, overexpression of DRL1 does not change B. cinerea-induced defence gene expression and resistance to this pathogen. Finally, DRL1 contains an N-terminal P-loop and a C-terminal calmodulin (CaM)-binding domain and is a CaM-binding protein. We demonstrate that both the P-loop and the CaM-binding domain are essential for the function of DRL1 in B. cinerea-induced expression of PDF1.2 and ORA59, and in resistance to B. cinerea, suggesting that the function of DRL1 in plant immunity may be regulated by ATP/GTP and CaM binding.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Microbiology and Cell ScienceUniversity of Florida, PO Box 110700GainesvilleFL32611USA
| | - Xudong Zhang
- Department of Microbiology and Cell ScienceUniversity of Florida, PO Box 110700GainesvilleFL32611USA
| | - Jian‐Liang Li
- Sanford Burnham Prebys Medical Discovery Institute at Lake NonaOrlandoFL32827USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, PO Box 103622GainesvilleFL32610USA
| | - Zhonglin Mou
- Department of Microbiology and Cell ScienceUniversity of Florida, PO Box 110700GainesvilleFL32611USA
| |
Collapse
|
68
|
Wang Y, Pang C, Li X, Hu Z, Lv Z, Zheng B, Chen P. Identification of tRNA nucleoside modification genes critical for stress response and development in rice and Arabidopsis. BMC PLANT BIOLOGY 2017; 17:261. [PMID: 29268705 PMCID: PMC5740945 DOI: 10.1186/s12870-017-1206-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/06/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Modification of nucleosides on transfer RNA (tRNA) is important either for correct mRNA decoding process or for tRNA structural stabilization. Nucleoside methylations catalyzed by MTase (methyltransferase) are the most common type among all tRNA nucleoside modifications. Although tRNA modified nucleosides and modification enzymes have been extensively studied in prokaryotic systems, similar research remains preliminary in higher plants, especially in crop species, such as rice (Oryza sativa). Rice is a monocot model plant as well as an important cereal crop, and stress tolerance and yield are of great importance for rice breeding. RESULTS In this study, we investigated how the composition and abundance of tRNA modified nucleosides could change in response to drought, salt and cold stress, as well as in different tissues during the whole growth season in two model plants-O. sativa and Arabidopsis thaliana. Twenty two and 20 MTase candidate genes were identified in rice and Arabidopsis, respectively, by protein sequence homology and conserved domain analysis. Four methylated nucleosides, Am, Cm, m1A and m7G, were found to be very important in stress response both in rice and Arabidopsis. Additionally, three nucleosides,Gm, m5U and m5C, were involved in plant development. Hierarchical clustering analysis revealed consistency on Am, Cm, m1A and m7G MTase candidate genes, and the abundance of the corresponding nucleoside under stress conditions. The same is true for Gm, m5U and m5C modifications and corresponding methylation genes in different tissues during different developmental stages. CONCLUSIONS We identified candidate genes for various tRNA modified nucleosides in rice and Arabidopsis, especially on MTases for methylated nucleosides. Based on bioinformatics analysis, nucleoside abundance assessments and gene expression profiling, we propose four methylated nucleosides (Am, Cm, m1A and m7G) that are critical for stress response in rice and Arabidopsis, and three methylated nucleosides (Gm, m5U and m5C) that might be important during development.
Collapse
Affiliation(s)
- Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaoqun Pang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xukai Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi Province 030801 China
| | - Zhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhengyi Lv
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070 China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Peng Chen
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070 China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
69
|
Sokołowski M, Klassen R, Bruch A, Schaffrath R, Glatt S. Cooperativity between different tRNA modifications and their modification pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:409-418. [PMID: 29222069 DOI: 10.1016/j.bbagrm.2017.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
Abstract
Ribonucleotide modifications perform a wide variety of roles in synthesis, turnover and functionality of tRNA molecules. The presence of particular chemical moieties can refine the internal interaction network within a tRNA molecule, influence its thermodynamic stability, contribute novel chemical properties and affect its decoding behavior during mRNA translation. As the lack of specific modifications in the anticodon stem and loop causes disrupted proteome homeostasis, diminished response to stress conditions, and the onset of human diseases, the underlying modification cascades have recently gained particular scientific and clinical interest. Nowadays, a complicated but conclusive image of the interconnectivity between different enzymatic modification cascades and their resulting tRNA modifications emerges. Here we summarize the current knowledge in the field, focusing on the known instances of cross talk among the enzymatic tRNA modification pathways and the consequences on the dynamic regulation of the tRNA modificome by various factors. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Mikołaj Sokołowski
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
70
|
Chou HJ, Donnard E, Gustafsson HT, Garber M, Rando OJ. Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation. Mol Cell 2017; 68:978-992.e4. [PMID: 29198561 DOI: 10.1016/j.molcel.2017.11.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/19/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
Abstract
Covalent nucleotide modifications in noncoding RNAs affect a plethora of biological processes, and new functions continue to be discovered even for well-known modifying enzymes. To systematically compare the functions of a large set of noncoding RNA modifications in gene regulation, we carried out ribosome profiling in budding yeast to characterize 57 nonessential genes involved in tRNA modification. Deletion mutants exhibited a range of translational phenotypes, with enzymes known to modify anticodons, or non-tRNA substrates such as rRNA, exhibiting the most dramatic translational perturbations. Our data build on prior reports documenting translational upregulation of the nutrient-responsive transcription factor Gcn4 in response to numerous tRNA perturbations, and identify many additional translationally regulated mRNAs throughout the yeast genome. Our data also uncover unexpected roles for tRNA-modifying enzymes in regulation of TY retroelements, and in rRNA 2'-O-methylation. This dataset should provide a rich resource for discovery of additional links between tRNA modifications and gene regulation.
Collapse
Affiliation(s)
- Hsin-Jung Chou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - H Tobias Gustafsson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
71
|
Johansson MJO, Xu F, Byström AS. Elongator-a tRNA modifying complex that promotes efficient translational decoding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:401-408. [PMID: 29170010 DOI: 10.1016/j.bbagrm.2017.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
Abstract
Naturally occurring modifications of the nucleosides in the anticodon region of tRNAs influence their translational decoding properties. Uridines present at the wobble position in eukaryotic cytoplasmic tRNAs often contain a 5-carbamoylmethyl (ncm(5)) or 5-methoxycarbonylmethyl (mcm(5)) side-chain and sometimes also a 2-thio or 2'-O-methyl group. The first step in the formation of the ncm(5) and mcm(5) side-chains requires the conserved six-subunit Elongator complex. Although Elongator has been implicated in several different cellular processes, accumulating evidence suggests that its primary, and possibly only, cellular function is to promote modification of tRNAs. In this review, we discuss the biosynthesis and function of modified wobble uridines in eukaryotic cytoplasmic tRNAs, focusing on the in vivo role of Elongator-dependent modifications in Saccharomyces cerevisiae. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
| | - Fu Xu
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
72
|
Schaffrath R, Klassen R. Combined tRNA modification defects impair protein homeostasis and synthesis of the yeast prion protein Rnq1. Prion 2017; 11:48-53. [PMID: 28281930 DOI: 10.1080/19336896.2017.1284734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Modified nucleosides in tRNA anticodon loops such as 5-methoxy-carbonyl-methyl-2-thiouridine (mcm5s2U) and pseuduridine (Ψ) are thought to be required for an efficient decoding process. In Saccharomyces cerevisiae, the simultaneous presence of mcm5s2U and Ψ38 in tRNAGlnUUG was shown to mediate efficient synthesis of the Q/N rich [PIN+] prion forming protein Rnq1. 1 In the absence of these two tRNA modifications, higher than normal levels of hypomodified tRNAGlnUUG, but not its isoacceptor tRNAGlnCUG can restore Rnq1 synthesis. Moroever, tRNA overexpression rescues pleiotropic phenotypes that associate with loss of mcm5s2U and Ψ38 formation. Notably, combined absence of different tRNA modifications are shown to induce the formation of protein aggregates which likely mediate severe cytological abnormalities, including cytokinesis and nuclear segregation defects. In support of this, overexpression of the aggregating polyQ protein Htt103Q, but not its non-aggregating variant Htt25Q phenocopies these cytological abnormalities, most pronouncedly in deg1 single mutants lacking Ψ38 alone. It is concluded that slow decoding of particular codons induces defects in protein homeostasis that interfere with key steps in cytokinesis and nuclear segregation.
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel , Kassel , Germany
| | - Roland Klassen
- a Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel , Kassel , Germany
| |
Collapse
|
73
|
Dauden MI, Jaciuk M, Müller CW, Glatt S. Structural asymmetry in the eukaryotic Elongator complex. FEBS Lett 2017; 592:502-515. [DOI: 10.1002/1873-3468.12865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Maria I. Dauden
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Marcin Jaciuk
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Christoph W. Müller
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| |
Collapse
|
74
|
Animal and cellular models of familial dysautonomia. Clin Auton Res 2017; 27:235-243. [PMID: 28667575 DOI: 10.1007/s10286-017-0438-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Since Riley and Day first described the clinical phenotype of patients with familial dysautonomia (FD) over 60 years ago, the field has made considerable progress clinically, scientifically, and translationally in treating and understanding the etiology of FD. FD is classified as a hereditary sensory and autonomic neuropathy (HSAN type III) and is both a developmental and a progressive neurodegenerative condition that results from an autosomal recessive mutation in the gene IKBKAP, also known as ELP1. FD primarily impacts the peripheral nervous system but also manifests in central nervous system disruption, especially in the retina and optic nerve. While the disease is rare, the rapid progress being made in elucidating the molecular and cellular mechanisms mediating the demise of neurons in FD should provide insight into degenerative pathways common to many neurological disorders. Interestingly, the protein encoded by IKBKAP/ELP1, IKAP or ELP1, is a key scaffolding subunit of the six-subunit Elongator complex, and variants in other Elongator genes are associated with amyotrophic lateral sclerosis (ALS), intellectual disability, and Rolandic epilepsy. Here we review the recent model systems that are revealing the molecular and cellular pathophysiological mechanisms mediating FD. These powerful model systems can now be used to test targeted therapeutics for mitigating neuronal loss in FD and potentially other disorders.
Collapse
|
75
|
Ohlen SB, Russell ML, Brownstein MJ, Lefcort F. BGP-15 prevents the death of neurons in a mouse model of familial dysautonomia. Proc Natl Acad Sci U S A 2017; 114:5035-5040. [PMID: 28439028 PMCID: PMC5441694 DOI: 10.1073/pnas.1620212114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hereditary sensory and autonomic neuropathy type III, or familial dysautonomia [FD; Online Mendelian Inheritance in Man (OMIM) 223900], affects the development and long-term viability of neurons in the peripheral nervous system (PNS) and retina. FD is caused by a point mutation in the gene IKBKAP/ELP1 that results in a tissue-specific reduction of the IKAP/ELP1 protein, a subunit of the Elongator complex. Hallmarks of the disease include vasomotor and cardiovascular instability and diminished pain and temperature sensation caused by reductions in sensory and autonomic neurons. It has been suggested but not demonstrated that mitochondrial function may be abnormal in FD. We previously generated an Ikbkap/Elp1 conditional-knockout mouse model that recapitulates the selective death of sensory (dorsal root ganglia) and autonomic neurons observed in FD. We now show that in these mice neuronal mitochondria have abnormal membrane potentials, produce elevated levels of reactive oxygen species, are fragmented, and do not aggregate normally at axonal branch points. The small hydroxylamine compound BGP-15 improved mitochondrial function, protecting neurons from dying in vitro and in vivo, and promoted cardiac innervation in vivo. Given that impairment of mitochondrial function is a common pathological component of neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's, Parkinson's, and Huntington's diseases, our findings identify a therapeutic approach that may have efficacy in multiple degenerative conditions.
Collapse
Affiliation(s)
- Sarah B Ohlen
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Magdalena L Russell
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | | | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717;
| |
Collapse
|
76
|
Bednářová A, Hanna M, Durham I, VanCleave T, England A, Chaudhuri A, Krishnan N. Lost in Translation: Defects in Transfer RNA Modifications and Neurological Disorders. Front Mol Neurosci 2017; 10:135. [PMID: 28536502 PMCID: PMC5422465 DOI: 10.3389/fnmol.2017.00135] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/20/2017] [Indexed: 11/13/2022] Open
Abstract
Transfer RNAs (tRNAs) are key molecules participating in protein synthesis. To augment their functionality they undergo extensive post-transcriptional modifications and, as such, are subject to regulation at multiple levels including transcription, transcript processing, localization and ribonucleoside base modification. Post-transcriptional enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and influences specific anticodon-codon interactions and regulates translation, its efficiency and fidelity. This phenomenon of nucleoside modification is most remarkable and results in a rich structural diversity of tRNA of which over 100 modified nucleosides have been characterized. Most often these hypermodified nucleosides are found in the wobble position of tRNAs, where they play a direct role in codon recognition as well as in maintaining translational efficiency and fidelity, etc. Several recent studies have pointed to a link between defects in tRNA modifications and human diseases including neurological disorders. Therefore, defects in tRNA modifications in humans need intensive characterization at the enzymatic and mechanistic level in order to pave the way to understand how lack of such modifications are associated with neurological disorders with the ultimate goal of gaining insights into therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Bednářová
- Department of Biochemistry and Physiology, Institute of Entomology, Biology Centre, Academy of SciencesČeské Budějovice, Czechia.,Laboratory of Molecular Biology and Biochemistry, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, MS, USA
| | - Marley Hanna
- Molecular Biosciences Program, Arkansas State UniversityJonesboro, AR, USA
| | - Isabella Durham
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State UniversityMississippi State, MS, USA
| | - Tara VanCleave
- Laboratory of Molecular Biology and Biochemistry, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, MS, USA
| | - Alexis England
- Laboratory of Molecular Biology and Biochemistry, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, MS, USA
| | | | - Natraj Krishnan
- Laboratory of Molecular Biology and Biochemistry, Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, MS, USA
| |
Collapse
|
77
|
Shao W, Lv C, Zhang Y, Wang J, Chen C. Involvement of BcElp4 in vegetative development, various environmental stress response and virulence of Botrytis cinerea. Microb Biotechnol 2017; 10:886-895. [PMID: 28474462 PMCID: PMC5481526 DOI: 10.1111/1751-7915.12720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/23/2022] Open
Abstract
The Saccharomyces cerevisiae Elongator complex consisting of the six Elp1-Elp6 proteins has been proposed to participate in three distinct cellular processes: transcriptional elongation, polarized exocytosis and formation of modified wobble uridines in tRNA. In this study, we investigated the function of BcElp4 in Botrytis cinerea, which is homologous to S. cerevisiae Elp4. A bcelp4 deletion mutant was significantly impaired in vegetative growth, sclerotia formation and melanin biosynthesis. This mutant exhibited decreased sensitivity to osmotic and oxidative stresses as well as cell way-damaging agent. Pathogenicity assays revealed that BcElp4 is involved in the virulence of B. cinerea. In addition, the deletion of bcelp4 led to increased aerial mycelia development. All these defects were restored by genetic complementation of the bcelp4 deletion mutant with the wild-type bcelp4 gene. The results of this study indicated that BcElp4 is involved in regulation of vegetative development, various environmental stress response and virulence in B. cinerea.
Collapse
Affiliation(s)
- Wenyong Shao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chiyuan Lv
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
78
|
Agris PF, Narendran A, Sarachan K, Väre VYP, Eruysal E. The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity. Enzymes 2017; 41:1-50. [PMID: 28601219 DOI: 10.1016/bs.enz.2017.03.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The posttranscriptional modifications of tRNA's anticodon stem and loop (ASL) domain represent a third level, a third code, to the accuracy and efficiency of translating mRNA codons into the correct amino acid sequence of proteins. Modifications of tRNA's ASL domain are enzymatically synthesized and site specifically located at the anticodon wobble position-34 and 3'-adjacent to the anticodon at position-37. Degeneracy of the 64 Universal Genetic Codes and the limitation in the number of tRNA species require some tRNAs to decode more than one codon. The specific modification chemistries and their impact on the tRNA's ASL structure and dynamics enable one tRNA to decode cognate and "wobble codons" or to expand recognition to synonymous codons, all the while maintaining the translational reading frame. Some modified nucleosides' chemistries prestructure tRNA to read the two codons of a specific amino acid that shares a twofold degenerate codon box, and other chemistries allow a different tRNA to respond to all four codons of a fourfold degenerate codon box. Thus, tRNA ASL modifications are critical and mutations in genes for the modification enzymes and tRNA, the consequences of which is a lack of modification, lead to mistranslation and human disease. By optimizing tRNA anticodon chemistries, structure, and dynamics in all organisms, modifications ensure translational fidelity of mRNA transcripts.
Collapse
Affiliation(s)
- Paul F Agris
- The RNA Institute, State University of New York, Albany, NY, United States.
| | - Amithi Narendran
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Kathryn Sarachan
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Ville Y P Väre
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Emily Eruysal
- The RNA Institute, State University of New York, Albany, NY, United States
| |
Collapse
|
79
|
Nilsson K, Jäger G, Björk GR. An unmodified wobble uridine in tRNAs specific for Glutamine, Lysine, and Glutamic acid from Salmonella enterica Serovar Typhimurium results in nonviability-Due to increased missense errors? PLoS One 2017; 12:e0175092. [PMID: 28430781 PMCID: PMC5400242 DOI: 10.1371/journal.pone.0175092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 11/18/2022] Open
Abstract
In the wobble position of tRNAs specific for Gln, Lys, and Glu a universally conserved 5-methylene-2-thiouridine derivative (xm5s2U34, x denotes any of several chemical substituents and 34 denotes the wobble position) is present, which is 5-(carboxy)methylaminomethyl-2-thiouridine ((c)mnm5s2U34) in Bacteria and 5-methylcarboxymethyl-2-thiouridine (mcm5s2U34) in Eukarya. Here we show that mutants of the bacterium Salmonella enterica Serovar Typhimurium LT2 lacking either the s2- or the (c)mnm5-group of (c)mnm5s2U34 grow poorly especially at low temperature and do not grow at all at 15°C in both rich and glucose minimal media. A double mutant of S. enterica lacking both the s2- and the (c)mnm5-groups, and that thus has an unmodified uridine as wobble nucleoside, is nonviable at different temperatures. Overexpression of [Formula: see text] lacking either the s2- or the (c)mnm5-group and of [Formula: see text] lacking the s2-group exaggerated the reduced growth induced by the modification deficiency, whereas overexpression of [Formula: see text] lacking the mnm5-group did not. From these results we suggest that the primary function of cmnm5s2U34 in bacterial [Formula: see text] and mnm5s2U34 in [Formula: see text] is to prevent missense errors, but the mnm5-group of [Formula: see text] does not. However, other translational errors causing the growth defect cannot be excluded. These results are in contrast to what is found in yeast, since overexpression of the corresponding hypomodified yeast tRNAs instead counteracts the modification deficient induced phenotypes. Accordingly, it was suggested that the primary function of mcm5s2U34 in these yeast tRNAs is to improve cognate codon reading rather than prevents missense errors. Thus, although the xm5s2U34 derivatives are universally conserved, their major functional impact on bacterial and eukaryotic tRNAs may be different.
Collapse
Affiliation(s)
| | - Gunilla Jäger
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Glenn R. Björk
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
80
|
Ranjan N, Rodnina MV. Thio-Modification of tRNA at the Wobble Position as Regulator of the Kinetics of Decoding and Translocation on the Ribosome. J Am Chem Soc 2017; 139:5857-5864. [PMID: 28368583 DOI: 10.1021/jacs.7b00727] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Uridine 34 (U34) at the wobble position of the tRNA anticodon is post-transcriptionally modified, usually to mcm5s2, mcm5, or mnm5. The lack of the mcm5 or s2 modification at U34 of tRNALys, tRNAGlu, and tRNAGln causes ribosome pausing at the respective codons in yeast. The pauses occur during the elongation step, but the mechanism that triggers ribosome pausing is not known. Here, we show how the s2 modification in yeast tRNALys affects mRNA decoding and tRNA-mRNA translocation. Using real-time kinetic analysis we show that mcm5-modified tRNALys lacking the s2 group has a lower affinity of binding to the cognate codon and is more efficiently rejected than the fully modified tRNALys. The lack of the s2 modification also slows down the rearrangements in the ribosome-EF-Tu-GDP-Pi-Lys-tRNALys complex following GTP hydrolysis by EF-Tu. Finally, tRNA-mRNA translocation is slower with the s2-deficient tRNALys. These observations explain the observed ribosome pausing at AAA codons during translation and demonstrate how the s2 modification helps to ensure the optimal translation rates that maintain proteome homeostasis of the cell.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
81
|
Abstract
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, FG Mikrobiologie , Universität Kassel , Germany
| | - Sebastian A Leidel
- b Max Planck Institute for Molecular Biomedicine , Germany.,c Cells-in-Motion Cluster of Excellence , University of Münster , Münster , Germany.,d Medical Faculty , University of Münster , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
82
|
Chaverra M, George L, Mergy M, Waller H, Kujawa K, Murnion C, Sharples E, Thorne J, Podgajny N, Grindeland A, Ueki Y, Eiger S, Cusick C, Babcock AM, Carlson GA, Lefcort F. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system. Dis Model Mech 2017; 10:605-618. [PMID: 28167615 PMCID: PMC5451171 DOI: 10.1242/dmm.028258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. Summary:Ikbkap is essential for normal CNS development, neuronal survival and behavior, adding to our understanding of the role of the Elongator complex in the mammalian CNS.
Collapse
Affiliation(s)
- Marta Chaverra
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.,Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Marc Mergy
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Hannah Waller
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Katharine Kujawa
- Department of Psychology, Montana State University, Bozeman, MT 59717, USA
| | - Connor Murnion
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Ezekiel Sharples
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Julian Thorne
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.,University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Nathaniel Podgajny
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | | | - Yumi Ueki
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Steven Eiger
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Cassie Cusick
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - A Michael Babcock
- Department of Psychology, Montana State University, Bozeman, MT 59717, USA
| | | | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
83
|
Klassen R, Schaffrath R. Role of Pseudouridine Formation by Deg1 for Functionality of Two Glutamine Isoacceptor tRNAs. Biomolecules 2017; 7:biom7010008. [PMID: 28134782 PMCID: PMC5372720 DOI: 10.3390/biom7010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
Loss of Deg1/Pus3 and concomitant elimination of pseudouridine in tRNA at positions 38 and 39 (ψ38/39) was shown to specifically impair the function of tRNAGlnUUG under conditions of temperature-induced down-regulation of wobble uridine thiolation in budding yeast and is linked to intellectual disability in humans. To further characterize the differential importance of the frequent ψ38/39 modification for tRNAs in yeast, we analyzed the in vivo function of non-sense suppressor tRNAs SUP4 and sup70-65 in the absence of the modifier. In the tRNATyrGψA variant SUP4, UAA read-through is enabled due to an anticodon mutation (UψA), whereas sup70-65 is a mutant form of tRNAGlnCUG (SUP70) that mediates UAG decoding due to a mutation of the anticodon-loop closing base pair (G31:C39 to A31:C39). While SUP4 function is unaltered in deg1/pus3 mutants, the ability of sup70-65 to mediate non-sense suppression and to complement a genomic deletion of the essential SUP70 gene is severely compromised. These results and the differential suppression of growth defects in deg1 mutants by multi-copy SUP70 or tQ(UUG) are consistent with the interpretation that ψ38 is most important for tRNAGlnUUG function under heat stress but becomes crucial for tRNAGlnCUG as well when the anticodon loop is destabilized by the sup70-65 mutation. Thus, ψ38/39 may protect the anticodon loop configuration from disturbances by loss of other modifications or base changes.
Collapse
Affiliation(s)
- Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| |
Collapse
|
84
|
Kolaj-Robin O, Séraphin B. Structures and Activities of the Elongator Complex and Its Cofactors. RNA MODIFICATION 2017; 41:117-149. [DOI: 10.1016/bs.enz.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
85
|
Naftelberg S, Abramovitch Z, Gluska S, Yannai S, Joshi Y, Donyo M, Ben-Yaakov K, Gradus T, Zonszain J, Farhy C, Ashery-Padan R, Perlson E, Ast G. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia. PLoS Genet 2016; 12:e1006486. [PMID: 27997532 PMCID: PMC5172536 DOI: 10.1371/journal.pgen.1006486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/15/2016] [Indexed: 12/03/2022] Open
Abstract
Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration. We create a novel FD mouse model, in which exon 20 of IKBKAP was deleted in the nervous system, to study the role of IKAP in the neurodegeneration process. The lack of IKBKAP exon 20 impaired retrograde nerve growth factor (NGF) transport and axonal outgrowth. Reduction of IKAP levels resulted in elevated HDAC6 levels and thus reduced acetylated α-tubulin levels. Phosphatidylserine down-regulated HDAC6 levels, furthermore phosphatidylserine treatment facilitated axonal transport and stabilized microtubules. In brief: Naftelberg et al. identify the molecular pathway leading to neurodegeneration using a mouse model of familial dysautonomia and suggest that phosphatidylserine acts as an HDAC6 inhibitor to improve neurologic function.
Collapse
Affiliation(s)
- Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ziv Abramovitch
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shani Gluska
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Yannai
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuvraj Joshi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Donyo
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Ben-Yaakov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Gradus
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Farhy
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (EP); (GA)
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (EP); (GA)
| |
Collapse
|
86
|
Dauden MI, Kosinski J, Kolaj-Robin O, Desfosses A, Ori A, Faux C, Hoffmann NA, Onuma OF, Breunig KD, Beck M, Sachse C, Séraphin B, Glatt S, Müller CW. Architecture of the yeast Elongator complex. EMBO Rep 2016; 18:264-279. [PMID: 27974378 PMCID: PMC5286394 DOI: 10.15252/embr.201643353] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 11/08/2016] [Indexed: 11/09/2022] Open
Abstract
The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub-complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two-lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.
Collapse
Affiliation(s)
- Maria I Dauden
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Olga Kolaj-Robin
- Université de Strasbourg, IGBMC, Illkirch, France.,CNRS, IGBMC UMR 7104, Illkirch, France.,Inserm, IGBMC U964, Illkirch, France
| | - Ambroise Desfosses
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Alessandro Ori
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Celine Faux
- Université de Strasbourg, IGBMC, Illkirch, France.,CNRS, IGBMC UMR 7104, Illkirch, France.,Inserm, IGBMC U964, Illkirch, France
| | - Niklas A Hoffmann
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Osita F Onuma
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Karin D Breunig
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Bertrand Séraphin
- Université de Strasbourg, IGBMC, Illkirch, France.,CNRS, IGBMC UMR 7104, Illkirch, France.,Inserm, IGBMC U964, Illkirch, France
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Christoph W Müller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
87
|
Shigi N, Asai SI, Watanabe K. Identification of a rhodanese-like protein involved in thiouridine biosynthesis in Thermus thermophilus tRNA. FEBS Lett 2016; 590:4628-4637. [PMID: 27878988 DOI: 10.1002/1873-3468.12499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/05/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022]
Abstract
Incorporation of a sulfur atom into 2-thioribothymidine (s2 T or 5-methyl-2-thiouridine) at position 54 in thermophile tRNA is accomplished by an elaborate system composed of many proteins which confers thermostability to the translation system. We identified ttuD (tRNA-two-thiouridine D) as a gene for the synthesis of s2 T54 in Thermus thermophilus. The rhodanese-like protein TtuD enhances the activity of cysteine desulfurases and receives the persulfide generated by cysteine desulfurases in vitro. TtuD also enhances the formation of thiocarboxylated TtuB, the sulfur donor for the tRNA sulfurtransferase TtuA. Since cysteine desulfurases are the first enzymes in the synthesis of s2 T and other sulfur-containing compounds, TtuD has a role to direct sulfur flow to s2 T synthesis.
Collapse
Affiliation(s)
- Naoki Shigi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shin-Ichi Asai
- Japan Biological Information Research Center (JBIRC), Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | - Kimitsuna Watanabe
- Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
88
|
Setiaputra DT, Cheng DT, Lu S, Hansen JM, Dalwadi U, Lam CH, To JL, Dong MQ, Yip CK. Molecular architecture of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement. EMBO Rep 2016; 18:280-291. [PMID: 27872205 DOI: 10.15252/embr.201642548] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Elongator is a ~850 kDa protein complex involved in multiple processes from transcription to tRNA modification. Conserved from yeast to humans, Elongator is assembled from two copies of six unique subunits (Elp1 to Elp6). Despite the wealth of structural data on the individual subunits, the overall architecture and subunit organization of the full Elongator and the molecular mechanisms of how it exerts its multiple activities remain unclear. Using single-particle electron microscopy (EM), we revealed that yeast Elongator adopts a bilobal architecture and an unexpected asymmetric subunit arrangement resulting from the hexameric Elp456 subassembly anchored to one of the two Elp123 lobes that form the structural scaffold. By integrating the EM data with available subunit crystal structures and restraints generated from cross-linking coupled to mass spectrometry, we constructed a multiscale molecular model that showed the two Elp3, the main catalytic subunit, are located in two distinct environments. This work provides the first structural insights into Elongator and a framework to understand the molecular basis of its multifunctionality.
Collapse
Affiliation(s)
- Dheva T Setiaputra
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Derrick Th Cheng
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Shan Lu
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Jesse M Hansen
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cindy Hy Lam
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L To
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
89
|
Kojic M, Wainwright B. The Many Faces of Elongator in Neurodevelopment and Disease. Front Mol Neurosci 2016; 9:115. [PMID: 27847465 PMCID: PMC5088202 DOI: 10.3389/fnmol.2016.00115] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/18/2016] [Indexed: 12/02/2022] Open
Abstract
Development of the nervous system requires a variety of cellular activities, such as proliferation, migration, axonal outgrowth and guidance and synapse formation during the differentiation of neural precursors into mature neurons. Malfunction of these highly regulated and coordinated events results in various neurological diseases. The Elongator complex is a multi-subunit complex highly conserved in eukaryotes whose function has been implicated in the majority of cellular activities underlying neurodevelopment. These activities include cell motility, actin cytoskeleton organization, exocytosis, polarized secretion, intracellular trafficking and the maintenance of neural function. Several studies have associated mutations in Elongator subunits with the neurological disorders familial dysautonomia (FD), intellectual disability (ID), amyotrophic lateral sclerosis (ALS) and rolandic epilepsy (RE). Here, we review the various cellular activities assigned to this complex and discuss the implications for neural development and disease. Further research in this area has the potential to generate new diagnostic tools, better prevention strategies and more effective treatment options for a wide variety of neurological disorders.
Collapse
Affiliation(s)
- Marija Kojic
- Genomics of Development and Disease Division, Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| | - Brandon Wainwright
- Genomics of Development and Disease Division, Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
90
|
Delaunay S, Rapino F, Tharun L, Zhou Z, Heukamp L, Termathe M, Shostak K, Klevernic I, Florin A, Desmecht H, Desmet CJ, Nguyen L, Leidel SA, Willis AE, Büttner R, Chariot A, Close P. Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. J Exp Med 2016; 213:2503-2523. [PMID: 27811057 PMCID: PMC5068235 DOI: 10.1084/jem.20160397] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Posttranscriptional modifications of transfer RNAs (tRNAs) at the wobble uridine 34 (U34) base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcm5s2-tRNA modification, are up-regulated in human breast cancers and sustain metastasis. Elp3 genetic ablation strongly impaired invasion and metastasis formation in the PyMT model of invasive breast cancer. Mechanistically, ELP3 and CTU1/2 support cellular invasion through the translation of the oncoprotein DEK. As a result, DEK promotes the IRES-dependent translation of the proinvasive transcription factor LEF1. Consistently, a DEK mutant, whose codon composition is independent of U34 mcm5s2-tRNA modification, escapes the ELP3- and CTU1-dependent regulation and restores the IRES-dependent LEF1 expression. Our results demonstrate that the key role of U34 tRNA modification is to support specific translation during breast cancer progression and highlight a functional link between tRNA modification- and IRES-dependent translation during tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Francesca Rapino
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Lars Tharun
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Zhaoli Zhou
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Lukas Heukamp
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Martin Termathe
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster
- Faculty of Medicine, University of Muenster, 48129 Muenster, Germany
| | - Kateryna Shostak
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Iva Klevernic
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Alexandra Florin
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Hadrien Desmecht
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Christophe J Desmet
- GIGA-Infection, Immunity and Inflammation, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosiences, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster
- Faculty of Medicine, University of Muenster, 48129 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48129 Muenster, Germany
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, England, UK
| | - Reinhard Büttner
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Alain Chariot
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
91
|
Loss of Ikbkap Causes Slow, Progressive Retinal Degeneration in a Mouse Model of Familial Dysautonomia. eNeuro 2016; 3:eN-NWR-0143-16. [PMID: 27699209 PMCID: PMC5037323 DOI: 10.1523/eneuro.0143-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/30/2023] Open
Abstract
Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein (IKBKAP). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for Ikbkap in the developing and adult retina, we generated Ikbkap conditional knockout (CKO) mice using a TUBA1a promoter-Cre (Tα1-Cre). In the retina, Tα1-Cre expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although Ikbkap is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients.
Collapse
|
92
|
Tielens S, Huysseune S, Godin JD, Chariot A, Malgrange B, Nguyen L. Elongator controls cortical interneuron migration by regulating actomyosin dynamics. Cell Res 2016; 26:1131-1148. [PMID: 27670698 DOI: 10.1038/cr.2016.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/27/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
The migration of cortical interneurons is a fundamental process for the establishment of cortical connectivity and its impairment underlies several neurological disorders. During development, these neurons are born in the ganglionic eminences and they migrate tangentially to populate the cortical layers. This process relies on various morphological changes that are driven by dynamic cytoskeleton remodelings. By coupling time lapse imaging with molecular analyses, we show that the Elongator complex controls cortical interneuron migration in mouse embryos by regulating nucleokinesis and branching dynamics. At the molecular level, Elongator fine-tunes actomyosin forces by regulating the distribution and turnover of actin microfilaments during cell migration. Thus, we demonstrate that Elongator cell-autonomously promotes cortical interneuron migration by controlling actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Sylvia Tielens
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| | - Sandra Huysseune
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| | - Juliette D Godin
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium.,GIGA-Molecular Biology of Diseases, 4000 Liège, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| |
Collapse
|
93
|
Klassen R, Ciftci A, Funk J, Bruch A, Butter F, Schaffrath R. tRNA anticodon loop modifications ensure protein homeostasis and cell morphogenesis in yeast. Nucleic Acids Res 2016; 44:10946-10959. [PMID: 27496282 PMCID: PMC5159529 DOI: 10.1093/nar/gkw705] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022] Open
Abstract
Using budding yeast, we investigated a negative interaction network among genes for tRNA modifications previously implicated in anticodon-codon interaction: 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U34: ELP3, URM1), pseudouridine (Ψ38/39: DEG1) and cyclic N6-threonyl-carbamoyl-adenosine (ct6A37: TCD1). In line with functional cross talk between these modifications, we find that combined removal of either ct6A37 or Ψ38/39 and mcm5U34 or s2U34 results in morphologically altered cells with synthetic growth defects. Phenotypic suppression by tRNA overexpression suggests that these defects are caused by malfunction of tRNALysUUU or tRNAGlnUUG, respectively. Indeed, mRNA translation and synthesis of the Gln-rich prion Rnq1 are severely impaired in the absence of Ψ38/39 and mcm5U34 or s2U34, and this defect can be rescued by overexpression of tRNAGlnUUG. Surprisingly, we find that combined modification defects in the anticodon loops of different tRNAs induce similar cell polarity- and nuclear segregation defects that are accompanied by increased aggregation of cellular proteins. Since conditional expression of an artificial aggregation-prone protein triggered similar cytological aberrancies, protein aggregation is likely responsible for loss of morphogenesis and cytokinesis control in mutants with inappropriate tRNA anticodon loop modifications.
Collapse
Affiliation(s)
- Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
| | - Akif Ciftci
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
| | - Johanna Funk
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
| | - Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
| | - Falk Butter
- Institut für Molekulare Biologie, Ackermannweg 4, D-55128 Mainz, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
| |
Collapse
|
94
|
Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi. Nat Struct Mol Biol 2016; 23:794-802. [PMID: 27455459 PMCID: PMC5018218 DOI: 10.1038/nsmb.3265] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
During translation elongation decoding is based on the recognition of codons by corresponding tRNA anticodon triplets. Molecular mechanisms that regulate global protein synthesis via specific base modifications in tRNA anticodons have recently received increasing attention. The conserved eukaryotic Elongator complex specifically modifies uridines located in the wobble base position of tRNAs. Here, we present the crystal structure of Dehalococcoides mccartyi Elp3 (DmcElp3) at 2.15 Å resolution. Our results reveal the unexpected arrangement of Elp3 lysine acetyl transferase (KAT) and radical S-adenosyl-methionine (SAM) domains that share a large interface to form a composite active site and tRNA binding pocket with an iron sulfur cluster located in the dimerization interface of two DmcElp3 molecules. Structure-guided mutagenesis studies of yeast Elp3 confirm the relevance of our findings for eukaryotic Elp3s and for understanding Elongator’s role in the onset of various neurodegenerative diseases and cancer in humans.
Collapse
|
95
|
Woloszynska M, Le Gall S, Van Lijsebettens M. Plant Elongator-mediated transcriptional control in a chromatin and epigenetic context. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1025-33. [PMID: 27354117 DOI: 10.1016/j.bbagrm.2016.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Elongator (Elp) genes were identified in plants by the leaf growth-altering elo mutations in the yeast (Saccharomyces cerevisiae) gene homologs. Protein purification of the Elongator complex from Arabidopsis thaliana cell cultures confirmed its conserved structure and composition. The Elongator function in plant growth, development, and immune response is well-documented in the elp/elo mutants and correlated with the histone acetyl transferase activity of the ELP3/ELO3 subunit at the coding part of key regulatory genes of developmental and immune response pathways. Here we will focus on additional roles in transcription, such as the cytosine demethylation activity of ELP3/ELO3 at gene promoter regions and primary microRNA transcription and processing through the ELP2 subunit interaction with components of the small interference RNA machinery. Furthermore, specific interactions and upstream regulators support a role for Elongator in transcription and might reveal mechanistic insights into the specificity of the histone acetyl transferase and cytosine demethylation activities for target genes.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Sabine Le Gall
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|
96
|
An C, Ding Y, Zhang X, Wang C, Mou Z. Elongator Plays a Positive Role in Exogenous NAD-Induced Defense Responses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:396-404. [PMID: 26926998 DOI: 10.1094/mpmi-01-16-0005-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Extracellular NAD is emerging as an important signal molecule in animal cells, but its role in plants has not been well-established. Although it has been shown that exogenous NAD(+) activates defense responses in Arabidopsis, components in the exogenous NAD(+)-activated defense pathway remain to be fully discovered. In a genetic screen for mutants insensitive to exogenous NAD(+) (ien), we isolated a mutant named ien2. Map-based cloning revealed that IEN2 encodes ELONGATA3 (ELO3)/AtELP3, a subunit of the Arabidopsis Elongator complex, which functions in multiple biological processes, including histone modification, DNA (de)methylation, and transfer RNA modification. Mutations in the ELO3/AtELP3 gene compromise exogenous NAD(+)-induced expression of pathogenesis-related (PR) genes and resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326, and transgenic expression of the coding region of ELO3/AtELP3 in elo3/Atelp3 restores NAD(+) responsiveness to the mutant plants, demonstrating that ELO3/AtELP3 is required for exogenous NAD(+)-induced defense responses. Furthermore, mutations in genes encoding the other five Arabidopsis Elongator subunits (ELO2/AtELP1, AtELP2, ELO1/AtELP4, AtELP5, and AtELP6) also compromise exogenous NAD(+)-induced PR gene expression and resistance to P. syringae pv. maculicola ES4326. These results indicate that the Elongator complex functions as a whole in exogenous NAD(+)-activated defense signaling in Arabidopsis.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| |
Collapse
|
97
|
Laguesse S, Creppe C, Nedialkova DD, Prévot PP, Borgs L, Huysseune S, Franco B, Duysens G, Krusy N, Lee G, Thelen N, Thiry M, Close P, Chariot A, Malgrange B, Leidel SA, Godin JD, Nguyen L. A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis. Dev Cell 2016; 35:553-567. [PMID: 26651292 DOI: 10.1016/j.devcel.2015.11.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
The cerebral cortex contains layers of neurons sequentially generated by distinct lineage-related progenitors. At the onset of corticogenesis, the first-born progenitors are apical progenitors (APs), whose asymmetric division gives birth directly to neurons. Later, they switch to indirect neurogenesis by generating intermediate progenitors (IPs), which give rise to projection neurons of all cortical layers. While a direct lineage relationship between APs and IPs has been established, the molecular mechanism that controls their transition remains elusive. Here we show that interfering with codon translation speed triggers ER stress and the unfolded protein response (UPR), further impairing the generation of IPs and leading to microcephaly. Moreover, we demonstrate that a progressive downregulation of UPR in cortical progenitors acts as a physiological signal to amplify IPs and promotes indirect neurogenesis. Thus, our findings reveal a contribution of UPR to cell fate acquisition during mammalian brain development.
Collapse
Affiliation(s)
- Sophie Laguesse
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Catherine Creppe
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Danny D Nedialkova
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Albert-Schweitzer-Campus 1, 48129 Muenster, Germany
| | - Pierre-Paul Prévot
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Laurence Borgs
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sandra Huysseune
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Bénédicte Franco
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Guérin Duysens
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Nathalie Krusy
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Thelen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Marc Thiry
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Pierre Close
- GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Alain Chariot
- GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany; Faculty of Medicine, University of Muenster, 48129 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Albert-Schweitzer-Campus 1, 48129 Muenster, Germany
| | - Juliette D Godin
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
98
|
Ranjan N, Rodnina MV. tRNA wobble modifications and protein homeostasis. ACTA ACUST UNITED AC 2016; 4:e1143076. [PMID: 27335723 DOI: 10.1080/21690731.2016.1143076] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
tRNA is a central component of the protein synthesis machinery in the cell. In living cells, tRNAs undergo numerous post-transcriptional modifications. In particular, modifications at the anticodon loop play an important role in ensuring efficient protein synthesis, maintaining protein homeostasis, and helping cell adaptation and survival. Hypo-modification of the wobble position of the tRNA anticodon loop is of particular relevance for translation regulation and is implicated in various human diseases. In this review we summarize recent evidence of how methyl and thiol modifications in eukaryotic tRNA at position 34 affect cellular fitness and modulate regulatory circuits at normal conditions and under stress.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
| |
Collapse
|
99
|
Donyo M, Hollander D, Abramovitch Z, Naftelberg S, Ast G. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway. Hum Mol Genet 2016; 25:1307-17. [PMID: 26769675 DOI: 10.1093/hmg/ddw011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD.
Collapse
Affiliation(s)
- Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ziv Abramovitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
100
|
Morini E, Dietrich P, Salani M, Downs HM, Wojtkiewicz GR, Alli S, Brenner A, Nilbratt M, LeClair JW, Oaklander AL, Slaugenhaupt SA, Dragatsis I. Sensory and autonomic deficits in a new humanized mouse model of familial dysautonomia. Hum Mol Genet 2016; 25:1116-28. [PMID: 26769677 DOI: 10.1093/hmg/ddv634] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023] Open
Abstract
Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease that affects the development and survival of sensory and autonomic neurons. FD is caused by an mRNA splicing mutation in intron 20 of the IKBKAP gene that results in a tissue-specific skipping of exon 20 and a corresponding reduction of the inhibitor of kappaB kinase complex-associated protein (IKAP), also known as Elongator complex protein 1. To date, several promising therapeutic candidates for FD have been identified that target the underlying mRNA splicing defect, and increase functional IKAP protein. Despite these remarkable advances in drug discovery for FD, we lacked a phenotypic mouse model in which we could manipulate IKBKAP mRNA splicing to evaluate potential efficacy. We have, therefore, engineered a new mouse model that, for the first time, will permit to evaluate the phenotypic effects of splicing modulators and provide a crucial platform for preclinical testing of new therapies. This new mouse model, TgFD9; Ikbkap(Δ20/flox) was created by introducing the complete human IKBKAP transgene with the major FD splice mutation (TgFD9) into a mouse that expresses extremely low levels of endogenous Ikbkap (Ikbkap(Δ20/flox)). The TgFD9; Ikbkap(Δ20/flox) mouse recapitulates many phenotypic features of the human disease, including reduced growth rate, reduced number of fungiform papillae, spinal abnormalities, and sensory and sympathetic impairments, and recreates the same tissue-specific mis-splicing defect seen in FD patients. This is the first mouse model that can be used to evaluate in vivo the therapeutic effect of increasing IKAP levels by correcting the underlying FD splicing defect.
Collapse
Affiliation(s)
| | - Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | | | - Heather M Downs
- Nerve Unit, Departments of Neurology and Pathology (Neuropathology) and
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA and
| | - Shanta Alli
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|