51
|
Zolkiewski M, Zhang T, Nagy M. Aggregate reactivation mediated by the Hsp100 chaperones. Arch Biochem Biophys 2012; 520:1-6. [PMID: 22306514 DOI: 10.1016/j.abb.2012.01.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/16/2022]
Abstract
Hsp100 family of molecular chaperones shows a unique capability to resolubilize and reactivate aggregated proteins. The Hsp100-mediated protein disaggregation is linked to the activity of other chaperones from the Hsp70 and Hsp40 families. The best-studied members of the Hsp100 family are the bacterial ClpB and Hsp104 from yeast. Hsp100 chaperones are members of a large super-family of energy-driven conformational "machines" known as AAA+ ATPases. This review describes the current mechanistic model of the chaperone-induced protein disaggregation and explains how the structural architecture of Hsp100 supports disaggregation and how the co-chaperones may participate in the Hsp100-mediated reactions.
Collapse
Affiliation(s)
- Michal Zolkiewski
- Department of Biochemistry, Kansas State University, Manhattan, 66506, USA.
| | | | | |
Collapse
|
52
|
Bebeacua C, Förster A, McKeown C, Meyer HH, Zhang X, Freemont PS. Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A 2012; 109:1098-103. [PMID: 22232657 PMCID: PMC3268311 DOI: 10.1073/pnas.1114341109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
p97 is a key regulator of numerous cellular pathways and associates with ubiquitin-binding adaptors to remodel ubiquitin-modified substrate proteins. How adaptor binding to p97 is coordinated and how adaptors contribute to substrate remodeling is unclear. Here we present the 3D electron cryomicroscopy reconstructions of the major Ufd1-Npl4 adaptor in complex with p97. Our reconstructions show that p97-Ufd1-Npl4 is highly dynamic and that Ufd1-Npl4 assumes distinct positions relative to the p97 ring upon addition of nucleotide. Our results suggest a model for substrate remodeling by p97 and also explains how p97-Ufd1-Npl4 could form other complexes in a hierarchical model of p97-cofactor assembly.
Collapse
Affiliation(s)
- Cecilia Bebeacua
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Andreas Förster
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Ciarán McKeown
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Hemmo H. Meyer
- Molecular Biology Laboratory, Faculty of Biology, Centre of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Xiaodong Zhang
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Paul S. Freemont
- Centre for Structural Biology and Centre for Biomolecular Electron Microscopy, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom; and
| |
Collapse
|
53
|
Moeller A, Zhao C, Fried MG, Wilson-Kubalek EM, Carragher B, Whiteheart SW. Nucleotide-dependent conformational changes in the N-Ethylmaleimide Sensitive Factor (NSF) and their potential role in SNARE complex disassembly. J Struct Biol 2012; 177:335-43. [PMID: 22245547 DOI: 10.1016/j.jsb.2011.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 11/25/2022]
Abstract
Homohexameric, N-Ethylmaleimide Sensitive Factor (NSF) disassembles Soluble NSF Attachment Protein Receptor (SNARE) complexes after membrane fusion, an essential step in vesicular trafficking. NSF contains three domains (NSF-N, NSF-D1, and NSF-D2), each contributing to activity. We combined electron microscopic (EM) analysis, analytical ultracentrifugation (AU) and functional mutagenesis to visualize NSF's ATPase cycle. 3D density maps show that NSF-D2 remains stable, whereas NSF-N undergoes large conformational changes. NSF-Ns splay out perpendicular to the ADP-bound hexamer and twist upwards upon ATP binding, producing a more compact structure. These conformations were confirmed by hydrodynamic, AU measurements: NSF-ATP sediments faster with a lower frictional ratio (f/f(0)). Hydrodynamic analyses of NSF mutants, with specific functional defects, define the structures underlying these conformational changes. Mapping mutations onto our 3D models allows interpretation of the domain movement and suggests a mechanism for NSF binding to and disassembly of SNARE complexes.
Collapse
Affiliation(s)
- Arne Moeller
- The Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
54
|
Langklotz S, Baumann U, Narberhaus F. Structure and function of the bacterial AAA protease FtsH. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:40-8. [PMID: 21925212 DOI: 10.1016/j.bbamcr.2011.08.015] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Proteolysis of regulatory proteins or key enzymes of biosynthetic pathways is a universal mechanism to rapidly adjust the cellular proteome to particular environmental needs. Among the five energy-dependent AAA(+) proteases in Escherichia coli, FtsH is the only essential protease. Moreover, FtsH is unique owing to its anchoring to the inner membrane. This review describes the structural and functional properties of FtsH. With regard to its role in cellular quality control and regulatory circuits, cytoplasmic and membrane substrates of the FtsH protease are depicted and mechanisms of FtsH-dependent proteolysis are discussed.
Collapse
Affiliation(s)
- Sina Langklotz
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
55
|
Desantis ME, Shorter J. The elusive middle domain of Hsp104 and ClpB: location and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:29-39. [PMID: 21843558 DOI: 10.1016/j.bbamcr.2011.07.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 12/17/2022]
Abstract
Hsp104 in yeast and ClpB in bacteria are homologous, hexameric AAA+ proteins and Hsp100 chaperones, which function in the stress response as ring-translocases that drive protein disaggregation and reactivation. Both Hsp104 and ClpB contain a distinctive coiled-coil middle domain (MD) inserted in the first AAA+ domain, which distinguishes them from other AAA+ proteins and Hsp100 family members. Here, we focus on recent developments concerning the location and function of the MD in these hexameric molecular machines, which remains an outstanding question. While the atomic structure of the hexameric assembly of Hsp104 and ClpB remains uncertain, recent advances have illuminated that the MD is critical for the intrinsic disaggregase activity of the hexamer and mediates key functional interactions with the Hsp70 chaperone system (Hsp70 and Hsp40) that empower protein disaggregation.
Collapse
Affiliation(s)
- Morgan E Desantis
- Department of Biochemistry and Biophysics, Perelman School of Medicine at The University of Pennsylvania, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
56
|
Edged watershed segmentation: a semi-interactive algorithm for segmentation of low-resolution maps from electron cryomicroscopy. J Struct Biol 2011; 176:127-32. [PMID: 21763426 DOI: 10.1016/j.jsb.2011.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/15/2011] [Accepted: 06/29/2011] [Indexed: 11/23/2022]
Abstract
Electron cryomicroscopy (cryo-EM) allows for the structural analysis of large protein complexes that may be difficult to study by other means. Frequently, maps of complexes from cryo-EM are obtained at resolutions between 10 and 25Å. To aid in the interpretation of these medium- to low-resolution maps, they may be subdivided into three-dimensional segments representing subunits or subcomplexes. This division is often accomplished using a manual segmentation approach. While extremely useful, manual segmentation is subjective. We have developed a novel semi-interactive segmentation algorithm that can incorporate prior knowledge of subunit composition or structure without biasing the boundaries between subunits or subcomplexes. This algorithm has been characterized with experimental and simulated cryo-EM density maps at resolutions between 10 and 25Å.
Collapse
|
57
|
Pietrosiuk A, Lenherr ED, Falk S, Bönemann G, Kopp J, Zentgraf H, Sinning I, Mogk A. Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem 2011; 286:30010-21. [PMID: 21733841 DOI: 10.1074/jbc.m111.253377] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ring-forming AAA(+) ATPases act in a plethora of cellular processes by remodeling macromolecules. The specificity of individual AAA(+) proteins is achieved by direct or adaptor-mediated association with substrates via distinct recognition domains. We investigated the molecular basis of substrate interaction for Vibrio cholerae ClpV, which disassembles tubular VipA/VipB complexes, an essential step of type VI protein secretion and bacterial virulence. We identified the ClpV recognition site within VipB, showed that productive ClpV-VipB interaction requires the oligomeric state of both proteins, solved the crystal structure of a ClpV N-domain-VipB peptide complex, and verified the interaction surface by mutant analysis. Our results show that the substrate is bound to a hydrophobic groove, which is formed by the addition of a single α-helix to the core N-domain. This helix is absent from homologous N-domains, explaining the unique substrate specificity of ClpV. A limited interaction surface between both proteins accounts for the dramatic increase in binding affinity upon ATP-driven ClpV hexamerization and VipA/VipB tubule assembly by coupling multiple weak interactions. This principle ensures ClpV selectivity toward the VipA/VipB macromolecular complex.
Collapse
Affiliation(s)
- Aleksandra Pietrosiuk
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Requirements for the catalytic cycle of the N-ethylmaleimide-Sensitive Factor (NSF). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:159-71. [PMID: 21689688 DOI: 10.1016/j.bbamcr.2011.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/23/2011] [Accepted: 06/06/2011] [Indexed: 12/23/2022]
Abstract
The N-ethylmaleimide-Sensitive Factor (NSF) was one of the initial members of the ATPases Associated with various cellular Activities Plus (AAA(+)) family. In this review, we discuss what is known about the mechanism of NSF action and how that relates to the mechanisms of other AAA(+) proteins. Like other family members, NSF binds to a protein complex (i.e., SNAP-SNARE complex) and utilizes ATP hydrolysis to affect the conformations of that complex. SNAP-SNARE complex disassembly is essential for SNARE recycling and sustained membrane trafficking. NSF is a homo-hexamer; each protomer is composed of an N-terminal domain, NSF-N, and two adjacent AAA-domains, NSF-D1 and NSF-D2. Mutagenesis analysis has established specific roles for many of the structural elements of NSF-D1, the catalytic ATPase domain, and NSF-N, the SNAP-SNARE binding domain. Hydrodynamic analysis of NSF, labeled with (Ni(2+)-NTA)(2)-Cy3, detected conformational differences in NSF, in which the ATP-bound conformation appears more compact than the ADP-bound form. This indicates that NSF undergoes significant conformational changes as it progresses through its ATP-hydrolysis cycle. Incorporating these data, we propose a sequential mechanism by which NSF uses NSF-N and NSF-D1 to disassemble SNAP-SNARE complexes. We also illustrate how analytical centrifugation might be used to study other AAA(+) proteins.
Collapse
|
59
|
Fernández-Higuero JÁ, Acebrón SP, Taneva SG, Del Castillo U, Moro F, Muga A. Allosteric communication between the nucleotide binding domains of caseinolytic peptidase B. J Biol Chem 2011; 286:25547-55. [PMID: 21642426 DOI: 10.1074/jbc.m111.231365] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (K(d) = 3-7 μm) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the K(d) decreases from ≈160-300 to 50-60 μm) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.
Collapse
Affiliation(s)
- José Ángel Fernández-Higuero
- Biophysics Unit (Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
60
|
Yamasaki T, Nakazaki Y, Yoshida M, Watanabe YH. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus. FEBS J 2011; 278:2395-403. [PMID: 21554542 DOI: 10.1111/j.1742-4658.2011.08167.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer.
Collapse
Affiliation(s)
- Takashi Yamasaki
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Japan
| | | | | | | |
Collapse
|
61
|
Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc Natl Acad Sci U S A 2011; 108:6915-20. [PMID: 21474779 DOI: 10.1073/pnas.1102828108] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yeast Hsp104 and its bacterial homolog, ClpB, are Clp/Hsp100 molecular chaperones and AAA+ ATPases. Hsp104 and ClpB collaborate with the Hsp70 and DnaK chaperone systems, respectively, to retrieve and reactivate stress-denatured proteins from aggregates. The action of Hsp104 and ClpB in promoting cell survival following heat stress is species-specific: Hsp104 cannot function in bacteria and ClpB cannot act in yeast. To determine the regions of Hsp104 and ClpB necessary for this specificity, we tested chimeras of Hsp104 and ClpB in vivo and in vitro. We show that the Hsp104 and ClpB middle domains dictate the species-specificity of Hsp104 and ClpB for cell survival at high temperature. In protein reactivation assays in vitro, chimeras containing the Hsp104 middle domain collaborate with Hsp70 and those with the ClpB middle domain function with DnaK. The region responsible for the specificity is within helix 2 and helix 3 of the middle domain. Additionally, several mutants containing amino acid substitutions in helix 2 of the ClpB middle domain are defective in protein disaggregation in collaboration with DnaK. In a bacterial two-hybrid assay, DnaK interacts with ClpB and with chimeras that have the ClpB middle domain, implying that species-specificity is due to an interaction between DnaK and the middle domain of ClpB. Our results suggest that the interaction between Hsp70/DnaK and helix 2 of the middle domain of Hsp104/ClpB determines the specificity required for protein disaggregation both in vivo and in vitro, as well as for cellular thermotolerance.
Collapse
|
62
|
Wang F, Mei Z, Qi Y, Yan C, Hu Q, Wang J, Shi Y. Structure and mechanism of the hexameric MecA-ClpC molecular machine. Nature 2011; 471:331-5. [PMID: 21368759 DOI: 10.1038/nature09780] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/22/2010] [Indexed: 11/09/2022]
Abstract
Regulated proteolysis by ATP-dependent proteases is universal in all living cells. Bacterial ClpC, a member of the Clp/Hsp100 family of AAA+ proteins (ATPases associated with diverse cellular activities) with two nucleotide-binding domains (D1 and D2), requires the adaptor protein MecA for activation and substrate targeting. The activated, hexameric MecA-ClpC molecular machine harnesses the energy of ATP binding and hydrolysis to unfold specific substrate proteins and translocate the unfolded polypeptide to the ClpP protease for degradation. Here we report three related crystal structures: a heterodimer between MecA and the amino domain of ClpC, a heterododecamer between MecA and D2-deleted ClpC, and a hexameric complex between MecA and full-length ClpC. In conjunction with biochemical analyses, these structures reveal the organizational principles behind the hexameric MecA-ClpC complex, explain the molecular mechanisms for MecA-mediated ClpC activation and provide mechanistic insights into the function of the MecA-ClpC molecular machine. These findings have implications for related Clp/Hsp100 molecular machines.
Collapse
Affiliation(s)
- Feng Wang
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
63
|
del Castillo U, Alfonso C, Acebrón SP, Martos A, Moro F, Rivas G, Muga A. A quantitative analysis of the effect of nucleotides and the M domain on the association equilibrium of ClpB. Biochemistry 2011; 50:1991-2003. [PMID: 21309513 DOI: 10.1021/bi101670s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ClpB is a hexameric molecular chaperone that, together with the DnaK system, has the ability to disaggregate stress-denatured proteins. The hexamer is a highly dynamic complex, able to reshuffle subunits. To further characterize the biological implications of the ClpB oligomerization state, the association equilibrium of the wild-type (wt) protein and of two deletion mutants, which lack part or the whole M domain, was quantitatively analyzed under different experimental conditions, using several biophysical [analytical ultracentrifugation, composition-gradient (CG) static light scattering, and circular dichroism] and biochemical (ATPase and chaperone activity) methods. We have found that (i) ClpB self-associates from monomers to form hexamers and higher-order oligomers that have been tentatively assigned to dodecamers, (ii) oligomer dissociation is not accompanied by modifications of the protein secondary structure, (iii) the M domain is engaged in intersubunit interactions that stabilize the protein hexamer, and (iv) the nucleotide-induced rearrangement of ClpB affects the protein oligomeric core, in addition to the proposed radial extension of the M domain. The difference in the stability of the ATP- and ADP-bound states [ΔΔG(ATP-ADP) = -10 kJ/mol] might explain how nucleotide exchange promotes the conformational change of the protein particle that drives its functional cycle.
Collapse
Affiliation(s)
- Urko del Castillo
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Bilbao 48080, Spain
| | | | | | | | | | | | | |
Collapse
|
64
|
Lee S, Augustin S, Tatsuta T, Gerdes F, Langer T, Tsai FTF. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease. J Biol Chem 2010; 286:4404-11. [PMID: 21147776 DOI: 10.1074/jbc.m110.158741] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.
Collapse
Affiliation(s)
- Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
65
|
Sielaff B, Tsai FT. The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner. J Mol Biol 2010; 402:30-7. [PMID: 20654624 PMCID: PMC2938849 DOI: 10.1016/j.jmb.2010.07.030] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/09/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Yeast Hsp104 is a ring-forming ATP-dependent protein disaggregase that, together with the cognate Hsp70 chaperone system, has the remarkable ability to rescue stress-damaged proteins from a previously aggregated state. Both upstream and downstream functions for the Hsp70 system have been reported, but it remains unclear how Hsp70/Hsp40 is coupled to Hsp104 protein remodeling activity. Hsp104 is a multidomain protein that possesses an N-terminal domain, an M-domain, and two tandem AAA(+) domains. The M-domain forms an 85-A long coiled coil and is a hallmark of the Hsp104 chaperone family. While the three-dimensional structure of Hsp104 has been determined, the function of the M-domain is unclear. Here, we demonstrate that the M-domain is essential for protein disaggregation, but dispensable for Hsp104 ATPase- and substrate-translocating activities. Remarkably, replacing the Hsp104 M-domain with that of bacterial ClpB, and vice versa, switches species specificity so that our chimeras now cooperate with the noncognate Hsp70/DnaK chaperone system. Our results demonstrate that the M-domain controls Hsp104 protein remodeling activities in an Hsp70/Hsp40-dependent manner, which is required to unleash Hsp104 protein disaggregating activity.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030
| |
Collapse
|
66
|
Gymnastics of Molecular Chaperones. Mol Cell 2010; 39:321-31. [DOI: 10.1016/j.molcel.2010.07.012] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/14/2010] [Accepted: 07/09/2010] [Indexed: 11/20/2022]
|
67
|
Effantin G, Ishikawa T, De Donatis GM, Maurizi MR, Steven AC. Local and global mobility in the ClpA AAA+ chaperone detected by cryo-electron microscopy: functional connotations. Structure 2010; 18:553-62. [PMID: 20462489 PMCID: PMC2871031 DOI: 10.1016/j.str.2010.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
The ClpA chaperone combines with the ClpP peptidase to perform targeted proteolysis in the bacterial cytoplasm. ClpA monomer has an N-terminal substrate-binding domain and two AAA+ ATPase domains (D1 and D2). ClpA hexamers stack axially on ClpP heptamers to form the symmetry-mismatched protease. We used cryo-electron microscopy to visualize the ClpA-ATPgammaS hexamer, in the context of ClpAP complexes. Two segments lining the axial channel show anomalously low density, indicating that these motifs, which have been implicated in substrate translocation, are mobile. We infer that ATP hydrolysis is accompanied by substantial structural changes in the D2 but not the D1 tier. The entire N domain is rendered invisible by large-scale fluctuations. When deletions of 10 and 15 residues were introduced into the linker, N domain mobility was reduced but not eliminated and changes were observed in enzymatic activities. Based on these observations, we present a pseudo-atomic model of ClpAP holoenzyme, a dynamic proteolytic nanomachine.
Collapse
Affiliation(s)
- Grégory Effantin
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Takashi Ishikawa
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD 20892, USA
- Department of Biology, Eidgenössische Technische Hochschule Zürich, CH8093 Zürich, Switzerland
| | - Gian Marco De Donatis
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael R. Maurizi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alasdair C. Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
68
|
CryoEM structure of Hsp104 and its mechanistic implication for protein disaggregation. Proc Natl Acad Sci U S A 2010; 107:8135-40. [PMID: 20404203 DOI: 10.1073/pnas.1003572107] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hsp104 is a ring-forming AAA+ machine that recognizes both aggregated proteins and prion-fibrils as substrates and, together with the Hsp70 system, remodels substrates in an ATP-dependent manner. Whereas the ability to disaggregate proteins is dependent on the Hsp104 M-domain, the location of the M-domain is controversial and its exact function remains unknown. Here we present cryoEM structures of two Hsp104 variants in both crosslinked and noncrosslinked form, in addition to the structure of a functional Hsp104 chimera harboring T4 lysozyme within the M-domain helix L2. Unexpectedly, we found that our Hsp104 chimera has gained function and can solubilize heat-aggregated beta-galactosidase (beta-gal) in the absence of the Hsp70 system. Our fitted structures confirm that the subunit arrangement of Hsp104 is similar to other AAA+ machines, and place the M-domains on the Hsp104 exterior, where they can potentially interact with large, aggregated proteins.
Collapse
|
69
|
Wendler P, Saibil HR. Cryo electron microscopy structures of Hsp100 proteins: crowbars in or out? Biochem Cell Biol 2010; 88:89-96. [PMID: 20130682 DOI: 10.1139/o09-164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Independent cryo electron microscopy (cryo-EM) studies of the closely related protein disaggregases ClpB and Hsp104 have resulted in two different models of subunit arrangement in the active hexamer. We compare the EM maps and resulting atomic structure fits, discuss their differences, and relate them to published experimental information in an attempt to discriminate between models. In addition, we present some general assessment criteria for low-resolution cryo-EM maps to offer non-structural biologists tools to evaluate these structures.
Collapse
Affiliation(s)
- Petra Wendler
- Department of Crystallography, Birkbeck College, Malet St., London WC1E 7HX, UK
| | | |
Collapse
|
70
|
Haslberger T, Bukau B, Mogk A. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem Cell Biol 2010; 88:63-75. [PMID: 20130680 DOI: 10.1139/o09-118] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The oligomeric AAA+ chaperones ClpB/Hsp104 mediate the reactivation of aggregated proteins, an activity that is crucial for the survival of cells during severe stress. Hsp104 is also essential for the propagation of yeast prions by severing prion fibres. Protein disaggregation depends on the cooperation of ClpB/Hsp104 with a cognate Hsp70 chaperone system. While Hsp70 chaperones are also involved in prion propagation, their precise role is much less well defined compared with its function in aggregate solubilization. Therefore, it remained unclear whether both ClpB/Hsp104 activities are based on common or different mechanisms. Novel data show that ClpB/Hsp104 uses a motor threading activity to remodel both protein aggregates and prion fibrils. Moreover, transfer of both types of substrates to the ClpB/Hsp104 processing pore site requires initial substrate interaction of Hsp70. Together these data emphasize the similarity of thermotolerance and prion propagation pathways and point to a shared mechanistic principle of Hsp70-ClpB/Hsp104-mediated solubilization of amorphous and ordered aggregates.
Collapse
Affiliation(s)
- Tobias Haslberger
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | |
Collapse
|
71
|
Vashist S, Cushman M, Shorter J. Applying Hsp104 to protein-misfolding disorders. Biochem Cell Biol 2010; 88:1-13. [PMID: 20130674 DOI: 10.1139/o09-121] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hsp104, a hexameric AAA+ ATPase found in yeast, transduces energy from cycles of ATP binding and hydrolysis to resolve disordered protein aggregates and cross-beta amyloid conformers. These disaggregation activities are often co-ordinated by the Hsp70 chaperone system and confer considerable selective advantages. First, renaturation of aggregated conformers by Hsp104 is critical for yeast survival after various environmental stresses. Second, amyloid remodeling by Hsp104 enables yeast to exploit multifarious prions as a reservoir of beneficial and heritable phenotypic variation. Curiously, although highly conserved in plants, fungi and bacteria, Hsp104 orthologues are absent from metazoa. Indeed, metazoan proteostasis seems devoid of a system that couples protein disaggregation to renaturation. Here, we review recent endeavors to enhance metazoan proteostasis by applying Hsp104 to the specific protein-misfolding events that underpin two deadly neurodegenerative amyloidoses. Hsp104 potently inhibits Abeta42 amyloidogenesis, which is connected with Alzheimer's disease, but appears unable to disaggregate preformed Abeta42 fibers. By contrast, Hsp104 inhibits and reverses the formation of alpha-synuclein oligomers and fibers, which are connected to Parkinson's disease. Importantly, Hsp104 antagonizes the degeneration of dopaminergic neurons induced by alpha-synuclein misfolding in the rat substantia nigra. These studies raise hopes for developing Hsp104 as a therapeutic agent.
Collapse
Affiliation(s)
- Shilpa Vashist
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
72
|
Grimminger-Marquardt V, Lashuel HA. Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers 2010; 93:252-76. [PMID: 19768774 DOI: 10.1002/bip.21301] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular chaperone Hsp104 plays a central role in the clearance of aggregates after heat shock and the propagation of yeast prions. Hsp104's disaggregation activity and prion propagation have been linked to its ability to resolubilize or remodel protein aggregates. However, Hsp104 has also the capacity to catalyze protein aggregation of some substrates at specific conditions. Hence, it is a molecular chaperone with two opposing activities with respect to protein aggregation. In yeast models of Huntington's disease, Hsp104 is required for the aggregation and toxicity of polyglutamine (polyQ), but the expression of Hsp104 in cellular and animal models of Huntington's and Parkinson's disease protects against polyQ and alpha-synuclein toxicity. Therefore, elucidating the molecular determinants and mechanisms underlying the ability of Hsp104 to switch between these two activities is of critical importance for understanding its function and could provide insight into novel strategies aimed at preventing or reversing the formation of toxic protein aggregation in systemic and neurodegenerative protein misfolding diseases. Here, we present an overview of the current molecular models and hypotheses that have been proposed to explain the role of Hsp104 in modulating protein aggregation and prion propagation. The experimental approaches and the evidences presented so far in relation to these models are examined. Our primary objective is to offer a critical review that will inspire the use of novel techniques and the design of new experiments to proceed towards a qualitative and quantitative understanding of the molecular mechanisms underlying the multifunctional properties of Hsp104 in vivo.
Collapse
Affiliation(s)
- Valerie Grimminger-Marquardt
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne (EPFL), FSV-BMI AI 2137.1, Station 15, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
73
|
Zietkiewicz S, Slusarz MJ, Slusarz R, Liberek K, Rodziewicz-Motowidło S. Conformational stability of the full-atom hexameric model of the ClpB chaperone from Escherichia coli. Biopolymers 2010; 93:47-60. [PMID: 19714768 DOI: 10.1002/bip.21294] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Escherichia coli heat shock protein ClpB, a member of the Hsp100 family, plays a crucial role in cellular thermotolerance. In co-operation with the Hsp70 chaperone system, it is able to solubilize proteins aggregated by heat shock conditions and refold them into the native state in an ATP-dependent way. It was established that the mechanism of ClpB action depends on the formation of a ring-shaped hexameric structure and the translocation of a protein substrate through an axial channel. The structural aspects of this process are not fully known. By means of homology modeling and protein-protein docking, we obtained a model of the hexameric arrangement of the full-length ClpB protein complexed with ATP. A molecular dynamics simulation of this model was performed to assess its flexibility and conformational stability. The high mobility of the "linker" M-domain, essential for the renaturing activity of ClpB, was demonstrated, and the size and shape of central channel were analyzed. In this model, we propose the coordinates for a loop between b4 and B6 structural elements, not defined in previous structural research, which faces the inside of the channel and may therefore play a role in substrate translocation.
Collapse
Affiliation(s)
- Szymon Zietkiewicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Kładki 24, Gdańsk 80-822, Poland
| | | | | | | | | |
Collapse
|
74
|
Varela C, Mauriaca C, Paradela A, Albar JP, Jerez CA, Chávez FP. New structural and functional defects in polyphosphate deficient bacteria: a cellular and proteomic study. BMC Microbiol 2010; 10:7. [PMID: 20067623 PMCID: PMC2817675 DOI: 10.1186/1471-2180-10-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/12/2010] [Indexed: 12/15/2022] Open
Abstract
Background Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS) structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP) formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA) cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.
Collapse
Affiliation(s)
- Cristian Varela
- Department of Biology, Faculty of Sciences, Laboratory of Molecular Microbiology and Biotechnology & Millennium Institute of Cell Dynamics and Biotechnology, University of Chile, Las Palmeras 3425, Nuñoa, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
75
|
The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation. Proc Natl Acad Sci U S A 2009; 106:21579-84. [PMID: 19955424 DOI: 10.1073/pnas.0910708106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hexameric membrane-spanning ATP-dependent metalloprotease FtsH is universally conserved in eubacteria, mitochondria, and chloroplasts, where it fulfills key functions in quality control and signaling. As a member of the self-compartmentalizing ATPases associated with various cellular activities (AAA+ proteases), FtsH converts the chemical energy stored in ATP via conformational rearrangements into a mechanical force that is used for substrate unfolding and translocation into the proteolytic chamber. The crystal structure of the ADP state of Thermotoga maritima FtsH showed a hexameric assembly consisting of a 6-fold symmetric protease disk and a 2-fold symmetric AAA ring. The 2.6 A resolution structure of the cytosolic region of apo-FtsH presented here reveals a new arrangement where the ATPase ring shows perfect 6-fold symmetry with the crucial pore residues lining an open circular entrance. Triggered by this conformational change, a substrate-binding edge beta strand appears within the proteolytic domain. Comparison of the apo- and ADP-bound structure visualizes an inward movement of the aromatic pore residues and generates a model of substrate translocation by AAA+ proteases. Furthermore, we demonstrate that mutation of a conserved glycine in the linker region inactivates FtsH.
Collapse
|
76
|
Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein. Proc Natl Acad Sci U S A 2009; 106:22233-8. [PMID: 19940245 DOI: 10.1073/pnas.0911937106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ClpB and Hsp104 are members of the AAA+ (ATPases associated with various cellular activities) family of proteins and are molecular machines involved in thermotolerance. They are hexameric proteins containing 12 ATP binding sites with two sites per protomer. ClpB and Hsp104 possess some innate protein remodeling activities; however, they require the collaboration of the DnaK/Hsp70 chaperone system to disaggregate and reactivate insoluble aggregated proteins. We investigated the mechanism by which ClpB couples ATP utilization to protein remodeling with and without the DnaK system. When wild-type ClpB, which is unable to remodel proteins alone in the presence of ATP, was mixed with a ClpB mutant that is unable to hydrolyze ATP, the heterohexamers surprisingly gained protein remodeling activity. Optimal protein remodeling by the heterohexamers in the absence of the DnaK system required approximately three active and three inactive protomers. In addition, the location of the active and inactive ATP binding sites in the hexamer was not important. The results suggest that in the absence of the DnaK system, ClpB acts by a probabilistic mechanism. However, when we measured protein disaggregation by ClpB heterohexamers in conjunction with the DnaK system, incorporation of a single inactive ClpB subunit blocked activity, supporting a sequential mechanism of ATP utilization. Taken together, the results suggest that the mechanism of ATP utilization by ClpB is adaptable and can vary depending on the specific substrate and the presence of the DnaK system.
Collapse
|
77
|
Acebrón SP, Martín I, del Castillo U, Moro F, Muga A. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett 2009; 583:2991-6. [PMID: 19698713 DOI: 10.1016/j.febslet.2009.08.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Intracellular protein aggregates formed under severe thermal stress can be reactivated by the concerted action of the Hsp70 system and Hsp100 chaperones. We analyzed here the interaction of DnaJ/DnaK and ClpB with protein aggregates. We show that aggregate properties modulate chaperone binding, which in turn determines aggregate reactivation efficiency. ClpB binding strictly depends on previous DnaK association with the aggregate. The affinity of ClpB for the aggregate-DnaK complex is low (K(d)=5-10 microM), indicating a weak interaction. Therefore, formation of the DnaK-ClpB bichaperone network is a three step process. After initial DnaJ binding, the cochaperone drives association of DnaK to aggregates, and in the third step, as shown here, DnaK mediates ClpB interaction with the aggregate surface.
Collapse
Affiliation(s)
- Sergio P Acebrón
- Unidad de Biofísica (CSIC-UPV/EHU), and Departamento de Bioquímica y Biología Molecular (UPV/EHU), Facultad de Ciencia y Tecnología, Universidad del País Vasco, PO Box 644, Bilbao, Spain
| | | | | | | | | |
Collapse
|
78
|
Nagy M, Wu HC, Liu Z, Kedzierska-Mieszkowska S, Zolkiewski M. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB. Protein Sci 2009; 18:287-93. [PMID: 19177562 DOI: 10.1002/pro.36] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hexameric AAA+ ATPases induce conformational changes in a variety of macromolecules. AAA+ structures contain the nucleotide-binding P-loop with the Walker A sequence motif: GxxGxGK(T/S). A subfamily of AAA+ sequences contains Asn in the Walker A motif instead of Thr or Ser. This noncanonical subfamily includes torsinA, an ER protein linked to human dystonia and DnaC, a bacterial helicase loader. Role of the noncanonical Walker A motif in the functionality of AAA+ ATPases has not been explored yet. To determine functional effects of introduction of Asn into the Walker A sequence, we replaced the Walker-A Thr with Asn in ClpB, a bacterial AAA+ chaperone which reactivates aggregated proteins. We found that the T-to-N mutation in Walker A partially inhibited the ATPase activity of ClpB, but did not affect the ClpB capability to associate into hexamers. Interestingly, the noncanonical Walker A sequence in ClpB induced preferential binding of ADP vs. ATP and uncoupled the linkage between the ATP-bound conformation and the high-affinity binding to protein aggregates. As a consequence, ClpB with the noncanonical Walker A sequence showed a low chaperone activity in vitro and in vivo. Our results demonstrate a novel role of the Walker-A Thr in sensing the nucleotide's gamma-phosphate and in maintaining an allosteric linkage between the P-loop and the aggregate binding site of ClpB. We postulate that AAA+ ATPases with the noncanonical Walker A might utilize distinct mechanisms to couple the ATPase cycle with their substrate-remodeling activity.
Collapse
Affiliation(s)
- Maria Nagy
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
79
|
Wendler P, Shorter J, Snead D, Plisson C, Clare DK, Lindquist S, Saibil HR. Motor mechanism for protein threading through Hsp104. Mol Cell 2009; 34:81-92. [PMID: 19362537 PMCID: PMC2689388 DOI: 10.1016/j.molcel.2009.02.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/29/2008] [Accepted: 02/25/2009] [Indexed: 12/04/2022]
Abstract
The protein-remodeling machine Hsp104 dissolves amorphous aggregates as well as ordered amyloid assemblies such as yeast prions. Force generation originates from a tandem AAA+ (ATPases associated with various cellular activities) cassette, but the mechanism and allostery of this action remain to be established. Our cryoelectron microscopy maps of Hsp104 hexamers reveal substantial domain movements upon ATP binding and hydrolysis in the first nucleotide-binding domain (NBD1). Fitting atomic models of Hsp104 domains to the EM density maps plus supporting biochemical measurements show how the domain movements displace sites bearing the substrate-binding tyrosine loops. This provides the structural basis for N- to C-terminal substrate threading through the central cavity, enabling a clockwise handover of substrate in the NBD1 ring and coordinated substrate binding between NBD1 and NBD2. Asymmetric reconstructions of Hsp104 in the presence of ATPγS or ATP support sequential rather than concerted ATP hydrolysis in the NBD1 ring.
Collapse
Affiliation(s)
- Petra Wendler
- Department of Crystallography, Birkbeck College, London, UK
| | | | | | | | | | | | | |
Collapse
|
80
|
Stability of the two wings of the coiled-coil domain of ClpB chaperone is critical for its disaggregation activity. Biochem J 2009; 421:71-7. [DOI: 10.1042/bj20082238] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ClpB chaperone forms a hexamer ring and rescues aggregated proteins in co-operation with the DnaK system. Each subunit of ClpB has two nucleotide-binding modules, AAA (ATPase associated with various cellular activities)-1 and AAA-2, and an 85-Å (1 Å=0.1 nm)-long coiled-coil. The coiled-coil consists of two halves: wing-1, leaning toward AAA-1, and wing-2, leaning away from all the domains. The coiled-coil is stabilized by leucine zipper-like interactions between leucine and isoleucine residues of two amphipathic α-helices that twist around each other to form each wing. To destabilize the two wings, we developed a series of mutants by replacing these residues with alanine. As the number of replaced residues increased, the chaperone activity was lost and the hexamer became unstable. The mutants, which had a stable hexameric structure but lost the chaperone activities, were able to exert the threading of soluble denatured proteins through their central pore. The destabilization of wing-1, but not wing-2, resulted in a several-fold stimulation of ATPase activity. These results indicate that stability of both wings of the coiled-coil is critical for full functioning of ClpB, but not for the central-pore threading of substrate proteins, and that wing-1 is involved in the communication between AAA-1 and AAA-2.
Collapse
|
81
|
Kojetin DJ, McLaughlin PD, Thompson RJ, Dubnau D, Prepiak P, Rance M, Cavanagh J. Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions. J Mol Biol 2009; 387:639-52. [PMID: 19361434 PMCID: PMC2692191 DOI: 10.1016/j.jmb.2009.01.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
The AAA(+) (ATPases associated with a variety of cellular activities) superfamily protein ClpC is a key regulator of cell development in Bacillus subtilis. As part of a large oligomeric complex, ClpC controls an array of cellular processes by recognizing, unfolding, and providing misfolded and aggregated proteins as substrates for the ClpP peptidase. ClpC is unique compared to other HSP100/Clp proteins, as it requires an adaptor protein for all fundamental activities. The NMR solution structure of the N-terminal repeat domain of ClpC (N-ClpCR) comprises two structural repeats of a four-helix motif. NMR experiments used to map the MecA adaptor protein interaction surface of N-ClpCR reveal that regions involved in the interaction possess conformational flexibility and conformational exchange on the microsecond-to-millisecond timescale. The electrostatic surface of N-ClpCR differs substantially from the N-domain of Escherichia coli ClpA and ClpB, suggesting that the electrostatic surface characteristics of HSP100/Clp N-domains may play a role in adaptor protein and substrate interaction specificity, and perhaps contribute to the unique adaptor protein requirement of ClpC.
Collapse
Affiliation(s)
- Douglas J. Kojetin
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Patrick D. McLaughlin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Richele J. Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - David Dubnau
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | - Peter Prepiak
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - John Cavanagh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
82
|
Doyle SM, Wickner S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 2008; 34:40-8. [PMID: 19008106 DOI: 10.1016/j.tibs.2008.09.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 12/11/2022]
Abstract
Heat-shock protein 104 (Hsp104) and caseinolytic peptidase B (ClpB), members of the AAA+ superfamily, are molecular machines involved in disaggregating insoluble protein aggregates, a process not long ago thought to be impossible. During extreme stress they are essential for cell survival. In addition, Hsp104 regulates prion assembly and disassembly. For most of their protein remodeling activities Hsp104 and ClpB work in collaboration with the Hsp70 or DnaK chaperone systems. Together, the two chaperones catalyze protein disaggregation and reactivation by a mechanism probably involving the extraction of polypeptides from aggregates by forced unfolding and translocation through the Hsp104/ClpB central cavity. The polypeptides are then released back into the cellular milieu for spontaneous or chaperone-mediated refolding.
Collapse
Affiliation(s)
- Shannon M Doyle
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
83
|
Frankenstein Z, Sperling J, Sperling R, Eisenstein M. FitEM2EM--tools for low resolution study of macromolecular assembly and dynamics. PLoS One 2008; 3:e3594. [PMID: 18974836 PMCID: PMC2572833 DOI: 10.1371/journal.pone.0003594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 10/09/2008] [Indexed: 11/19/2022] Open
Abstract
Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching) and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top.
Collapse
Affiliation(s)
- Ziv Frankenstein
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph Sperling
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
84
|
Karradt A, Sobanski J, Mattow J, Lockau W, Baier K. NblA, a key protein of phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a cyanobacterial Clp protease. J Biol Chem 2008; 283:32394-403. [PMID: 18818204 DOI: 10.1074/jbc.m805823200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When cyanobacteria are starved for nitrogen, expression of the NblA protein increases and thereby induces proteolytic degradation of phycobilisomes, light-harvesting complexes of pigmented proteins. Phycobilisome degradation leads to a color change of the cells from blue-green to yellow-green, referred to as bleaching or chlorosis. As reported previously, NblA binds via a conserved region at its C terminus to the alpha-subunits of phycobiliproteins, the main components of phycobilisomes. We demonstrate here that a highly conserved stretch of amino acids in the N-terminal helix of NblA is essential for protein function in vivo. Affinity purification of glutathione S-transferase-tagged NblA, expressed in a Nostoc sp. PCC7120 mutant lacking wild-type NblA, resulted in co-precipitation of ClpC, encoded by open reading frame alr2999 of the Nostoc chromosome. ClpC is a HSP100 chaperone partner of the Clp protease. ATP-dependent binding of NblA to ClpC was corroborated by in vitro pull-down assays. Introducing amino acid exchanges, we verified that the conserved N-terminal motif of NblA mediates the interaction with ClpC. Further results indicate that NblA binds phycobiliprotein subunits and ClpC simultaneously, thus bringing the proteins into close proximity. Altogether these results suggest that NblA may act as an adaptor protein that guides a ClpC.ClpP complex to the phycobiliprotein disks in the rods of phycobilisomes, thereby initiating the degradation process.
Collapse
Affiliation(s)
- Anne Karradt
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin
| | | | | | | | | |
Collapse
|
85
|
Lum R, Niggemann M, Glover JR. Peptide and protein binding in the axial channel of Hsp104. Insights into the mechanism of protein unfolding. J Biol Chem 2008; 283:30139-50. [PMID: 18755692 DOI: 10.1074/jbc.m804849200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AAA+ molecular chaperone Hsp104 mediates the extraction of proteins from aggregates by unfolding and threading them through its axial channel in an ATP-driven process. An Hsp104-binding peptide selected from solid phase arrays enhanced the refolding of a firefly luciferase-peptide fusion protein. Analysis of peptide binding using tryptophan fluorescence revealed two distinct binding sites, one in each AAA+ module of Hsp104. As a further indication of the relevance of peptide binding to the Hsp104 mechanism, we found that it competes with the binding of a model unfolded protein, reduced carboxymethylated alpha-lactalbumin. Inactivation of the pore loops in either AAA+ module prevented stable peptide and protein binding. However, when the loop in the first AAA+ was inactivated, stimulation of ATPase turnover in the second AAA+ module of this mutant was abolished. Drawing on these data, we propose a detailed mechanistic model of protein unfolding by Hsp104 in which an initial unstable interaction involving the loop in the first AAA+ module simultaneously promotes penetration of the substrate into the second axial channel binding site and activates ATP turnover in the second AAA+ module.
Collapse
Affiliation(s)
- Ronnie Lum
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
86
|
Kondo T. A cyanobacterial circadian clock based on the Kai oscillator. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:47-55. [PMID: 18419262 DOI: 10.1101/sqb.2007.72.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the cyanobacterium Synechococcus elongatus PCC 7942, the products of three genes (kaiA, kaiB, and kaiC) have been identified as essential components of the circadian clock. Recently, we reconstituted the self-sustainable circadian oscillation of the KaiC phosphorylation state by incubating purified KaiC with KaiA, KaiB, and ATP. This in vitro oscillation persisted for at least three cycles and the period was compensated against temperature changes. Period lengths observed in vivo in various kaiC mutants were consistent with those measured using in vitro mixtures containing the respective mutant KaiC proteins. These results demonstrate that the oscillation of KaiC phosphorylation is the primary pacemaker of the cyanobacterial circadian clock and reveal a novel function of proteins as timing devices that govern cellular metabolism. We further analyzed four aspects of the KaiC phosphorylation cycle in vitro: the interactions among KaiA, KaiB, and KaiC; the functions of the two phosphorylation sites, the energetics that determine the circadian period, and the mechanisms that synchronize the components of the Kai oscillator. From these analyses, we have proposed a circadian program consisting of the three proteins that keeps biological time in a living cell.
Collapse
Affiliation(s)
- T Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
87
|
Schumacher J, Joly N, Claeys-Bouuaert IL, Aziz SA, Rappas M, Zhang X, Buck M. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase. J Mol Biol 2008; 381:1-12. [PMID: 18599077 DOI: 10.1016/j.jmb.2008.05.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/16/2022]
Abstract
AAA(+) proteins are ubiquitous mechanochemical ATPases that use energy from ATP hydrolysis to remodel their versatile substrates. The AAA(+) characteristic hexameric ring assemblies raise important questions about if and how six often identical subunits coordinate hydrolysis and associated motions. The PspF AAA(+) domain, PspF(1-275), remodels the bacterial sigma(54)-RNA polymerase to activate transcription. Analysis of ATP substrate inhibition kinetics on ATP hydrolysis in hexameric PspF(1-275) indicates negative homotropic effects between subunits. Functional determinants required for allosteric control identify: (i) an important link between the ATP bound ribose moiety and the SensorII motif that would allow nucleotide-dependent *-helical */beta subdomain dynamics; and (ii) establishes a novel regulatory role for the SensorII helix in PspF, which may apply to other AAA(+) proteins. Consistent with functional data, homotropic control appears to depend on nucleotide state-dependent subdomain angles imposing dynamic symmetry constraints in the AAA(+) ring. Homotropic coordination is functionally important to remodel the sigma(54) promoter. We propose a structural symmetry-based model for homotropic control in the AAA(+) characteristic ring architecture.
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
88
|
Yakamavich JA, Baker TA, Sauer RT. Asymmetric nucleotide transactions of the HslUV protease. J Mol Biol 2008; 380:946-57. [PMID: 18582897 PMCID: PMC2517146 DOI: 10.1016/j.jmb.2008.05.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/27/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
Abstract
ATP binding and hydrolysis are critical for protein degradation by HslUV, a AAA(+) machine containing one or two HslU(6) ATPases and the HslV(12) peptidase. Although each HslU homohexamer has six potential ATP-binding sites, we show that only three or four ATP molecules bind at saturation and present evidence for three functional subunit classes. These results imply that only a subset of HslU and HslUV crystal structures represents functional enzyme conformations. Our results support an asymmetric mechanism of ATP binding and hydrolysis, and suggest that molecular contacts between HslU and HslV vary dynamically throughout the ATPase cycle. Nucleotide binding controls HslUV assembly and activity. Binding of a single ATP allows HslU to bind HslV, whereas additional ATPs must bind HslU to support substrate recognition and to activate ATP hydrolysis, which powers substrate unfolding and translocation. Thus, a simple thermodynamic hierarchy ensures that substrates bind to functional HslUV complexes, that ATP hydrolysis is efficiently coupled to protein degradation, and that working HslUV does not dissociate, allowing highly processive degradation.
Collapse
Affiliation(s)
- Joseph A Yakamavich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
89
|
Rosenzweig R, Osmulski PA, Gaczynska M, Glickman MH. The central unit within the 19S regulatory particle of the proteasome. Nat Struct Mol Biol 2008; 15:573-80. [PMID: 18511945 PMCID: PMC2481239 DOI: 10.1038/nsmb.1427] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 04/10/2008] [Indexed: 11/27/2022]
Abstract
The 26S proteasome is a multisubunit enzyme composed of a cylindrical catalytic core (20S) and a regulatory particle (19S) that together perform the essential degradation of cellular proteins tagged by ubiquitin. To date, however, substrate trajectory within the complex remains elusive. Here we describe a previously unknown functional unit within the 19S, comprising two subunits, Rpn1 and Rpn2. These toroids physically link the site of substrate recruitment with the site of proteolysis. Rpn2 interfaces with the 20S, whereas Rpn1 sits atop Rpn2, serving as a docking site for a substrate-recruitment factor. The 19S ATPases encircle the Rpn1-Rpn2 stack, covering the remainder of the 20S surface. Both Rpn1-Rpn2 and the ATPases are required for substrate translocation and gating of the proteolytic channel. Similar pairing of units is found in unfoldases and nuclear transporters, exposing common features of these protein nanomachines.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | | | | | |
Collapse
|
90
|
Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nat Struct Mol Biol 2008; 15:641-50. [PMID: 18488042 DOI: 10.1038/nsmb.1425] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/31/2008] [Indexed: 11/08/2022]
Abstract
The ring-forming AAA+ chaperone ClpB cooperates with the DnaK chaperone system to reactivate aggregated proteins. With the assistance of DnaK, ClpB extracts unfolded polypeptides from aggregates via substrate threading through its central channel. Here we analyze the processing of mixed aggregates consisting of protein fusions of misfolded and native domains. ClpB-DnaK reactivated all aggregated fusion proteins with similar efficiency, without unfolding native domains, demonstrating that partial threading of the misfolded moiety is sufficient to solubilize aggregates. Reactivation by ClpB-DnaK occurred even when two stably folded domains flanked the aggregated moiety, indicating threading of internal substrate segments. In contrast with the related AAA+ chaperone ClpC, ClpB lacks a robust unfolding activity, enabling it to sense the conformational state of substrates. ClpB rings are highly unstable, which may facilitate dissociation from trapped substrates during threading.
Collapse
|
91
|
Chaperones in control of protein disaggregation. EMBO J 2008; 27:328-35. [PMID: 18216875 DOI: 10.1038/sj.emboj.7601970] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 12/03/2007] [Indexed: 11/08/2022] Open
Abstract
The chaperone protein network controls both initial protein folding and subsequent maintenance of proteins in the cell. Although the native structure of a protein is principally encoded in its amino-acid sequence, the process of folding in vivo very often requires the assistance of molecular chaperones. Chaperones also play a role in a post-translational quality control system and thus are required to maintain the proper conformation of proteins under changing environmental conditions. Many factors leading to unfolding and misfolding of proteins eventually result in protein aggregation. Stress imposed by high temperature was one of the first aggregation-inducing factors studied and remains one of the main models in this field. With massive protein aggregation occurring in response to heat exposure, the cell needs chaperones to control and counteract the aggregation process. Elimination of aggregates can be achieved by solubilization of aggregates and either refolding of the liberated polypeptides or their proteolysis. Here, we focus on the molecular mechanisms by which heat-shock protein 70 (Hsp70), Hsp100 and small Hsp chaperones liberate and refold polypeptides trapped in protein aggregates.
Collapse
|
92
|
Yu Z, Gonciarz MD, Sundquist WI, Hill CP, Jensen GJ. Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p. J Mol Biol 2008; 377:364-77. [PMID: 18280501 PMCID: PMC2279015 DOI: 10.1016/j.jmb.2008.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 01/01/2008] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
The type I AAA (ATPase associated with a variety of cellular activities) ATPase Vps4 and its co-factor Vta1p/LIP5 function in membrane remodeling events that accompany cytokinesis, multivesicular body biogenesis, and retrovirus budding, apparently by driving disassembly and recycling of membrane-associated ESCRT (endosomal sorting complex required for transport)-III complexes. Here, we present electron cryomicroscopy reconstructions of dodecameric yeast Vps4p complexes with and without their microtubule interacting and transport (MIT) N-terminal domains and Vta1p co-factors. The ATPase domains of Vps4p form a bowl-like structure composed of stacked hexameric rings. The two rings adopt dramatically different conformations, with the "upper" ring forming an open assembly that defines the sides of the bowl and the lower ring forming a closed assembly that forms the bottom of the bowl. The N-terminal MIT domains of the upper ring localize on the symmetry axis above the cavity of the bowl, and the binding of six extended Vta1p monomers causes additional density to appear both above and below the bowl. The structures suggest models in which Vps4p MIT and Vta1p domains engage ESCRT-III substrates above the bowl and help transfer them into the bowl to be pumped through the center of the dodecameric assembly.
Collapse
Affiliation(s)
- Zhiheng Yu
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125
| | - Malgorzata D. Gonciarz
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Room 4100, Salt Lake City, UT 84112-5650
| | - Wesley I. Sundquist
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Room 4100, Salt Lake City, UT 84112-5650
| | - Christopher P. Hill
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Room 4100, Salt Lake City, UT 84112-5650
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125
| |
Collapse
|
93
|
Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem Soc Trans 2008; 36:120-5. [PMID: 18208398 DOI: 10.1042/bst0360120] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A protein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and mediates the refolding or degradation of misfolded proteins. Ring-forming AAA+ (ATPase associated with various cellular activities) proteins play crucial roles in both processes by co-operating with either peptidases or chaperone systems. Peptidase-associated AAA+ proteins bind substrates and thread them through their axial channel into the attached proteolytic chambers for degradation. In contrast, the AAA+ protein ClpB evolved independently from an interacting peptidase and co-operates with a cognate Hsp70 (heat-shock protein 70) chaperone system to solubilize and refold aggregated proteins. The activity of this bi-chaperone system is crucial for the survival of bacteria, yeast and plants during severe stress conditions. Hsp70 acts at initial stages of the disaggregation process, enabling ClpB to extract single unfolded polypeptides from the aggregate via a threading activity. Although both classes of AAA+ proteins share a common threading activity, it is apparent that their divergent evolution translates into specific mechanisms, reflecting adaptations to their respective functions. The ClpB-specific M-domain (middle domain) represents such an extra feature that verifies ClpB as the central disaggregase in vivo. M-domains act as regulatory devices to control both ClpB ATPase activity and the Hsp70-dependent binding of aggregated proteins to the ClpB pore, thereby coupling the Hsp70 chaperone activity with the ClpB threading motor to ensure efficient protein disaggregation.
Collapse
|
94
|
Werbeck ND, Schlee S, Reinstein J. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB. J Mol Biol 2008; 378:178-90. [PMID: 18343405 DOI: 10.1016/j.jmb.2008.02.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
Abstract
The bacterial AAA+ protein ClpB and its eukaryotic homologue Hsp104 ensure thermotolerance of their respective organisms by reactivating aggregated proteins in cooperation with the Hsp70/Hsp40 chaperone system. Like many members of the AAA+ superfamily, the ClpB protomers form ringlike homohexameric complexes. The mechanical energy necessary to disentangle protein aggregates is provided by ATP hydrolysis at the two nucleotide-binding domains of each monomer. Previous studies on ClpB and Hsp104 show a complex interplay of domains and subunits resulting in homotypic and heterotypic cooperativity. Using mutations in the Walker A and Walker B nucleotide-binding motifs in combination with mixing experiments we investigated the degree of inter-subunit coupling with respect to different aspects of the ClpB working cycle. We find that subunits are tightly coupled with regard to ATPase and chaperone activity, but no coupling can be observed for ADP binding. Comparison of the data with statistical calculations suggests that for double Walker mutants, approximately two in six subunits are sufficient to abolish chaperone and ATPase activity completely. In further experiments, we determined the dynamics of subunit reshuffling. Our results show that ClpB forms a very dynamic complex, reshuffling subunits on a timescale comparable to steady-state ATP hydrolysis. We propose that this could be a protection mechanism to prevent very stable aggregates from becoming suicide inhibitors for ClpB.
Collapse
Affiliation(s)
- Nicolas D Werbeck
- Max-Planck-Institute for Medical Research, Department of Biomolecular Mechanisms, Jahnstrasse 29 D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
95
|
Wendler P, Shorter J, Plisson C, Cashikar AG, Lindquist S, Saibil HR. Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 2008; 131:1366-77. [PMID: 18160044 PMCID: PMC2211523 DOI: 10.1016/j.cell.2007.10.047] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/28/2007] [Accepted: 10/19/2007] [Indexed: 11/28/2022]
Abstract
Hsp104, a yeast protein-remodeling factor of the AAA+ (ATPases associated with various cellular activities) superfamily, and its homologs in bacteria and plants mediate cell recovery after severe stress by disaggregating denatured proteins through a poorly understood mechanism. Here, we present cryo-electron microscopy maps and domain fitting of Hsp104 hexamers, revealing an unusual arrangement of AAA+ modules with the prominent coiled-coil domain intercalated between the AAA+ domains. This packing results in a greatly expanded cavity, which is capped at either end by N- and C-terminal domains. The fitted structures as well as mutation of conserved coiled-coil arginines suggest that the coiled-coil domain plays a major role in the extraction of proteins from aggregates, providing conserved residues for key functions in ATP hydrolysis and potentially for substrate interaction. The large cavity could enable the uptake of polypeptide loops without a requirement for exposed N or C termini.
Collapse
Affiliation(s)
- Petra Wendler
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | |
Collapse
|
96
|
Liberek K, Lewandowska A, Zietkiewicz S. Chaperones in control of protein disaggregation. EMBO J 2008. [PMID: 18216875 DOI: 10.1038/sj.emboj] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The chaperone protein network controls both initial protein folding and subsequent maintenance of proteins in the cell. Although the native structure of a protein is principally encoded in its amino-acid sequence, the process of folding in vivo very often requires the assistance of molecular chaperones. Chaperones also play a role in a post-translational quality control system and thus are required to maintain the proper conformation of proteins under changing environmental conditions. Many factors leading to unfolding and misfolding of proteins eventually result in protein aggregation. Stress imposed by high temperature was one of the first aggregation-inducing factors studied and remains one of the main models in this field. With massive protein aggregation occurring in response to heat exposure, the cell needs chaperones to control and counteract the aggregation process. Elimination of aggregates can be achieved by solubilization of aggregates and either refolding of the liberated polypeptides or their proteolysis. Here, we focus on the molecular mechanisms by which heat-shock protein 70 (Hsp70), Hsp100 and small Hsp chaperones liberate and refold polypeptides trapped in protein aggregates.
Collapse
Affiliation(s)
- Krzysztof Liberek
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Gdansk, Poland.
| | | | | |
Collapse
|
97
|
Roll-Mecak A, Vale RD. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 2008; 451:363-7. [PMID: 18202664 PMCID: PMC2882799 DOI: 10.1038/nature06482] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 11/16/2007] [Indexed: 11/09/2022]
Abstract
Spastin, the most common locus for mutations in hereditary spastic paraplegias, and katanin are related microtubule-severing AAA ATPases involved in constructing neuronal and non-centrosomal microtubule arrays and in segregating chromosomes. The mechanism by which spastin and katanin break and destabilize microtubules is unknown, in part owing to the lack of structural information on these enzymes. Here we report the X-ray crystal structure of the Drosophila spastin AAA domain and provide a model for the active spastin hexamer generated using small-angle X-ray scattering combined with atomic docking. The spastin hexamer forms a ring with a prominent central pore and six radiating arms that may dock onto the microtubule. Helices unique to the microtubule-severing AAA ATPases surround the entrances to the pore on either side of the ring, and three highly conserved loops line the pore lumen. Mutagenesis reveals essential roles for these structural elements in the severing reaction. Peptide and antibody inhibition experiments further show that spastin may dismantle microtubules by recognizing specific features in the carboxy-terminal tail of tubulin. Collectively, our data support a model in which spastin pulls the C terminus of tubulin through its central pore, generating a mechanical force that destabilizes tubulin-tubulin interactions within the microtubule lattice. Our work also provides insights into the structural defects in spastin that arise from mutations identified in hereditary spastic paraplegia patients.
Collapse
Affiliation(s)
- Antonina Roll-Mecak
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, USA
| | | |
Collapse
|
98
|
Abstract
Many of the fatal neurodegenerative disorders that plague humankind, including Alzheimer's and Parkinson's disease, are connected with the misfolding of specific proteins into a surprisingly generic fibrous conformation termed amyloid. Prior to amyloid fiber assembly, many proteins populate a common oligomeric conformation, which may be severely cytotoxic. Therapeutic innovations are desperately sought to safely reverse this aberrant protein aggregation and return proteins to normal function. Whether mammalian cells possess any such endogenous activity remains unclear. By contrast, fungi, plants and bacteria all express Hsp104, a protein-remodeling factor, which synergizes with the Hsp70 chaperone system to resolve aggregated proteins and restore their functionality. Surprisingly, amyloids can also be adaptive. In yeast, Hsp104 directly regulates the amyloidogenesis of several prion proteins, which can confer selective advantages. Here, I review the modus operandi of Hsp104 and showcase efforts to unleash Hsp104 on the protein-misfolding events connected to disparate neurodegenerative amyloidoses.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
99
|
Tucker PA, Sallai L. The AAA+ superfamily--a myriad of motions. Curr Opin Struct Biol 2007; 17:641-52. [PMID: 18023171 DOI: 10.1016/j.sbi.2007.09.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/13/2007] [Accepted: 09/28/2007] [Indexed: 11/19/2022]
Abstract
ATPases associated with various cellular activities are aptly named. They are the engines that drive processes such as protein degradation, protein refolding, sigma(54)-dependent transcriptional activation, DNA helicase activity, DNA replication initiation, and cellular cargo transport. Recent structural information derived from biochemical studies, electron microscopy (EM), small-angle X-ray scattering (SAXS), and X-ray crystallography are beginning to show how, at an atomic level, some of these systems use the conformational changes generated during the ATP hydrolysis cycle. Structural highlights in the processes mentioned are provided by work on ClpX and p97, ClpB, PspF and NtrC, RuvBL1, DnaA and the papillomavirus E1 initiator protein and dynein. The results emphasize the versatility of the AAA+ core domain.
Collapse
Affiliation(s)
- Paul A Tucker
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D22603 Hamburg, Germany.
| | | |
Collapse
|
100
|
Ortega ME, Gaussier H, Catalano CE. The DNA maturation domain of gpA, the DNA packaging motor protein of bacteriophage lambda, contains an ATPase site associated with endonuclease activity. J Mol Biol 2007; 373:851-65. [PMID: 17870092 PMCID: PMC2082050 DOI: 10.1016/j.jmb.2007.07.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 12/17/2022]
Abstract
Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in Escherichia coli. Biochemical characterization of gpA-DeltaN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A "P-loop" sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme, DNA maturation and DNA packaging, are discussed.
Collapse
Affiliation(s)
- Marcos E. Ortega
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO
| | - Helene Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
| | - Carlos E. Catalano
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
| |
Collapse
|