51
|
Abstract
In this review, we discuss how two evolutionarily conserved pathways at the interface of DNA replication and repair, template switching and break-induced replication, lead to the deleterious large-scale expansion of trinucleotide DNA repeats that cause numerous hereditary diseases. We highlight that these pathways, which originated in prokaryotes, may be subsequently hijacked to maintain long DNA microsatellites in eukaryotes. We suggest that the negative mutagenic outcomes of these pathways, exemplified by repeat expansion diseases, are likely outweighed by their positive role in maintaining functional repetitive regions of the genome such as telomeres and centromeres.
Collapse
Affiliation(s)
| | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, USA
| | | |
Collapse
|
52
|
Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability. Nat Commun 2017; 8:15855. [PMID: 28653660 PMCID: PMC5490271 DOI: 10.1038/ncomms15855] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5′-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5′-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5′polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 5′-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5′-flap specificity and catalysis, preventing genomic instability. Flap Endonuclease 1 is a DNA replication and repair enzyme indispensable for maintaining genomic stability. Here the authors provide mechanistic details on how FEN1 selects for 5′-flaps and promotes catalysis to avoid large-scale repeat expansion by a process termed ‘phosphate steering’.
Collapse
|
53
|
Abstract
Eukaryotic genomes contain many repetitive DNA sequences that exhibit size instability. Some repeat elements have the added complication of being able to form secondary structures, such as hairpin loops, slipped DNA, triplex DNA or G-quadruplexes. Especially when repeat sequences are long, these DNA structures can form a significant impediment to DNA replication and repair, leading to DNA nicks, gaps, and breaks. In turn, repair or replication fork restart attempts within the repeat DNA can lead to addition or removal of repeat elements, which can sometimes lead to disease. One important DNA repair mechanism to maintain genomic integrity is recombination. Though early studies dismissed recombination as a mechanism driving repeat expansion and instability, recent results indicate that mitotic recombination is a key pathway operating within repetitive DNA. The action is two-fold: first, it is an important mechanism to repair nicks, gaps, breaks, or stalled forks to prevent chromosome fragility and protect cell health; second, recombination can cause repeat expansions or contractions, which can be deleterious. In this review, we summarize recent developments that illuminate the role of recombination in maintaining genome stability at DNA repeats.
Collapse
|
54
|
Madireddy A, Gerhardt J. Replication Through Repetitive DNA Elements and Their Role in Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:549-581. [PMID: 29357073 DOI: 10.1007/978-981-10-6955-0_23] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human cells contain various repetitive DNA sequences, which can be a challenge for the DNA replication machinery to travel through and replicate correctly. Repetitive DNA sequence can adopt non-B DNA structures, which could block the DNA replication. Prolonged stalling of the replication fork at the endogenous repeats in human cells can have severe consequences such as genome instability that includes repeat expansions, contractions, and chromosome fragility. Several neurological and muscular diseases are caused by a repeat expansion. Furthermore genome instability is the major cause of cancer. This chapter describes some of the important classes of repetitive DNA sequences in the mammalian genome, their ability to form secondary DNA structures, their contribution to replication fork stalling, and models for repeat expansion as well as chromosomal fragility. Included in this chapter are also some of the strategies currently employed to detect changes in DNA replication and proteins that could prevent the repeat-mediated disruption of DNA replication in human cells. Additionally summarized are the consequences of repeat-associated perturbation of the DNA replication, which could lead to specific human diseases.
Collapse
|
55
|
The role of break-induced replication in large-scale expansions of (CAG) n/(CTG) n repeats. Nat Struct Mol Biol 2016; 24:55-60. [PMID: 27918542 PMCID: PMC5215974 DOI: 10.1038/nsmb.3334] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Expansions of (CAG)n•(CTG)n trinucleotide repeats are responsible for over a dozen neuromuscular and neurodegenerative disorders. Large-scale expansions are typical for human pedigrees and may be explained by iterative small-scale events such as strand slippage during replication or repair DNA synthesis. Alternatively, a distinct mechanism could lead to a large-scale repeat expansion at a step. To distinguish between these possibilities, we developed a novel experimental system specifically tuned to analyze large-scale expansions of (CAG)n•(CTG)n repeats in Saccharomyces cerevisiae. The median size of repeat expansions was ~60 triplets, though additions in excess of 150 triplets were also observed. Genetic analysis revealed that Rad51, Rad52, Mre11, Pol32, Pif1, and Mus81 and/or Yen1 proteins are required for large-scale expansions, whereas proteins previously implicated in small-scale expansions are not involved. Based on these results, we propose a new model for large-scale expansions based on recovery of replication forks broken at (CAG)n•(CTG)n repeats via break-induced replication.
Collapse
|
56
|
Gadgil R, Barthelemy J, Lewis T, Leffak M. Replication stalling and DNA microsatellite instability. Biophys Chem 2016; 225:38-48. [PMID: 27914716 DOI: 10.1016/j.bpc.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Microsatellites are short, tandemly repeated DNA motifs of 1-6 nucleotides, also termed simple sequence repeats (SRSs) or short tandem repeats (STRs). Collectively, these repeats comprise approximately 3% of the human genome Subramanian et al. (2003), Lander and Lander (2001) [1,2], and represent a large reservoir of loci highly prone to mutations Sun et al. (2012), Ellegren (2004) [3,4] that contribute to human evolution and disease. Microsatellites are known to stall and reverse replication forks in model systems Pelletier et al. (2003), Samadashwily et al. (1997), Kerrest et al. (2009) [5-7], and are hotspots of chromosomal double strand breaks (DSBs). We briefly review the relationship of these repeated sequences to replication stalling and genome instability, and present recent data on the impact of replication stress on DNA fragility at microsatellites in vivo.
Collapse
Affiliation(s)
- R Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - J Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - T Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - M Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
57
|
Gerhardt J, Bhalla AD, Butler JS, Puckett JW, Dervan PB, Rosenwaks Z, Napierala M. Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells. Cell Rep 2016; 16:1218-1227. [PMID: 27425605 PMCID: PMC5028224 DOI: 10.1016/j.celrep.2016.06.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022] Open
Abstract
Friedreich's ataxia (FRDA) is caused by the expansion of GAA repeats located in the Frataxin (FXN) gene. The GAA repeats continue to expand in FRDA patients, aggravating symptoms and contributing to disease progression. The mechanism leading to repeat expansion and decreased FXN transcription remains unclear. Using single-molecule analysis of replicated DNA, we detected that expanded GAA repeats present a substantial obstacle for the replication machinery at the FXN locus in FRDA cells. Furthermore, aberrant origin activation and lack of a proper stress response to rescue the stalled forks in FRDA cells cause an increase in 3'-5' progressing forks, which could enhance repeat expansion and hinder FXN transcription by head-on collision with RNA polymerases. Treatment of FRDA cells with GAA-specific polyamides rescues DNA replication fork stalling and alleviates expansion of the GAA repeats, implicating DNA triplexes as a replication impediment and suggesting that fork stalling might be a therapeutic target for FRDA.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Angela D Bhalla
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama, Birmingham, AL 35294, USA
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama, Birmingham, AL 35294, USA
| | - James W Puckett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter B Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zev Rosenwaks
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama, Birmingham, AL 35294, USA; Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61 704, Poland.
| |
Collapse
|
58
|
Stevanoni M, Palumbo E, Russo A. The Replication of Frataxin Gene Is Assured by Activation of Dormant Origins in the Presence of a GAA-Repeat Expansion. PLoS Genet 2016; 12:e1006201. [PMID: 27447727 PMCID: PMC4957762 DOI: 10.1371/journal.pgen.1006201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Abstract
It is well known that DNA replication affects the stability of several trinucleotide repeats, but whether replication profiles of human loci carrying an expanded repeat differ from those of normal alleles is poorly understood in the endogenous context. We investigated this issue using cell lines from Friedreich's ataxia patients, homozygous for a GAA-repeat expansion in intron 1 of the Frataxin gene. By interphase, FISH we found that in comparison to the normal Frataxin sequence the replication of expanded alleles is slowed or delayed. According to molecular combing, origins never fired within the normal Frataxin allele. In contrast, in mutant alleles dormant origins are recruited within the gene, causing a switch of the prevalent fork direction through the expanded repeat. Furthermore, a global modification of the replication profile, involving origin choice and a differential distribution of unidirectional forks, was observed in the surrounding 850 kb region. These data provide a wide-view of the interplay of events occurring during replication of genes carrying an expanded repeat.
Collapse
Affiliation(s)
| | - Elisa Palumbo
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
59
|
Kaushik Tiwari M, Adaku N, Peart N, Rogers FA. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells. Nucleic Acids Res 2016; 44:7742-54. [PMID: 27298253 PMCID: PMC5027492 DOI: 10.1093/nar/gkw515] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/31/2016] [Indexed: 12/20/2022] Open
Abstract
Structural alterations in DNA can serve as natural impediments to replication fork stability and progression, resulting in DNA damage and genomic instability. Naturally occurring polypurine mirror repeat sequences in the human genome can create endogenous triplex structures evoking a robust DNA damage response. Failures to recognize or adequately process these genomic lesions can result in loss of genomic integrity. Nucleotide excision repair (NER) proteins have been found to play a prominent role in the recognition and repair of triplex structures. We demonstrate using triplex-forming oligonucleotides that chromosomal triplexes perturb DNA replication fork progression, eventually resulting in fork collapse and the induction of double strand breaks (DSBs). We find that cells deficient in the NER damage recognition proteins, XPA and XPC, accumulate more DSBs in response to chromosomal triplex formation than NER-proficient cells. Furthermore, we demonstrate that XPC-deficient cells are particularly prone to replication-associated DSBs in the presence of triplexes. In the absence of XPA or XPC, deleterious consequences of triplex-induced genomic instability may be averted by activating apoptosis via dual phosphorylation of the H2AX protein. Our results reveal that damage recognition by XPC and XPA is critical to maintaining replication fork integrity and preventing replication fork collapse in the presence of triplex structures.
Collapse
Affiliation(s)
- Meetu Kaushik Tiwari
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nneoma Adaku
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Natoya Peart
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
60
|
Viterbo D, Michoud G, Mosbach V, Dujon B, Richard GF. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. DNA Repair (Amst) 2016; 42:94-106. [DOI: 10.1016/j.dnarep.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/01/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
61
|
McDonald MJ, Yu YH, Guo JF, Chong SY, Kao CF, Leu JY. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae. SCIENCE ADVANCES 2016; 2:e1501033. [PMID: 27386516 PMCID: PMC4928981 DOI: 10.1126/sciadv.1501033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G 13+ ) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G 13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications.
Collapse
Affiliation(s)
| | - Yen-Hsin Yu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jheng-Fen Guo
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
62
|
Gadaleta MC, González-Medina A, Noguchi E. Timeless protection of telomeres. Curr Genet 2016; 62:725-730. [PMID: 27068713 DOI: 10.1007/s00294-016-0599-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 11/30/2022]
Abstract
The DNA replication machinery encounters problems at numerous genomic regions that are inherently difficult to replicate. These genomic regions include telomeres, which contain repetitive DNA and telomere-binding proteins. If not properly regulated, replication of such genomic regions can result in DNA damage, leading to genomic instability. Studies implicated a role of Timeless-related proteins at difficult-to-replicate genomic regions, including telomeres. However, how these proteins maintain telomeres was elusive. In a recent report, we described the role of Swi1, a Timeless-related protein, in telomere maintenance in fission yeast. We demonstrated that Swi1 is required for proper replication of repeat DNA sequences at telomeres. We also showed that Swi1-deficient cells utilize recombination-based ALT (alternative lengthening of telomeres)-like mechanisms to maintain telomeres in the absence of telomerase. Here, we highlight these findings and present additional data to discuss the role of Swi1Timeless in telomere protection and ALT prevention.
Collapse
Affiliation(s)
- Mariana C Gadaleta
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alberto González-Medina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
63
|
Aksenova AY, Han G, Shishkin AA, Volkov KV, Mirkin SM. Expansion of Interstitial Telomeric Sequences in Yeast. Cell Rep 2015; 13:1545-51. [PMID: 26586439 DOI: 10.1016/j.celrep.2015.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/07/2015] [Accepted: 10/08/2015] [Indexed: 11/18/2022] Open
Abstract
Telomeric repeats located within chromosomes are called interstitial telomeric sequences (ITSs). They are polymorphic in length and are likely hotspots for initiation of chromosomal rearrangements that have been linked to human disease. Using our S. cerevisiae system to study repeat-mediated genome instability, we have previously shown that yeast telomeric (Ytel) repeats induce various gross chromosomal rearrangements (GCR) when their G-rich strands serve as the lagging strand template for replication (G orientation). Here, we show that interstitial Ytel repeats in the opposite C orientation prefer to expand rather than cause GCR. A tract of eight Ytel repeats expands at a rate of 4 × 10(-4) per replication, ranking them among the most expansion-prone DNA microsatellites. A candidate-based genetic analysis implicates both post-replication repair and homologous recombination pathways in the expansion process. We propose a model for Ytel repeat expansions and discuss its applications for genome instability and alternative telomere lengthening (ALT).
Collapse
Affiliation(s)
- Anna Y Aksenova
- Department of Biology, Tufts University, Medford, MA 02155, USA; Department of Genetics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Gil Han
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | - Kirill V Volkov
- Department of Genetics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
64
|
Abstract
Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also cause chromosomal fragility and stimulate gross chromosomal rearrangements, i.e., deletions, duplications, inversions, translocations and more complex shuffles. More recently, it has become clear that inherently unstable DNA repeats dramatically elevate mutation rates in surrounding DNA segments and that these mutations can occur up to ten kilobases away from the repetitive tract, a phenomenon we call repeat-induced mutagenesis (RIM). This review describes experimental data that led to the discovery and characterization of RIM and discusses the molecular mechanisms that could account for this phenomenon.
Collapse
Affiliation(s)
- Kartik A Shah
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
65
|
Abstract
Approximately 40 human diseases are associated with expansion of repeat sequences. These expansions can reside within coding or non-coding parts of the genes, affecting the host gene function. The presence of such expansions results in the production of toxic RNA and/or protein or causes transcriptional repression and silencing of the host gene. Although the molecular mechanisms of expansion diseases are not well understood, mounting evidence suggests that transcription through expanded repeats plays an essential role in disease pathology. The presence of an expansion can affect RNA polymerase transcription, leading to dysregulation of transcription-associated processes, such as RNA splicing, formation of RNA/DNA hybrids (R-loops), production of antisense, short non-coding and bidirectional RNA transcripts. In the present review, we summarize current advances in this field and discuss possible roles of transcriptional defects in disease pathology.
Collapse
|
66
|
Richard GF. Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy? Trends Genet 2015; 31:177-86. [PMID: 25743488 DOI: 10.1016/j.tig.2015.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
Trinucleotide repeat expansions are involved in more than two dozen neurological and developmental disorders. Conventional therapeutic approaches aimed at regulating the expression level of affected genes, which rely on drugs, oligonucleotides, and/or transgenes, have met with only limited success so far. An alternative approach is to shorten repeats to non-pathological lengths using highly specific nucleases. Here, I review early experiments using meganucleases, zinc-finger nucleases (ZFN), and transcription-activator like effector nucleases (TALENs) to contract trinucleotide repeats, and discuss the possibility of using CRISPR-Cas nucleases to the same end. Although this is a nascent field, I explore the possibility of designing nucleases and effectively delivering them in the context of gene therapy.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Department Genomes and Genetics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3525, 25 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
67
|
Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 2015; 50:142-67. [PMID: 25608779 DOI: 10.3109/10409238.2014.999192] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.
Collapse
Affiliation(s)
- Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, NIH , Bethesda, MD , USA
| | | | | |
Collapse
|
68
|
Santillan BA, Moye C, Mittelman D, Wilson JH. GFP-based fluorescence assay for CAG repeat instability in cultured human cells. PLoS One 2014; 9:e113952. [PMID: 25423602 PMCID: PMC4244167 DOI: 10.1371/journal.pone.0113952] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022] Open
Abstract
Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.
Collapse
Affiliation(s)
- Beatriz A. Santillan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christopher Moye
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Mittelman
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - John H. Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
69
|
Shah KA, McGinty RJ, Egorova VI, Mirkin SM. Coupling transcriptional state to large-scale repeat expansions in yeast. Cell Rep 2014; 9:1594-1602. [PMID: 25464841 DOI: 10.1016/j.celrep.2014.10.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/07/2014] [Accepted: 10/19/2014] [Indexed: 11/15/2022] Open
Abstract
Expansions of simple DNA repeats cause numerous hereditary disorders in humans. Replication, repair, and transcription are implicated in the expansion process, but their relative contributions are yet to be distinguished. To separate the roles of replication and transcription in the expansion of Friedreich's ataxia (GAA)n repeats, we designed two yeast genetic systems that utilize a galactose-inducible GAL1 promoter but contain these repeats in either the transcribed or nontranscribed region of a selectable cassette. We found that large-scale repeat expansions can occur in the lack of transcription. Induction of transcription strongly elevated the rate of expansions in both systems, indicating that active transcriptional state rather than transcription through the repeat per se affects this process. Furthermore, replication defects increased the rate of repeat expansions irrespective of transcriptional state. We present a model in which transcriptional state, linked to the nucleosomal density of a region, acts as a modulator of large-scale repeat expansions.
Collapse
Affiliation(s)
- Kartik A Shah
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Vera I Egorova
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
70
|
Gerhardt J, Zaninovic N, Zhan Q, Madireddy A, Nolin SL, Ersalesi N, Yan Z, Rosenwaks Z, Schildkraut CL. Cis-acting DNA sequence at a replication origin promotes repeat expansion to fragile X full mutation. ACTA ACUST UNITED AC 2014; 206:599-607. [PMID: 25179629 PMCID: PMC4151148 DOI: 10.1083/jcb.201404157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An SNP upstream of the CGG repeats located at a replication initiation site may contribute to origin inactivation, to altered replication fork progression through the CGG repeats, and repeat expansion to fragile X full mutation. Fragile X syndrome (FXS) is caused by CGG repeat expansion that leads to FMR1 silencing. Women with a premutation allele are at risk of having a full mutation child with FXS. To investigate the mechanism of repeat expansion, we examined the relationship between a single-nucleotide polymorphism (SNP) variant that is linked to repeat expansion in haplogroup D and a replication origin located ∼53 kb upstream of the repeats. This origin is absent in FXS human embryonic stem cells (hESCs), which have the SNP variant C, but present in the nonaffected hESCs, which have a T variant. The SNP maps directly within the replication origin. Interestingly, premutation hESCs have a replication origin and the T variant similar to nonaffected hESCs. These results suggest that a T/C SNP located at a replication origin could contribute to the inactivation of this replication origin in FXS hESCs, leading to altered replication fork progression through the repeats, which could result in repeat expansion to the FXS full mutation.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Nikica Zaninovic
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10021
| | - Qiansheng Zhan
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10021
| | - Advaitha Madireddy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Sarah L Nolin
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314
| | - Nicole Ersalesi
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314
| | - Zi Yan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Zev Rosenwaks
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10021
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
71
|
House NCM, Yang JH, Walsh SC, Moy JM, Freudenreich CH. NuA4 initiates dynamic histone H4 acetylation to promote high-fidelity sister chromatid recombination at postreplication gaps. Mol Cell 2014; 55:818-828. [PMID: 25132173 PMCID: PMC4169719 DOI: 10.1016/j.molcel.2014.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 04/16/2014] [Accepted: 07/10/2014] [Indexed: 11/24/2022]
Abstract
CAG/CTG trinucleotide repeats are unstable, fragile sequences that strongly position nucleosomes, but little is known about chromatin modifications required to prevent genomic instability at these or other structure-forming sequences. We discovered that regulated histone H4 acetylation is required to maintain CAG repeat stability and promote gap-induced sister chromatid recombination. CAG expansions in the absence of H4 HATs NuA4 and Hat1 and HDACs Sir2, Hos2, and Hst1 depended on Rad52, Rad57, and Rad5 and were therefore arising through homology-mediated postreplication repair (PRR) events. H4K12 and H4K16 acetylation were required to prevent Rad5-dependent CAG repeat expansions, and H4K16 acetylation was enriched at CAG repeats during S phase. Genetic experiments placed the RSC chromatin remodeler in the same PRR pathway, and Rsc2 recruitment was coincident with H4K16 acetylation. Here we have utilized a repetitive DNA sequence that induces endogenous DNA damage to identify histone modifications that regulate recombination efficiency and fidelity during postreplication gap repair.
Collapse
Affiliation(s)
| | - Jiahui H Yang
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Stephen C Walsh
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jonathan M Moy
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, MA 02155, USA; Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
72
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
73
|
Bose P, Hermetz KE, Conneely KN, Rudd MK. Tandem repeats and G-rich sequences are enriched at human CNV breakpoints. PLoS One 2014; 9:e101607. [PMID: 24983241 PMCID: PMC4090240 DOI: 10.1371/journal.pone.0101607] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
Chromosome breakage in germline and somatic genomes gives rise to copy number variation (CNV) responsible for genomic disorders and tumorigenesis. DNA sequence is known to play an important role in breakage at chromosome fragile sites; however, the sequences susceptible to double-strand breaks (DSBs) underlying CNV formation are largely unknown. Here we analyze 140 germline CNV breakpoints from 116 individuals to identify DNA sequences enriched at breakpoint loci compared to 2800 simulated control regions. We find that, overall, CNV breakpoints are enriched in tandem repeats and sequences predicted to form G-quadruplexes. G-rich repeats are overrepresented at terminal deletion breakpoints, which may be important for the addition of a new telomere. Interstitial deletions and duplication breakpoints are enriched in Alu repeats that in some cases mediate non-allelic homologous recombination (NAHR) between the two sides of the rearrangement. CNV breakpoints are enriched in certain classes of repeats that may play a role in DNA secondary structure, DSB susceptibility and/or DNA replication errors.
Collapse
Affiliation(s)
- Promita Bose
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Karen E. Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Karen N. Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - M. Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
74
|
Frizzell A, Nguyen JHG, Petalcorin MIR, Turner KD, Boulton SJ, Freudenreich CH, Lahue RS. RTEL1 inhibits trinucleotide repeat expansions and fragility. Cell Rep 2014; 6:827-35. [PMID: 24561255 PMCID: PMC5783307 DOI: 10.1016/j.celrep.2014.01.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/20/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023] Open
Abstract
Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins.
Collapse
Affiliation(s)
- Aisling Frizzell
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | | | - Mark I R Petalcorin
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Katherine D Turner
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Newcastle Road, Galway, Ireland; NCBES Galway Neuroscience Centre, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | | | - Robert S Lahue
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Newcastle Road, Galway, Ireland; NCBES Galway Neuroscience Centre, National University of Ireland Galway, Newcastle Road, Galway, Ireland.
| |
Collapse
|
75
|
Genome rearrangements caused by interstitial telomeric sequences in yeast. Proc Natl Acad Sci U S A 2013; 110:19866-71. [PMID: 24191060 DOI: 10.1073/pnas.1319313110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interstitial telomeric sequences (ITSs) are present in many eukaryotic genomes and are linked to genome instabilities and disease in humans. The mechanisms responsible for ITS-mediated genome instability are not understood in molecular detail. Here, we use a model Saccharomyces cerevisiae system to characterize genome instability mediated by yeast telomeric (Ytel) repeats embedded within an intron of a reporter gene inside a yeast chromosome. We observed a very high rate of small insertions and deletions within the repeats. We also found frequent gross chromosome rearrangements, including deletions, duplications, inversions, translocations, and formation of acentric minichromosomes. The inversions are a unique class of chromosome rearrangement involving an interaction between the ITS and the true telomere of the chromosome. Because we previously found that Ytel repeats cause strong replication fork stalling, we suggest that formation of double-stranded DNA breaks within the Ytel sequences might be responsible for these gross chromosome rearrangements.
Collapse
|
76
|
Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:21-42. [PMID: 23859339 DOI: 10.1111/jnc.12254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cihangir Yandim
- Gene Control Mechanisms and Disease, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|
77
|
Abstract
Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain;
| | | |
Collapse
|
78
|
Roseaulin LC, Noguchi C, Noguchi E. Proteasome-dependent degradation of replisome components regulates faithful DNA replication. Cell Cycle 2013; 12:2564-9. [PMID: 23907116 PMCID: PMC3865046 DOI: 10.4161/cc.25692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The replication machinery, or the replisome, collides with a variety of obstacles during the normal process of DNA replication. In addition to damaged template DNA, numerous chromosome regions are considered to be difficult to replicate owing to the presence of DNA secondary structures and DNA-binding proteins. Under these conditions, the replication fork stalls, generating replication stress. Stalled forks are prone to collapse, posing serious threats to genomic integrity. It is generally thought that the replication checkpoint functions to stabilize the replisome and replication fork structure upon replication stress. This is important in order to allow DNA replication to resume once the problem is solved. However, our recent studies demonstrated that some replisome components undergo proteasome-dependent degradation during DNA replication in the fission yeast Schizosaccharomyces pombe. Our investigation has revealed the involvement of the SCFPof3 (Skp1-Cullin/Cdc53-F-box) ubiquitin ligase in replisome regulation. We also demonstrated that forced accumulation of the replisome components leads to abnormal DNA replication upon replication stress. Here we review these findings and present additional data indicating the importance of replisome degradation for DNA replication. Our studies suggest that cells activate an alternative pathway to degrade replisome components in order to preserve genomic integrity.
Collapse
Affiliation(s)
- Laura C Roseaulin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
79
|
Saini N, Zhang Y, Nishida Y, Sheng Z, Choudhury S, Mieczkowski P, Lobachev KS. Fragile DNA motifs trigger mutagenesis at distant chromosomal loci in saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003551. [PMID: 23785298 PMCID: PMC3681665 DOI: 10.1371/journal.pgen.1003551] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/23/2013] [Indexed: 11/19/2022] Open
Abstract
DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes.
Collapse
Affiliation(s)
- Natalie Saini
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Yuri Nishida
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Ziwei Sheng
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Shilpa Choudhury
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
| | - Piotr Mieczkowski
- Department of Genetics, School of Medicine, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America,
- * E-mail:
| |
Collapse
|
80
|
Kim JC, Mirkin SM. The balancing act of DNA repeat expansions. Curr Opin Genet Dev 2013; 23:280-8. [PMID: 23725800 DOI: 10.1016/j.gde.2013.04.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Expansions of microsatellite DNA repeats contribute to the inheritance of nearly 30 developmental and neurological disorders. Significant progress has been made in elucidating the molecular mechanisms of repeat expansions using various model organisms and mammalian cell culture, and models implicating nearly all DNA transactions such as replication, repair, recombination, and transcription have been proposed. It is likely that different models of repeat expansions are not mutually exclusive and may explain repeat instability for different developmental stages and tissues. This review focuses on the contributions from studies in budding yeast toward unraveling the mechanisms and genetic control of repeat expansions, highlighting similarities and differences of replication models and describing a balancing act hypothesis to account for apparent discrepancies.
Collapse
Affiliation(s)
- Jane C Kim
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | | |
Collapse
|
81
|
Lambert S, Carr AM. Replication stress and genome rearrangements: lessons from yeast models. Curr Opin Genet Dev 2013; 23:132-9. [PMID: 23267817 DOI: 10.1016/j.gde.2012.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/10/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Abstract
Replication failures induced by replication fork barriers (RFBs) or global replication stress generate many of the chromosome rearrangement (CR) observed in human genomic disorders and cancer. RFBs have multiple causes and cells protect themselves from the consequences of RFBs using three general strategies: preventing expression of RFB activity, stabilising the arrested replisome and, in the case of replisome failure, shielding the fork DNA to allow rebuilding of the replisome. Yeast models provide powerful tools to understand the cellular response to RFBs, delineate pathways that suppress genome instability and define mechanisms by which CRs occur when these fail. Recent progress has identified key features underlying RFBs activity and is beginning to uncover the DNA dynamics that bring about genome instability.
Collapse
|
82
|
Friedreich's ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat Struct Mol Biol 2013; 20:486-94. [DOI: 10.1038/nsmb.2520] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/15/2013] [Indexed: 11/08/2022]
|
83
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
84
|
Mature microsatellites: mechanisms underlying dinucleotide microsatellite mutational biases in human cells. G3-GENES GENOMES GENETICS 2013; 3:451-63. [PMID: 23450065 PMCID: PMC3583453 DOI: 10.1534/g3.112.005173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/30/2012] [Indexed: 12/19/2022]
Abstract
Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (≥10 units) are present within exonic sequences of >350 genes, resulting in vulnerability to cellular genetic integrity. Mature dinucleotide mutagenesis was examined experimentally using ex vivo and in vitro approaches. We observe an expansion bias for dinucleotide microsatellites up to 20 units in length in somatic human cells, in agreement with previous computational analyses of germ-line biases. Using purified DNA polymerases and human cell lines deficient for mismatch repair (MMR), we show that the expansion bias is caused by functional MMR and is not due to DNA polymerase error biases. Specifically, we observe that the MutSα and MutLα complexes protect against expansion mutations. Our data support a model wherein different MMR complexes shift the balance of mutations toward deletion or expansion. Finally, we show that replication fork progression is stalled within long dinucleotides, suggesting that mutational mechanisms within long repeats may be distinct from shorter lengths, depending on the biochemistry of fork resolution. Our work combines computational and experimental approaches to explain the complex mutational behavior of dinucleotide microsatellites in humans.
Collapse
|
85
|
Lambert S, Carr AM. Impediments to replication fork movement: stabilisation, reactivation and genome instability. Chromosoma 2013; 122:33-45. [DOI: 10.1007/s00412-013-0398-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 01/02/2023]
|
86
|
Roseaulin LC, Noguchi C, Martinez E, Ziegler MA, Toda T, Noguchi E. Coordinated degradation of replisome components ensures genome stability upon replication stress in the absence of the replication fork protection complex. PLoS Genet 2013; 9:e1003213. [PMID: 23349636 PMCID: PMC3547854 DOI: 10.1371/journal.pgen.1003213] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
The stabilization of the replisome complex is essential in order to achieve highly processive DNA replication and preserve genomic integrity. Conversely, it would also be advantageous for the cell to abrogate replisome functions to prevent inappropriate replication when fork progression is adversely perturbed. However, such mechanisms remain elusive. Here we report that replicative DNA polymerases and helicases, the major components of the replisome, are degraded in concert in the absence of Swi1, a subunit of the replication fork protection complex. In sharp contrast, ORC and PCNA, which are also required for DNA replication, were stably maintained. We demonstrate that this degradation of DNA polymerases and helicases is dependent on the ubiquitin-proteasome system, in which the SCF(Pof3) ubiquitin ligase is involved. Consistently, we show that Pof3 interacts with DNA polymerase ε. Remarkably, forced accumulation of replisome components leads to abnormal DNA replication and mitotic catastrophes in the absence of Swi1. Swi1 is known to prevent fork collapse at natural replication block sites throughout the genome. Therefore, our results suggest that the cell elicits a program to degrade replisomes upon replication stress in the absence of Swi1. We also suggest that this program prevents inappropriate duplication of the genome, which in turn contributes to the preservation of genomic integrity.
Collapse
Affiliation(s)
- Laura C. Roseaulin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Esteban Martinez
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Melissa A. Ziegler
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Field Laboratories, London, United Kingdom
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
87
|
Kuzminov A. Inhibition of DNA synthesis facilitates expansion of low-complexity repeats: is strand slippage stimulated by transient local depletion of specific dNTPs? Bioessays 2013; 35:306-13. [PMID: 23319444 DOI: 10.1002/bies.201200128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Simple DNA repeats (trinucleotide repeats, micro- and minisatellites) are prone to expansion/contraction via formation of secondary structures during DNA synthesis. Such structures both inhibit replication forks and create opportunities for template-primer slippage, making these repeats unstable. Certain aspects of simple repeat instability, however, suggest additional mechanisms of replication inhibition dependent on the primary DNA sequence, rather than on secondary structure formation. I argue that expanded simple repeats, due to their lower DNA complexity, should transiently inhibit DNA synthesis by locally depleting specific DNA precursors. Such transient inhibition would promote formation of secondary structures and would stabilize these structures, facilitating strand slippage. Thus, replication problems at simple repeats could be explained by potentiated toxicity, where the secondary structure-driven repeat instability is enhanced by DNA polymerase stalling at the low complexity template DNA.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
88
|
McGinty R, Aksenova A, Wang E, Hausman D, Mirkin S. 131 Using whole-genome sequencing to search for trans-modifiers of repeat expansions. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
89
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|
90
|
Tang W, Dominska M, Gawel M, Greenwell PW, Petes TD. Genomic deletions and point mutations induced in Saccharomyces cerevisiae by the trinucleotide repeats (GAA·TTC) associated with Friedreich's ataxia. DNA Repair (Amst) 2012. [PMID: 23182423 DOI: 10.1016/j.dnarep.2012.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expansion of certain trinucleotide repeats causes several types of human diseases, and such tracts are associated with the formation of deletions and other types of genetic rearrangements in Escherichia coli, yeast, and mammalian cells. Below, we show that long (230 repeats) tracts of the trinucleotide associated with Friedreich's ataxia (GAA·TTC) stimulate both large (>50 bp) deletions and point mutations in a reporter gene located more than 1 kb from the repetitive tract. Sequence analysis of deletion breakpoints indicates that the deletions reflect non-homologous end joining of double-stranded DNA breaks (DSBs) initiated in the tract. The tract-induced point mutations appear to reflect a different mechanism involving single-strand annealing of DNA molecules generated by DSBs within the tract, followed by filling-in of single-stranded gaps by the error-prone DNA polymerase zeta.
Collapse
Affiliation(s)
- Wei Tang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
91
|
Shah KA, Shishkin AA, Voineagu I, Pavlov YI, Shcherbakova PV, Mirkin SM. Role of DNA polymerases in repeat-mediated genome instability. Cell Rep 2012; 2:1088-95. [PMID: 23142667 DOI: 10.1016/j.celrep.2012.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/19/2012] [Accepted: 10/08/2012] [Indexed: 11/16/2022] Open
Abstract
Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich's ataxia (GAA)(n) repeats in a yeast experimental system. The elementary step of expansion corresponded to ~160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM). Notably, defects in the replicative DNA polymerases δ and ε strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.
Collapse
Affiliation(s)
- Kartik A Shah
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
The eukaryotic cell replicates its chromosomal DNA with almost absolute fidelity in the course of every cell cycle. This accomplishment is remarkable considering that the conditions for DNA replication are rarely ideal. The replication machinery encounters a variety of obstacles on the chromosome, including damaged template DNA. In addition, a number of chromosome regions are considered to be difficult to replicate owing to DNA secondary structures and DNA binding proteins required for various transactions on the chromosome. Under these conditions, replication forks stall or break, posing grave threats to genomic integrity. How does the cell combat such stressful conditions during DNA replication? The replication fork protection complex (FPC) may help answer this question. Recent studies have demonstrated that the FPC is required for the smooth passage of replication forks at difficult-to-replicate genomic regions and plays a critical role in coordinating multiple genome maintenance processes at the replication fork.
Collapse
Affiliation(s)
- Adam R. Leman
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| |
Collapse
|
93
|
Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13. PLoS Genet 2012; 8:e1003033. [PMID: 23133402 PMCID: PMC3486850 DOI: 10.1371/journal.pgen.1003033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Genomes contain tandem repeats that are at risk of internal rearrangements and a threat to genome integrity. Here, we investigated the behavior of the human subtelomeric minisatellites HRAS1, CEB1, and CEB25 in Saccharomyces cerevisiae. In mitotically growing wild-type cells, these GC-rich tandem arrays stimulate the rate of gross chromosomal rearrangements (GCR) by 20, 1,620, and 276,000-fold, respectively. In the absence of the Pif1 helicase, known to inhibit GCR by telomere addition and to unwind G-quadruplexes, the GCR rate is further increased in the presence of CEB1, by 385-fold compared to the pif1Δ control strain. The behavior of CEB1 is strongly dependent on its capacity to form G-quadruplexes, since the treatment of WT cells with the Phen-DC(3) G-quadruplex ligand has a 52-fold stimulating effect while the mutation of the G-quadruplex-forming motif reduced the GCR rate 30-fold in WT and 100-fold in pif1Δ cells. The GCR events are telomere additions within CEB1. Differently, the extreme stimulation of CEB25 GCR depends on its affinity for Cdc13, which binds the TG-rich ssDNA telomere overhang. This property confers a biased orientation-dependent behavior to CEB25, while CEB1 and HRAS1 increase GCR similarly in either orientation. Furthermore, we analyzed the minisatellites' distribution in the human genome and discuss their potential role to trigger subtelomeric rearrangements.
Collapse
|
94
|
Zhang Y, Shishkin AA, Nishida Y, Marcinkowski-Desmond D, Saini N, Volkov KV, Mirkin SM, Lobachev KS. Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells. Mol Cell 2012; 48:254-65. [PMID: 22959270 DOI: 10.1016/j.molcel.2012.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/06/2012] [Accepted: 08/02/2012] [Indexed: 12/20/2022]
Abstract
Triplex structure-forming GAA/TTC repeats pose a dual threat to the eukaryotic genome integrity. Their potential to expand can lead to gene inactivation, the cause of Friedreich's ataxia disease in humans. In model systems, long GAA/TTC tracts also act as chromosomal fragile sites that can trigger gross chromosomal rearrangements. The mechanisms that regulate the metabolism of GAA/TTC repeats are poorly understood. We have developed an experimental system in the yeast Saccharomyces cerevisiae that allows us to systematically identify genes crucial for maintaining the repeat stability. Two major groups of mutants defective in DNA replication or transcription initiation are found to be prone to fragility and large-scale expansions. We demonstrate that problems imposed by the repeats during DNA replication in actively dividing cells and during transcription initiation in nondividing cells can culminate in genome instability. We propose that similar mechanisms can mediate detrimental metabolism of GAA/TTC tracts in human cells.
Collapse
Affiliation(s)
- Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Du J, Campau E, Soragni E, Ku S, Puckett JW, Dervan PB, Gottesfeld JM. Role of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J Biol Chem 2012; 287:29861-72. [PMID: 22798143 PMCID: PMC3436184 DOI: 10.1074/jbc.m112.391961] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/12/2012] [Indexed: 12/29/2022] Open
Abstract
The genetic mutation in Friedreich ataxia (FRDA) is a hyperexpansion of the triplet-repeat sequence GAA·TTC within the first intron of the FXN gene. Although yeast and reporter construct models for GAA·TTC triplet-repeat expansion have been reported, studies on FRDA pathogenesis and therapeutic development are limited by the availability of an appropriate cell model in which to study the mechanism of instability of the GAA·TTC triplet repeats in the human genome. Herein, induced pluripotent stem cells (iPSCs) were generated from FRDA patient fibroblasts after transduction with the four transcription factors Oct4, Sox2, Klf4, and c-Myc. These cells were differentiated into neurospheres and neuronal precursors in vitro, providing a valuable cell model for FRDA. During propagation of the iPSCs, GAA·TTC triplet repeats expanded at a rate of about two GAA·TTC triplet repeats/replication. However, GAA·TTC triplet repeats were stable in FRDA fibroblasts and neuronal stem cells. The mismatch repair enzymes MSH2, MSH3, and MSH6, implicated in repeat instability in other triplet-repeat diseases, were highly expressed in pluripotent stem cells compared with fibroblasts and neuronal stem cells and occupied FXN intron 1. In addition, shRNA silencing of MSH2 and MSH6 impeded GAA·TTC triplet-repeat expansion. A specific pyrrole-imidazole polyamide targeting GAA·TTC triplet-repeat DNA partially blocked repeat expansion by displacing MSH2 from FXN intron 1 in FRDA iPSCs. These studies suggest that in FRDA, GAA·TTC triplet-repeat instability occurs in embryonic cells and involves the highly active mismatch repair system.
Collapse
Affiliation(s)
- Jintang Du
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Erica Campau
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Elisabetta Soragni
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Sherman Ku
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - James W. Puckett
- the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Peter B. Dervan
- the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Joel M. Gottesfeld
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| |
Collapse
|
96
|
Damerla RR, Knickelbein KE, Strutt S, Liu FJ, Wang H, Opresko PL. Werner syndrome protein suppresses the formation of large deletions during the replication of human telomeric sequences. Cell Cycle 2012; 11:3036-44. [PMID: 22871734 DOI: 10.4161/cc.21399] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Werner syndrome (WS) is a disorder characterized by features of premature aging and increased cancer that is caused by loss of the RecQ helicase WRN. Telomeres consisting of duplex TTAGGG repeats in humans protect chromosome ends and sustain cellular proliferation. WRN prevents the loss of telomeres replicated from the G-rich strand, which can form secondary G-quadruplex (G4) structures. Here, we dissected WRN roles in the replication of telomeric sequences by examining factors inherent to telomeric repeats, such as G4 DNA, independently from other factors at chromosome ends that can also impede replication. For this we used the supF shuttle vector (SV) mutagenesis assay. We demonstrate that SVs with [TTAGGG]6 sequences are stably replicated in human cells, and that the repeats suppress the frequency of large deletions despite G4 folding potential. WRN depletion increased the supF mutant frequency for both the telomeric and non-telomeric SVs, compared with the control cells, but this increase was much greater (27-fold) for telomeric SVs. The higher SV mutant frequencies in WRN-deficient cells were primarily due to an increase in large sequence deletions and rearrangements. However, WRN depletion caused a more dramatic increase in deletions and rearrangements arising within the telomeric SV (70-fold), compared with non-telomeric SV (8-fold). Our results indicate that WRN prevents large deletions and rearrangements during replication, and that this role is particularly important in templates with telomeric sequence. This provides a possible explanation for increased telomere loss in WS cells.
Collapse
Affiliation(s)
- Rama Rao Damerla
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
97
|
Leman AR, Dheekollu J, Deng Z, Lee SW, Das MM, Lieberman PM, Noguchi E. Timeless preserves telomere length by promoting efficient DNA replication through human telomeres. Cell Cycle 2012; 11:2337-47. [PMID: 22672906 PMCID: PMC3383593 DOI: 10.4161/cc.20810] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.
Collapse
Affiliation(s)
- Adam R. Leman
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | | | - Zhong Deng
- The Wistar Institute; Philadelphia, PA USA
| | - Seung Woo Lee
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | - Mukund M. Das
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | | | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| |
Collapse
|
98
|
Chandok GS, Patel MP, Mirkin SM, Krasilnikova MM. Effects of Friedreich's ataxia GAA repeats on DNA replication in mammalian cells. Nucleic Acids Res 2012; 40:3964-74. [PMID: 22262734 PMCID: PMC3351192 DOI: 10.1093/nar/gks021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a common hereditary degenerative neuro-muscular disorder caused by expansions of the (GAA)n repeat in the first intron of the frataxin gene. The expanded repeats from parents frequently undergo further significant length changes as they are passed on to progeny. Expanded repeats also show an age-dependent instability in somatic cells, albeit on a smaller scale than during intergenerational transmissions. Here we studied the effects of (GAA)n repeats of varying lengths and orientations on the episomal DNA replication in mammalian cells. We have recently shown that the very first round of the transfected DNA replication occurs in the lack of the mature chromatin, does not depend on the episomal replication origin and initiates at multiple single-stranded regions of plasmid DNA. We now found that expanded GAA repeats severely block this first replication round post plasmid transfection, while the subsequent replication cycles are only mildly affected. The fact that GAA repeats affect various replication modes in a different way might shed light on their differential expansions characteristic for FRDA.
Collapse
Affiliation(s)
- Gurangad S. Chandok
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802 and Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Mayank P. Patel
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802 and Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M. Mirkin
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802 and Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802 and Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
99
|
Azidothymidine and other chain terminators are mutagenic for template-switch-generated genetic mutations. Proc Natl Acad Sci U S A 2012; 109:6171-4. [PMID: 22474374 DOI: 10.1073/pnas.1116160109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The accumulation of mutations causes cell lethality and can lead to carcinogenesis. An important class of mutations, which are associated with mutational hotspots in many organisms, are those that arise by nascent strand misalignment and template-switching at the site of short repetitive sequences in DNA. Mutagens that strongly and specifically affect this class, which is mechanistically distinct from other mutations that arise from polymerase errors or by DNA template damage, are unknown. Using Escherichia coli and assays for specific mutational events, this study defines such a mutagen, 3'-azidothymidine [zidovudine (AZT)], used widely in the treatment and prevention of HIV/AIDS. At sublethal doses, AZT has no significant effect on frame shifts and most base-substitution mutations. AT-to-CG transversions and deletions at microhomologies were enhanced modestly by AZT. AZT strongly stimulated the "template-switch" class of mutations that arise in imperfect inverted repeat sequences by DNA-strand misalignments during replication, presumably through its action as a chain terminator during DNA replication. Chain-terminating 2'-3'-didehydro 3'-deoxythymidine [stavudine (D4T)] and 2'-3'-dideoxyinosine [didanosine (ddI)] likewise stimulated template-switch mutagenesis. These agents define a specific class of mutagen that promotes template-switching and acts by stalling replication rather than by direct nucleotide base damage.
Collapse
|
100
|
Liu G, Leffak M. Instability of (CTG)n•(CAG)n trinucleotide repeats and DNA synthesis. Cell Biosci 2012; 2:7. [PMID: 22369689 PMCID: PMC3310812 DOI: 10.1186/2045-3701-2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
Expansion of (CTG)n•(CAG)n trinucleotide repeat (TNR) microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTG)n and (CAG)n repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTG)n•(CAG)n instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTG)n•(CAG)n TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTG)n•(CAG)n instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTG)n•(CAG)n TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | | |
Collapse
|