51
|
Qi H, Zhu H, Lou M, Fan Y, Liu H, Shen J, Li Z, Lv X, Shan J, Zhu L, Chin YE, Shao J. Interferon regulatory factor 1 transactivates expression of human DNA polymerase η in response to carcinogen N-methyl-N'-nitro-N-nitrosoguanidine. J Biol Chem 2012; 287:12622-33. [PMID: 22367195 DOI: 10.1074/jbc.m111.313429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA polymerase η (Polη) implements translesion DNA synthesis but has low fidelity in replication. We have previously shown that Polη plays an important role in the genesis of nontargeted mutations at undamaged DNA sites in cells exposed to the carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Here, we report that MNNG-induced Polη expression in an interferon regulatory factor 1 (IRF1)-dependent manner in human cells. Mutagenesis analysis showed that four critical residues (Arg-82, Cys-83, Asn-86, and Ser-87) located in the IRF family conserved DNA binding domain-helix α3 were involved in DNA binding and POLH transactivation by IRF1. Furthermore, Polη up-regulation induced by IRF1 was responsible for the increase of mutation frequency in a SupF shuttle plasmid replicated in the MNNG-exposed cells. Interestingly, IRF1 was acetylated by the histone acetyltransferase CBP in these cells. Lys → Arg substitution revealed that Lys-78 of helix α3 was the major acetylation site, and the IRF1-K78R mutation partially inhibited DNA binding and its transcriptional activity. Thus, we propose that IRF1 activation is responsible for MNNG-induced Polη up-regulation, which contributes to mutagenesis and ultimately carcinogenesis in cells.
Collapse
Affiliation(s)
- Hongyan Qi
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Havens CG, Shobnam N, Guarino E, Centore RC, Zou L, Kearsey SE, Walter JC. Direct role for proliferating cell nuclear antigen in substrate recognition by the E3 ubiquitin ligase CRL4Cdt2. J Biol Chem 2012; 287:11410-21. [PMID: 22303007 DOI: 10.1074/jbc.m111.337683] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4(Cdt2) substrates contain a "PIP degron," which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4(Cdt2) for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4(Cdt2) substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4(Cdt2) recruitment to chromatin. Our data show that the interaction of CRL4(Cdt2) with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Jung YS, Qian Y, Chen X. DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation. DNA Repair (Amst) 2011; 11:177-84. [PMID: 22056306 DOI: 10.1016/j.dnarep.2011.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DNA polymerase eta (PolH), the product of the xeroderma pigmentosum variant (XPV) gene and a Y-family DNA polymerase, plays a pivotal role in translesion DNA synthesis. Loss of PolH leads to early onset of malignant skin cancer in XPV patients and increases UV-induced carcinogenesis. Thus, the pathways by which PolH expression and activity are controlled may be explored as a strategy to prevent UV-induced cancer. In this study, we found that Mdm2, a RING finger E3 ligase, promotes PolH degradation. Specifically, we showed that knockdown of Mdm2 increases PolH expression in both p53-proficient and -deficient cells. In addition, we showed that UV-induced PolH degradation is attenuated by Mdm2 knockdown. In contrast, ectopically expression of Mdm2 decreases PolH expression, which can be abrogated by the proteasome inhibitor MG132. Moreover, we showed that Mdm2 physically associates with PolH and promotes PolH polyubiquitination in vivo and in vitro. Finally, we showed that knockdown of Mdm2 increases the formation of PolH replication foci and decreases the sensitivity of cells to UV-induced lesions in a PolH-dependent manner. Taken together, we uncovered that Mdm2 serves as an E3 ligase for PolH polyubiquitination and proteasomal degradation in cells under the basal condition and in response to UV irradiation.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Comparative Oncology Laboratory, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
54
|
Li Y, Jaramillo-Lambert A, Hao J, Yang Y, Zhu W. The stability of histone acetyltransferase general control non-derepressible (Gcn) 5 is regulated by Cullin4-RING E3 ubiquitin ligase. J Biol Chem 2011; 286:41344-41352. [PMID: 21987584 DOI: 10.1074/jbc.m111.290767] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone acetyltransferases play important roles in the regulation of chromatin structure and gene transcription. As one of the most important histone acetyltransferases, general control non-derepressible (Gcn) 5 has been linked to diverse cellular processes and tumorigenesis as well. We have recently identified a functional link between Gcn5 and acidic nucleoplasmic DNA-binding protein 1 (And-1) that is elevated in multiple cancer cells and is essential for Gcn5 protein stability. However, the mechanism by which And-1 regulates Gcn5 protein stability remains unknown. Here we show that the ablation of Cullin4-RING E3 ubiquitin ligase (CRL4) leads to the stabilization of Gcn5 in cells with depleted And-1, and Cdc10-dependent transcript 2 (Cdt2) serves as a substrate receptor protein of CRL4. Overexpression of Cdt2 reduces the Gcn5 protein levels, and CRL(Cdt2) is sufficient to ubiquitinate Gcn5 both in vivo and in vitro. And-1 stabilizes Gcn5 by impairing the interaction between Gcn5 and CRL(Cdt2) and thereby preventing Gcn5 ubiquitination and degradation. The degradation of Gcn5 is not dependent on proliferating cell nuclear antigen, an important player involved in CRL(Cdt2)-mediated protein degradation. Thus, CRL(Cdt2) and And-1 play an essential role in the regulation of Gcn5 protein stability. This study provides us with the mechanistic basis to develop alternative approaches to inhibit Gcn5 activity for cancer therapy.
Collapse
Affiliation(s)
- Yongming Li
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037
| | - Aimee Jaramillo-Lambert
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037
| | - Jing Hao
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037
| | - Yi Yang
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037
| | - Wenge Zhu
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037.
| |
Collapse
|
55
|
Rytinki MM, Lakso M, Pehkonen P, Aarnio V, Reisner K, Peräkylä M, Wong G, Palvimo JJ. Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans. Cell Mol Life Sci 2011; 68:3219-32. [PMID: 21253676 PMCID: PMC11114839 DOI: 10.1007/s00018-011-0627-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 12/03/2010] [Accepted: 01/06/2011] [Indexed: 01/17/2023]
Abstract
Small ubiquitin-related modifiers (SUMOs) are important regulator proteins. Caenorhabditis elegans contains a single SUMO ortholog, SMO-1, necessary for the reproduction of C. elegans. In this study, we constructed transgenic C. elegans strains expressing human SUMO-1 under the control of pan-neuronal (aex-3) or pan-muscular (myo-4) promoter and SUMO-2 under the control of myo-4 promoter. Interestingly, muscular overexpression of SUMO-1 or -2 resulted in morphological changes of the posterior part of the nematode. Movement, reproduction and aging of C. elegans were perturbed by the overexpression of SUMO-1 or -2. Genome-wide expression analyses revealed that several genes encoding components of SUMOylation pathway and ubiquitin-proteasome system were upregulated in SUMO-overexpressing nematodes. Since muscular overexpression of SMO-1 also brought up reproductive and mobility perturbations, our results imply that the phenotypes were largely due to an excess of SUMO, suggesting that a tight control of SUMO levels is important for the normal development of multicellular organisms.
Collapse
Affiliation(s)
- Miia M. Rytinki
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Merja Lakso
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
| | - Petri Pehkonen
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Vuokko Aarnio
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Kaja Reisner
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
- Department of Developmental Biology, Institute of Zoology and Hydrobiology, University of Tartu, 46 Vanemuise Street, 51014 Tartu, Estonia
| | - Mikael Peräkylä
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Garry Wong
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio, Finland
- Department of Biosciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jorma J. Palvimo
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
56
|
Abstract
Eukaryotic cell cycle transitions are driven by E3 ubiquitin ligases that catalyze the ubiquitylation and destruction of specific protein targets. For example, the anaphase-promoting complex/cyclosome (APC/C) promotes the exit from mitosis via destruction of securin and mitotic cyclins, whereas CRL1(Skp2) allows entry into S phase by targeting the destruction of the cyclin-dependent kinase (CDK) inhibitor p27. Recently, an E3 ubiquitin ligase called CRL4(Cdt2) has been characterized, which couples proteolysis to DNA synthesis via an unusual mechanism that involves display of substrate degrons on the DNA polymerase processivity factor PCNA. Through its destruction of Cdt1, p21, and Set8, CRL4(Cdt2) has emerged as a master regulator that prevents rereplication in S phase. In addition, it also targets other factors such as E2F and DNA polymerase η. In this review, we discuss our current understanding of the molecular mechanism of substrate recognition by CRL4(Cdt2) and how this E3 ligase helps to maintain genome integrity.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
57
|
Lehmann AR. Ubiquitin-family modifications in the replication of DNA damage. FEBS Lett 2011; 585:2772-9. [PMID: 21704031 DOI: 10.1016/j.febslet.2011.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
The cell uses specialised Y-family DNA polymerases or damage avoidance mechanisms to replicate past damaged sites in DNA. These processes are under complex regulatory systems, which employ different types of post-translational modification. All the Y-family polymerases have ubiquitin binding domains that bind to mono-ubiquitinated PCNA to effect the switching from replicative to Y-family polymerase. Ubiquitination and de-ubiquitination of PCNA are tightly regulated. There is also evidence for another as yet unidentified ubiquitinated protein being involved in recruitment of Y-family polymerases to chromatin. Poly-ubiquitination of PCNA stimulates damage avoidance, and, at least in yeast, PCNA is SUMOylated to prevent unwanted recombination events at the replication fork. The Y-family polymerases themselves can be ubiquitinated and, in the case of DNA polymerase η, this results in the polymerase being excluded from chromatin.
Collapse
Affiliation(s)
- Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
58
|
Lans H, Vermeulen W. Nucleotide Excision Repair in Caenorhabditis elegans. Mol Biol Int 2011; 2011:542795. [PMID: 22091407 PMCID: PMC3195855 DOI: 10.4061/2011/542795] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/18/2011] [Indexed: 01/23/2023] Open
Abstract
Nucleotide excision repair (NER) plays an essential role in many organisms across life domains to preserve and faithfully transmit DNA to the next generation. In humans, NER is essential to prevent DNA damage-induced mutation accumulation and cell death leading to cancer and aging. NER is a versatile DNA repair pathway that repairs many types of DNA damage which distort the DNA helix, such as those induced by solar UV light. A detailed molecular model of the NER pathway has emerged from in vitro and live cell experiments, particularly using model systems such as bacteria, yeast, and mammalian cell cultures. In recent years, the versatility of the nematode C. elegans to study DNA damage response (DDR) mechanisms including NER has become increasingly clear. In particular, C. elegans seems to be a convenient tool to study NER during the UV response in vivo, to analyze this process in the context of a developing and multicellular organism, and to perform genetic screening. Here, we will discuss current knowledge gained from the use of C. elegans to study NER and the response to UV-induced DNA damage.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Medical Genetics Center, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Medical Genetics Center, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
59
|
Kirchmaier AL. Ub-family modifications at the replication fork: Regulating PCNA-interacting components. FEBS Lett 2011; 585:2920-8. [DOI: 10.1016/j.febslet.2011.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022]
|
60
|
Abstract
REV1 is a Y-family polymerase that plays a central role in mutagenic translesion DNA synthesis (TLS), contributing to tumor initiation and progression. In a current model, a monoubiquitinated form of the replication accessory protein, proliferating cell nuclear antigen (PCNA), serves as a platform to recruit REV1 to damaged sites on the DNA template. Emerging evidence indicates that posttranslational mechanisms regulate REV1 in yeast; however, the regulation of REV1 in higher eukaryotes is poorly understood. Here we show that the molecular chaperone Hsp90 is a critical regulator of REV1 in human cells. Hsp90 specifically binds REV1 in vivo and in vitro. Treatment with a specific inhibitor of Hsp90 reduces REV1 protein levels in several cell types through proteasomal degradation. This is associated with suppression of UV-induced mutagenesis. Furthermore, Hsp90 inhibition disrupts the interaction between REV1 and monoubiquitinated PCNA and suppresses UV-induced focus formation. These results indicate that Hsp90 promotes folding of REV1 into a stable and/or functional form(s) to bind to monoubiquitinated PCNA. The present findings reveal a novel role of Hsp90 in the regulation of TLS-mediated mutagenesis.
Collapse
|
61
|
Guarino E, Shepherd MEA, Salguero I, Hua H, Deegan RS, Kearsey SE. Cdt1 proteolysis is promoted by dual PIP degrons and is modulated by PCNA ubiquitylation. Nucleic Acids Res 2011; 39:5978-90. [PMID: 21493688 PMCID: PMC3152358 DOI: 10.1093/nar/gkr222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cdt1 plays a critical role in DNA replication regulation by controlling licensing. In Metazoa, Cdt1 is regulated by CRL4Cdt2-mediated ubiquitylation, which is triggered by DNA binding of proliferating cell nuclear antigen (PCNA). We show here that fission yeast Cdt1 interacts with PCNA in vivo and that DNA loading of PCNA is needed for Cdt1 proteolysis after DNA damage and in S phase. Activation of this pathway by ultraviolet (UV)-induced DNA damage requires upstream involvement of nucleotide excision repair or UVDE repair enzymes. Unexpectedly, two non-canonical PCNA-interacting peptide (PIP) motifs, which both have basic residues downstream, function redundantly in Cdt1 proteolysis. Finally, we show that poly-ubiquitylation of PCNA, which occurs after DNA damage, reduces Cdt1 proteolysis. This provides a mechanism for fine-tuning the activity of the CRL4Cdt2 pathway towards Cdt1, allowing Cdt1 proteolysis to be more efficient in S phase than after DNA damage.
Collapse
Affiliation(s)
- Estrella Guarino
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | | | |
Collapse
|
62
|
Jørgensen S, Eskildsen M, Fugger K, Hansen L, Larsen MSY, Kousholt AN, Syljuåsen RG, Trelle MB, Jensen ON, Helin K, Sørensen CS. SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation. ACTA ACUST UNITED AC 2011; 192:43-54. [PMID: 21220508 PMCID: PMC3019552 DOI: 10.1083/jcb.201009076] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Degradation of the histone H4 methyltransferase SET8, which regulates chromosome compaction and genomic integrity, is regulated by the CRL4(CDT2) ubiquitin ligase to facilitate DNA replication and repair. The eukaryotic cell cycle is regulated by multiple ubiquitin-mediated events, such as the timely destruction of cyclins and replication licensing factors. The histone H4 methyltransferase SET8 (Pr-Set7) is required for chromosome compaction in mitosis and for maintenance of genome integrity. In this study, we show that SET8 is targeted for degradation during S phase by the CRL4(CDT2) ubiquitin ligase in a proliferating cell nuclear antigen (PCNA)–dependent manner. SET8 degradation requires a conserved degron responsible for its interaction with PCNA and recruitment to chromatin where ubiquitylation occurs. Efficient degradation of SET8 at the onset of S phase is required for the regulation of chromatin compaction status and cell cycle progression. Moreover, the turnover of SET8 is accelerated after ultraviolet irradiation dependent on the CRL4(CDT2) ubiquitin ligase and PCNA. Removal of SET8 supports the modulation of chromatin structure after DNA damage. These results demonstrate a novel regulatory mechanism, linking for the first time the ubiquitin–proteasome system with rapid degradation of a histone methyltransferase to control cell proliferation.
Collapse
Affiliation(s)
- Stine Jørgensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abbas T, Dutta A. CRL4Cdt2: master coordinator of cell cycle progression and genome stability. Cell Cycle 2011; 10:241-9. [PMID: 21212733 PMCID: PMC3025761 DOI: 10.4161/cc.10.2.14530] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 01/17/2023] Open
Abstract
Polyubiquitin-mediated degradation of proteins plays an essential role in various physiological processes including cell cycle progression, transcription and DNA replication and repair. Increasing evidence supports a vital role for the E3 ubiquitin ligase cullin-4, in conjunction with the substrate recognition factor Cdt2 (CRL4Cdt2), for the degradation of multiple cell cycle-regulated proteins to prevent genomic instability. In addition, it is critical for normal cell cycle progression by ensuring the timely destruction of various cell cycle proteins whose deregulated expression impairs cell cycle progression. Here, we summarize our current knowledge about the various roles of the CRL4Cdt2 E3 ubiquitin ligase, and how its activity contributes both to the preservation of genome integrity and to normal cell cycle progression, and how its deregulation may contribute to human cancer.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
64
|
Davidson JM, Duronio RJ. Using Drosophila S2 cells to measure S phase-coupled protein destruction via flow cytometry. Methods Mol Biol 2011; 782:205-219. [PMID: 21870294 DOI: 10.1007/978-1-61779-273-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cell proliferation depends on the timely synthesis and destruction of proteins at specific phases of the cell cycle. Recently it was discovered that the destruction of several key cell cycle regulatory proteins during S phase is coupled directly to DNA replication. These proteins harbor a motif called a PIP degron that mediates binding to chromatin bound PCNA at replication forks and recruits the CRL4(Cdt2) E3 ubiquitin ligase. These interactions comprise an elegant mechanism for coupling DNA replication with ubiquitylation and subsequent proteolysis by the 26S proteasome. Here we describe a flow cytometry-based method using Drosophila S2 cells that recapitulates S phase-specific protein proteolysis. Because of the high degree of evolutionary conservation of the PIP degron and CRL4(Cdt2) and the ease of culturing and inhibiting gene function by RNAi in S2 cells, our flow cytometric method should serve as a general tool for determining whether any eukaryotic protein is subject to replication-coupled protein destruction.
Collapse
Affiliation(s)
- Jean M Davidson
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| | | |
Collapse
|
65
|
Michishita M, Morimoto A, Ishii T, Komori H, Shiomi Y, Higuchi Y, Nishitani H. Positively charged residues located downstream of PIP box, together with TD amino acids within PIP box, are important for CRL4(Cdt2) -mediated proteolysis. Genes Cells 2010; 16:12-22. [PMID: 21143559 DOI: 10.1111/j.1365-2443.2010.01464.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PCNA links Cdt1 and p21 for proteolysis by Cul4-DDB1-Cdt2 (CRL4(Cdt2) ) in the S phase and after DNA damage in mammalian cells. However, other PCNA-interacting proteins, such as ligase I, are not targets of CRL4(Cdt2) . In this study, we created chimera constructs composed of Cdt1 and ligase I and examined how the proteolysis of PCNA-interacting proteins is regulated. Consistent with a recent report using the Xenopus egg system (Havens & Walter 2009), two amino acid elements are also required for degradation in HeLa cells: TD amino acid residues in the PIP box and the basic amino acid at +4 downstream of the PIP box. In addition, we demonstrate that a basic amino acid at +3 is also required for degradation and that an acidic amino acid residue following the basic amino acids abolishes the degradation. Electrostatic surface images suggest that the basic amino acid at +4 is involved in a contact with PCNA, while +3 position extending to opposite direction is important to create a positively charged surface. When all these required elements were introduced in ligase I peptide, the substituted form became degraded. Our results demonstrate that PCNA-dependent degron is strictly composed to avoid illegitimate destruction of PCNA-interacting proteins.
Collapse
Affiliation(s)
- Masato Michishita
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | | | | | | | |
Collapse
|
66
|
Hepatocyte-specific deletion of DDB1 induces liver regeneration and tumorigenesis. Proc Natl Acad Sci U S A 2010; 107:22237-42. [PMID: 21135245 DOI: 10.1073/pnas.1015793108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Etiologic risk factors for hepatocellular carcinoma can be involved in the transformation process by directly targeting intracellular signaling pathways or by indirectly stimulating chronic cycles of hepatocyte destruction and regeneration. However, the contribution of these two routes to hepatocarcinogenesis has not been determined, partly because of the difficulty in distinguishing damaged and regenerated hepatocytes. Here we report that induced deletion of the damaged DNA binding protein 1 (DDB1) abrogates the self-renewing capacity of hepatocytes, resulting in compensatory proliferation of DDB1-expressing hepatocytes. Constitutive stimulation of this regeneration process leads to development of hepatocellular carcinoma, which surprisingly contains no disruption of the DDB1 gene, indicating a cell-nonautonomous role of DDB1 inactivation in tumor initiation. Our results suggest that viruses and hepatoxins may cause liver tumors by simply driving hepatocyte turnover without directly targeting cancer cells.
Collapse
|
67
|
Piwko W, Olma MH, Held M, Bianco JN, Pedrioli PGA, Hofmann K, Pasero P, Gerlich DW, Peter M. RNAi-based screening identifies the Mms22L-Nfkbil2 complex as a novel regulator of DNA replication in human cells. EMBO J 2010; 29:4210-22. [PMID: 21113133 DOI: 10.1038/emboj.2010.304] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/05/2010] [Indexed: 01/08/2023] Open
Abstract
Cullin 4 (Cul4)-based ubiquitin ligases emerged as critical regulators of DNA replication and repair. Over 50 Cul4-specific adaptors (DNA damage-binding 1 (Ddb1)-Cul4-associated factors; DCAFs) have been identified and are thought to assemble functionally distinct Cul4 complexes. Using a live-cell imaging-based RNAi screen, we analysed the function of DCAFs and Cul4-linked proteins, and identified specific subsets required for progression through G1 and S phase. We discovered C6orf167/Mms22-like protein (Mms22L) as a putative human orthologue of budding yeast Mms22, which, together with cullin Rtt101, regulates genome stability by promoting DNA replication through natural pause sites and damaged templates. Loss of Mms22L function in human cells results in S phase-dependent genomic instability characterised by spontaneous double-strand breaks and DNA damage checkpoint activation. Unlike yeast Mms22, human Mms22L does not stably bind to Cul4, but is degraded in a Cul4-dependent manner and upon replication stress. Mms22L physically and functionally interacts with the scaffold-like protein Nfkbil2 that co-purifies with histones, several chromatin remodelling and DNA replication/repair factors. Together, our results strongly suggest that the Mms22L-Nfkbil2 complex contributes to genome stability by regulating the chromatin state at stalled replication forks.
Collapse
Affiliation(s)
- Wojciech Piwko
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Oda H, Hübner MR, Beck DB, Vermeulen M, Hurwitz J, Spector DL, Reinberg D. Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol Cell 2010; 40:364-76. [PMID: 21035370 PMCID: PMC2999913 DOI: 10.1016/j.molcel.2010.10.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/30/2010] [Accepted: 10/07/2010] [Indexed: 11/26/2022]
Abstract
The histone methyltransferase PR-Set7/Set8 is the sole enzyme that catalyzes monomethylation of histone H4 at K20 (H4K20me1). Previous reports document disparate evidence regarding PR-Set7 expression during the cell cycle, the biological relevance of PR-Set7 interaction with PCNA, and its role in the cell. We find that PR-Set7 is indeed undetectable during S phase and instead is detected during late G2, mitosis, and early G1. PR-Set7 is transiently recruited to laser-induced DNA damage sites through its interaction with PCNA, after which 53BP1 is recruited dependent on PR-Set7 catalytic activity. During the DNA damage response, PR-Set7 interaction with PCNA through a specialized "PIP degron" domain targets it for PCNA-coupled CRL4(Cdt2)-dependent proteolysis. PR-Set7 mutant in its "PIP degron" is now detectable during S phase, during which the mutant protein accumulates. Outside the chromatin context, Skp2 promotes PR-Set7 degradation as well. These findings demonstrate a stringent spatiotemporal control of PR-Set7 that is essential for preserving the genomic integrity of mammalian cells.
Collapse
Affiliation(s)
- Hisanobu Oda
- Department of Biochemistry, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Lee HO, Zacharek SJ, Xiong Y, Duronio RJ. Cell type-dependent requirement for PIP box-regulated Cdt1 destruction during S phase. Mol Biol Cell 2010; 21:3639-53. [PMID: 20826610 PMCID: PMC2965682 DOI: 10.1091/mbc.e10-02-0130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that Cdt1 overexpression in cultured cells can trigger re-replication, but not whether CRL4Cdt2-triggered destruction of Cdt1 is required for normal mitotic cell cycle progression in vivo. We demonstrate that PIP box–mediated destruction of Cdt1Dup during S phase is necessary for the cell division cycle in Drosophila. DNA synthesis–coupled proteolysis of the prereplicative complex component Cdt1 by the CRL4Cdt2 E3 ubiquitin ligase is thought to help prevent rereplication of the genome during S phase. To directly test whether CRL4Cdt2-triggered destruction of Cdt1 is required for normal cell cycle progression in vivo, we expressed a mutant version of Drosophila Cdt1 (Dup), which lacks the PCNA-binding PIP box (DupΔPIP) and which cannot be regulated by CRL4Cdt2. DupΔPIP is inappropriately stabilized during S phase and causes developmental defects when ectopically expressed. DupΔPIP restores DNA synthesis to dup null mutant embryonic epidermal cells, but S phase is abnormal, and these cells do not progress into mitosis. In contrast, DupΔPIP accumulation during S phase did not adversely affect progression through follicle cell endocycles in the ovary. In this tissue the combination of DupΔPIP expression and a 50% reduction in Geminin gene dose resulted in egg chamber degeneration. We could not detect Dup hyperaccumulation using mutations in the CRL4Cdt2 components Cul4 and Ddb1, likely because these cause pleiotropic effects that block cell proliferation. These data indicate that PIP box–mediated destruction of Dup is necessary for the cell division cycle and suggest that Geminin inhibition can restrain DupΔPIP activity in some endocycling cell types.
Collapse
Affiliation(s)
- Hyun O Lee
- Curriculum in Genetics and Molecular Biology, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
70
|
Song IY, Palle K, Gurkar A, Tateishi S, Kupfer GM, Vaziri C. Rad18-mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway. J Biol Chem 2010; 285:31525-36. [PMID: 20675655 DOI: 10.1074/jbc.m110.138206] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fanconi anemia (FA) is a cancer susceptibility syndrome characterized by sensitivity to DNA-damaging agents. The FA proteins (FANCs) are implicated in DNA repair, although the precise mechanisms by which FANCs process DNA lesions are not fully understood. An epistatic relationship between the FA pathway and translesion synthesis (TLS, a post-replication DNA repair mechanism) has been suggested, but the basis for cross-talk between the FA and TLS pathways is poorly understood. We show here that ectopic overexpression of the E3 ubiquitin ligase Rad18 (a central regulator of TLS) induces DNA damage-independent mono-ubiquitination of proliferating cell nuclear antigen (PCNA) (a known Rad18 substrate) and FANCD2. Conversely, DNA damage-induced mono-ubiquitination of both PCNA and FANCD2 is attenuated in Rad18-deficient cells, demonstrating that Rad18 contributes to activation of the FA pathway. WT Rad18 but not an E3 ubiquitin ligase-deficient Rad18 C28F mutant fully complements both PCNA ubiquitination and FANCD2 activation in Rad18-depleted cells. Rad18-induced mono-ubiquitination of FANCD2 is not observed in FA core complex-deficient cells, demonstrating that Rad18 E3 ligase activity alone is insufficient for FANCD2 ubiquitylation. Instead, Rad18 promotes FA core complex-dependent FANCD2 ubiquitination in a manner that is secondary to PCNA mono-ubiquitination. Taken together, these results demonstrate a novel Rad18-dependent mechanism that couples activation of the FA pathway with TLS.
Collapse
Affiliation(s)
- Ihn Young Song
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
71
|
The CRL4Cdt2 ubiquitin ligase mediates the proteolysis of cyclin-dependent kinase inhibitor Xic1 through a direct association with PCNA. Mol Cell Biol 2010; 30:4120-33. [PMID: 20606006 DOI: 10.1128/mcb.01135-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During DNA polymerase switching, the Xenopus laevis Cip/Kip-type cyclin-dependent kinase inhibitor Xic1 associates with trimeric proliferating cell nuclear antigen (PCNA) and is recruited to chromatin, where it is ubiquitinated and degraded. In this study, we show that the predominant E3 for Xic1 in the egg is the Cul4-DDB1-XCdt2 (Xenopus Cdt2) (CRL4(Cdt2)) ubiquitin ligase. The addition of full-length XCdt2 to the Xenopus extract promotes Xic1 turnover, while the N-terminal domain of XCdt2 (residues 1 to 400) cannot promote Xic1 turnover, despite its ability to bind both Xic1 and DDB1. Further analysis demonstrated that XCdt2 binds directly to PCNA through its C-terminal domain (residues 401 to 710), indicating that this interaction is important for promoting Xic1 turnover. We also identify the cis-acting sequences required for Xic1 binding to Cdt2. Xic1 binds to Cdt2 through two domains (residues 161 to 170 and 179 to 190) directly flanking the Xic1 PCNA binding domain (PIP box) but does not require PIP box sequences (residues 171 to 178). Similarly, human p21 binds to human Cdt2 through residues 156 to 161, adjacent to the p21 PIP box. In addition, we identify five lysine residues (K180, K182, K183, K188, and K193) immediately downstream of the Xic1 PIP box and within the second Cdt2 binding domain as critical sites for Xic1 ubiquitination. Our studies suggest a model in which both the CRL4(Cdt2) E3- and PIP box-containing substrates, like Xic1, are recruited to chromatin through independent direct associations with PCNA.
Collapse
|
72
|
Patel M, Jiang Q, Woodgate R, Cox MM, Goodman MF. A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit Rev Biochem Mol Biol 2010; 45:171-84. [PMID: 20441441 PMCID: PMC2874081 DOI: 10.3109/10409238.2010.480968] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In Escherichia coli, cell survival and genomic stability after UV radiation depends on repair mechanisms induced as part of the SOS response to DNA damage. The early phase of the SOS response is mostly dominated by accurate DNA repair, while the later phase is characterized with elevated mutation levels caused by error-prone DNA replication. SOS mutagenesis is largely the result of the action of DNA polymerase V (pol V), which has the ability to insert nucleotides opposite various DNA lesions in a process termed translesion DNA synthesis (TLS). Pol V is a low-fidelity polymerase that is composed of UmuD'(2)C and is encoded by the umuDC operon. Pol V is strictly regulated in the cell so as to avoid genomic mutation overload. RecA nucleoprotein filaments (RecA*), formed by RecA binding to single-stranded DNA with ATP, are essential for pol V-catalyzed TLS both in vivo and in vitro. This review focuses on recent studies addressing the protein composition of active DNA polymerase V, and the role of RecA protein in activating this enzyme. Based on unforeseen properties of RecA*, we describe a new model for pol V-catalyzed SOS-induced mutagenesis.
Collapse
Affiliation(s)
- Meghna Patel
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
73
|
Terai K, Abbas T, Jazaeri AA, Dutta A. CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol Cell 2010; 37:143-9. [PMID: 20129063 DOI: 10.1016/j.molcel.2009.12.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/26/2009] [Accepted: 10/19/2009] [Indexed: 01/01/2023]
Abstract
Monoubiquitination of proliferating cell nuclear antigen (PCNA) is a critical posttranslational modification essential for DNA repair by translesion DNA synthesis (TLS). The Rad18 E3 ubiquitin ligase cooperates with the E2 Rad6 to monoubiquitinate PCNA in response to DNA damage. How PCNA is monoubiquitinated in unperturbed cells and whether this plays a role in the repair of DNA associated with replication is not known. We show that the CRL4(Cdt2) E3 ubiquitin ligase complex promotes PCNA monoubiqutination in proliferating cells in the absence of external DNA damage independent of Rad18. PCNA monoubiquitination via CRL4(Cdt2) is constitutively antagonized by the action of the ubiquitin-specific protease 1 (USP1). In vitro, CRL4(Cdt2) monoubiquitinates PCNA at Lys164, the same residue that is monoubiquitinated by Rad18. Significantly, CRL4(Cdt2) is required for TLS in nondamaged cells via a mechanism that is dependent on PCNA monoubiquitination. We propose that CRL4(Cdt2) regulates PCNA-dependent TLS associated with stresses accompanying DNA replication.
Collapse
Affiliation(s)
- Kenta Terai
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
74
|
Abstract
Modification by SUMOs (small ubiquitin-related modifiers) is largely transient and considered to alter protein function through altered protein–protein interactions. These modifications are significant regulators of the response to DNA damage in eukaryotic model organisms and SUMOylation affects a large number of proteins in mammalian cells, including several proteins involved in the response to genomic lesions [Golebiowski, Matic, Tatham, Cole, Yin, Nakamura, Cox, Barton, Mann and Hay (2009) Sci. Signaling 2, ra24]. Furthermore, recent work [Morris, Boutell, Keppler, Densham, Weekes, Alamshah, Butler, Galanty, Pangon, Kiuchi, Ng and Solomon (2009) Nature 462, 886–890; Galanty, Belotserkovskaya, Coates, Polo, Miller and Jackson (2009) Nature 462, 935–939] has revealed the involvement of the SUMO cascade in the BRCA1 (breast-cancer susceptibility gene 1) pathway response after DNA damage. The present review examines roles described for the SUMO pathway in the way mammalian cells respond to genotoxic stress.
Collapse
|
75
|
Sekimoto T, Oda T, Pozo FM, Murakumo Y, Masutani C, Hanaoka F, Yamashita T. The molecular chaperone Hsp90 regulates accumulation of DNA polymerase eta at replication stalling sites in UV-irradiated cells. Mol Cell 2010; 37:79-89. [PMID: 20129057 DOI: 10.1016/j.molcel.2009.12.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/23/2009] [Accepted: 10/15/2009] [Indexed: 12/19/2022]
Abstract
DNA polymerase eta (Pol eta) is a member of the mammalian Y family polymerases and performs error-free translesion synthesis across UV-damaged DNA. For this function, Pol eta accumulates in nuclear foci at replication stalling sites via its interaction with monoubiquitinated PCNA. However, little is known about the posttranslational control mechanisms of Pol eta, which regulate its accumulation in replication foci. Here, we report that the molecular chaperone Hsp90 promotes UV irradiation-induced nuclear focus formation of Pol eta through control of its stability and binding to monoubiquitinated PCNA. Our data indicate that Hsp90 facilitates the folding of Pol eta into an active form in which PCNA- and ubiquitin-binding regions are functional. Furthermore, Hsp90 inhibition potentiates UV-induced cytotoxicity and mutagenesis in a Pol eta-dependent manner. Our studies identify Hsp90 as an essential regulator of Pol eta-mediated translesion synthesis.
Collapse
Affiliation(s)
- Takayuki Sekimoto
- Laboratory of Molecular Genetics, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
76
|
Soria G, Gottifredi V. PCNA-coupled p21 degradation after DNA damage: The exception that confirms the rule? DNA Repair (Amst) 2010; 9:358-64. [PMID: 20060369 DOI: 10.1016/j.dnarep.2009.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
While many are the examples of DNA damaging treatments that induce p21 accumulation, the conception of p21 upregulation as the universal response to genotoxic stress has come to an end. Compelling evidences have demonstrated the existence of converging signals that negatively regulate p21 bellow basal levels when replication forks are blocked. Moreover, conclusive reports identified the E3-ligase CRL4(CDT2) (CUL4-DDB1-CDT2) as the enzymatic complex that promotes p21 proteolysis when treatments such as UV irradiation trigger replication fork stress. A pre-requisite for CRL4(CDT2)-driven proteolysis is the interaction of p21 with PCNA. Interestingly as well, CRL4(CDT2)-dependent proteolysis is not limited to p21 and affects other PCNA partners, including the specialized DNA polymerase eta (pol eta). These recent discoveries are particularly intriguing since the UV-induced degradation of p21 has been shown to be required for efficient pol eta recruitment to DNA lesions. Herein we review the findings that lead to the identification of the molecular mechanism that triggers damage-induced PCNA-coupled protein proteolysis. We propose a novel model in which CRL4(CDT2)-dependent protein degradation facilitates a sequential and dynamic exchange between PIP box bearing proteins at stall forks during Translesion DNA synthesis (TLS). Moreover, given the tight spatiotemporal control that CRL4(CDT2)-driven proteolysis is able to confer to PCNA-regulated processes, we discuss the impact that this degradation mechanism might have in other molecular switches associated with the repair of damaged DNA.
Collapse
Affiliation(s)
- Gastón Soria
- Fundación Instituto Leloir - CONICET, Universidad de Buenos Aires, Argentina.
| | | |
Collapse
|
77
|
Cruet-Hennequart S, Gallagher K, Sokòl AM, Villalan S, Prendergast AM, Carty MP. DNA polymerase eta, a key protein in translesion synthesis in human cells. Subcell Biochem 2010; 50:189-209. [PMID: 20012583 DOI: 10.1007/978-90-481-3471-7_10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genomic DNA is constantly damaged by exposure to exogenous and endogenous agents. Bulky adducts such as UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA present a barrier to DNA synthesis by the major eukaryotic replicative polymerases including DNA polymerase delta. Translesion synthesis (TLS) carried out by specialized DNA polymerases is an evolutionarily conserved mechanism of DNA damage tolerance. The Y family of DNA polymerases, including DNA polymerase eta (Pol eta), the subject of this chapter, play a key role in TLS. Mutations in the human POLH gene encoding Pol eta underlie the genetic disease xeroderma pigmentosum variant (XPV), characterized by sun sensitivity, elevated incidence of skin cancer, and at the cellular level, by delayed replication and hypermutability after UV-irradiation. Pol eta is a low fidelity enzyme when copying undamaged DNA, but can carry out error-free TLS at sites of UV-induced dithymine CPDs. The active site of Pol eta has an open conformation that can accommodate CPDs, as well as cisplatin-induced intrastrand DNA crosslinks. Pol eta is recruited to sites of replication arrest in a tightly regulated process through interaction with PCNA. Pol eta-deficient cells show strong activation of downstream DNA damage responses including ATR signaling, and accumulate strand breaks as a result of replication fork collapse. Thus, Pol eta plays an important role in preventing genome instability after UV- and cisplatin-induced DNA damage. Inhibition of DNA damage tolerance pathways in tumors might also represent an approach to potentiate the effects of DNA damaging agents such as cisplatin.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
78
|
Pirh2 E3 ubiquitin ligase targets DNA polymerase eta for 20S proteasomal degradation. Mol Cell Biol 2009; 30:1041-8. [PMID: 20008555 DOI: 10.1128/mcb.01198-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase eta (PolH), a Y family translesion polymerase, is required for repairing UV-induced DNA damage, and loss of PolH is responsible for early onset of malignant skin cancers in patients with xeroderma pigmentosum variant (XPV), an autosomal recessive disorder. Here, we show that PolH, a target of the p53 tumor suppressor, is a short-half-life protein. We found that PolH is degraded by proteasome, which is enhanced upon UV irradiation. We also found that PolH interacts with Pirh2 E3 ligase, another target of the p53 tumor suppressor, via the polymerase-associated domain in PolH and the RING finger domain in Pirh2. In addition, we show that overexpression of Pirh2 decreases PolH protein stability, whereas knockdown of Pirh2 increases it. Interestingly, we found that PolH is recruited by Pirh2 and degraded by 20S proteasome in a ubiquitin-independent manner. Finally, we observed that Pirh2 knockdown leads to accumulation of PolH and, subsequently, enhances the survival of UV-irradiated cells. We postulate that UV irradiation promotes cancer formation in part by destabilizing PolH via Pirh2-mediated 20S proteasomal degradation.
Collapse
|
79
|
CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34:562-70. [PMID: 19818632 DOI: 10.1016/j.tibs.2009.07.002] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/01/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
The evolutionarily conserved cullin family proteins can assemble as many as 400 distinct E3 ubiquitin ligase complexes that regulate diverse cellular pathways. CUL4, one of three founding cullins conserved from yeast to humans, uses a large beta-propeller protein, DDB1, as a linker to interact with a subset of WD40 proteins that serve as substrate receptors, forming as many as 90 E3 complexes in mammals. Many CRL4 complexes are involved in chromatin regulation and are frequently hijacked by different viruses.
Collapse
|
80
|
Rytinki MM, Kaikkonen S, Pehkonen P, Jääskeläinen T, Palvimo JJ. PIAS proteins: pleiotropic interactors associated with SUMO. Cell Mol Life Sci 2009; 66:3029-41. [PMID: 19526197 PMCID: PMC11115825 DOI: 10.1007/s00018-009-0061-z] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/05/2009] [Accepted: 05/27/2009] [Indexed: 01/02/2023]
Abstract
The interactions and functions of protein inhibitors of activated STAT (PIAS) proteins are not restricted to the signal transducers and activators of transcription (STATs), but PIAS1, -2, -3 and -4 interact with and regulate a variety of distinct proteins, especially transcription factors. Although the majority of PIAS-interacting proteins are prone to modification by small ubiquitin-related modifier (SUMO) proteins and the PIAS proteins have the capacity to promote the modification as RING-type SUMO ligases, they do not function solely as SUMO E3 ligases. Instead, their effects are often independent of their Siz/PIAS (SP)-RING finger, but dependent on their capability to noncovalently interact with SUMOs or DNA through their SUMO-interacting motif and scaffold attachment factor-A/B, acinus and PIAS domain, respectively. Here, we present an overview of the cellular regulation by PIAS proteins and propose that many of their functions are due to their capability to mediate and facilitate SUMO-linked protein assemblies.
Collapse
Affiliation(s)
- Miia M. Rytinki
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Sanna Kaikkonen
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Petri Pehkonen
- Department of Biosciences, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| | - Jorma J. Palvimo
- Institute of Biomedicine/Medical Biochemistry, University of Kuopio, Kuopio, Finland
| |
Collapse
|
81
|
Havens CG, Walter JC. Docking of a specialized PIP Box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol Cell 2009; 35:93-104. [PMID: 19595719 PMCID: PMC2744448 DOI: 10.1016/j.molcel.2009.05.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/14/2009] [Accepted: 05/06/2009] [Indexed: 12/29/2022]
Abstract
Substrates of the E3 ubiquitin ligase CRL4(Cdt2), including Cdt1 and p21, contain a PCNA-binding motif called a PIP box. Upon binding of the PIP box to PCNA on chromatin, CRL4(Cdt2) is recruited and the substrate is ubiquitylated. Importantly, a PIP box cannot be sufficient for destruction, as most PIP box proteins are stable. Using Xenopus egg extracts, we identify two sequence elements in CRL4(Cdt2) substrates that promote their proteolysis: a specialized PIP box that confers exceptionally efficient PCNA binding and a basic amino acid 4 residues downstream of the PIP box, which recruits CRL4(Cdt2) to the substrate-PCNA complex. We also identify two mechanisms that couple CRL4(Cdt2)-dependent proteolysis to the chromatin-bound form of PCNA, ensuring that this proteolysis pathway is active only in S phase or after DNA damage. Thus, CRL4(Cdt2) recognizes an unusual degron, which is assembled specifically on chromatin via the binding of a specialized PIP box to PCNA.
Collapse
Affiliation(s)
- Courtney G. Havens
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C. Walter
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
82
|
Guo C, Kosarek-Stancel JN, Tang TS, Friedberg EC. Y-family DNA polymerases in mammalian cells. Cell Mol Life Sci 2009; 66:2363-81. [PMID: 19367366 PMCID: PMC11115694 DOI: 10.1007/s00018-009-0024-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/05/2009] [Accepted: 03/23/2009] [Indexed: 11/26/2022]
Abstract
Eukaryotic genomes are replicated with high fidelity to assure the faithful transmission of genetic information from one generation to the next. The accuracy of replication relies heavily on the ability of replicative DNA polymerases to efficiently select correct nucleotides for the polymerization reaction and, using their intrinsic exonuclease activities, to excise mistakenly incorporated nucleotides. Cells also possess a variety of specialized DNA polymerases that, by a process called translesion DNA synthesis (TLS), help overcome replication blocks when unrepaired DNA lesions stall the replication machinery. This review considers the properties of the Y-family (a subset of specialized DNA polymerases) and their roles in modulating spontaneous and genotoxic-induced mutations in mammals. We also review recent insights into the molecular mechanisms that regulate PCNA monoubiquitination and DNA polymerase switching during TLS and discuss the potential of using Y-family DNA polymerases as novel targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Caixia Guo
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA.
| | | | | | | |
Collapse
|
83
|
Valenti A, Perugino G, Nohmi T, Rossi M, Ciaramella M. Inhibition of translesion DNA polymerase by archaeal reverse gyrase. Nucleic Acids Res 2009; 37:4287-95. [PMID: 19443439 PMCID: PMC2715243 DOI: 10.1093/nar/gkp386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reverse gyrase is a unique DNA topoisomerase endowed with ATP-dependent positive supercoiling activity. It is typical of microorganisms living at high temperature and might play a role in maintenance of genome stability and repair. We have identified the translesion DNA polymerase SsoPolY/Dpo4 as one partner of reverse gyrase in the hyperthermophilic archaeon Sulfolobus solfataricus. We show here that in cell extracts, PolY and reverse gyrase co-immunoprecipitate with each other and with the single strand binding protein, SSB. The interaction is confirmed in vitro by far-western and Surface Plasmon Resonance. In functional assays, reverse gyrase inhibits PolY, but not the S. solfataricus B-family DNA polymerase PolB1. Mutational analysis shows that inhibition of PolY activity depends on both ATPase and topoisomerase activities of reverse gyrase, suggesting that the intact positive supercoiling activity is required for PolY inhibition. In vivo, reverse gyrase and PolY are degraded after induction of DNA damage. Inhibition by reverse gyrase and degradation might act as a double mechanism to control PolY and prevent its potentially mutagenic activity when undesired. Inhibition of a translesion polymerase by topoisomerase-induced modification of DNA structure may represent a previously unconsidered mechanism of regulation of these two-faced enzymes.
Collapse
Affiliation(s)
- Anna Valenti
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|