51
|
Hillard CJ, Huang H, Vogt CD, Rodrigues BE, Neumann TS, Sem DS, Schroeder F, Cunningham CW. Endocannabinoid Transport Proteins: Discovery of Tools to Study Sterol Carrier Protein-2. Methods Enzymol 2017; 593:99-121. [PMID: 28750817 PMCID: PMC6904209 DOI: 10.1016/bs.mie.2017.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The endocannabinoid (eCB) neurotransmitter system regulates diverse neurological functions including stress and anxiety, pain, mood, and reward. Understanding the mechanisms underlying eCB regulation is critical for developing targeted pharmacotherapies to treat these and other neurologic disorders. Cellular studies suggest that the arachidonate eCBs, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are substrates for intracellular binding and transport proteins, and several candidate proteins have been identified. Initial evidence from our laboratory indicates that the lipid transport protein, sterol carrier protein 2 (SCP-2), binds to the eCBs and can regulate their cellular concentrations. Here, we present methods for evaluating SCP-2 binding of eCBs and their application to the discovery of the first inhibitor lead molecules. Using a fluorescent probe displacement assay, we found SCP-2 binds the eCBs, AEA (Ki=0.68±0.05μM) and 2-AG (Ki=0.37±0.02μM), with moderate affinity. A series of structurally diverse arachidonate analogues also bind SCP-2 with Ki values between 0.82 and 2.95μM, suggesting a high degree of tolerance for arachidonic acid head group modifications in this region of the protein. We also report initial structure-activity relationships surrounding previously reported inhibitors of Aedis aegypti SCP-2, and the results of an in silico high-throughput screen that identified structurally novel SCP-2 inhibitor leads. The methods and results reported here provide the basis for a robust probe discovery effort to fully elucidate the role of facilitated transport mediated by SCP-2 in eCB regulation and function.
Collapse
Affiliation(s)
| | - Huan Huang
- Texas A&M University, TVMC, College Station, TX, United States
| | - Caleb D Vogt
- Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Beatriz E Rodrigues
- Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Terrence S Neumann
- Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States; Texas Wesleyan University, Fort Worth, TX, United States
| | - Daniel S Sem
- Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | | | | |
Collapse
|
52
|
A structural appraisal of sterol carrier protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:565-577. [DOI: 10.1016/j.bbapap.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
53
|
Chen Y, Yu Q, Wang H, Dong Y, Jia C, Zhang B, Xiao C, Zhang B, Xing L, Li M. The malfunction of peroxisome has an impact on the oxidative stress sensitivity in Candida albicans. Fungal Genet Biol 2016; 95:1-12. [PMID: 27473887 DOI: 10.1016/j.fgb.2016.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 11/28/2022]
Abstract
The peroxisome plays an essential role in eukaryotic cellular metabolism, including β-oxidation of fatty acids and detoxification of hydrogen peroxide. However, its functions in the important fungal pathogen, C. albicans, remain to be investigated. In this study, we identified a homologue of Saccharomyces cerevisiae peroxisomal protein Pex1 in this pathogen, and explored its functions in stress tolerance. Fluorescence observation revealed that C. albicans Pex1 was localized in the peroxisomes, and its loss led to the defect in peroxisome formation. Interestingly, the pex1Δ/Δ mutant had increased tolerance to oxidative stress, which was neither associated with the Cap1 pathway, nor related to the altered distribution of catalase. However, under oxidative stress, the pex1Δ/Δ mutant showed increased expression of autophagy-related genes, with enhanced cytoplasm-to-vacuole transport and degradation of the autophagy markers Atg8 and Lap41. Moreover, the double mutants pex1Δ/Δatg8Δ/Δ and pex1Δ/Δatg1Δ/Δ, both of which were defective in autophagy and peroxisome formation, showed remarkable attenuated tolerance to oxidative stress. These results indicated that autophagy is involved in resistance to oxidative stress in pex1Δ/Δ mutant. Taken together, this study provides evidence that the peroxisomal protein Pex1 regulates oxidative stress tolerance in an autophagy-dependent manner in C. albicans.
Collapse
Affiliation(s)
- Yulu Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Honggang Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Yijie Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chenpeng Xiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Laijun Xing
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
54
|
Galiani S, Waithe D, Reglinski K, Cruz-Zaragoza LD, Garcia E, Clausen MP, Schliebs W, Erdmann R, Eggeling C. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins. J Biol Chem 2016; 291:16948-62. [PMID: 27311714 PMCID: PMC5016101 DOI: 10.1074/jbc.m116.734038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 11/25/2022] Open
Abstract
Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.
Collapse
Affiliation(s)
- Silvia Galiani
- From the Medical Research Council Human Immunology Unit and
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | | | - Luis Daniel Cruz-Zaragoza
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Esther Garcia
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Mathias P Clausen
- From the Medical Research Council Human Immunology Unit and MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Wolfgang Schliebs
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Ralf Erdmann
- Institute of Physiological Chemistry, Systemic Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany, and
| | - Christian Eggeling
- From the Medical Research Council Human Immunology Unit and Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom,
| |
Collapse
|
55
|
Abstract
The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor-cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes.
Collapse
Affiliation(s)
- Alison Baker
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology and Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Thomas Lanyon-Hogg
- Institute of Chemical Biology, Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Stuart L Warriner
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
56
|
Emmanouilidis L, Gopalswamy M, Passon DM, Wilmanns M, Sattler M. Structural biology of the import pathways of peroxisomal matrix proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:804-13. [DOI: 10.1016/j.bbamcr.2015.09.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022]
|
57
|
Reumann S, Chowdhary G, Lingner T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:790-803. [PMID: 26772785 DOI: 10.1016/j.bbamcr.2016.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Our knowledge of the proteome of plant peroxisomes and their functional plasticity is far from being complete, primarily due to major technical challenges in experimental proteome research of the fragile cell organelle. Several unexpected novel plant peroxisome functions, for instance in biotin and phylloquinone biosynthesis, have been uncovered recently. Nevertheless, very few regulatory and membrane proteins of plant peroxisomes have been identified and functionally described up to now. To define the matrix proteome of plant peroxisomes, computational methods have emerged as important powerful tools. Novel prediction approaches of high sensitivity and specificity have been developed for peroxisome targeting signals type 1 (PTS1) and have been validated by in vivo subcellular targeting analyses and thermodynamic binding studies with the cytosolic receptor, PEX5. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In this review, we provide an overview of methodologies, capabilities and accuracies of available prediction algorithms for PTS1 carrying proteins. We also summarize and discuss recent quantitative, structural and mechanistic information of the interaction of PEX5 with PTS1 carrying proteins in relation to in vivo import efficiency. With this knowledge, we develop a model of how proteins likely evolved peroxisomal targeting signals in the past and still nowadays, in which order the two import pathways might have evolved in the ancient eukaryotic cell, and how the secondary loss of the PTS2 pathway probably happened in specific organismal groups.
Collapse
Affiliation(s)
- S Reumann
- Department of Plant Biochemistry and Infection Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany; Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway.
| | - G Chowdhary
- Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India.
| | - T Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, D-37077 Goettingen, Germany.
| |
Collapse
|
58
|
Cross LL, Ebeed HT, Baker A. Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:850-62. [DOI: 10.1016/j.bbamcr.2015.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
|
59
|
Peroxisomal protein import pores. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:821-7. [DOI: 10.1016/j.bbamcr.2015.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
|
60
|
Sibirny AA. Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res 2016; 16:fow038. [DOI: 10.1093/femsyr/fow038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/02/2023] Open
|
61
|
NMR structure and function of Helicoverpa armigera sterol carrier protein-2, an important insecticidal target from the cotton bollworm. Sci Rep 2015; 5:18186. [PMID: 26655641 PMCID: PMC4674756 DOI: 10.1038/srep18186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022] Open
Abstract
The cotton bollworm, Helicoverpa armigera, has developed strong resistance to many insecticides. Sterol Carrier Protein-2 (SCP-2) is an important non-specific lipid transfer protein in insects and appears to be a potential new target. In order to elucidate the structure and function of Helicoverpa armigera SCP-2 (HaSCP-2), NMR spectroscopy, docking simulations, mutagenesis and bioassays were performed. HaSCP-2 composed of five α-helices and four stranded β-sheets. The folds of α-helices and β-sheets interacted together to form a hydrophobic cavity with putative entrance and exit openings, which served as a tunnel for accommodating and transporting of lipids. Several sterols and fatty acids could interact with HaSCP-2 via important hydrophobic sites, which could be potential targets for insecticides. Mutagenesis experiments indicated Y51, F53, F89, F110, I117 and Q131 may be the key functional sites. HaSCP-2 showed high cholesterol binding activity and SCP-2 inhibitors (SCPIs) could inhibit the biological activity of HaSCP-2. SCPI-treated larvae at young stage showed a significant decrease of cholesterol uptake in vivo. Our study describes for the first time a NMR structure of SCP-2 in lepidopteran H. armigera and reveals its important function in cholesterol uptake, which facilitates the screening of effective insecticides targeting the insect cholesterol metabolism.
Collapse
|
62
|
Reglinski K, Keil M, Altendorf S, Waithe D, Eggeling C, Schliebs W, Erdmann R. Peroxisomal Import Reduces the Proapoptotic Activity of Deubiquitinating Enzyme USP2. PLoS One 2015; 10:e0140685. [PMID: 26484888 PMCID: PMC4617714 DOI: 10.1371/journal.pone.0140685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
The human deubiquitinating enzyme ubiquitin-specific protease 2 (USP2) regulates multiple cellular pathways, including cell proliferation and apoptosis. As a result of alternative splicing four USP2 isoenzymes are expressed in human cells of which all contain a weak peroxisome targeting signal of type 1 (PTS1) at their C-termini. Here, we systematically analyzed apoptotic effects induced by overexpression and intracellular localization for each isoform. All isoforms exhibit proapoptotic activity and are post-translationally imported into the matrix of peroxisomes in a PEX5-dependent manner. However, a significant fraction of the USP2 pool resides in the cytosol due to a weaker PTS1 and thus low affinity to the PTS receptor PEX5. Blocking of peroxisomal import did not interfere with the proapoptotic activity of USP2, suggesting that the enzyme performs its critical function outside of this compartment. Instead, increase of the efficiency of USP2 import into peroxisomes either by optimization of its peroxisomal targeting signal or by overexpression of the PTS1 receptor did result in a reduction of the apoptotic rate of transfected cells. Our studies suggest that peroxisomal import of USP2 provides additional control over the proapoptotic activity of cytosolic USP2 by spatial separation of the deubiquitinating enzymes from their interaction partners in the cytosol and nucleus.
Collapse
Affiliation(s)
- Katharina Reglinski
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Marina Keil
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Sabrina Altendorf
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Christian Eggeling
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Wolfgang Schliebs
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
- * E-mail:
| |
Collapse
|
63
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
64
|
Kunze M, Berger J. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front Physiol 2015; 6:259. [PMID: 26441678 PMCID: PMC4585086 DOI: 10.3389/fphys.2015.00259] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/04/2015] [Indexed: 12/04/2022] Open
Abstract
The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna Vienna, Austria
| |
Collapse
|
65
|
Platta HW, Brinkmeier R, Reidick C, Galiani S, Clausen MP, Eggeling C. Regulation of peroxisomal matrix protein import by ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:838-49. [PMID: 26367801 DOI: 10.1016/j.bbamcr.2015.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Abstract
Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisomal targeting sequence (PTS), which is recognized by dynamic PTS-receptors in the cytosol. The PTS-receptors ferry the cargo to the peroxisomal membrane, where they become part of a transient import pore and then release the cargo into the peroxisomal lumen. Subsequentially, the PTS-receptors are ubiquitinated in order to mark them for the export-machinery, which releases them back to the cytosol. Upon deubiquitination, the PTS-receptors can facilitate further rounds of cargo import. Because the ubiquitination of the receptors is an essential step in the import cycle, it also represents a central regulatory element that governs peroxisomal dynamics. In this review we want to give an introduction to the functional role played by ubiquitination during peroxisomal protein import and highlight the mechanistic concepts that have emerged based on data derived from different species since the discovery of the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Rebecca Brinkmeier
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, United Kingdom.
| |
Collapse
|
66
|
Hagen S, Drepper F, Fischer S, Fodor K, Passon D, Platta HW, Zenn M, Schliebs W, Girzalsky W, Wilmanns M, Warscheid B, Erdmann R. Structural insights into cargo recognition by the yeast PTS1 receptor. J Biol Chem 2015; 290:26610-26. [PMID: 26359497 DOI: 10.1074/jbc.m115.657973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 11/06/2022] Open
Abstract
The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 μm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 μm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo.
Collapse
Affiliation(s)
- Stefanie Hagen
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Friedel Drepper
- the Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sven Fischer
- the Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Krisztian Fodor
- the Department of Biochemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Daniel Passon
- the European Molecular Biology Laboratory at Hamburg, D-22607 Hamburg, Germany
| | - Harald W Platta
- the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Biochemistry of Intracellular Transport Mechanism, Ruhr-University Bochum, D-44781 Bochum, Germany, and
| | - Michael Zenn
- the Biaffin GmbH and Co., KG, D-34132 Kassel, Germany
| | - Wolfgang Schliebs
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Wolfgang Girzalsky
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Matthias Wilmanns
- the European Molecular Biology Laboratory at Hamburg, D-22607 Hamburg, Germany
| | - Bettina Warscheid
- the Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Ralf Erdmann
- From the Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, System Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany,
| |
Collapse
|
67
|
Cheng Z, Li Y, Sui C, Sun X, Xie Y. Synthesis, purification and crystallographic studies of the C-terminal sterol carrier protein type 2 (SCP-2) domain of human hydroxysteroid dehydrogenase-like protein 2. Acta Crystallogr F Struct Biol Commun 2015; 71:901-5. [PMID: 26144236 PMCID: PMC4498712 DOI: 10.1107/s2053230x15008559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/01/2015] [Indexed: 11/11/2022] Open
Abstract
Human hydroxysteroid dehydrogenase-like protein 2 (HSDL2) is a member of the short-chain dehydrogenase/reductase (SDR) subfamily of oxidoreductases and contains an N-terminal catalytic domain and a C-termianl sterol carrier protein type 2 (SCP-2) domain. In this study, the C-terminal SCP-2 domain of human HSDL2, including residues Lys318-Arg416, was produced in Escherichia coli, purified and crystallized. X-ray diffraction data were collected to 2.10 Å resolution. The crystal belonged to the trigonal space group P3(1)21 (or P3(2)21), with unit-cell parameters a = b = 70.4, c = 60.6 Å, α = β = 90, γ = 120°. Two protein molecules are present in the asymmetric unit, resulting in a Matthews coefficient of 2.16 Å(3) Da(-1) and an approximate solvent content of 43%.
Collapse
Affiliation(s)
- Zhong Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Yao Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Chun Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| | - Yong Xie
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, People’s Republic of China
| |
Collapse
|
68
|
Sahadevan S, Tholen E, Große-Brinkhaus C, Schellander K, Tesfaye D, Hofmann-Apitius M, Cinar MU, Gunawan A, Hölker M, Neuhoff C. Identification of gene co-expression clusters in liver tissues from multiple porcine populations with high and low backfat androstenone phenotype. BMC Genet 2015; 16:21. [PMID: 25884519 PMCID: PMC4365963 DOI: 10.1186/s12863-014-0158-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022] Open
Abstract
Background Boar taint is principally caused by accumulation of androstenone and skatole in adipose tissues. Studies have shown high heritability estimates for androstenone whereas skatole production is mainly dependent on nutritional factors. Androstenone is a lipophilic steroid mainly metabolized in liver. Majority of the studies on hepatic androstenone metabolism focus only on a single breed and very few studies account for population similarities/differences in gene expression patterns. In this work, we concentrated on population similarities in gene expression to identify the common genes involved in hepatic androstenone metabolism of multiple pig populations. Based on androstenone measurements, publicly available gene expression datasets from three porcine populations were compiled into either low or high androstenone dataset. Gene expression correlation coefficients from these datasets were converted to rank ratios and joint probabilities of these rank ratios were used to generate dataset specific co-expression clusters. Finally, these networks were clustered using a graph clustering technique. Results Cluster analysis identified a number of statistically significant co-expression clusters in the dataset. Further enrichment analysis of these clusters showed that one of the clusters from low androstenone dataset was highly enriched for xenobiotic, drug, cholesterol and lipid metabolism and cytochrome P450 associated metabolism of drugs and xenobiotics. Literature references revealed that a number of genes in this cluster were involved in phase I and phase II metabolism. Physical and functional similarity assessment showed that the members of this cluster were dispersed across multiple clusters in high androstenone dataset, possibly indicating a weak co-expression of these genes in high androstenone dataset. Conclusions Based on these results we hypothesize that majority of the genes in this cluster forms a signature co-expression cluster in low androstenone dataset in our experiment and that majority of the members of this cluster might be responsible for hepatic androstenone metabolism across all the three populations used in our study. We propose these results as a background work towards understanding breed similarities in hepatic androstenone metabolism. Additional large scale experiments using data from multiple porcine breeds are necessary to validate these findings. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0158-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sudeep Sahadevan
- Institute of Animal Science, University of Bonn, Endenicher Alle, Bonn, 53115, Germany. .,Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.
| | - Ernst Tholen
- Institute of Animal Science, University of Bonn, Endenicher Alle, Bonn, 53115, Germany.
| | | | - Karl Schellander
- Institute of Animal Science, University of Bonn, Endenicher Alle, Bonn, 53115, Germany.
| | - Dawit Tesfaye
- Institute of Animal Science, University of Bonn, Endenicher Alle, Bonn, 53115, Germany.
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53754, Germany.
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkey.
| | - Asep Gunawan
- Department of Animal Production and Technology, Bogor Agricultural University, Bogor, Indonesia.
| | - Michael Hölker
- Institute of Animal Science, University of Bonn, Endenicher Alle, Bonn, 53115, Germany.
| | - Christiane Neuhoff
- Institute of Animal Science, University of Bonn, Endenicher Alle, Bonn, 53115, Germany.
| |
Collapse
|
69
|
Mesa-Torres N, Tomic N, Albert A, Salido E, Pey AL. Molecular recognition of PTS-1 cargo proteins by Pex5p: implications for protein mistargeting in primary hyperoxaluria. Biomolecules 2015; 5:121-41. [PMID: 25689234 PMCID: PMC4384115 DOI: 10.3390/biom5010121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/05/2015] [Indexed: 01/29/2023] Open
Abstract
Peroxisomal biogenesis and function critically depends on the import of cytosolic proteins carrying a PTS1 sequence into this organelle upon interaction with the peroxin Pex5p. Recent structural studies have provided important insights into the molecular recognition of cargo proteins by Pex5p. Peroxisomal import is a key feature in the pathogenesis of primary hyperoxaluria type 1 (PH1), where alanine:glyoxylate aminotransferase (AGT) undergoes mitochondrial mistargeting in about a third of patients. Here, we study the molecular recognition of PTS1 cargo proteins by Pex5p using oligopeptides and AGT variants bearing different natural PTS1 sequences, and employing an array of biophysical, computational and cell biology techniques. Changes in affinity for Pex5p (spanning over 3–4 orders of magnitude) reflect different thermodynamic signatures, but overall bury similar amounts of molecular surface. Structure/energetic analyses provide information on the contribution of ancillary regions and the conformational changes induced in Pex5p and the PTS1 cargo upon complex formation. Pex5p stability in vitro is enhanced upon cargo binding according to their binding affinities. Moreover, we provide evidence that the rational modulation of the AGT: Pex5p binding affinity might be useful tools to investigate mistargeting and misfolding in PH1 by pulling the folding equilibria towards the native and peroxisomal import competent state.
Collapse
Affiliation(s)
- Noel Mesa-Torres
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Nenad Tomic
- Center for Biomedical Research on Rare Diseases (CIBERER), University Hospital of the Canary Islands and CIBICAN, University of La Laguna, 38320 Tenerife, Spain.
| | - Armando Albert
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, C/Serrano 119, 28006 Madrid, Spain.
| | - Eduardo Salido
- Center for Biomedical Research on Rare Diseases (CIBERER), University Hospital of the Canary Islands and CIBICAN, University of La Laguna, 38320 Tenerife, Spain.
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
70
|
Kim PK, Hettema EH. Multiple pathways for protein transport to peroxisomes. J Mol Biol 2015; 427:1176-90. [PMID: 25681696 PMCID: PMC4726662 DOI: 10.1016/j.jmb.2015.02.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. Peroxisomal membrane and matrix proteins require distinct factors for their transport. Matrix proteins fold in the cytosol prior to their import. Loaded targeting receptors form part of the matrix protein translocation pore. Many membrane proteins are directly inserted into the peroxisomal membrane. Some peroxisomal membrane proteins are transported via the ER to peroxisomes.
Collapse
Affiliation(s)
- P K Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - E H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire S10 2TN, United Kingdom.
| |
Collapse
|
71
|
Kunze M, Malkani N, Maurer-Stroh S, Wiesinger C, Schmid JA, Berger J. Mechanistic insights into PTS2-mediated peroxisomal protein import: the co-receptor PEX5L drastically increases the interaction strength between the cargo protein and the receptor PEX7. J Biol Chem 2014; 290:4928-4940. [PMID: 25538232 DOI: 10.1074/jbc.m114.601575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The destination of peroxisomal matrix proteins is encoded by short peptide sequences, which have been characterized as peroxisomal targeting signals (PTS) residing either at the C terminus (PTS1) or close to the N terminus (PTS2). PTS2-carrying proteins interact with their cognate receptor protein PEX7 that mediates their transport to peroxisomes by a concerted action with a co-receptor protein, which in mammals is the PTS1 receptor PEX5L. Using a modified version of the mammalian two-hybrid assay, we demonstrate that the interaction strength between cargo and PEX7 is drastically increased in the presence of the co-receptor PEX5L. In addition, cargo binding is a prerequisite for the interaction between PEX7 and PEX5L and ectopic overexpression of PTS2-carrying cargo protein drastically increases the formation of PEX7-PEX5L complexes in this assay. Consistently, we find that the peroxisomal transfer of PEX7 depends on cargo binding and that ectopic overexpression of cargo protein stimulates this process. Thus, the sequential formation of a highly stable trimeric complex involving cargo protein, PEX7 and PEX5L stabilizes cargo binding and is a prerequisite for PTS2-mediated peroxisomal import.
Collapse
Affiliation(s)
- Markus Kunze
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria,.
| | - Naila Malkani
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore 138671; School of Biological Sciences (SBS), Nanyang Technological University (NTU), 8 Medical Drive, Singapore 117597
| | - Christoph Wiesinger
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Johannes A Schmid
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Johannes Berger
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
72
|
Skoulding NS, Chowdhary G, Deus MJ, Baker A, Reumann S, Warriner SL. Experimental validation of plant peroxisomal targeting prediction algorithms by systematic comparison of in vivo import efficiency and in vitro PTS1 binding affinity. J Mol Biol 2014; 427:1085-101. [PMID: 25498386 DOI: 10.1016/j.jmb.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/30/2014] [Accepted: 12/04/2014] [Indexed: 01/19/2023]
Abstract
Most peroxisomal matrix proteins possess a C-terminal targeting signal type 1 (PTS1). Accurate prediction of functional PTS1 sequences and their relative strength by computational methods is essential for determination of peroxisomal proteomes in silico but has proved challenging due to high levels of sequence variability of non-canonical targeting signals, particularly in higher plants, and low levels of availability of experimentally validated non-canonical examples. In this study, in silico predictions were compared with in vivo targeting analyses and in vitro thermodynamic binding of mutated variants within the context of one model targeting sequence. There was broad agreement between the methods for entire PTS1 domains and position-specific single amino acid residues, including residues upstream of the PTS1 tripeptide. The hierarchy Leu>Met>Ile>Val at the C-terminal position was determined for all methods but both experimental approaches suggest that Tyr is underweighted in the prediction algorithm due to the absence of this residue in the positive training dataset. A combination of methods better defines the score range that discriminates a functional PTS1. In vitro binding to the PEX5 receptor could discriminate among strong targeting signals while in vivo targeting assays were more sensitive, allowing detection of weak functional import signals that were below the limit of detection in the binding assay. Together, the data provide a comprehensive assessment of the factors driving PTS1 efficacy and provide a framework for the more quantitative assessment of the protein import pathway in higher plants.
Collapse
Affiliation(s)
- Nicola S Skoulding
- School of Chemistry and the Astbury Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Gopal Chowdhary
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Richard Johansens Gate 4, N-4021 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India
| | - Mara J Deus
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Richard Johansens Gate 4, N-4021 Stavanger, Norway
| | - Alison Baker
- Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Richard Johansens Gate 4, N-4021 Stavanger, Norway; Department of Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany
| | - Stuart L Warriner
- School of Chemistry and the Astbury Centre, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
73
|
Fodor K, Wolf J, Reglinski K, Passon DM, Lou Y, Schliebs W, Erdmann R, Wilmanns M. Ligand-Induced Compaction of the PEX5 Receptor-Binding Cavity Impacts Protein Import Efficiency into Peroxisomes. Traffic 2014; 16:85-98. [DOI: 10.1111/tra.12238] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Krisztián Fodor
- Hamburg Unit; European Molecular Biology Laboratory Hamburg Unit; Hamburg Germany
| | - Janina Wolf
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum; Bochum Germany
| | - Katharina Reglinski
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum; Bochum Germany
| | - Daniel M. Passon
- Hamburg Unit; European Molecular Biology Laboratory Hamburg Unit; Hamburg Germany
| | - Ye Lou
- Hamburg Unit; European Molecular Biology Laboratory Hamburg Unit; Hamburg Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum; Bochum Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum; Bochum Germany
| | - Matthias Wilmanns
- Hamburg Unit; European Molecular Biology Laboratory Hamburg Unit; Hamburg Germany
| |
Collapse
|
74
|
Hettema EH, Erdmann R, van der Klei I, Veenhuis M. Evolving models for peroxisome biogenesis. Curr Opin Cell Biol 2014; 29:25-30. [PMID: 24681485 PMCID: PMC4148619 DOI: 10.1016/j.ceb.2014.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 12/11/2022]
Abstract
Significant progress has been made towards our understanding of the mechanism of peroxisome formation, in particular concerning sorting of peroxisomal membrane proteins, matrix protein import and organelle multiplication. Here we evaluate the progress made in recent years. We focus mainly on progress made in yeasts. We indicate the gaps in our knowledge and discuss conflicting models.
Collapse
Affiliation(s)
- Ewald H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Ralf Erdmann
- System Biochie, Ruhr Universitat Bochum, Universitatstr. 150, D-44780, Bochum, Germany
| | - Ida van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology institute, University of Groningen, 11 103, 9700CC, Groningen, The Netherlands
| | - Marten Veenhuis
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology institute, University of Groningen, 11 103, 9700CC, Groningen, The Netherlands
| |
Collapse
|
75
|
Okumoto K, Noda H, Fujiki Y. Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import. J Biol Chem 2014; 289:14089-108. [PMID: 24662292 DOI: 10.1074/jbc.m113.527937] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome targeting signal type-1 (PTS1) receptor, Pex5p, is a key player in peroxisomal matrix protein import. Pex5p recognizes PTS1 cargoes in the cytosol, targets peroxisomes, translocates across the membrane, unloads the cargoes, and shuttles back to the cytosol. Ubiquitination of Pex5p at a conserved cysteine is required for the exit from peroxisomes. However, any potential ubiquitin ligase (E3) remains unidentified in mammals. Here, we establish an in vitro ubiquitination assay system and demonstrate that RING finger Pex10p functions as an E3 with an E2, UbcH5C. The E3 activity of Pex10p is essential for its peroxisome-restoring activity, being enhanced by another RING peroxin, Pex12p. The Pex10p·Pex12p complex catalyzes monoubiquitination of Pex5p at one of multiple lysine residues in vitro, following the dissociation of Pex5p from Pex14p and the PTS1 cargo. Several lines of evidence with lysine-to-arginine mutants of Pex5p demonstrate that Pex10p RING E3-mediated ubiquitination of Pex5p is required for its efficient export from peroxisomes to the cytosol and peroxisomal matrix protein import. RING peroxins are required for both modes of Pex5p ubiquitination, thus playing a pivotal role in Pex5p shuttling.
Collapse
Affiliation(s)
- Kanji Okumoto
- From the Department of Biology, Faculty of Sciences, and the Graduate School of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Hiromi Noda
- From the Department of Biology, Faculty of Sciences, and
| | - Yukio Fujiki
- From the Department of Biology, Faculty of Sciences, and
| |
Collapse
|
76
|
Zhang L, Li D, Xu R, Zheng S, He H, Wan J, Feng Q. Structural and functional analyses of a sterol carrier protein in Spodoptera litura. PLoS One 2014; 9:e81542. [PMID: 24454688 PMCID: PMC3893073 DOI: 10.1371/journal.pone.0081542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
Backgrounds In insects, cholesterol is one of the membrane components in cells and a precursor of ecdysteroid biosynthesis. Because insects lack two key enzymes, squalene synthase and lanosterol synthase, in the cholesterol biosynthesis pathway, they cannot autonomously synthesize cholesterol de novo from simple compounds and therefore have to obtain sterols from their diet. Sterol carrier protein (SCP) is a cholesterol-binding protein responsible for cholesterol absorption and transport. Results In this study, a model of the three-dimensional structure of SlSCPx-2 in Spodoptera litura, a destructive polyphagous agricultural pest insect in tropical and subtropical areas, was constructed. Docking of sterol and fatty acid ligands to SlSCPx-2 and ANS fluorescent replacement assay showed that SlSCPx-2 was able to bind with relatively high affinities to cholesterol, stearic acid, linoleic acid, stigmasterol, oleic acid, palmitic acid and arachidonate, implying that SlSCPx may play an important role in absorption and transport of these cholesterol and fatty acids from host plants. Site-directed mutation assay of SlSCPx-2 suggests that amino acid residues F53, W66, F89, F110, I115, T128 and Q131 are critical for the ligand-binding activity of the SlSCPx-2 protein. Virtual ligand screening resulted in identification of several lead compounds which are potential inhibitors of SlSCPx-2. Bioassay for inhibitory effect of five selected compounds showed that AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 inhibited the growth of S. litura larvae. Conclusions Compounds AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 selected based on structural modeling showed binding affinity to SlSCPx-2 protein and inhibitory effect on the growth of S. litura larvae.
Collapse
Affiliation(s)
- Lili Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ding Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Rui Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jian Wan
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
- * E-mail: (QF); (JW)
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- * E-mail: (QF); (JW)
| |
Collapse
|
77
|
Platta HW, Hagen S, Reidick C, Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 2013; 98:16-28. [PMID: 24345375 DOI: 10.1016/j.biochi.2013.12.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/05/2013] [Indexed: 12/29/2022]
Abstract
The biogenesis of peroxisomes is an ubiquitin-dependent process. In particular, the import of matrix proteins into the peroxisomal lumen requires the modification of import receptors with ubiquitin. The matrix proteins are synthesized on free polyribosomes in the cytosol and are recognized by import receptors via a peroxisomal targeting sequence (PTS). Subsequent to the transport of the receptor/cargo-complex to the peroxisomal membrane and the release of the cargo into the peroxisomal lumen, the PTS-receptors are exported back to the cytosol for further rounds of matrix protein import. The exportomer represents the molecular machinery required for the retrotranslocation of the PTS-receptors. It comprises enzymes for the ubiquitination as well as for the ATP-dependent extraction of the PTS-receptors from the peroxisomal membrane. Furthermore, recent evidence indicates a mechanistic interconnection of the ATP-dependent removal of the PTS-receptors with the translocation of the matrix protein into the organellar lumen. Interestingly, the components of the peroxisomal exportomer seem also to be involved in cellular tasks that are distinct from the ubiquitination and dislocation of the peroxisomal PTS-receptors. This includes work that indicates a central function of this machinery in the export of peroxisomal matrix proteins in plants, while a subset of exportomer components is involved in the meiocyte formation in some fungi, the peroxisome-chloroplast contact during photorespiration in plants and possibly even the selective degradation of peroxisomes via pexophagy. In this review, we want to discuss the central role of the exportomer during matrix protein import, but also highlight distinct roles of exportomer constituents in additional cellular processes. This article is part of a Special Issue entitled: Peroxisomes: biogenesis, functions and diseases.
Collapse
Affiliation(s)
- Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Stefanie Hagen
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Systembiochemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
78
|
De Berti FP, Capaldi S, Ferreyra R, Burgardt N, Acierno JP, Klinke S, Monaco HL, Ermácora MR. The crystal structure of sterol carrier protein 2 from Yarrowia lipolytica and the evolutionary conservation of a large, non-specific lipid-binding cavity. ACTA ACUST UNITED AC 2013; 14:145-53. [DOI: 10.1007/s10969-013-9166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/11/2013] [Indexed: 11/25/2022]
|
79
|
Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4:261. [PMID: 24069002 PMCID: PMC3781343 DOI: 10.3389/fphys.2013.00261] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.
Collapse
Affiliation(s)
- Sohel Hasan
- Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
| | | | | |
Collapse
|
80
|
Ma C, Hagstrom D, Polley SG, Subramani S. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J Biol Chem 2013; 288:27220-27231. [PMID: 23902771 DOI: 10.1074/jbc.m113.492694] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In its role as a mobile receptor for peroxisomal matrix cargo containing a peroxisomal targeting signal called PTS1, the protein Pex5 shuttles between the cytosol and the peroxisome lumen. Pex5 binds PTS1 proteins in the cytosol via its C-terminal tetratricopeptide domains and delivers them to the peroxisome lumen, where the receptor·cargo complex dissociates. The cargo-free receptor is exported to the cytosol for another round of import. How cargo release and receptor recycling are regulated is poorly understood. We found that Pex5 functions as a dimer/oligomer and that its protein interactions with itself (homo-oligomeric) and with Pex8 (hetero-oligomeric) control the binding and release of cargo proteins. These interactions are controlled by a redox-sensitive amino acid, cysteine 10 of Pex5, which is essential for the formation of disulfide bond-linked Pex5 forms, for high affinity cargo binding, and for receptor recycling. Disulfide bond-linked Pex5 showed the highest affinity for PTS1 cargo. Upon reduction of the disulfide bond by dithiothreitol, Pex5 transitioned to a noncovalent dimer, concomitant with the partial release of PTS1 cargo. Additionally, dissipation of the redox balance between the cytosol and the peroxisome lumen caused an import defect. A hetero-oligomeric interaction between the N-terminal domain (amino acids 1-110) of Pex5 and a conserved motif at the C terminus of Pex8 further facilitates cargo release, but only under reducing conditions. This interaction is also important for the release of PTS1 proteins. We suggest a redox-regulated model for Pex5 function during the peroxisomal matrix protein import cycle.
Collapse
Affiliation(s)
- Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Danielle Hagstrom
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Soumi Guha Polley
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, La Jolla, California 92093-0322.
| |
Collapse
|
81
|
Crystal structure of peroxisomal targeting signal-2 bound to its receptor complex Pex7p–Pex21p. Nat Struct Mol Biol 2013; 20:987-93. [DOI: 10.1038/nsmb.2618] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
|
82
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
83
|
Noguchi M, Okumoto K, Fujiki Y. System to quantify the import of peroxisomal matrix proteins by fluorescence intensity. Genes Cells 2013; 18:476-92. [PMID: 23573963 DOI: 10.1111/gtc.12051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/23/2013] [Indexed: 11/30/2022]
Abstract
Fourteen distinct peroxins are essential for peroxisome biogenesis in mammals, of which ten are involved in the import of matrix proteins into peroxisomes. Peroxisomal matrix protein import is regulated by various cellular factors; however, the mechanisms underlying this regulation are poorly understood. This is primarily because no quantitative detection method with high resolution is available to study the import of peroxisomal matrix proteins. Here, we developed a monitoring system that uses a fluorescent reporter that is stabilized in peroxisomes but is degraded in the cytosol. An FK506 binding protein 12 variant, termed destabilization domain (DD), is rapidly and constitutively degraded by proteasomes when expressed in mammalian cells. DD is reversibly protected by the addition of a specific synthetic ligand. In the absence of the ligand, a reporter molecule, enhanced GFP (EGFP) fused with DD and peroxisomal targeting signal 1 (DD-EGFP-PTS1), is largely degraded in the cytosol. By contrast, in the presence of the ligand, the reporter is stabilized and translocates into peroxisomes. Upon withdrawal of the ligand, the reporter in peroxisomes remains intact, whereas that in the cytosol is rapidly degraded. Thus, peroxisomal protein import can be readily quantified by measuring the fluorescence intensity of whole cells.
Collapse
Affiliation(s)
- Masafumi Noguchi
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
84
|
Platta HW, Hagen S, Erdmann R. The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci 2013; 70:1393-411. [PMID: 22983384 PMCID: PMC11113987 DOI: 10.1007/s00018-012-1136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Peroxisomes constitute a dynamic compartment of almost all eukaryotic cells. Depending on environmental changes and cellular demands peroxisomes can acquire diverse metabolic roles. The compartmentalization of peroxisomal matrix enzymes is a prerequisite to carry out their physiologic function. The matrix proteins are synthesized on free ribosomes in the cytosol and are ferried to the peroxisomal membrane by specific soluble receptors. Subsequent to cargo release into the peroxisomal matrix, the receptors are exported back to the cytosol to facilitate further rounds of matrix protein import. This dislocation step is accomplished by a remarkable machinery, which comprises enzymes required for the ubiquitination as well as the ATP-dependent extraction of the receptor from the membrane. Interestingly, receptor ubiquitination and dislocation are the only known energy-dependent steps in the peroxisomal matrix protein import process. The current view is that the export machinery of the receptors might function as molecular motor not only in the dislocation of the receptors but also in the import step of peroxisomal matrix protein by coupling ATP-dependent removal of the peroxisomal import receptor with cargo translocation into the organelle. In this review we will focus on the architecture and function of the peroxisomal receptor export machinery, the peroxisomal exportomer.
Collapse
Affiliation(s)
- Harald W. Platta
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Stefanie Hagen
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
85
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
86
|
TubStain: a universal peptide-tool to label microtubules. Histochem Cell Biol 2012; 138:531-40. [DOI: 10.1007/s00418-012-0992-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
87
|
Kim KH, Aulakh S, Paetzel M. The bacterial outer membrane β-barrel assembly machinery. Protein Sci 2012; 21:751-68. [PMID: 22549918 DOI: 10.1002/pro.2069] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/20/2012] [Indexed: 12/31/2022]
Abstract
β-Barrel proteins found in the outer membrane of Gram-negative bacteria serve a variety of cellular functions. Proper folding and assembly of these proteins are essential for the viability of bacteria and can also play an important role in virulence. The β-barrel assembly machinery (BAM) complex, which is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, has been the focus of many recent studies. This review summarizes the significant progress that has been made toward understanding the structure and function of the bacterial BAM complex.
Collapse
Affiliation(s)
- Kelly H Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
88
|
The relevance of the non-canonical PTS1 of peroxisomal catalase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1133-41. [PMID: 22546606 DOI: 10.1016/j.bbamcr.2012.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022]
Abstract
Catalase is sorted to peroxisomes via a C-terminal peroxisomal targeting signal 1 (PTS1), which binds to the receptor protein Pex5. Analysis of the C-terminal sequences of peroxisomal catalases from various species indicated that catalase never contains the typical C-terminal PTS1 tripeptide-SKL, but invariably is sorted to peroxisomes via a non-canonical sorting sequence. We analyzed the relevance of the non-canonical PTS1 of catalase of the yeast Hansenula polymorpha (-SKI). Using isothermal titration microcalorimetry, we show that the affinity of H. polymorpha Pex5 for a peptide containing -SKI at the C-terminus is 8-fold lower relative to a peptide that has a C-terminal -SKL. Fluorescence microscopy indicated that green fluorescent protein containing the -SKI tripeptide (GFP-SKI) has a prolonged residence time in the cytosol compared to GFP containing -SKL. Replacing the -SKI sequence of catalase into -SKL resulted in reduced levels of enzymatically active catalase in whole cell lysates together with the occurrence of catalase protein aggregates in the peroxisomal matrix. Moreover, the cultures showed a reduced growth yield in methanol-limited chemostats. Finally, we show that a mutant catalase variant that is unable to properly fold mislocalizes in protein aggregates in the cytosol. However, by replacing the PTS1 into -SKL the mutant variant accumulates in protein aggregates inside peroxisomes. Based on our findings we propose that the relatively weak PTS1 of catalase is important to allow proper folding of the enzyme prior to import into peroxisomes, thereby preventing the accumulation of catalase protein aggregates in the organelle matrix.
Collapse
|
89
|
Fodor K, Wolf J, Erdmann R, Schliebs W, Wilmanns M. Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol 2012; 10:e1001309. [PMID: 22529745 PMCID: PMC3328432 DOI: 10.1371/journal.pbio.1001309] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/05/2012] [Indexed: 12/21/2022] Open
Abstract
Alanine-glyoxylate aminotransferase is a peroxisomal enzyme, of which various missense mutations lead to irreversible kidney damage via primary hyperoxaluria type 1, in part caused by improper peroxisomal targeting. To unravel the molecular mechanism of its recognition by the peroxisomal receptor Pex5p, we have determined the crystal structure of the respective cargo-receptor complex. It shows an extensive protein/protein interface, with contributions from residues of the peroxisomal targeting signal 1 and additional loops of the C-terminal domain of the cargo. Sequence segments that are crucial for receptor recognition and hydrophobic core interactions within alanine-glyoxylate aminotransferase are overlapping, explaining why receptor recognition highly depends on a properly folded protein. We subsequently characterized several enzyme variants in vitro and in vivo and show that even minor protein fold perturbations are sufficient to impair Pex5p receptor recognition. We discuss how the knowledge of the molecular parameters for alanine-glyoxylate aminotransferase required for peroxisomal translocation could become useful for improved hyperoxaluria type 1 treatment.
Collapse
Affiliation(s)
- Krisztián Fodor
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Janina Wolf
- Department of Systems Biology, Faculty of Medicine, Institute for Physiological Chemistry, Ruhr University of Bochum, Bochum, Germany
| | - Ralf Erdmann
- Department of Systems Biology, Faculty of Medicine, Institute for Physiological Chemistry, Ruhr University of Bochum, Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biology, Faculty of Medicine, Institute for Physiological Chemistry, Ruhr University of Bochum, Bochum, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- * E-mail:
| |
Collapse
|
90
|
Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodríguez-Borges JE, Sá-Miranda C, Fransen M, Azevedo JE. Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 2012; 287:12815-27. [PMID: 22371489 DOI: 10.1074/jbc.m112.340158] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Peroxin 5 (PEX5), the peroxisomal protein shuttling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During the translocation step, PEX5 itself becomes inserted into the peroxisomal docking/translocation machinery. PEX5 is then monoubiquitinated at a conserved cysteine residue and extracted back into the cytosol in an ATP-dependent manner. We have previously shown that the ubiquitin-PEX5 thioester conjugate (Ub-PEX5) released into the cytosol can be efficiently disrupted by physiological concentrations of glutathione, raising the possibility that a fraction of Ub-PEX5 is nonenzymatically deubiquitinated in vivo. However, data suggesting that Ub-PEX5 is also a target of a deubiquitinase were also obtained in that work. Here, we used an unbiased biochemical approach to identify this enzyme. Our results suggest that ubiquitin-specific protease 9X (USP9X) is by far the most active deubiquitinase acting on Ub-PEX5, both in female rat liver and HeLa cells. We also show that USP9X is an elongated monomeric protein with the capacity to hydrolyze thioester, isopeptide, and peptide bonds. The strategy described here will be useful in identifying deubiquitinases acting on other ubiquitin conjugates.
Collapse
Affiliation(s)
- Cláudia P Grou
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Wang NJ, Lee CC, Cheng CS, Lo WC, Yang YF, Chen MN, Lyu PC. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB). BMC Genomics 2012; 13 Suppl 1:S9. [PMID: 22369214 PMCID: PMC3303721 DOI: 10.1186/1471-2164-13-s1-s9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plant non-specific lipid transfer proteins (nsLTPs) are small and basic proteins. Recently, nsLTPs have been reported involved in many physiological functions such as mediating phospholipid transfer, participating in plant defence activity against bacterial and fungal pathogens, and enhancing cell wall extension in tobacco. However, the lipid transfer mechanism of nsLTPs is still unclear, and comprehensive information of nsLTPs is difficult to obtain. METHODS In this study, we identified 595 nsLTPs from 121 different species and constructed an nsLTPs database--nsLTPDB--which comprises the sequence information, structures, relevant literatures, and biological data of all plant nsLTPs http://nsltpdb.life.nthu.edu.tw/. RESULTS Meanwhile, bioinformatics and statistics methods were implemented to develop a classification method for nsLTPs based on the patterns of the eight highly-conserved cysteine residues, and to suggest strict Prosite-styled patterns for Type I and Type II nsLTPs. The pattern of Type I is C X2 V X5-7 C [V, L, I] × Y [L, A, V] X8-13 CC × G X12 D × [Q, K, R] X2 CXC X16-21 P X2 C X13-15C, and that of Type II is C X4 L X2 C X9-11 P [S, T] X2 CC X5 Q X2-4 C[L, F]C X2 [A, L, I] × [D, N] P X10-12 [K, R] X4-5 C X3-4 P X0-2 C. Moreover, we referred the Prosite-styled patterns to the experimental mutagenesis data that previously established by our group, and found that the residues with higher conservation played an important role in the structural stability or lipid binding ability of nsLTPs. CONCLUSIONS Taken together, this research has suggested potential residues that might be essential to modulate the structural and functional properties of plant nsLTPs. Finally, we proposed some biologically important sites of the nsLTPs, which are described by using a new Prosite-styled pattern that we defined.
Collapse
Affiliation(s)
- Nai-Jyuan Wang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Ching Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Cheng Lo
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ya-Fen Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Nan Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
92
|
Cizmowski C, Jung M, Erdmann R, Schliebs W. A monoclonal antibody for in vivo detection of peroxisome-associated PTS1 receptor. Hybridoma (Larchmt) 2012; 30:387-91. [PMID: 21851240 DOI: 10.1089/hyb.2011.0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PEX5 is a key protein of the peroxisomal protein import machinery. This cycling receptor binds newly synthesized proteins with a peroxisomal targeting signal type 1 in the cytosol and directs them to the peroxisomal membrane. There, PEX5, together with its docking protein, forms a transient membrane-spanning channel that enables cargo-transport across the membrane. Through interaction with other multimeric membrane complexes, the receptor is released from the membrane back to the cytosol. Very little is known about the various conformational states of the receptor during its cycling. Here we report the generation and characterization of a mouse monoclonal antibody that recognizes in vivo primarily the membrane-associated form of the human PTS1 receptor.
Collapse
Affiliation(s)
- Christian Cizmowski
- Institute for Physiological Chemistry, Faculty of Medicine, Ruhr University of Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
93
|
Koch J, Brocard C. PEX11 proteins attract Mff and hFis1 to coordinate peroxisomal fission. J Cell Sci 2012; 125:3813-26. [DOI: 10.1242/jcs.102178] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fission of membrane-bound organelles requires membrane remodeling processes to enable and facilitate the assembly of the scission machinery. Proteins of the PEX11 family were shown to act as membrane elongation factors during peroxisome proliferation. Furthermore, through interaction with fission factors these proteins coordinate progression of membrane scission. Using a biochemical approach, we determined the membrane topology of PEX11γ, one of the three human PEX11 proteins. Analysis of mutated PEX11γ versions, which localize to peroxisomes revealed essential domains for membrane elongation including an amphipathic region and regulatory sequences thereof. Through pegylation assays and in vivo studies, we establish that the PEX11γ sequence encloses two membrane anchored domains, which dock an amphipathic region onto the peroxisomal membrane thereby regulating its elongation. The interaction profile of PEX11γ and mutated versions reveals a rearrangement between homo- and heterodimerization and association with fission factors. We also demonstrate the presence of the mitochondrial fission factor Mff on peroxisomes and its interaction with PEX11 proteins. Our data allow for assumptions on a molecular mechanism for the process of peroxisome proliferation in mammalian cells, that i) PEX11γ is required and acts in coordination with at least one of the other PEX11 proteins to protrude the peroxisomal membrane, ii) PEX11 proteins attract both Mff and hFis1 to their site of action and, iii) the concerted interaction of PEX11 proteins provides spatiotemporal control for growth and division of peroxisomes.
Collapse
|
94
|
Allan RK, Ratajczak T. Versatile TPR domains accommodate different modes of target protein recognition and function. Cell Stress Chaperones 2011; 16:353-67. [PMID: 21153002 PMCID: PMC3118826 DOI: 10.1007/s12192-010-0248-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/21/2010] [Accepted: 11/24/2010] [Indexed: 12/30/2022] Open
Abstract
The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.
Collapse
Affiliation(s)
- Rudi Kenneth Allan
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| | - Thomas Ratajczak
- Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009 Australia
- The Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009 Australia
| |
Collapse
|
95
|
Abstract
The biogenesis of peroxisomal matrix and membrane proteins is substantially different from the biogenesis of proteins of other subcellular compartments, such as mitochondria and chloroplasts, that are of endosymbiotic origin. Proteins are targeted to the peroxisome matrix through interactions between specific targeting sequences and receptor proteins, followed by protein translocation across the peroxisomal membrane. Recent advances have shed light on the nature of the peroxisomal translocon in matrix protein import and the molecular mechanisms of receptor recycling. Furthermore, the endoplasmic reticulum has been shown to play an important role in peroxisomal membrane protein biogenesis. Defining the molecular events in peroxisome assembly may enhance our understanding of the etiology of human peroxisome biogenesis disorders.
Collapse
Affiliation(s)
- Changle Ma
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
| | | | | |
Collapse
|
96
|
Bharti P, Schliebs W, Schievelbusch T, Neuhaus A, David C, Kock K, Herrmann C, Meyer HE, Wiese S, Warscheid B, Theiss C, Erdmann R. PEX14 is required for microtubule-based peroxisome motility in human cells. J Cell Sci 2011; 124:1759-68. [PMID: 21525035 DOI: 10.1242/jcs.079368] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have established a procedure for isolating native peroxisomal membrane protein complexes from cultured human cells. Protein-A-tagged peroxin 14 (PEX14), a central component of the peroxisomal protein translocation machinery was genomically expressed in Flp-In-293 cells and purified from digitonin-solubilized membranes. Size-exclusion chromatography revealed the existence of distinct multimeric PEX14 assemblies at the peroxisomal membrane. Using mass spectrometric analysis, almost all known human peroxins involved in protein import were identified as constituents of the PEX14 complexes. Unexpectedly, tubulin was discovered to be the major PEX14-associated protein, and direct binding of the proteins was demonstrated. Accordingly, peroxisomal remnants in PEX14-deficient cells have lost their ability to move along microtubules. In vivo and in vitro analyses indicate that the physical binding to tubulin is mediated by the conserved N-terminal domain of PEX14. Thus, human PEX14 is a multi-tasking protein that not only facilitates peroxisomal protein import but is also required for peroxisome motility by serving as membrane anchor for microtubules.
Collapse
Affiliation(s)
- Pratima Bharti
- Institute for Physiological Chemistry, Department of Systems Biology, Faculty of Medicine, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Santoro B, Hu L, Liu H, Saponaro A, Pian P, Piskorowski RA, Moroni A, Siegelbaum SA. TRIP8b regulates HCN1 channel trafficking and gating through two distinct C-terminal interaction sites. J Neurosci 2011; 31:4074-86. [PMID: 21411649 PMCID: PMC3077297 DOI: 10.1523/jneurosci.5707-10.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/17/2010] [Accepted: 01/09/2011] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the brain associate with their auxiliary subunit TRIP8b (also known as PEX5R), a cytoplasmic protein expressed as a family of alternatively spliced isoforms. Recent in vitro and in vivo studies have shown that association of TRIP8b with HCN subunits both inhibits channel opening and alters channel membrane trafficking, with some splice variants increasing and others decreasing channel surface expression. Here, we address the structural bases of the regulatory interactions between mouse TRIP8b and HCN1. We find that HCN1 and TRIP8b interact at two distinct sites: an upstream site where the C-linker/cyclic nucleotide-binding domain of HCN1 interacts with an 80 aa domain in the conserved central core of TRIP8b; and a downstream site where the C-terminal SNL (Ser-Asn-Leu) tripeptide of the channel interacts with the tetratricopeptide repeat domain of TRIP8b. These two interaction sites play distinct functional roles in the effects of TRIP8b on HCN1 trafficking and gating. Binding at the upstream site is both necessary and sufficient for TRIP8b to inhibit channel opening. It is also sufficient to mediate the trafficking effects of those TRIP8b isoforms that downregulate channel surface expression, in combination with the trafficking motifs present in the N-terminal region of TRIP8b. In contrast, binding at the downstream interaction site serves to stabilize the C-terminal domain of TRIP8b, allowing for optimal interaction between HCN1 and TRIP8b as well as for proper assembly of the molecular complexes that mediate the effects of TRIP8b on HCN1 channel trafficking.
Collapse
Affiliation(s)
| | - Lei Hu
- Departments of Neuroscience and
| | - Haiying Liu
- Howard Hughes Medical Institute, Columbia University, New York, New York 10032, and
| | - Andrea Saponaro
- Department of Biology and Consiglio Nazionale delle Ricerche-Istituto di Biofisica, University of Milan, 20133 Milano, Italy
| | | | | | - Anna Moroni
- Department of Biology and Consiglio Nazionale delle Ricerche-Istituto di Biofisica, University of Milan, 20133 Milano, Italy
| | - Steven A. Siegelbaum
- Departments of Neuroscience and
- Pharmacology
- Howard Hughes Medical Institute, Columbia University, New York, New York 10032, and
| |
Collapse
|
98
|
Williams CP, Schueller N, Thompson CA, van den Berg M, Van Haren SD, Erdmann R, Bond CS, Distel B, Schliebs W, Wilmanns M, Stanley WA. The Peroxisomal Targeting Signal 1 in sterol carrier protein 2 is autonomous and essential for receptor recognition. BMC BIOCHEMISTRY 2011; 12:12. [PMID: 21375735 PMCID: PMC3060121 DOI: 10.1186/1471-2091-12-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 03/04/2011] [Indexed: 01/05/2023]
Abstract
Background The majority of peroxisomal matrix proteins destined for translocation into the peroxisomal lumen are recognised via a C-terminal Peroxisomal Target Signal type 1 by the cycling receptor Pex5p. The only structure to date of Pex5p in complex with a cargo protein is that of the C-terminal cargo-binding domain of the receptor with sterol carrier protein 2, a small, model peroxisomal protein. In this study, we have tested the contribution of a second, ancillary receptor-cargo binding site, which was found in addition to the characterised Peroxisomal Target Signal type 1. Results To investigate the function of this secondary interface we have mutated two key residues from the ancillary binding site and analyzed the level of binding first by a yeast-two-hybrid assay, followed by quantitative measurement of the binding affinity and kinetics of purified protein components and finally, by in vivo measurements, to determine translocation capability. While a moderate but significant reduction of the interaction was found in binding assays, we were not able to measure any significant defects in vivo. Conclusions Our data therefore suggest that at least in the case of sterol carrier protein 2 the contribution of the second binding site is not essential for peroxisomal import. At this stage, however, we cannot rule out that other cargo proteins may require this ancillary binding site.
Collapse
|
99
|
Galland N, Michels PAM. Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. Eur J Cell Biol 2010; 89:621-37. [PMID: 20435370 DOI: 10.1016/j.ejcb.2010.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/28/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022] Open
Abstract
In recent decades, research on peroxisome biogenesis has been particularly boosted since the role of these organelles in metabolism became unraveled. Indeed in plants, yeasts and fungi, peroxisomes play an important role in the adaptation of metabolism during developmental processes and/or altered environmental conditions. In mammals their importance is illustrated by the fact that several severe human inherited diseases have been identified as peroxisome biogenesis disorders (PBD). Particularly interesting are the glycosomes - peroxisome-like organelles in trypanosomatids where the major part of the glycolytic pathway is sequestered - because it was demonstrated that proper compartmentalization of matrix proteins inside glycosomes is essential for the parasite. Although the overall process of peroxisome biogenesis seems well conserved between species, careful study of the literature reveals nonetheless many differences at various steps. In this review, we present a comparison of the first two steps of peroxisome biogenesis - receptor loading and docking at the peroxisomal membrane - in yeasts, mammals, plants and trypanosomatids and highlight major differences in the import process between species despite the conservation of (some of) the proteins involved. Some of the unique features of the process as it occurs in trypanosomatids will be discussed with regard to the possibilities for exploiting them for the development of compounds that could specifically disturb interactions between trypanosomatid peroxins. This strategy could eventually lead to the discovery of drugs against the diseases caused by these parasites.
Collapse
Affiliation(s)
- Nathalie Galland
- Research Unit for Tropical Diseases, de Duve Institute, Brussels, Belgium
| | | |
Collapse
|
100
|
Abstract
Despite their distinct biological functions, there is a surprising similarity between the composition of the machinery that imports proteins into peroxisomes and the machinery that degrades endoplasmic reticulum (ER)-associated proteins. The basis of this similarity lies in the fact that both machineries make use of the same basic mechanistic principle: the tagging of a substrate by monoubiquitylation or polyubiquitylation and its subsequent recognition and ATP-dependent removal from a membrane by ATPases of the ATPases associated with diverse cellular activities (AAA) family of proteins. We propose that the ER-associated protein degradation (ERAD)-like removal of the peroxisomal import receptor is mechanically coupled to protein translocation into the organelle, giving rise to a new concept of export-driven import.
Collapse
|