51
|
Natural antisense transcripts in the biological hallmarks of cancer: powerful regulators hidden in the dark. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:187. [PMID: 32928281 PMCID: PMC7490906 DOI: 10.1186/s13046-020-01700-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Natural antisense transcripts (NATs), which are transcribed from opposite strands of DNA with partial or complete overlap, affect multiple stages of gene expression, from epigenetic to post-translational modifications. NATs are dysregulated in various types of cancer, and an increasing number of studies focusing on NATs as pivotal regulators of the hallmarks of cancer and as promising candidates for cancer therapy are just beginning to unravel the mystery. Here, we summarize the existing knowledge on NATs to highlight their underlying mechanisms of functions in cancer biology, discuss their potential roles in therapeutic application, and explore future research directions.
Collapse
|
52
|
The roles of long noncoding RNAs in breast cancer metastasis. Cell Death Dis 2020; 11:749. [PMID: 32929060 PMCID: PMC7490374 DOI: 10.1038/s41419-020-02954-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most significant threat to female health. Breast cancer metastasis is the major cause of mortality in breast cancer patients. To fully unravel the molecular mechanisms that underlie the breast cancer cell metastasis is critical for developing strategies to improve survival and prognosis in breast cancer patients. Recent studies have revealed that the long noncoding RNAs (lncRNAs) are involved in breast cancer metastasis through a variety of molecule mechanisms, though the precise functional details of these lncRNAs are yet to be clarified. In the present review, we focus on the functions of lncRNAs in breast cancer invasion and metastasis, with particular emphasis on the functional properties, the regulatory factors, the therapeutic promise, as well as the future challenges in studying these lncRNA.
Collapse
|
53
|
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
54
|
Advances in DNA Repair-Emerging Players in the Arena of Eukaryotic DNA Repair. Int J Mol Sci 2020; 21:ijms21113934. [PMID: 32486270 PMCID: PMC7313471 DOI: 10.3390/ijms21113934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA is constantly damaged by factors produced during natural metabolic processes as well as agents coming from the external environment. Considering such a wide array of damaging agents, eukaryotic cells have evolved a DNA damage response (DRR) that opposes the influence of deleterious factors. Despite the broad knowledge regarding DNA damage and repair, new areas of research are emerging. New players in the field of DDR are constantly being discovered. The aim of this study is to review current knowledge regarding the roles of sirtuins, heat shock proteins, long-noncoding RNAs and the circadian clock in DDR and distinguish new agents that may have a prominent role in DNA damage response and repair.
Collapse
|
55
|
Biallelic mutations in WRAP53 result in dysfunctional telomeres, Cajal bodies and DNA repair, thereby causing Hoyeraal-Hreidarsson syndrome. Cell Death Dis 2020; 11:238. [PMID: 32303682 PMCID: PMC7165179 DOI: 10.1038/s41419-020-2421-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Approximately half of all cases of Hoyeraal–Hreidarsson syndrome (HHS), a multisystem disorder characterized by bone marrow failure, developmental defects and very short telomeres, are caused by germline mutations in genes related to telomere biology. However, the varying symptoms and severity of the disease indicate that additional mechanisms are involved. Here, a 3-year-old boy with HHS was found to carry biallelic germline mutations in WRAP53 (WD40 encoding RNA antisense to p53), that altered two highly conserved amino acids (L283F and R398W) in the WD40 scaffold domain of the protein encoded. WRAP53β (also known as TCAB1 or WDR79) is involved in intracellular trafficking of telomerase, Cajal body functions and DNA repair. We found that both mutations cause destabilization, mislocalization and faulty interactions of WRAP53β, defects linked to misfolding by the TRiC chaperonin complex. Consequently, WRAP53β HHS mutants cannot elongate telomeres, maintain Cajal bodies or repair DNA double-strand breaks. These findings provide a molecular explanation for the pathogenesis underlying WRAP53β-associated HHS and highlight the potential contribution of DNA damage and/or defects in Cajal bodies to the early onset and/or severity of this disease.
Collapse
|
56
|
Subramanian DN, Zethoven M, McInerny S, Morgan JA, Rowley SM, Lee JEA, Li N, Gorringe KL, James PA, Campbell IG. Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes. Nat Commun 2020; 11:1640. [PMID: 32242007 PMCID: PMC7118163 DOI: 10.1038/s41467-020-15461-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/12/2020] [Indexed: 01/31/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) has a significant hereditary component, approximately half of which cannot be explained by known genes. To discover genes, we analyse germline exome sequencing data from 516 BRCA1/2-negative women with HGSOC, focusing on genes enriched with rare, protein-coding loss-of-function (LoF) variants. Overall, there is a significant enrichment of rare protein-coding LoF variants in the cases (p < 0.0001, chi-squared test). Only thirty-four (6.6%) have a pathogenic variant in a known or proposed predisposition gene. Few genes have LoF mutations in more than four individuals and the majority are detected in one individual only. Forty-three highly-ranked genes are identified with three or more LoF variants that are enriched by three-fold or more compared to GnomAD. These genes represent diverse functional pathways with relatively few involved in DNA repair, suggesting that much of the remaining heritability is explained by previously under-explored genes and pathways.
Collapse
Affiliation(s)
- Deepak N Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Magnus Zethoven
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Simone McInerny
- The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia
| | - James A Morgan
- The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Jue Er Amanda Lee
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul A James
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
57
|
Xia Y, Deng Y, Zhou Y, Li D, Sun X, Gu L, Chen Z, Zhao Q. TSPAN31 suppresses cell proliferation in human cervical cancer through down-regulation of its antisense pairing with CDK4. Cell Biochem Funct 2020; 38:660-668. [PMID: 32207169 DOI: 10.1002/cbf.3526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/08/2023]
Abstract
Natural antisense transcripts (NAT) are prevalent phenomena in the mammalian genome and play significant regulatory roles in gene expression. While new insights into NAT continue to be revealed, their exact function and their underlying mechanisms in human cancer remain largely unclear. We identified a NAT of CDK4, referred to TSPAN31, which inhibits CDK4 mRNA and protein expression in human cervical cancer by targeting the 3'-untranslated region (3'-UTR) of the CDK4 mRNA. Furthermore, silencing the expression of the TSPAN31 mRNA rescued the TSPAN31 3'-UTR- or the TSPAN31 full-length-induced decrease in CDK4 expression. Noteworthy, we discovered that TSPAN31, as a member of the tetraspanin family, suppressed cell proliferation by down-regulating its antisense pairing with CDK4 and decreasing retinoblastoma protein phosphorylation in human cervical cancer. Therefore, the results of the present study suggest that TSPAN31 may serve as a potential molecular target for the development of novel anti-cancer agents. SIGNIFICANCE OF THE STUDY: Natural antisense transcripts are widely found in the genome and play an important role in the growth and development of cells. TSPAN31 is natural antisense transcript, and CDK4 is an important gene in the regulation of the cell cycle. Therefore, TSPAN31 and CDK4 have great significance in the study of tumour therapeutic targets.
Collapse
Affiliation(s)
- Yingjie Xia
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yuanfei Deng
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Yuting Zhou
- Molecular & Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Li
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xuemeng Sun
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Lei Gu
- Department of Clinical Medical, Guangzhou Medical University, Guangdong, PR China
| | - Zipeng Chen
- Department of Clinical Medical, Guangzhou Medical University, Guangdong, PR China
| | - Qing Zhao
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
58
|
Pal S, Garg M, Pandey AK. Deciphering the Mounting Complexity of the p53 Regulatory Network in Correlation to Long Non-Coding RNAs (lncRNAs) in Ovarian Cancer. Cells 2020; 9:E527. [PMID: 32106407 PMCID: PMC7140525 DOI: 10.3390/cells9030527] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Amongst the various gynecological malignancies affecting female health globally, ovarian cancer is one of the predominant and lethal among all. The identification and functional characterization of long non-coding RNAs (lncRNAs) are made possible with the advent of RNA-seq and the advancement of computational logarithm in understanding human disease biology. LncRNAs can interact with deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins and their combinations. Moreover, lncRNAs regulate orchestra of diverse functions including chromatin organization and transcriptional and post-transcriptional regulation. LncRNAs have conferred their critical role in key biological processes in human cancer including tumor initiation, proliferation, cell cycle, apoptosis, necroptosis, autophagy, and metastasis. The interwoven function of tumor-suppressor protein p53-linked lncRNAs in the ovarian cancer paradigm is of paramount importance. Several lncRNAs operate as p53 regulators or effectors and modulates a diverse array of functions either by participating in various signaling cascades or via interaction with different proteins. This review highlights the recent progress made in the identification of p53 associated lncRNAs while elucidating their molecular mechanisms behind the altered expression in ovarian cancer tumorigenesis. Moreover, the development of novel clinical and therapeutic strategies for targeting lncRNAs in human cancers harbors great promise.
Collapse
Affiliation(s)
- Sonali Pal
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India;
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India;
| |
Collapse
|
59
|
Napoli M, Flores ER. The p53 family reaches the final frontier: the variegated regulation of the dark matter of the genome by the p53 family in cancer. RNA Biol 2020; 17:1636-1647. [PMID: 31910062 PMCID: PMC7567494 DOI: 10.1080/15476286.2019.1710054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tumour suppressor p53 and its paralogues, p63 and p73, are essential to maintain cellular homoeostasis and the integrity of the cell's genetic material, thus meriting the title of 'guardians of the genome'. The p53 family members are transcription factors and fulfill their activities by controlling the expression of protein-coding and non-coding genes. Here, we review how the latter group transcended from the 'dark matter' of the transcriptome, providing unexpected and intriguing anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA
| |
Collapse
|
60
|
Premi S, Han L, Mehta S, Knight J, Zhao D, Palmatier MA, Kornacker K, Brash DE. Genomic sites hypersensitive to ultraviolet radiation. Proc Natl Acad Sci U S A 2019; 116:24196-24205. [PMID: 31723047 PMCID: PMC6883822 DOI: 10.1073/pnas.1907860116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV exposure revealed hyperhotspots acquiring CPDs up to 170-fold more frequently than the genomic average; these sites were more prevalent in melanocytes. Hyperhotspots were disproportionately located near genes, particularly for RNA-binding proteins, with the most-recurrent hyperhotspots at a fixed position within 2 motifs. One motif occurs at ETS family transcription factor binding sites, known to be UV targets and now shown to be among the most sensitive in the genome, and at sites of mTOR/5' terminal oligopyrimidine-tract translation regulation. The second occurs at A2-15TTCTY, which developed "dark CPDs" long after UV exposure, repaired CPDs slowly, and had accumulated CPDs prior to the experiment. Motif locations active as hyperhotspots differed between cell types. Melanocyte CPD hyperhotspots aligned precisely with recurrent UV signature mutations in individual gene promoters of melanomas and with known cancer drivers. At sunburn levels of UV exposure, every cell would have a hyperhotspot CPD in each of the ∼20 targeted cell pathways, letting hyperhotspots act as epigenetic marks that create phenome instability; high prevalence favors cooccurring mutations, which would allow tumor evolution to use weak drivers.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Lynn Han
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Sameet Mehta
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - James Knight
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Meg A Palmatier
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Karl Kornacker
- Karl Kornacker & Associates, LLC, Worthington, OH 43085;
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040;
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
61
|
Bizarro J, Bhardwaj A, Smith S, Meier UT. Nopp140-mediated concentration of telomerase in Cajal bodies regulates telomere length. Mol Biol Cell 2019; 30:3136-3150. [PMID: 31664887 PMCID: PMC6938241 DOI: 10.1091/mbc.e19-08-0429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cajal bodies (CBs) are nuclear organelles concentrating two kinds of RNA–protein complexes (RNPs), spliceosomal small nuclear (sn), and small CB-specific (sca)RNPs. Whereas the CB marker protein coilin is responsible for retaining snRNPs, the tether for scaRNPs is not known. Here we show that Nopp140, an intrinsically disordered CB phosphoprotein, is required to recruit and retain all scaRNPs in CBs. Knockdown (KD) of Nopp140 releases all scaRNPs leading to an unprecedented reduction in size of CB granules, hallmarks of CB ultrastructure. The CB-localizing protein WDR79 (aka TCAB1), which is mutated in the inherited bone marrow failure syndrome dyskeratosis congenita, is a specific component of all scaRNPs, including telomerase. Whereas mislocalization of telomerase by mutation of WDR79 leads to critically shortened telomeres, mislocalization of telomerase by Nopp140 KD leads to gradual extension of telomeres. Our studies suggest that the dynamic distribution of telomerase between CBs and nucleoplasm uniquely impacts telomere length maintenance and identify Nopp140 as a novel player in telomere biology.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Amit Bhardwaj
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Susan Smith
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
62
|
Haronikova L, Olivares-Illana V, Wang L, Karakostis K, Chen S, Fåhraeus R. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res 2019; 47:3257-3271. [PMID: 30828720 PMCID: PMC6468297 DOI: 10.1093/nar/gkz124] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
A large number of signalling pathways converge on p53 to induce different cellular stress responses that aim to promote cell cycle arrest and repair or, if the damage is too severe, to induce irreversible senescence or apoptosis. The differentiation of p53 activity towards specific cellular outcomes is tightly regulated via a hierarchical order of post-translational modifications and regulated protein-protein interactions. The mechanisms governing these processes provide a model for how cells optimize the genetic information for maximal diversity. The p53 mRNA also plays a role in this process and this review aims to illustrate how protein and RNA interactions throughout the p53 mRNA in response to different signalling pathways control RNA stability, translation efficiency or alternative initiation of translation. We also describe how a p53 mRNA platform shows riboswitch-like features and controls the rate of p53 synthesis, protein stability and modifications of the nascent p53 protein. A single cancer-derived synonymous mutation disrupts the folding of this platform and prevents p53 activation following DNA damage. The role of the p53 mRNA as a target for signalling pathways illustrates how mRNA sequences have co-evolved with the function of the encoded protein and sheds new light on the information hidden within mRNAs.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y cáncer. Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona universitaria, 78290 SLP, México
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.,Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden.,Inserm U1162, 27 rue Juliette Dodu, 75010 Paris, France.,ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
63
|
Fabbri M, Girnita L, Varani G, Calin GA. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res 2019; 29:1377-1388. [PMID: 31434680 PMCID: PMC6724670 DOI: 10.1101/gr.247239.118] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The world of noncoding RNAs (ncRNAs) is composed of an enormous and growing number of transcripts, ranging in length from tens of bases to tens of kilobases, involved in all biological processes and altered in expression and/or function in many types of human disorders. The premise of this review is the concept that ncRNAs, like many large proteins, have a multidomain architecture that organizes them spatially and functionally. As ncRNAs are beginning to be imprecisely classified into functional families, we review here how their structural properties might inform their functions with focus on structural architecture-function relationships. We will describe the properties of "interactor elements" (IEs) involved in direct physical interaction with nucleic acids, proteins, or lipids and of "structural elements" (SEs) directing their wiring within the "ncRNA interactor networks" through the emergence of secondary and/or tertiary structures. We suggest that spectrums of "letters" (ncRNA elements) are assembled into "words" (ncRNA domains) that are further organized into "phrases" (complete ncRNA structures) with functional meaning (signaling output) through complex "sentences" (the ncRNA interactor networks). This semiotic analogy can guide the exploitation of ncRNAs as new therapeutic targets through the development of IE-blockers and/or SE-lockers that will change the interactor partners' spectrum of proteins, RNAs, DNAs, or lipids and consequently influence disease phenotypes.
Collapse
Affiliation(s)
- Muller Fabbri
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, Hawaii 96813, USA
| | - Leonard Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, Stockholm, 17164 Sweden
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - George A Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
64
|
Paredes-Céspedes DM, Herrera-Moreno JF, Bernal-Hernández YY, Medina-Díaz IM, Salazar AM, Ostrosky-Wegman P, Barrón-Vivanco BS, Rojas-García AE. Pesticide Exposure Modifies DNA Methylation of Coding Region of WRAP53α, an Antisense Sequence of p53, in a Mexican Population. Chem Res Toxicol 2019; 32:1441-1448. [PMID: 31243981 DOI: 10.1021/acs.chemrestox.9b00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of pesticide exposure in alteration of DNA methylation patterns of specific genes is still limited, specifically in natural antisense transcripts (NAT), such as the WRAP53α gene. The aim of this study was to determine the methylation of the WRAP53α gene in mestizo and indigenous populations as well as its relationship with internal (age, sex, and body mass index) and external factors (pesticide exposure and micronutrient intake). A cross-sectional study was conducted including 91 mestizo individuals without occupational exposure to pesticides, 164 mestizo urban sprayers and 189 indigenous persons without occupational exposure to pesticides. Acute pesticide exposure was evaluated by measurement of urinary dialkylphosphate (DAP) concentration by gas chromatograph coupled to a mass spectrometer. Anthropometric characteristics, unhealthy habits, and chronic pesticide exposure were assessed using a structured questionnaire. The frequency of macro- and micronutrient intake was determined using SNUT software. DNA methylation of the WRAP53α gene was determined by pyrosequencing of bisulfite-modified DNA. The mestizo sprayers group had the higher values of %5mC. In addition, this group had the most DAP urinary concentration with respect to the indigenous and reference groups. Bivariate analysis showed an association between %5mC of the WRAP53α gene with micronutrient intake and pesticide exposure in mestizo sprayers, whereas changes in %5mC of the WRAP53α gene was associated with body mass index in the indigenous group. These data suggest that the %5mC of the WRAP53α gene can be influenced by pesticide exposure and ethnicity in the study population, and changes in the WRAP53α gene might cause an important cell process disturbance.
Collapse
Affiliation(s)
- Diana M Paredes-Céspedes
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México.,Posgrado en Ciencias Biológico Agropecuarias , Unidad Académica de Agricultura , Km. 9 Carretera Tepic-Compostela, Xalisco , Nayarit , México
| | - José F Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México.,Posgrado en Ciencias Biológico Agropecuarias , Unidad Académica de Agricultura , Km. 9 Carretera Tepic-Compostela, Xalisco , Nayarit , México
| | - Yael Y Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México
| | - Irma M Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México
| | - Ana M Salazar
- Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México (UNAM) , P.O. Box 70228, Ciudad Universitaria, México DF 04510 , México
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México (UNAM) , P.O. Box 70228, Ciudad Universitaria, México DF 04510 , México
| | - Briscia S Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México
| | - Aurora E Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado , Universidad Autónoma de Nayarit , 63155, Ciudad de la Cultura s/n. Col. Centro, C.P. 63000 , Tepic , Nayarit , México
| |
Collapse
|
65
|
Bergstrand S, O'Brien EM, Farnebo M. The Cajal Body Protein WRAP53β Prepares the Scene for Repair of DNA Double-Strand Breaks by Regulating Local Ubiquitination. Front Mol Biosci 2019; 6:51. [PMID: 31334247 PMCID: PMC6624377 DOI: 10.3389/fmolb.2019.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Proper repair of DNA double-strand breaks is critical for maintaining genome integrity and avoiding disease. Modification of damaged chromatin has profound consequences for the initial signaling and regulation of repair. One such modification involves ubiquitination by E3 ligases RNF8 and RNF168 within minutes after DNA double-strand break formation, altering chromatin structure and recruiting factors such as 53BP1 and BRCA1 for repair via non-homologous end-joining (NHEJ) and homologous recombination (HR), respectively. The WD40 protein WRAP53β plays an essential role in localizing RNF8 to DNA breaks by scaffolding its interaction with the upstream factor MDC1. Loss of WRAP53β impairs ubiquitination at DNA lesions and reduces downstream repair by both NHEJ and HR. Intriguingly, WRAP53β depletion attenuates repair of DNA double-strand breaks more than depletion of RNF8, indicating functions other than RNF8-mediated ubiquitination. WRAP53β plays key roles with respect to the nuclear organelles Cajal bodies, including organizing the genome to promote associated transcription and collecting factors involved in maturation of the spliceosome and telomere elongation within these organelles. It is possible that similar functions may aid also in DNA repair. Here we describe the involvement of WRAP53β in Cajal bodies and DNA double-strand break repair in detail and explore whether and how these processes may be linked. We also discuss the possibility that the overexpression of WRAP53β detected in several cancer types may reflect its normal participation in the DNA damage response rather than oncogenic properties.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
66
|
Peng J, Zhan Y, Feng J, Fan S, Zang H. Expression of WDR79 is associated with TP53 mutation and poor prognosis in surgically resected non-small cell lung cancer. J Cancer 2019; 10:3046-3053. [PMID: 31281482 PMCID: PMC6590041 DOI: 10.7150/jca.30587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents a major health burden globally. WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family. WDR79 is a highly conserved and natural antisense transcript to TP53 gene and involved in carcinogenesis of various types of cancer. Whether the alterations of WDR79 protein expression are associated with TP53 mutation and clinicopathological and prognostic implications in the patients with surgically resected NSCLC have not been reported. The purposes of the present study are to investigate the association between the expression of WDR79 and mutant p53 (mtp53) and clinicopathological features in NSCLC by immunohistochemistry. The results showed that positive expression of WDR79 (58.8%, 170/289) and mtp53 (48.1%, 139/289) in NSCLC was significantly higher than that in non-cancerous control lung tissues (5.7%, 3/53 and 1.9%, 1/53, respectively). There was a significantly higher positive percentage of WDR79 expression in NSCLC with lymph node metastasis. The statistically positive correlation between WDR79 and mtp53 expression (r = 0.212, P=0.014) was identified by Spearman's rank correlation analysis. Kaplan-Meier survival curve analysis indicated that positive expression of WDR79 and common positive expression of WDR79 and mtp53 were correlated with poor overall survival rates in NSCLC patients (P = 0.029 and P = 0.041, respectively). Multivariate Cox regression analysis further identified that WDR79 positive expression was an independent unfavorable prognostic factor of NSCLC (P = 0.034). Taken together, positive expression of WDR79 proteins may be related with TP53 mutations and act as valuable independent biomarker to predict poor prognosis of patients with surgically resected NSCLC.
Collapse
Affiliation(s)
- Jinwu Peng
- Department of Pathology, Xiangya Basic Medical School, Central South University, Changsha 410013, Hunan, China.,Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China.,Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Juan Feng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
67
|
Pouladi N, Abdolahi S, Farajzadeh D, Feizi MAHP. Association of the 17p13.1 region gene variants rs1042522 and rs2287499 with risk of breast cancer in Iranian-Azeri population. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
68
|
Brady OA, Jeong E, Martina JA, Pirooznia M, Tunc I, Puertollano R. The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage. eLife 2018; 7:40856. [PMID: 30520728 PMCID: PMC6292694 DOI: 10.7554/elife.40856] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
The transcription factors TFE3 and TFEB cooperate to regulate autophagy induction and lysosome biogenesis in response to starvation. Here we demonstrate that DNA damage activates TFE3 and TFEB in a p53 and mTORC1 dependent manner. RNA-Seq analysis of TFEB/TFE3 double-knockout cells exposed to etoposide reveals a profound dysregulation of the DNA damage response, including upstream regulators and downstream p53 targets. TFE3 and TFEB contribute to sustain p53-dependent response by stabilizing p53 protein levels. In TFEB/TFE3 DKOs, p53 half-life is significantly decreased due to elevated Mdm2 levels. Transcriptional profiles of genes involved in lysosome membrane permeabilization and cell death pathways are dysregulated in TFEB/TFE3-depleted cells. Consequently, prolonged DNA damage results in impaired LMP and apoptosis induction. Finally, expression of multiple genes implicated in cell cycle control is altered in TFEB/TFE3 DKOs, revealing a previously unrecognized role of TFEB and TFE3 in the regulation of cell cycle checkpoints in response to stress.
Collapse
Affiliation(s)
- Owen A Brady
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Maryland, United States
| | - Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Maryland, United States
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Maryland, United States
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Maryland, United States
| | - Ilker Tunc
- Bioinformatics and Computational Biology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Maryland, United States
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Maryland, United States
| |
Collapse
|
69
|
A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet 2018; 14:e1007802. [PMID: 30496290 PMCID: PMC6289468 DOI: 10.1371/journal.pgen.1007802] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 12/11/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
The human genome encodes thousands of long noncoding RNA (lncRNA) genes; the function of majority of them is poorly understood. Aberrant expression of a significant number of lncRNAs is observed in various diseases, including cancer. To gain insights into the role of lncRNAs in breast cancer progression, we performed genome-wide transcriptome analyses in an isogenic, triple negative breast cancer (TNBC/basal-like) progression cell lines using a 3D cell culture model. We identified significantly altered expression of 1853 lncRNAs, including ~500 natural antisense transcript (NATs) lncRNAs. A significant number of breast cancer-deregulated NATs displayed co-regulated expression with oncogenic and tumor suppressor protein-coding genes in cis. Further studies on one such NAT, PDCD4-AS1 lncRNA reveal that it positively regulates the expression and activity of the tumor suppressor PDCD4 in mammary epithelial cells. Both PDCD4-AS1 and PDCD4 show reduced expression in TNBC cell lines and in patients, and depletion of PDCD4-AS1 compromised the cellular levels and activity of PDCD4. Further, tumorigenic properties of PDCD4-AS1-depleted TNBC cells were rescued by exogenous expression of PDCD4, implying that PDCD4-AS1 acts upstream of PDCD4. Mechanistically, PDCD4-AS1 stabilizes PDCD4 RNA by forming RNA duplex and controls the interaction between PDCD4 RNA and RNA decay promoting factors such as HuR. Our studies demonstrate crucial roles played by NAT lncRNAs in regulating post-transcriptional gene expression of key oncogenic or tumor suppressor genes, thereby contributing to TNBC progression. Breast cancer is the most common cancer in women worldwide. The molecular mechanisms underlying the disease have been extensively studied, leading to dramatic improvements in diagnostic and prognostic approaches. Despite the overall improvements in survival rate, numerous cases of death by breast cancer are still reported per year, alerting us about the potential gap of knowledge in cancer molecular biology era. The emerging advances in new generation sequencing techniques have revealed that the majority of genome is transcribed into non-protein coding RNAs or ncRNAs, including thousands of long ncRNAs (lncRNAs) of unknown function. Natural antisense RNAs (NATs) constitute a group of lncRNAs that are transcribed in the opposite direction to a sense protein-coding or non-coding gene with partial or complete complementarity. In this manuscript, we investigate the role of NATs in breast cancer progression, focusing on the role of PDCD4-AS1, a NAT expressed from the established tumor suppressor PDCD4 gene locus. We observe that both PDCD4-AS1 and PDCD4 display concordant expression in breast cancer cell lines and patients. In mammary epithelial cells, PDCD4-AS1 promotes the stability of PDCD4 mRNA. PDCD4-AS1 by forming RNA duplex with PDCD4 RNA prevents the interaction between PDCD4 RNA and RNA decay factors in the nucleus.
Collapse
|
70
|
Thapar R. Regulation of DNA Double-Strand Break Repair by Non-Coding RNAs. Molecules 2018; 23:molecules23112789. [PMID: 30373256 PMCID: PMC6278438 DOI: 10.3390/molecules23112789] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer. Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs. Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated. This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
71
|
Ceramide Synthase 6: Comparative Analysis, Phylogeny and Evolution. Biomolecules 2018; 8:biom8040111. [PMID: 30297675 PMCID: PMC6315813 DOI: 10.3390/biom8040111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023] Open
Abstract
Ceramide synthase 6 (CerS6, also known as LASS6) is one of the six members of ceramide synthase gene family in humans. Comparisons of CerS6 amino acid sequences and structures as well as of CerS6 gene structures/locations were conducted using data from several vertebrate genome projects. A specific role for the CerS6 gene and protein has been identified as the endoplasmic reticulum C14- and C16-ceramide synthase. Mammalian CerS6 proteins share 90⁻100% similarity among different species, but are only 22⁻63% similar to other CerS family members, suggesting that CerS6 is a distinct gene family. Sequence alignments, predicted transmembrane, lumenal and cytoplasmic segments and N-glycosylation sites were also investigated, resulting in identification of the key conserved residues, including the active site as well as C-terminus acidic and serine residues. Mammalian CerS6 genes contain ten exons, are primarily located on the positive strands and transcribed as two major isoforms. The human CERS6 gene promoter harbors a large CpG island (94 CpGs) and multiple transcription factor binding sites (TFBS), which support precise transcriptional regulation and signaling functions. Additional regulation is conferred by 15 microRNA (miRNA) target sites identified in the CERS6 3'-UTR region. Phylogenetic analysis of the vertebrate CerS1⁻6 gene families relationships supports a major role for the CerS6 enzyme that is strongly conserved throughout vertebrate evolution.
Collapse
|
72
|
Sun W, Shi Y, Wang Z, Zhang J, Cai H, Zhang J, Huang D. Interaction of long-chain non-coding RNAs and important signaling pathways on human cancers (Review). Int J Oncol 2018; 53:2343-2355. [PMID: 30272345 DOI: 10.3892/ijo.2018.4575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/24/2018] [Indexed: 11/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) usually refer to non-coding RNA transcripts >200 nucleotides in length. In terms of the full genomic transcript, the proportion of lncRNAs far exceeds that of coding RNA. Initially, lncRNAs were considered to be the transcriptional noise of genes, but it has since been demonstrated that lncRNAs serve an important role in the regulation of cellular activities through interaction with DNA, RNA and protein. Numerous studies have demonstrated that various intricate signaling pathways are closely related to lncRNAs. Here, we focus on a large number of studies regarding the interaction of lncRNAs with important signaling pathways. It is comprehensively illustrated that lncRNAs regulate key metabolic components and regulatory factors of signaling pathways to affect the biological activities of tumor cells. Evidence suggests that the abnormal expression or mutation of lncRNAs in human tumor cells, and their interaction with signaling pathways, may provide a basis and potential target for the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Wei Sun
- Department of Postgraduates, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Ying Shi
- Department of Obstetrics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhifei Wang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jiye Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Hanhui Cai
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Jungang Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Dongsheng Huang
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
73
|
Kim DS, Lee WK, Park JY. Promoter methylation of Wrap53α, an antisense transcript of p53, is associated with the poor prognosis of patients with non-small cell lung cancer. Oncol Lett 2018; 16:5823-5828. [PMID: 30344734 PMCID: PMC6176374 DOI: 10.3892/ol.2018.9404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
Lung cancer, of which non-small cell lung cancer (NSCLC) accounts for ~85% of cases, remains a leading cause of cancer-associated mortality and morbidity worldwide. Tumor suppressor p53 is a master regulator of diverse cellular processes and is a therapeutic target in cancer. However, many aspects of its transcriptional regulation are still not well defined. WD repeat containing antisense to TP53α (Wrap53α) a newly identified natural antisense transcript of p53, can regulate p53 expression following DNA damage. The present study determined the methylation status of the Wrap53α promoter in primary lung tissues using methylation-specific polymerase chain reaction and evaluated its associations with clinicopathological features and survival in patients with NSCLC. The Wrap53α promoter was methylated in 12 (8.2%) of 146 malignant tissues. Its methylation was associated with the downregulation of its transcription and was frequently detected in patients with stages II-IIIA (P=0.03), and p53 mutation-negative cases (P=0.08). Methylation of Wrap53α promoter was associated with worse overall survival of total patients with a borderline significance [adjusted Hazard Ratio (HR)=2.44, 95% Confidence Interval (CI)=0.98-6.04, P=0.05]. Notably, Wrap53α promoter methylation significantly associated with poor overall survival in p53 mutation-negative patients (log-rank P=0.01, adjusted HR=2.92, 95% CI=1.00-8.60, P=0.05), but not in patients with p53 mutations. The results of the present study suggest that Wrap53α may serve a role in the pathogenesis of a subset of lung cancer, and its methylation may be considered to be a prognostic marker for surgically resected NSCLC patients. However, further studies with a larger sample size are required to confirm this finding.
Collapse
Affiliation(s)
- Dong Sun Kim
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea
| | - Won Kee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 702-422, Republic of Korea
| |
Collapse
|
74
|
Liao X, Chen J, Liu Y, He A, Wu J, Cheng J, Zhang X, Lv Z, Wang F, Mei H. Knockdown of long noncoding RNA FGFR3- AS1 induces cell proliferation inhibition, apoptosis and motility reduction in bladder cancer. Cancer Biomark 2018; 21:277-285. [PMID: 29226855 DOI: 10.3233/cbm-170354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To study the expression pattern of long non-coding RNA FGFR3 antisense transcript 1(FGFR3-AS1) and the cell proliferation inhibition, apoptosis, and motility changes induced by silencing FGFR3-AS1 in bladder cancer. METHODS The differential expression levels of FGFR3-AS1 and FGFR3 in tumor tissues and paired normal tissues were determined using Real-Time qPCR in a total of 36 patients diagnosed with bladder cancer (urothelial carcinoma). Pearson's coefficient correlation was used for expression correlation assay. Expression differences of FGFR3-AS1 were analyzed according to grading and staging. FGFR3 protein was detected by western blot assay. Human bladder cancer T24 and 5637 cell lines were transiently transfected with FGFR3-AS1-specific siRNA or negative control siRNA. The cell proliferation changes of transfected bladder cancer cells were determined using CCK-8 assay. Apoptosis caused by knockdown of FGFR3-AS1 was evaluated using ELISA assay. Motility changes induced by knockdown of FGFR3-AS1 were measured using wound healing assay and transwell assay. RESULTS Both FGFR3-AS1 and FGFR3 were overexpressed in bladder cancer tissues compared to matched normal tissues. They were also positively expressed in bladder cancer. FGFR3-AS1 expression levels were higher in high grade tumors than those in low grade tumors. FGFR3-AS1 expression levels were higher in invasive tumors than those in non-invasive tumors. Cell proliferation inhibition, increased apoptosis, and decreased motility were observed in FGFR3-AS1 siRNA-transfected T24 and 5637 cell lines. CONCLUSIONS FGFR3-AS1 plays an oncogenic role in human bladder cancer. Knockdown of FGFR3-AS1 may provide a potential new therapeutic approach to this disease.
Collapse
Affiliation(s)
- Xinhui Liao
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jieqing Chen
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Anbang He
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jianting Wu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jianli Cheng
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xintao Zhang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhaojie Lv
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Feng Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Hongbing Mei
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
75
|
Dong CY, Cui J, Li DH, Li Q, Hong XY. HOXA10‑AS: A novel oncogenic long non‑coding RNA in glioma. Oncol Rep 2018; 40:2573-2583. [PMID: 30132568 PMCID: PMC6151881 DOI: 10.3892/or.2018.6662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the central nervous system. Emerging evidence has demonstrated that long non‑coding RNAs (lncRNAs) serve a major role of regulation in various types of human cancer, including glioma. However, the biological roles of thousands of lncRNAs remain unknown and require further identification. The present study investigated the functional role of lncRNA‑HOXA10‑AS in glioma. The present study examined the expression patterns of HOXA10‑AS in glioma and normal brain tissues, as well as glioma cell lines and normal human astrocytes (HA) via reverse transcription‑quantitative polymerase chain reaction. HOXA10‑AS knockdown cells were generated using lentiviral short hairpin RNA against HOXA10‑AS in A172 and U251 glioma cells. Cell growth was assessed by MTT assay, and a flow cytometer was used to investigate cell proliferation, cell cycle distribution and cell apoptosis. Western blot analysis was performed to analyze the expression levels of apoptosis‑related proteins. HOXA10‑AS was significantly upregulated in glioma tissues and cell lines, and increased HOXA10‑AS expression levels were associated with higher grades of glioma. Knockdown of HOXA10‑AS inhibited glioma cell proliferation and increased cell apoptosis rates compared with the control cells. HOXA10‑AS markedly regulated the expression of the homeobox A10 (HOXA10) gene. Similarly, HOXA10 expression was increased with higher grades of glioma, and silencing of HOXA10 by small interfering RNA suppressed glioma cell proliferation and induced cell apoptosis. The results of the present study demonstrated that HOXA10‑AS promoted cell growth and survival through activation of HOXA10 gene expression in glioma, which may potentially act as a novel biomarker and therapeutic target for clinical assay development.
Collapse
Affiliation(s)
- Cheng-Ya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jiayue Cui
- Department of Histology and Embryology of Basic Medicine College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dian-He Li
- Department of Medicine, Northeast Normal University Hospital, Changchun, Jilin 130024, P.R. China
| | - Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xin-Yu Hong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
76
|
p53-Autophagy-Metastasis Link. Cancers (Basel) 2018; 10:cancers10050148. [PMID: 29783720 PMCID: PMC5977121 DOI: 10.3390/cancers10050148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 as the “guardian of the genome” plays an essential role in numerous signaling pathways that control the cell cycle, cell death and in maintaining the integrity of the human genome. p53, depending on the intracellular localization, contributes to the regulation of various cell death pathways, including apoptosis, autophagy and necroptosis. Accumulated evidence suggests that this function of p53 is closely involved in the process of cancer development. Here, present knowledge concerning a p53-autophagy-metastasis link, as well as therapeutic approaches that influence this link, are discussed.
Collapse
|
77
|
Gauster M, Maninger S, Siwetz M, Deutsch A, El-Heliebi A, Kolb-Lenz D, Hiden U, Desoye G, Herse F, Prokesch A. Downregulation of p53 drives autophagy during human trophoblast differentiation. Cell Mol Life Sci 2018; 75:1839-1855. [PMID: 29080089 PMCID: PMC5910494 DOI: 10.1007/s00018-017-2695-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/21/2023]
Abstract
The placental barrier is crucial for the supply of nutrients and oxygen to the developing fetus and is maintained by differentiation and fusion of mononucleated cytotrophoblasts into the syncytiotrophoblast, a process only partially understood. Here transcriptome and pathway analyses during differentiation and fusion of cultured trophoblasts yielded p53 signaling as negative upstream regulator and indicated an upregulation of autophagy-related genes. We further showed p53 mRNA and protein levels decreased during trophoblast differentiation. Reciprocally, autophagic flux increased and cytoplasmic LC3B-GFP puncta became more abundant, indicating enhanced autophagic activity. In line, in human first trimester placenta p53 protein mainly localized to the cytotrophoblast, while autophagy marker LC3B as well as late autophagic compartments were predominantly detectable in the syncytiotrophoblast. Importantly, ectopic overexpression of p53 reduced levels of LC3B-II, supporting a negative regulatory role on autophagy in differentiating trophoblasts. This was also shown in primary trophoblasts and human first trimester placental explants, where pharmacological stabilization of p53 decreased LC3B-II levels. In summary our data suggest that differentiation-dependent downregulation of p53 is a prerequisite for activating autophagy in the syncytiotrophoblast.
Collapse
Affiliation(s)
- Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria.
| | - Sabine Maninger
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Monika Siwetz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Alexander Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Amin El-Heliebi
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
| | - Dagmar Kolb-Lenz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University Graz, Graz, Austria
| | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Prokesch
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Neue Stiftingtalstraße 6, F/03/38, 8010, Graz, Austria.
| |
Collapse
|
78
|
Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget 2018; 9:20179-20212. [PMID: 29732012 PMCID: PMC5929455 DOI: 10.18632/oncotarget.24591] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second leading cause of cancer related deaths in women. It is therefore important to understand the mechanisms underlying breast cancer development as well as raises the need for enhanced, non-invasive strategies for novel prognostic and diagnostic methods. The emergence of long non-coding RNAs (lncRNAs) as potential key players in neoplastic disease has received considerable attention over the past few years. This relatively new class of molecular regulators has been shown from ongoing research to act as critical players for key biological processes. Deregulated expression levels of lncRNAs have been observed in a number of cancers including breast cancer. Furthermore, lncRNAs have been linked to breast cancer initiation, progression, metastases and to limit sensitivity to certain targeted therapeutics. In this review we provide an update on the lncRNAs associated with breast cancer and mammary gland development and illustrate the versatility of such lncRNAs in gene control, differentiation and development both in normal physiological conditions and in diseased states. We also highlight the therapeutic and diagnostic potential of lncRNAs in cancer.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Current Address: Genome Institute of Singapore, Agency for Science Technology and Research, 138672, Singapore
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- School of Pharmacy, Curtin University, Perth, 6845, Australia
| |
Collapse
|
79
|
ncRNA-disease association prediction based on sequence information and tripartite network. BMC SYSTEMS BIOLOGY 2018; 12:37. [PMID: 29671405 PMCID: PMC5907179 DOI: 10.1186/s12918-018-0527-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Current technology has demonstrated that mutation and deregulation of non-coding RNAs (ncRNAs) are associated with diverse human diseases and important biological processes. Therefore, developing a novel computational method for predicting potential ncRNA-disease associations could benefit pathologists in understanding the correlation between ncRNAs and disease diagnosis, treatment, and prevention. However, only a few studies have investigated these associations in pathogenesis. Results This study utilizes a disease-target-ncRNA tripartite network, and computes prediction scores between each disease-ncRNA pair by integrating biological information derived from pairwise similarity based upon sequence expressions with weights obtained from a multi-layer resource allocation technique. Our proposed algorithm was evaluated based on a 5-fold-cross-validation with optimal kernel parameter tuning. In addition, we achieved an average AUC that varies from 0.75 without link cut to 0.57 with link cut methods, which outperforms a previous method using the same evaluation methodology. Furthermore, the algorithm predicted 23 ncRNA-disease associations supported by other independent biological experimental studies. Conclusions Taken together, these results demonstrate the capability and accuracy of predicting further biological significant associations between ncRNAs and diseases and highlight the importance of adding biological sequence information to enhance predictions.
Collapse
|
80
|
Zhang L, Lin S, An L, Ma J, Qiu F, Jia R, Nie Q, Zhang D, Luo Q, Li T, Wang Z, Zhang X. Chicken GHR natural antisense transcript regulates GHR mRNA in LMH cells. Oncotarget 2018; 7:73607-73617. [PMID: 27713155 PMCID: PMC5342002 DOI: 10.18632/oncotarget.12437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/21/2016] [Indexed: 01/03/2023] Open
Abstract
Growth hormone receptor (GHR) played key roles in human and animal growth. Both human laron type dwarfism and sex linked dwarf chicken were caused by the mutation of GHR gene. In this study, we identified an endogenously expressed long non-coding natural antisense transcript, GHR-AS, which overlapped with the GHR mRNA (GHR-S) in a tail to tail manner. Spatial and temporal expression analyses indicated that GHR-AS were highly expressed in chicken liver and displayed ascending with the development of chicken from E10 to 3 w of age. Interfering GHR-AS caused GHR-S decreasing, accompanied with increasing of the inactive gene indicator, H3K9me2, in the GHR-S promoter regions in LMH cells. RNase A experiment exhibited that GHR-AS and GHR-S can form double strand RNAs at the last exon of GHR gene in vivo and in vitro, which hinted they could act on each other via the region. In addition, the levels of GHR-S and GHR-AS can be affected by DNA methylation. Compared the normal chicken with the dwarfs, the negative correlation trends were showed between the GHR-S promoter methylation status and the GHR-AS levels. This is the first report of that GHR gene possessed natural antisense transcript and the results presented here further highlight the fine and complicated regulating mechanism of GHR gene in chicken development.
Collapse
Affiliation(s)
- Li Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, P.R. China.,Agricultural College, Guangdong Ocean University, Zhanjiang 524088, P.R. China
| | - Shudai Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, P.R. China
| | - Lilong An
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, P.R. China
| | - Jinge Ma
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, P.R. China
| | - Fengfang Qiu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, P.R. China
| | - Rumin Jia
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, P.R. China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, P.R. China
| | - Dexiang Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, P.R. China
| | - Qingbin Luo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, P.R. China
| | - Ting Li
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, P.R. China
| | - Zhang Wang
- Agricultural College, Guangdong Ocean University, Zhanjiang 524088, P.R. China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
81
|
Expression of cell cycle regulators and frequency of TP53 mutations in high risk gastrointestinal stromal tumors prior to adjuvant imatinib treatment. PLoS One 2018; 13:e0193048. [PMID: 29451912 PMCID: PMC5815598 DOI: 10.1371/journal.pone.0193048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
Despite of multitude investigations no reliable prognostic immunohistochemical biomarkers in GIST have been established so far with added value to predict the recurrence risk of high risk GIST besides mitotic count, primary location and size. In this study, we analyzed the prognostic relevance of eight cell cycle and apoptosis modulators and of TP53 mutations for prognosis in GIST with high risk of recurrence prior to adjuvant treatment with imatinib. In total, 400 patients with high risk for GIST recurrence were randomly assigned for adjuvant imatinib either for one or for three years following laparotomy. 320 primary tumor samples with available tumor tissue were immunohistochemically analyzed prior to treatment for the expression of cell cycle regulators and apoptosis modulators cyclin D1, p21, p16, CDK4, E2F1, MDM2, p53 and p-RB1. TP53 mutational analysis was possible in 245 cases. A high expression of CDK4 was observed in 32.8% of all cases and was associated with a favorable recurrence free survival (RFS), whereas high expression of MDM2 (12.2%) or p53 (35.3%) was associated with a shorter RFS. These results were independent from the primary KIT or PDGFRA mutation. In GISTs with higher mitotic counts was a significantly increased expression of cyclin D1, p53 and E2F1. The expression of p16 and E2F1 significantly correlated to a non-gastric localization. Furthermore, we observed a significant higher expression of p21 and E2F1 in KIT mutant GISTs compared to PDGFRA mutant and wt GISTs. The overall frequency of TP53 mutations was low (n = 8; 3.5%) and could not be predicted by the immunohistochemical expression of p53. In summary, mutation analysis in TP53 plays a minor role in the subgroup of high-risk GIST before adjuvant treatment with imatinib. Strong expression of MDM2 and p53 correlated with a shorter recurrence free survival, whereas a strong expression of CDK4 correlated to a better recurrence free survival.
Collapse
|
82
|
Non-coding RNAs in the reprogramming of glucose metabolism in cancer. Cancer Lett 2018; 419:167-174. [PMID: 29366802 DOI: 10.1016/j.canlet.2018.01.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Proliferating cancer cells reprogram their metabolic circuitry to thrive in an environment deficient in nutrients and oxygen. Cancer cells exhibit a higher rate of glucose metabolism than normal somatic cells, which is achieved by switching from oxidative phosphorylation to aerobic glycolysis to meet the energy and metabolites demands of tumour progression. This phenomenon, which is known as the Warburg effect, has generated renewed interest in the process of glucose metabolism reprogramming in cancer cells. Several regulatory pathways along with glycolytic enzymes are responsible for the emergence of glycolytic dependence. Non-coding (nc)RNAs are a class of functional RNA molecules that are not translated into proteins but regulate target gene expression. NcRNAs have been shown to be involved in various biological processes, including glucose metabolism. In this review, we describe the regulatory role of ncRNAs-specifically, microRNAs and long ncRNAs-in the glycolytic switch and propose that ncRNA-based therapeutics can be used to inhibit the process of glucose metabolism reprogramming in cancer cells.
Collapse
|
83
|
Hu H, Tao B, Chen J, Zhu Z, Hu W. Fam60al as a novel factor involved in reprogramming of somatic cell nuclear transfer in zebrafish ( Danio rerio). Int J Biol Sci 2018; 14:78-86. [PMID: 29483827 PMCID: PMC5821051 DOI: 10.7150/ijbs.22426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
The main reason for abnormal development of cloned animals or embryos, and inefficient animal cloning, is a poor understanding of the reprogramming mechanism. To better comprehend reprogramming and subsequent generation of pluripotent stem cells, we must investigate factors related to reprogramming of somatic cells as nuclear donors. As we know, fam60al (family with sequence similarity 60, member A, like) is a coding gene only found in zebrafish and frog (Xenopus laevis) among vertebrates. However, until now, its functions have remained unknown. Here, we generated a zebrafish fam60al-/- mutant line using transcription activator-like effector nucleases (TALENs), and found that both nanog and klf4b expression significantly decreased while myca expression significantly increased in fam60al-/- mutant embryos. Concurrently, we also uncovered that in developmentally arrested embryos of somatic cell nuclear transfer, nanog, klf4b and myca expression was down-regulated, accompanying a decrease of fam60al expression. Interestingly, we identified a long noncoding RNA (lncRNA) of fam60al, named fam60al-AS, which negatively regulated fam60al by forming double-stranded RNA (dsRNA). RNase protection assay and real-time PCR confirmed these findings. Taken together, these results suggest that fam60al is a novel factor related to the reprogramming of somatic cell nuclear transfer in zebrafish, which is regulated by its reverse lncRNA.
Collapse
Affiliation(s)
- Hongling Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Science, Beijing 100049, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
84
|
Goyal A, Fiškin E, Gutschner T, Polycarpou-Schwarz M, Groß M, Neugebauer J, Gandhi M, Caudron-Herger M, Benes V, Diederichs S. A cautionary tale of sense-antisense gene pairs: independent regulation despite inverse correlation of expression. Nucleic Acids Res 2017; 45:12496-12508. [PMID: 29059299 PMCID: PMC5716207 DOI: 10.1093/nar/gkx952] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 10/05/2017] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been proven to play important roles in diverse cellular processes including the DNA damage response. Nearly 40% of annotated lncRNAs are transcribed in antisense direction to other genes and have often been implicated in their regulation via transcript- or transcription-dependent mechanisms. However, it remains unclear whether inverse correlation of gene expression would generally point toward a regulatory interaction between the genes. Here, we profiled lncRNA and mRNA expression in lung and liver cancer cells after exposure to DNA damage. Our analysis revealed two pairs of mRNA-lncRNA sense-antisense transcripts being inversely expressed upon DNA damage. The lncRNA NOP14-AS1 was strongly upregulated upon DNA damage, while the mRNA for NOP14 was downregulated, both in a p53-dependent manner. For another pair, the lncRNA LIPE-AS1 was downregulated, while its antisense mRNA CEACAM1 was upregulated. To test whether as expected the antisense genes would regulate each other resulting in this highly significant inverse correlation, we employed antisense oligonucleotides and RNAi to study transcript-dependent effects as well as dCas9-based transcriptional modulation by CRISPRi/CRISPRa for transcription-dependent effects. Surprisingly, despite the strong stimulus-dependent inverse correlation, our data indicate that neither transcript- nor transcription-dependent mechanisms explain the inverse regulation of NOP14-AS1:NOP14 or LIPE-AS1:CEACAM1 expression. Hence, sense-antisense pairs whose expression is strongly—positively or negatively—correlated can be nonetheless regulated independently. This highlights the requirement of individual experimental studies for each antisense pair and prohibits drawing conclusions on regulatory mechanisms from expression correlations.
Collapse
Affiliation(s)
- Ashish Goyal
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Evgenij Fiškin
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tony Gutschner
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Maria Polycarpou-Schwarz
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matthias Groß
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Julia Neugebauer
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Minakshi Gandhi
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Maiwen Caudron-Herger
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany.,Division of Cancer Research, Department of Thoracic Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany.,German Cancer Consortium (DKTK), 79104 Freiburg, Germany
| |
Collapse
|
85
|
Goyal A, Myacheva K, Groß M, Klingenberg M, Duran Arqué B, Diederichs S. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res 2017; 45:e12. [PMID: 28180319 PMCID: PMC5388423 DOI: 10.1093/nar/gkw883] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/01/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
The CRISPR/Cas9 system provides a revolutionary genome editing tool for all areas of molecular biology. In long non-coding RNA (lncRNA) research, the Cas9 nuclease can delete lncRNA genes or introduce RNA-destabilizing elements into their locus. The nuclease-deficient dCas9 mutant retains its RNA-dependent DNA-binding activity and can modulate gene expression when fused to transcriptional repressor or activator domains. Here, we systematically analyze whether CRISPR approaches are suitable to target lncRNAs. Many lncRNAs are derived from bidirectional promoters or overlap with promoters or bodies of sense or antisense genes. In a genome-wide analysis, we find only 38% of 15929 lncRNA loci are safely amenable to CRISPR applications while almost two-thirds of lncRNA loci are at risk to inadvertently deregulate neighboring genes. CRISPR- but not siPOOL or Antisense Oligo (ASO)-mediated targeting of lncRNAs NOP14-AS1, LOC389641, MNX1-AS1 or HOTAIR also affects their respective neighboring genes. Frequently overlooked, the same restrictions may apply to mRNAs. For example, the tumor suppressor TP53 and its head-to-head neighbor WRAP53 are jointly affected by the same sgRNAs but not siPOOLs. Hence, despite the advantages of CRISPR/Cas9 to modulate expression bidirectionally and in cis, approaches based on ASOs or siPOOLs may be the better choice to target specifically the transcript from complex loci.
Collapse
Affiliation(s)
- Ashish Goyal
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ksenia Myacheva
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Groß
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| | - Berta Duran Arqué
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
86
|
The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet 2017; 33:665-676. [DOI: 10.1016/j.tig.2017.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
87
|
Tiefenböck-Hansson K, Haapaniemi A, Farnebo L, Palmgren B, Tarkkanen J, Farnebo M, Munck-Wikland E, Mäkitie A, Garvin S, Roberg K. WRAP53β, survivin and p16INK4a expression as potential predictors of radiotherapy/chemoradiotherapy response in T2N0-T3N0 glottic laryngeal cancer. Oncol Rep 2017; 38:2062-2068. [PMID: 28849066 PMCID: PMC5652956 DOI: 10.3892/or.2017.5898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023] Open
Abstract
The current treatment recommendation for T2-3N0M0 glottic squamous cell carcinoma (SCC) in the Nordic countries comprises of radiotherapy (RT) and chemoradiotherapy (CRT). Tumor radiosensitivity varies and another option is primary surgical treatment, which underlines the need for predictive markers in this patient population. The aim of the present study was to investigate the relation of the proteins WRAP53β, survivin and p16INK4a to RT/CRT response and ultimate outcome of patients with T2-T3N0 glottic SCC. Protein expression was determined using immunohistochemistry on tumors from 149 patients consecutively treated with RT or CRT at Helsinki University Hospital, Karolinska University Hospital, and Linköping University Hospital during 1999–2010. Our results demonstrate a significantly better 5-year relapse-free survival, disease-free survival (DFS), disease-specific survival and overall survival of patients with T3N0 tumors treated with CRT compared with RT alone. Patients with tumors showing a cytoplasmic staining of WRAP53β revealed significantly worse DFS compared with those with nuclear staining. For survivin, we observed a trend towards better 5-year DFS in patients with strong nuclear survivin expression compared with those with weak nuclear survivin expression (P=0.091). Eleven (7%) tumors showed p16 positivity, with predilection to younger patients, and this age group of patients with p16-positive SCC had a significantly better DFS compared with patients with p16-negative SCC. Taken together, our results highlight WRAP53β as a potential biomarker for predicting RT/CRT response in T2-T3N0 glottic SCC. p16 may identify a small but distinct group of glottic SCC with favorable outcome. Furthermore, for T3N0 patients better outcome was observed following CRT compared to RT alone.
Collapse
Affiliation(s)
- Katharina Tiefenböck-Hansson
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Aaro Haapaniemi
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lovisa Farnebo
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Björn Palmgren
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jussi Tarkkanen
- Department of Pathology, HUSLAB, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marianne Farnebo
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Eva Munck-Wikland
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Stina Garvin
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Roberg
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
88
|
Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, Zhang S, Gong Z, Wei F, Yang L, He Y, Zhou M, Li X, Li G, Xiong W, Zeng Z. Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer 2017; 16:130. [PMID: 28738810 PMCID: PMC5525357 DOI: 10.1186/s12943-017-0699-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Long-noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides and do not code for proteins. However, this class of RNAs plays pivotal regulatory roles. The mechanism of their action is highly complex. Mounting evidence shows that lncRNAs can regulate cancer onset and progression in a variety of ways. They can not only regulate cancer cell proliferation, differentiation, invasion and metastasis, but can also regulate glucose metabolism in cancer cells through different ways, such as by directly regulating the glycolytic enzymes and glucose transporters (GLUTs), or indirectly modulating the signaling pathways. In this review, we summarized the role of lncRNAs in regulating glucose metabolism in cancer, which will help understand better the pathogenesis of malignant tumors. The understanding of the role of lncRNAs in glucose metabolism may help provide new therapeutic targets and novel diagnostic and prognosis markers for human cancer.
Collapse
Affiliation(s)
- Chunmei Fan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
89
|
Epstein-Barr virus-induced up-regulation of TCAB1 is involved in the DNA damage response in nasopharyngeal carcinoma. Sci Rep 2017; 7:3218. [PMID: 28607398 PMCID: PMC5468285 DOI: 10.1038/s41598-017-03156-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
Telomerase Cajal body protein 1 (TCAB1), which is involved in Cajal body maintenance, telomere elongation and ribonucleoprotein biogenesis, has been linked to cancer predisposition, including nasopharyngeal carcinoma (NPC), due to its oncogenic properties. However, there are no specific reports to date on the functional relevance of TCAB1 and Epstein–Barr virus (EBV), which is considered to be a risk factor for NPC. In this study, we first examined NPC clinical tissues and found a notable overexpression of TCAB1 in EBV-positive specimens. Secondly, on a cellular level, we also observed that TCAB1 expression rose gradually along with the increased duration of EBV exposure in NPC cell lines. Additionally, EBV infection promoted cell proliferation and telomerase activity, but the activation was significantly inhibited after TCAB1 knockdown. Moreover, depletion of TCAB1 caused both cell cycle arrest and apoptosis, and suppressed the activation of ataxia telangiectasia and Rad3 related protein (ATR) induced by EBV, resulting in accumulation of DNA damage. Taken together, we here demonstrate that up-regulated expression of TCAB1, induced by EBV in the development of NPC, is involved in stimulating telomerase activity and regulating the DNA damage response within the context of EBV infection.
Collapse
|
90
|
Sun Y, Cao L, Sheng X, Chen J, Zhou Y, Yang C, Deng T, Ma H, Feng P, Liu J, Tan W, Ye M. WDR79 promotes the proliferation of non-small cell lung cancer cells via USP7-mediated regulation of the Mdm2-p53 pathway. Cell Death Dis 2017; 8:e2743. [PMID: 28406480 PMCID: PMC5477585 DOI: 10.1038/cddis.2017.162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022]
Abstract
WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family and functions as a scaffold protein during telomerase assembly, Cajal body formation and DNA double strand break repair. We have previously shown that WDR79 is frequently overexpressed in cell lines and tissues derived from non-small cell lung cancer (NSCLC) and it accelerates cell proliferation in NSCLC. However, the detailed mechanism underlying the role of WDR79 in the proliferation of NSCLC cells remains unclear. Here, we report the discovery of a molecular interaction between WDR79 and USP7 and show its functional significance in linking the Mdm2-p53 pathway to the proliferation of NSCLC cells. We found that WDR79 colocalized and interacted with USP7 in the nucleus of NSCLC cells. This event, in turn, reduced the ubiquitination of Mdm2 and p53, thereby increasing the stability and extending the half-life of the two proteins. We further found that the functional effects of WDR79 depended upon USP7, because the knockdown of USP7 resulted in their attenuation. Finally, we demonstrated that WDR79 promoted the proliferation of NSCLC cells via USP7. Taken together, our findings reveal a novel molecular function of WDR79 and may lead to broadly applicable and innovative therapeutic avenues for NSCLC.
Collapse
Affiliation(s)
- Yang Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xunan Sheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Jieying Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Chao Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China.,College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Hongchang Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Jing Liu
- School of Life Sciences, State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
91
|
Wamsley JJ, Gary C, Biktasova A, Hajek M, Bellinger G, Virk R, Issaeva N, Yarbrough WG. Loss of LZAP inactivates p53 and regulates sensitivity of cells to DNA damage in a p53-dependent manner. Oncogenesis 2017; 6:e314. [PMID: 28394357 PMCID: PMC5520489 DOI: 10.1038/oncsis.2017.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy and radiation, the two most common cancer therapies, exert their anticancer effects by causing damage to cellular DNA. However, systemic treatment damages DNA not only in cancer, but also in healthy cells, resulting in the progression of serious side effects and limiting efficacy of the treatment. Interestingly, in response to DNA damage, p53 seems to play an opposite role in normal and in the majority of cancer cells-wild-type p53 mediates apoptosis in healthy tissues, attributing to the side effects, whereas mutant p53 often is responsible for acquired cancer resistance to the treatment. Here, we show that leucine zipper-containing ARF-binding protein (LZAP) binds and stabilizes p53. LZAP depletion eliminates p53 protein independently of its mutation status, subsequently protecting wild-type p53 cells from DNA damage-induced cell death, while rendering cells expressing mutant p53 more sensitive to the treatment. In human non-small-cell lung cancer, LZAP levels correlated with p53 levels, suggesting that loss of LZAP may represent a novel mechanism of p53 inactivation in human cancer. Our studies establish LZAP as a p53 regulator and p53-dependent determinative of cell fate in response to DNA damaging treatment.
Collapse
Affiliation(s)
- J J Wamsley
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - C Gary
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - A Biktasova
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - M Hajek
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - G Bellinger
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - R Virk
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - N Issaeva
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - W G Yarbrough
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
92
|
Yuan XS, Cao LX, Hu YJ, Bao FC, Wang ZT, Cao JL, Yuan P, Lv W, Hu J. Clinical, cellular, and bioinformatic analyses reveal involvement of WRAP53 overexpression in carcinogenesis of lung adenocarcinoma. Tumour Biol 2017; 39:1010428317694309. [PMID: 28347242 DOI: 10.1177/1010428317694309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, of which non-small cell lung cancer accounts for 80%, remains a leading cause of cancer-related mortality and morbidity worldwide. Our study revealed that the expression of WD repeat containing antisense to P53 (WRAP53) is higher in lung-adenocarcinoma specimens than in specimens from adjacent non-tumor tissues. The prevalence of WRAP53 overexpression was significantly higher in patients with tumor larger than 3.0 cm than in patients with tumor smaller than 3.0 cm. The depletion of WRAP53 inhibits the proliferation of lung-adenocarcinoma A549 and SPC-A-1 cells via G1/S cell-cycle arrest. Several proteins interacting with WRAP53 were identified through co-immunoprecipitation and liquid chromatography/mass spectrometry. These key proteins indicated previously undiscovered functions of WRAP53. These observations strongly suggested that WRAP53 should be considered a promising target in the prevention or treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiao-Shuai Yuan
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Long-Xiang Cao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ye-Ji Hu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Fei-Chao Bao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zhi-Tian Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jin-Lin Cao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ping Yuan
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
93
|
Shen Y, Liu S, Fan J, Jin Y, Tian B, Zheng X, Fu H. Nuclear retention of the lncRNA SNHG1 by doxorubicin attenuates hnRNPC-p53 protein interactions. EMBO Rep 2017; 18:536-548. [PMID: 28264987 DOI: 10.15252/embr.201643139] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
The protein p53 plays a crucial role in the regulation of cellular responses to diverse stresses. Thus, a major priority in cell biology is to define the mechanisms that regulate p53 activity in response to stresses or maintain it at basal levels under normal conditions. Moreover, further investigation is required to establish whether RNA participates in regulating p53's interaction with other proteins. Here, by conducting systematic experiments, we discovered a p53 interactor-hnRNPC-that directly binds to p53, destabilizes it, and prevents its activation under normal conditions. Upon doxorubicin treatment, the lncRNA SNHG1 is retained in the nucleus through its binding with nucleolin and it competes with p53 for hnRNPC binding, which upregulates p53 levels and promotes p53-dependent apoptosis by impairing hnRNPC regulation of p53 activity. Our results indicate that a balance between lncRNA SNHG1 and hnRNPC regulates p53 activity and p53-dependent apoptosis upon doxorubicin treatment, and further indicate that a change in lncRNA subcellular localization under specific circumstances is biologically significant.
Collapse
Affiliation(s)
- Yuan Shen
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shanshan Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Key Laboratory for Molecular Enzymology and Engineering (The Ministry of Education), College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jiao Fan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Institute of Geriatrics, Chinese PLA General Hospital, Beijing, China
| | - Yinghua Jin
- Key Laboratory for Molecular Enzymology and Engineering (The Ministry of Education), College of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Baolei Tian
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaofei Zheng
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hanjiang Fu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
94
|
d'Ydewalle C, Ramos DM, Pyles NJ, Ng SY, Gorz M, Pilato CM, Ling K, Kong L, Ward AJ, Rubin LL, Rigo F, Bennett CF, Sumner CJ. The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy. Neuron 2016; 93:66-79. [PMID: 28017471 DOI: 10.1016/j.neuron.2016.11.033] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/11/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
The neuromuscular disorder spinal muscular atrophy (SMA), the most common inherited killer of infants, is caused by insufficient expression of survival motor neuron (SMN) protein. SMA therapeutics development efforts have focused on identifying strategies to increase SMN expression. We identified a long non-coding RNA (lncRNA) that arises from the antisense strand of SMN, SMN-AS1, which is enriched in neurons and transcriptionally represses SMN expression by recruiting the epigenetic Polycomb repressive complex-2. Targeted degradation of SMN-AS1 with antisense oligonucleotides (ASOs) increases SMN expression in patient-derived cells, cultured neurons, and the mouse central nervous system. SMN-AS1 ASOs delivered together with SMN2 splice-switching oligonucleotides additively increase SMN expression and improve survival of severe SMA mice. This study is the first proof of concept that targeting a lncRNA to transcriptionally activate SMN2 can be combined with SMN2 splicing modification to ameliorate SMA and demonstrates the promise of combinatorial ASOs for the treatment of neurogenetic disorders.
Collapse
Affiliation(s)
- Constantin d'Ydewalle
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Daniel M Ramos
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Noah J Pyles
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Shi-Yan Ng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Mariusz Gorz
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Celeste M Pilato
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Karen Ling
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Amanda J Ward
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - C Frank Bennett
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
95
|
Hainaut P, Pfeifer GP. Somatic TP53 Mutations in the Era of Genome Sequencing. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026179. [PMID: 27503997 DOI: 10.1101/cshperspect.a026179] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amid the complexity of genetic alterations in human cancer, TP53 mutation appears as an almost invariant component, representing by far the most frequent genetic alteration overall. Compared with previous targeted sequencing studies, recent integrated genomics studies offer a less biased view of TP53 mutation patterns, revealing that >20% of mutations occur outside the DNA-binding domain. Among the 12 mutations representing each at least 1% of all mutations, five occur at residues directly involved in specific DNA binding, four affect the tertiary fold of the DNA-binding domain, and three are nonsense mutations, two of them in the carboxyl terminus. Significant mutations also occur in introns, affecting alternative splicing events or generating rearrangements (e.g., in intron 1 in sporadic osteosarcoma). In aggressive cancers, mutation is so common that it may not have prognostic value (all these cancers have impaired p53 function caused by mutation or by other mechanisms). In several other cancers, however, mutation makes a clear difference for prognostication, as, for example, in HER2-enriched breast cancers and in lung adenocarcinoma with EGFR mutations. Thus, the clinical significance of TP53 mutation is dependent on tumor subtype and context. Understanding the clinical impact of mutation will require integrating mutation-specific information (type, frequency, and predicted impact) with data on haplotypes and on loss of heterozygosity.
Collapse
Affiliation(s)
- Pierre Hainaut
- University Grenoble Alpes, Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale (INSERM), 823 Grenoble, France
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
96
|
Taylor EW, Ruzicka JA, Premadasa L, Zhao L. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry. Curr Top Med Chem 2016; 16:1530-5. [PMID: 26369818 PMCID: PMC4997913 DOI: 10.2174/1568026615666150915121633] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023]
Abstract
Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3′ end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation.
Collapse
Affiliation(s)
- Ethan Will Taylor
- Dept. of Nanoscience, University of North Carolina at Greensboro, Joint School of Nanoscience and Nanoengineering, 2907 E. Gate City Blvd., Greensboro, NC 27401 USA.
| | | | | | | |
Collapse
|
97
|
Coucoravas C, Dhanjal S, Henriksson S, Böhm S, Farnebo M. Phosphorylation of the Cajal body protein WRAP53β by ATM promotes its involvement in the DNA damage response. RNA Biol 2016; 14:804-813. [PMID: 27715493 PMCID: PMC5519231 DOI: 10.1080/15476286.2016.1243647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cellular response to DNA double-strand breaks is orchestrated by the protein kinase ATM, which phosphorylates key actors in the DNA repair network. WRAP53β is a multifunctional protein that controls trafficking of factors to Cajal bodies, telomeres and DNA double-strand breaks but what regulates the involvement of WRAP53β in these separate processes remains unclear. Here, we show that in response to various types of DNA damage, including IR and UV, WRAP53β is phosphorylated on serine residue 64 by ATM with a time-course that parallels its accumulation at DNA lesions. Interestingly, recruitment of phosphorylated WRAP53β (pWRAP53βS64) to sites of such DNA damage promotes its interaction with γH2AX at these locations. Moreover, pWRAP53βS64 stimulates the accumulation of the repair factor 53BP1 at DNA double-strand breaks and enhances repair of this type of damage via homologous recombination and non-homologous end joining. At the same time, phosphorylation of WRAP53β is dispensable for its localization to Cajal bodies, where it accumulates even in unstressed cells. These findings not only reveal ATM to be an upstream regulator of WRAP53β, but also indicates that phosphorylation of WRAP53β at serine 64 controls its involvement in the DNA damage response and may also restrict its other functions.
Collapse
Affiliation(s)
- Christos Coucoravas
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Soniya Dhanjal
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Sofia Henriksson
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Stefanie Böhm
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Marianne Farnebo
- a Department of Oncology-Pathology , Cancer Centrum Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
98
|
Rassoolzadeh H, Coucoravas C, Farnebo M. The proximity ligation assay reveals that at DNA double-strand breaks WRAP53β associates with γH2AX and controls interactions between RNF8 and MDC1. Nucleus 2016; 6:417-24. [PMID: 26734725 PMCID: PMC4915514 DOI: 10.1080/19491034.2015.1106675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We recently demonstrated that WRAP53β acts as a key regulator of ubiquitin-dependent repair of DNA double-strand breaks. Here, we applied the proximity ligation assay (PLA) to show that at such breaks WRAP53β accumulates in close proximity to γH2AX and, furthermore as demonstrated by their co-immunoprecipitation (IP) binds to γH2AX, in a manner dependent on the ATM and ATR kinases. Moreover, formation of complexes between MDC1 and both its partners RNF8 and phosphorylated ATM was visualized. The interaction of MDC1 with RNF8, but not with ATM requires WRAP53β, suggesting that WRAP53β facilitates the former interaction without altering phosphorylation of MDC1 by ATM. Furthermore, our findings highlight PLA as a more sensitive method for the analysis of recruitment of repair factors and complex formation at DNA breaks that are difficult to detect using conventional immunofluorescence.
Collapse
Affiliation(s)
- Hanif Rassoolzadeh
- a Department of Oncology-Pathology ; Cancer Centrum Karolinska (CCK); Karolinska Institutet ; Stockholm , Sweden
| | - Christos Coucoravas
- a Department of Oncology-Pathology ; Cancer Centrum Karolinska (CCK); Karolinska Institutet ; Stockholm , Sweden
| | - Marianne Farnebo
- a Department of Oncology-Pathology ; Cancer Centrum Karolinska (CCK); Karolinska Institutet ; Stockholm , Sweden
| |
Collapse
|
99
|
Grinchuk OV, Motakis E, Yenamandra SP, Ow GS, Jenjaroenpun P, Tang Z, Yarmishyn AA, Ivshina AV, Kuznetsov VA. Sense-antisense gene-pairs in breast cancer and associated pathological pathways. Oncotarget 2016; 6:42197-221. [PMID: 26517092 PMCID: PMC4747219 DOI: 10.18632/oncotarget.6255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023] Open
Abstract
More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers.
Collapse
Affiliation(s)
- Oleg V Grinchuk
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Efthymios Motakis
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,Current address: RIKEN, Japan
| | - Surya Pavan Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Zhiqun Tang
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Aliaksandr A Yarmishyn
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Anna V Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Computing Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
100
|
Zhu XT, Yuan JH, Zhu TT, Li YY, Cheng XY. Long noncoding RNA glypican 3 (GPC3) antisense transcript 1 promotes hepatocellular carcinoma progression via epigenetically activating GPC3. FEBS J 2016; 283:3739-3754. [DOI: 10.1111/febs.13839] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/16/2016] [Accepted: 08/26/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Xiao-ting Zhu
- Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; China
| | - Ji-hang Yuan
- Department of Medical Genetics; Second Military Medical University; Shanghai China
| | - Teng-teng Zhu
- Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; China
| | - Yang-yang Li
- Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; China
| | - Xiao-yang Cheng
- Department of Anatomy, Histology and Embryology; Shanghai Jiao Tong University School of Medicine; China
| |
Collapse
|