51
|
Kobar K, Collett K, Prykhozhij SV, Berman JN. Zebrafish Cancer Predisposition Models. Front Cell Dev Biol 2021; 9:660069. [PMID: 33987182 PMCID: PMC8112447 DOI: 10.3389/fcell.2021.660069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer predisposition syndromes are rare, typically monogenic disorders that result from germline mutations that increase the likelihood of developing cancer. Although these disorders are individually rare, resulting cancers collectively represent 5-10% of all malignancies. In addition to a greater incidence of cancer, affected individuals have an earlier tumor onset and are frequently subjected to long-term multi-modal cancer screening protocols for earlier detection and initiation of treatment. In vivo models are needed to better understand tumor-driving mechanisms, tailor patient screening approaches and develop targeted therapies to improve patient care and disease prognosis. The zebrafish (Danio rerio) has emerged as a robust model for cancer research due to its high fecundity, time- and cost-efficient genetic manipulation and real-time high-resolution imaging. Tumors developing in zebrafish cancer models are histologically and molecularly similar to their human counterparts, confirming the validity of these models. The zebrafish platform supports both large-scale random mutagenesis screens to identify potential candidate/modifier genes and recently optimized genome editing strategies. These techniques have greatly increased our ability to investigate the impact of certain mutations and how these lesions impact tumorigenesis and disease phenotype. These unique characteristics position the zebrafish as a powerful in vivo tool to model cancer predisposition syndromes and as such, several have already been created, including those recapitulating Li-Fraumeni syndrome, familial adenomatous polyposis, RASopathies, inherited bone marrow failure syndromes, and several other pathogenic mutations in cancer predisposition genes. In addition, the zebrafish platform supports medium- to high-throughput preclinical drug screening to identify compounds that may represent novel treatment paradigms or even prevent cancer evolution. This review will highlight and synthesize the findings from zebrafish cancer predisposition models created to date. We will discuss emerging trends in how these zebrafish cancer models can improve our understanding of the genetic mechanisms driving cancer predisposition and their potential to discover therapeutic and/or preventative compounds that change the natural history of disease for these vulnerable children, youth and adults.
Collapse
Affiliation(s)
- Kim Kobar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keon Collett
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
52
|
Zhang Z, Zhang J, Diao L, Han L. Small non-coding RNAs in human cancer: function, clinical utility, and characterization. Oncogene 2021; 40:1570-1577. [PMID: 33452456 DOI: 10.1038/s41388-020-01630-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023]
Abstract
Small non-coding RNAs (sncRNAs) play critical roles in multiple regulatory processes, including transcription, post-transcription, and translation. Emerging evidence reveals the critical roles of sncRNAs in cancer development and their potential role as biomarkers and/or therapeutic targets. In this paper, we review recent research on four sncRNA species with functional significance in cancer: small nucleolar RNAs, transfer RNA, small nuclear RNAs, and piwi-interacting RNAs. We introduce their functional roles in tumorigenesis and discuss the potential utility of sncRNAs as prognostic and diagnostic biomarkers and therapeutic targets. We further summarize approaches to characterize sncRNAs in a high-throughput manner, including the specific library construction and computational framework. Our review provides a perspective of the functions, clinical utility, and characterization of sncRNAs in cancer.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
53
|
Gala K, Khattar E. Long non-coding RNAs at work on telomeres: Functions and implications in cancer therapy. Cancer Lett 2021; 502:120-132. [PMID: 33450357 DOI: 10.1016/j.canlet.2020.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) are known to regulate various biological processes including cancer. Cancer cells possess limitless replicative potential which is attained by telomere length maintenance while normal somatic cells have a limited lifespan because their telomeres shorten with every cell division ultimately triggering replicative senescence. Two lncRNAs have been observed to play a key role in telomere length maintenance. First is the lncRNA TERC (telomerase RNA component) which functions as a template for telomeric DNA synthesis in association with telomerase reverse transcriptase (TERT) which serves as the catalytic component. Together they constitute the telomerase complex which functions as a reverse transcriptase to elongate telomeres. Second lncRNA that helps in regulating telomere length is the telomeric repeat-containing RNA (TERRA) which is transcribed from the subtelomeric region and extends to the telomeric region. TERC and TERRA exhibit important functions in cancer with implications in precision oncology. In this review, we discuss various aspects of these important lncRNAs in humans and their role in cancer along with recent advancements in their anticancer therapeutic application.
Collapse
Affiliation(s)
- Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, 400056, Maharashtra, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
54
|
Engin AB, Engin A. The Connection Between Cell Fate and Telomere. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:71-100. [PMID: 33539012 DOI: 10.1007/978-3-030-49844-3_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
55
|
Zhuang J, Liu D, Lin M, Qiu W, Liu J, Chen S. PseUdeep: RNA Pseudouridine Site Identification with Deep Learning Algorithm. Front Genet 2021; 12:773882. [PMID: 34868261 PMCID: PMC8637112 DOI: 10.3389/fgene.2021.773882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Pseudouridine (Ψ) is a common ribonucleotide modification that plays a significant role in many biological processes. The identification of Ψ modification sites is of great significance for disease mechanism and biological processes research in which machine learning algorithms are desirable as the lab exploratory techniques are expensive and time-consuming. Results: In this work, we propose a deep learning framework, called PseUdeep, to identify Ψ sites of three species: H. sapiens, S. cerevisiae, and M. musculus. In this method, three encoding methods are used to extract the features of RNA sequences, that is, one-hot encoding, K-tuple nucleotide frequency pattern, and position-specific nucleotide composition. The three feature matrices are convoluted twice and fed into the capsule neural network and bidirectional gated recurrent unit network with a self-attention mechanism for classification. Conclusion: Compared with other state-of-the-art methods, our model gets the highest accuracy of the prediction on the independent testing data set S-200; the accuracy improves 12.38%, and on the independent testing data set H-200, the accuracy improves 0.68%. Moreover, the dimensions of the features we derive from the RNA sequences are only 109,109, and 119 in H. sapiens, M. musculus, and S. cerevisiae, which is much smaller than those used in the traditional algorithms. On evaluation via tenfold cross-validation and two independent testing data sets, PseUdeep outperforms the best traditional machine learning model available. PseUdeep source code and data sets are available at https://github.com/dan111262/PseUdeep.
Collapse
Affiliation(s)
- Jujuan Zhuang
- College of Science, Dalian Maritime University, Dalian, China
| | - Danyang Liu
- College of Science, Dalian Maritime University, Dalian, China
| | - Meng Lin
- College of Science, Dalian Maritime University, Dalian, China
| | - Wenjing Qiu
- Electrical and Information Engineering, Anhui University of Technology, Anhui, China
- Geneis (Beijing) Co., Ltd., Beijing, China
| | | | - Size Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Size Chen,
| |
Collapse
|
56
|
Dsouza VL, Adiga D, Sriharikrishnaa S, Suresh PS, Chatterjee A, Kabekkodu SP. Small nucleolar RNA and its potential role in breast cancer - A comprehensive review. Biochim Biophys Acta Rev Cancer 2021; 1875:188501. [PMID: 33400969 DOI: 10.1016/j.bbcan.2020.188501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Small Nucleolar RNAs (snoRNAs) are known for their canonical functions, including ribosome biogenesis and RNA modification. snoRNAs act as endogenous sponges that regulate miRNA expression. Thus, precise snoRNA expression is critical for fine-tuning miRNA expression. snoRNAs processed into miRNA-like sequences play a crucial role in regulating the expression of protein-coding genes similar to that of miRNAs. Recent studies have linked snoRNA deregulation to breast cancer (BC). Inappropriate snoRNA expression contributes to BC pathology by facilitating breast cells to acquire cancer hallmarks. Since snoRNAs show significant differential expression in normal and cancer conditions, measuring snoRNA levels could be useful for BC prognosis and diagnosis. The present article provides a comprehensive overview of the role of snoRNAs in breast cancer pathology. More specifically, we have discussed the regulation, biological function, signaling pathways, and clinical utility of abnormally expressed snoRNAs in BC. Besides, we have also discussed the role of snoRNA host genes in breast tumorigenesis and emerging and future research directions in the field of snoRNA and cancer.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School, Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
57
|
El-Khoury F, Bignon J, Martin JR. jouvence, a new human snoRNA involved in the control of cell proliferation. BMC Genomics 2020; 21:817. [PMID: 33225905 PMCID: PMC7682050 DOI: 10.1186/s12864-020-07197-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are non-coding RNAs that are conserved from archaebacteria to mammals. They are associated in the nucleolus, with proteins to form small nucleolar ribonucleoprotein (snoRNPs). They modify ribosomal RNAs, for example, the H/ACA box that converts uridine to pseudouridine. In humans, various pathologies have been associated with snoRNAs, and several snoRNAs have been reported to participate in many cancer processes. Recently, a new H/ACA box snoRNA named jouvence has been identified in Drosophila and has been shown to be involved in lifespan determination in relation to gut homeostasis. Because snoRNAs are conserved through evolution, both structurally and functionally, a jouvence orthologue has been identified in humans. RT-PCR has revealed that jouvence is expressed, suggesting that it might be functional. These results suggest the hypothesis that jouvence may display similar functions, including increasing the healthy lifespan in humans. Results Here, we report the characterization of the human snoRNA jouvence, which has not yet been annotated in the genome. We show that its overexpression significantly stimulates cell proliferation, both in various stable cancerous cell lines as well as in primary cells. By contrast, its knockdown by siRNA leads to the opposite phenotype, a rapid decrease in cell proliferation. Transcriptomic analysis (RNA-Seq) revealed that the overexpression of jouvence leads to a dedifferentiation signature of the cells. Conversely, the knockdown of jouvence led to a striking decrease in the expression levels of genes involved in ribosome biogenesis and the spliceosome. Conclusion The overexpression of a single and short non-coding RNA of 159 nucleotides, the snoRNA-jouvence, seems to be sufficient to reorient cells toward stemness, while its depletion blocks cell proliferation. In this context, we speculate that the overexpression of jouvence, which appears to be a non-canonical H/ACA snoRNA, could represent a new tool to fight against the deleterious effects of aging, while inversely, its knockdown by siRNA could represent a new approach in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07197-3.
Collapse
Affiliation(s)
- Flaria El-Khoury
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-René Martin
- Equipe: Imagerie Cérébrale Fonctionnelle et Comportements (ICFC), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR-9197, CNRS/Université Paris-Saclay, 1 Avenue de la Terrasse (Bat. 32/33), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
58
|
McCann KL, Kavari SL, Burkholder AB, Phillips BT, Hall TMT. H/ACA snoRNA levels are regulated during stem cell differentiation. Nucleic Acids Res 2020; 48:8686-8703. [PMID: 32710630 DOI: 10.1093/nar/gkaa612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
H/ACA small nucleolar RNAs (snoRNAs) guide pseudouridylation as part of a small nucleolar ribonucleoprotein complex (snoRNP). Disruption of H/ACA snoRNA levels in stem cells impairs pluripotency, yet it remains unclear how H/ACA snoRNAs contribute to differentiation. To determine if H/ACA snoRNA levels are dynamic during differentiation, we comprehensively profiled H/ACA snoRNA abundance in multiple murine cell types and during differentiation in three cellular models, including mouse embryonic stem cells and mouse myoblasts. We determined that the profiles of H/ACA snoRNA abundance are cell-type specific, and we identified a subset of snoRNAs that are specifically regulated during differentiation. Additionally, we demonstrated that a decrease in Snora27 abundance upon differentiation corresponds to a decrease in pseudouridylation of its target site within the E-site transfer RNA (tRNA) binding region of the 28S ribosomal RNA (rRNA) in the large ribosomal subunit. Together, these data point toward a potential model in which H/ACA snoRNAs are specifically regulated during differentiation to alter pseudouridylation and fine tune ribosome function.
Collapse
Affiliation(s)
- Kathleen L McCann
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sanam L Kavari
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Bart T Phillips
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
59
|
Schrumpfová PP, Fajkus J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules 2020; 10:biom10101425. [PMID: 33050064 PMCID: PMC7658794 DOI: 10.3390/biom10101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase—a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase—its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component—were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Correspondence:
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
60
|
Nagpal N, Agarwal S. Telomerase RNA processing: Implications for human health and disease. Stem Cells 2020; 38:10.1002/stem.3270. [PMID: 32875693 PMCID: PMC7917152 DOI: 10.1002/stem.3270] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022]
Abstract
Telomeres are composed of repetitive DNA sequences that are replenished by the enzyme telomerase to maintain the self-renewal capacity of stem cells. The RNA component of human telomerase (TERC) is the essential template for repeat addition by the telomerase reverse transcriptase (TERT), and also serves as a scaffold for several factors comprising the telomerase ribonucleoprotein (RNP). Unique features of TERC regulation and function have been informed not only through biochemical studies but also through human genetics. Disease-causing mutations impact TERC biogenesis at several levels including RNA transcription, post-transcriptional processing, folding, RNP assembly, and trafficking. Defects in TERC reduce telomerase activity and impair telomere maintenance, thereby causing a spectrum of degenerative diseases called telomere biology disorders (TBDs). Deciphering mechanisms of TERC dysregulation have led to a broader understanding of noncoding RNA biology, and more recently points to new therapeutic strategies for TBDs. In this review, we summarize over two decades of work revealing mechanisms of human telomerase RNA biogenesis, and how its disruption causes human diseases.
Collapse
Affiliation(s)
- Neha Nagpal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| | - Suneet Agarwal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| |
Collapse
|
61
|
Khan SM, He F, Wang D, Chen Y, Xu D. MU-PseUDeep: A deep learning method for prediction of pseudouridine sites. Comput Struct Biotechnol J 2020; 18:1877-1883. [PMID: 32774783 PMCID: PMC7387732 DOI: 10.1016/j.csbj.2020.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/18/2023] Open
Abstract
Pseudouridine synthase binds to uridine sites and catalyzes the conversion of uridine to pseudouridine (Ψ). This binding takes place in a specific context and in the conformation of nucleotides. Most machine-learning methods for Ψ site classification use nucleotide frequency as a feature, which may not fully depict the relevant conformation around a Ψ site. Using the power of deep learning and raw sequence, as well as secondary structure features, our tool MU-PseUDeep is designed to capture both the sequence and secondary structure context, which inputs the raw RNA sequence and the predicted secondary structure to two sets of convolutional neural networks. It has shown considerable improvement in Ψ site prediction over existing tools, XG-PseU, PseUI, and iRNA-PseU for both balanced and imbalanced datasets. To the best of our knowledge, this is the most accurate tool for Ψ site prediction. We also used MU-PseUDeep to scan the human transcriptome, which shows that the genes with predicted Ψ sites are enriched in nucleotide and protein binding, as well as in neurodegeneration pathways. The tool is open source, available at https://github.com/smk5g5/MU-PseUDeep.
Collapse
Affiliation(s)
- Saad M. Khan
- Informatics Institute, University of Missouri, Columbia, MO 65211, United States
| | - Fei He
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Yongbing Chen
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Dong Xu
- Informatics Institute, University of Missouri, Columbia, MO 65211, United States
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
- Corresponding author.
| |
Collapse
|
62
|
Cao R, Ma B, Yuan L, Wang G, Tian Y. Small nucleolar RNAs signature (SNORS) identified clinical outcome and prognosis of bladder cancer (BLCA). Cancer Cell Int 2020; 20:299. [PMID: 32669975 PMCID: PMC7350589 DOI: 10.1186/s12935-020-01393-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Small nucleolar RNAs (snoRNAs) are a new non-coding RNAs (ncRNAs), which have not been widely investigated and are identified to be involved in tumorigenesis. But the function of snoRNAs in BLCA has not been reported yet. Methods SnoRNAs signature (SNORS) was constructed through LASSO cox regression analysis. Integrated analysis of candidate snoRNAs was performed to detect the correlation between copy number variation (CNV)/DNA methylation/protein/mRNA/alternative splicing (AS). Then we built a nomogram integrating independent prognostic factors to assist the clinical utility. Results We have screened out 15 prognostic differentially expressed snoRNAs (DESs) and constructed SNORS consisting of 5 candidate snoRNAs which could appropriately stratify patients into low or high SNORS groups with distinct prognosis. Then we found 5 candidate snoRNAs might be regulated by their own CNV and DNA methylation. Moreover, 5 candidate snoRNAs were significantly correlated mRNA and alternative splicing (AS), which might regulate diverse biological process in tumorigenesis, such as "extracellular matrix", "epithelial-mesenchymal transition (EMT)", etc. signaling pathways. Furthermore, SNORS was an independent prognostic factor, which was strikingly correlated with clinical outcome. Through inporating with other variables, we have established a predictive nomogram, which was more effectively to predict prognosis than any other variables alone. Conclusion Our findings first highlighted an important role of snoRNAs in BLCA and established a potential prognostic model which could serve as a biomarker for BLCA.
Collapse
Affiliation(s)
- Rui Cao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050 China
| | - Bo Ma
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Lushun Yuan
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, 2333 ZA The Netherlands
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050 China
| |
Collapse
|
63
|
Wang AS, Chen LC, Wu RA, Hao Y, McSwiggen DT, Heckert AB, Richardson CD, Gowen BG, Kazane KR, Vu JT, Wyman SK, Shin JJ, Darzacq X, Walter JC, Corn JE. The Histone Chaperone FACT Induces Cas9 Multi-turnover Behavior and Modifies Genome Manipulation in Human Cells. Mol Cell 2020; 79:221-233.e5. [PMID: 32603710 PMCID: PMC7398558 DOI: 10.1016/j.molcel.2020.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/26/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022]
Abstract
Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.
Collapse
Affiliation(s)
- Alan S Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Leo C Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yvonne Hao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David T McSwiggen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute of Regenerative Medicine Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alec B Heckert
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute of Regenerative Medicine Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher D Richardson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katelynn R Kazane
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan T Vu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stacia K Wyman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiyung J Shin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute of Regenerative Medicine Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob E Corn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
64
|
Abstract
Background:Pseudouridine (Ψ) is the most abundant RNA modification and has important functions in a series of biological and cellular processes. Although experimental techniques have made great contributions to identify Ψ sites, they are still labor-intensive and costineffective. In the past few years, a series of computational approaches have been developed, which provided rapid and efficient approaches to identify Ψ sites.Results:To provide the readership with a clear landscape about the recent development in this important area, in this review, we summarized and compared the representative computational approaches developed for identifying Ψ sites. Moreover, future directions in computationally identifying Ψ sites were discussed as well.Conclusion:We anticipate that this review will provide novel insights into the researches on pseudouridine modification.
Collapse
Affiliation(s)
- Wei Chen
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China
| | - Kewei Liu
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
65
|
Majumder M, Mukhopadhyay S, Kharel P, Gupta R. The presence of the ACA box in archaeal H/ACA guide RNAs promotes atypical pseudouridylation. RNA (NEW YORK, N.Y.) 2020; 26:396-418. [PMID: 31919243 PMCID: PMC7075261 DOI: 10.1261/rna.073734.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Archaea and eukaryotes, in addition to protein-only enzymes, also possess ribonucleoproteins containing an H/ACA guide RNA plus four proteins that produce pseudouridine (Ψ). Although typical conditions for these RNA-guided reactions are known, certain variant conditions allow pseudouridylation. We used mutants of the two stem-loops of the Haloferax volcanii sR-h45 RNA that guides three pseudouridylations in 23S rRNA and their target RNAs to characterize modifications under various atypical conditions. The 5' stem-loop produces Ψ2605 and the 3' stem-loop produces Ψ1940 and Ψ1942. The latter two modifications require unpaired "UVUN" (V = A, C, or G) in the target and ACA box in the guide. Ψ1942 modification requires the presence of U1940 (or Ψ1940). Ψ1940 is not produced in the Ψ1942-containing substrate, suggesting a sequential modification of the two residues. The ACA box of a single stem-loop guide is not required when typically unpaired "UN" is up to 17 bases from its position in the guide, but is needed when the distance increases to 19 bases or the N is paired. However, ANA of the H box of the double stem-loop guide is needed even for the 5' typical pseudouridylation. The most 5' unpaired U in a string of U's is converted to Ψ, and in the absence of an unpaired U, a paired U can also be modified. Certain mutants of the Cbf5 protein affect pseudouridylation by the two stem-loops of sR-h45 differently. This study will help elucidate the conditions for production of nonconstitutive Ψ's, determine functions for orphan H/ACA RNAs and in target designing.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Shaoni Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Parinati Kharel
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
66
|
Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci 2020; 77:61-79. [PMID: 31728577 PMCID: PMC6986361 DOI: 10.1007/s00018-019-03369-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023]
Abstract
Telomeres are protein-DNA complexes that protect chromosome ends from illicit ligation and resection. Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA to counter telomere shortening. Human telomeres are composed of complexes between telomeric DNA and a six-protein complex known as shelterin. The shelterin proteins TRF1 and TRF2 provide the binding affinity and specificity for double-stranded telomeric DNA, while the POT1-TPP1 shelterin subcomplex coats the single-stranded telomeric G-rich overhang that is characteristic of all our chromosome ends. By capping chromosome ends, shelterin protects telomeric DNA from unwanted degradation and end-to-end fusion events. Structures of the human shelterin proteins reveal a network of constitutive and context-specific interactions. The shelterin protein-DNA structures reveal the basis for both the high affinity and DNA sequence specificity of these interactions, and explain how shelterin efficiently protects chromosome ends from genome instability. Several protein-protein interactions, many provided by the shelterin component TIN2, are critical for upholding the end-protection function of shelterin. A survey of these protein-protein interfaces within shelterin reveals a series of "domain-peptide" interactions that allow for efficient binding and adaptability towards new functions. While the modular nature of shelterin has facilitated its part-by-part structural characterization, the interdependence of subunits within telomerase has made its structural solution more challenging. However, the exploitation of several homologs in combination with recent advancements in cryo-EM capabilities has led to an exponential increase in our knowledge of the structural biology underlying telomerase function. Telomerase homologs from a wide range of eukaryotes show a typical retroviral reverse transcriptase-like protein core reinforced with elements that deliver telomerase-specific functions including recruitment to telomeres and high telomere-repeat addition processivity. In addition to providing the template for reverse transcription, the RNA component of telomerase provides a scaffold for the catalytic and accessory protein subunits, defines the limits of the telomeric repeat sequence, and plays a critical role in RNP assembly, stability, and trafficking. While a high-resolution definition of the human telomerase structure is only beginning to emerge, the quick pace of technical progress forecasts imminent breakthroughs in this area. Here, we review the structural biology surrounding telomeres and telomerase to provide a molecular description of mammalian chromosome end protection and end replication.
Collapse
Affiliation(s)
- Eric M Smith
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
67
|
Abstract
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Collapse
|
68
|
Rajan K, Doniger T, Cohen-Chalamish S, Chen D, Semo O, Aryal S, Glick Saar E, Chikne V, Gerber D, Unger R, Tschudi C, Michaeli S. Pseudouridines on Trypanosoma brucei spliceosomal small nuclear RNAs and their implication for RNA and protein interactions. Nucleic Acids Res 2019; 47:7633-7647. [PMID: 31147702 PMCID: PMC6698659 DOI: 10.1093/nar/gkz477] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/11/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
The parasite Trypanosoma brucei, the causative agent of sleeping sickness, cycles between an insect and a mammalian host. Here, we investigated the presence of pseudouridines (Ψs) on the spliceosomal small nuclear RNAs (snRNAs), which may enable growth at the very different temperatures characterizing the two hosts. To this end, we performed the first high-throughput mapping of spliceosomal snRNA Ψs by small RNA Ψ-seq. The analysis revealed 42 Ψs on T. brucei snRNAs, which is the highest number reported so far. We show that a trypanosome protein analogous to human protein WDR79, is essential for guiding Ψ on snRNAs but not on rRNAs. snoRNA species implicated in snRNA pseudouridylation were identified by a genome-wide approach based on ligation of RNAs following in vivo UV cross-linking. snRNA Ψs are guided by single hairpin snoRNAs, also implicated in rRNA modification. Depletion of such guiding snoRNA by RNAi compromised the guided modification on snRNA and reduced parasite growth at elevated temperatures. We further demonstrate that Ψ strengthens U4/U6 RNA–RNA and U2B"/U2A’ proteins-U2 snRNA interaction at elevated temperatures. The existence of single hairpin RNAs that modify both the spliceosome and ribosome RNAs is unique for these parasites, and may be related to their ability to cycle between their two hosts that differ in temperature.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dana Chen
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Oz Semo
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | - Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Departmentof Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
- To whom correspondence should be addressed. Tel:+972 3 5317522;
| |
Collapse
|
69
|
Blatt P, Martin ET, Breznak SM, Rangan P. Post-transcriptional gene regulation regulates germline stem cell to oocyte transition during Drosophila oogenesis. Curr Top Dev Biol 2019; 140:3-34. [PMID: 32591078 DOI: 10.1016/bs.ctdb.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During oogenesis, several developmental processes must be traversed to ensure effective completion of gametogenesis including, stem cell maintenance and asymmetric division, differentiation, mitosis and meiosis, and production of maternally contributed mRNAs, making the germline a salient model for understanding how cell fate transitions are mediated. Due to silencing of the genome during meiotic divisions, there is little instructive transcription, barring a few examples, to mediate these critical transitions. In Drosophila, several layers of post-transcriptional regulation ensure that the mRNAs required for these processes are expressed in a timely manner and as needed during germline differentiation. These layers of regulation include alternative splicing, RNA modification, ribosome production, and translational repression. Many of the molecules and pathways involved in these regulatory activities are conserved from Drosophila to humans making the Drosophila germline an elegant model for studying the role of post-transcriptional regulation during stem cell differentiation and meiosis.
Collapse
Affiliation(s)
- Patrick Blatt
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Elliot T Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Shane M Breznak
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States.
| |
Collapse
|
70
|
Gaviraghi M, Vivori C, Tonon G. How Cancer Exploits Ribosomal RNA Biogenesis: A Journey beyond the Boundaries of rRNA Transcription. Cells 2019; 8:cells8091098. [PMID: 31533350 PMCID: PMC6769540 DOI: 10.3390/cells8091098] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
The generation of new ribosomes is a coordinated process essential to sustain cell growth. As such, it is tightly regulated according to cell needs. As cancer cells require intense protein translation to ensure their enhanced growth rate, they exploit various mechanisms to boost ribosome biogenesis. In this review, we will summarize how oncogenes and tumor suppressors modulate the biosynthesis of the RNA component of ribosomes, starting from the description of well-characterized pathways that converge on ribosomal RNA transcription while including novel insights that reveal unexpected regulatory networks hacked by cancer cells to unleash ribosome production.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Experimental Imaging Center; Ospedale San Raffaele, 20132 Milan, Italy.
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain.
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
71
|
Zhu W, Niu J, He M, Zhang L, Lv X, Liu F, Jiang L, Zhang J, Yu Z, Zhao L, Bi J, Yan Y, Wei Q, Huo H, Fan Y, Chen Y, Ding J, Wei M. SNORD89 promotes stemness phenotype of ovarian cancer cells by regulating Notch1-c-Myc pathway. J Transl Med 2019; 17:259. [PMID: 31395064 PMCID: PMC6686521 DOI: 10.1186/s12967-019-2005-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022] Open
Abstract
Background Ovarian cancer is the leading cause of death in gynecological cancer. Cancer stem cells (CSCs) contribute to the occurrence, progression and resistance. Small nucleolar RNAs (SnoRNAs), a class of small molecule non-coding RNA, involve in the cancer cell stemness and tumorigenesis. Methods In this study, we screened out SNORNAs related to ovarian patient’s prognosis by analyzing the data of 379 cases of ovarian cancer patients in the TCGA database, and analyzed the difference of SNORNAs expression between OVCAR-3 (OV) sphere-forming (OS) cells and OV cells. After overexpression or knockdown SNORD89, the expression of Nanog, CD44, and CD133 was measured by qRT-PCR or flow cytometry analysis in OV, CAOV-3 (CA) and OS cells, respectively. CCK-8 assays, plate clone formation assay and soft agar colony formation assay were carried out to evaluate the changes of cell proliferation and self-renewal ability. Scratch migration assay and trans-well invasion analysis were used for assessing the changes of migration and invasion ability. Results High expression of SNORD89 indicates the poor prognosis of ovarian cancer patients and was associated with patients’ age, therapy outcome. SNORD89 highly expressed in ovarian cancer stem cells. The overexpression of SNORD89 resulted in the increased stemness markers, S phase cell cycle, cell proliferation, invasion and migration ability in OV and CA cells. Conversely, these phenomena were reversed after SNORD89 silencing in OS cells. Further, we found that SNORD89 could upregulate c-Myc and Notch1 expression in mRNA and protein levels. SNORD89 deteriorates the prognosis of ovarian cancer patients by regulating Notch1-c-Myc pathway to promote cell stemness and acts as an oncogene in ovarian tumorigenesis. Consequently, SNORD89 can be a novel prognostic biomarker and therapeutic target for ovarian cancer. Electronic supplementary material The online version of this article (10.1186/s12967-019-2005-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Jumin Niu
- Shenyang Women's and Children's Hospital, Shenyang, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Liwen Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Fangxiao Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Hong Huo
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yue Fan
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Jian Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China. .,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China. .,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
72
|
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Wu M. Epigenetics in Neurodevelopment: Emerging Role of Circular RNA. Front Cell Neurosci 2019; 13:327. [PMID: 31379511 PMCID: PMC6658887 DOI: 10.3389/fncel.2019.00327] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023] Open
Abstract
Canonical epigenetic modifications, including DNA methylation, histone modification and chromatin remodeling, play a role in numerous life processes, particularly neurodevelopment. Epigenetics explains the development of cells in an organism with the same DNA sequence into different cell types with various functions. However, previous studies on epigenetics have only focused on the chromatin level. Recently, epigenetic modifications of RNA, which mainly include 6-methyladenosine (m6A), pseudouridine, 5-methylcytidine (m5C), inosine (I), 2′-O-ribosemethylation, and 1-methyladenosine (m1A), have gained increasing attention. Circular RNAs (circRNAs), which are a type of non-coding RNA without a 5′ cap or 3′ poly (A) tail, are abundantly found in the brain and might respond to and regulate synaptic function. Also, circRNAs have various functions, such as microRNA sponge, regulation of gene transcription and interaction with RNA binding protein. In addition, circRNAs are methylated by N6-methyladenosine (m6A). In this review, we discuss the crucial roles of epigenetic modifications of circRNAs, such as m6A, in the genesis and development of neurons and in synaptic function and plasticity. Thus, this type of changes in circRNAs might be a therapeutic target in central nervous system (CNS) disorders and could aid the diagnosis and treatment of these disorders.
Collapse
Affiliation(s)
- Shujuan Meng
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Hecheng Zhou
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Ziyang Feng
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Zihao Xu
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Ying Tang
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
73
|
Wei J, Yang Q, Shi J, Shi B, Ji M, Hou P. Increased expression of NAF1 contributes to malignant phenotypes of glioma cells through promoting protein synthesis and associates with poor patient survival. Oncogenesis 2019; 8:25. [PMID: 30936423 PMCID: PMC6443650 DOI: 10.1038/s41389-019-0134-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/01/2022] Open
Abstract
The H/ACA ribonucleoprotein (RNP) complex noncore subunit NAF1 is an indispensable factor during H/ACA RNP maturation, and one of the widely known functions of H/ACA RNP is modulating ribosome biosynthesis. However, the specific biological role and exact mechanism of NAF1 in human cancers including glioma remain largely unclear. In this study, we found that NAF1 was highly expressed in gliomas relative to normal brain tissues, and demonstrated that increased expression of NAF1 was strongly correlated with poor patient survival. Further studies revealed that NAF1 was transcriptionally regulated by c-Myc, NRF2, and telomerase reverse transcriptase (TERT), which are the key molecules associated with malignant progression of gliomas. Moreover, we demonstrated that NAF1 was a functional oncogene in glioma cells through promoting cell growth in vitro and in vivo, survival, migration, and invasion. Mechanistically, NAF1 acted as a rate-limiting controller of cell growth and invasiveness through enhancing 40S subunit assembly and protein synthesis including c-Myc, NRF2, TERT, POLR1A, and POLR2A. These molecules in turn enhanced the transcription and translation of NAF1, thereby forming positive feedback loops between them to promote malignant phenotypes of glioma cells. In addition, our data also showed that NAF1 depletion could trigger ribosome stress, not only impairing ribosomal biosynthesis but also reactivating p53 signaling via blocking MDM2. Taken together, we demonstrated that NAF1 promotes the tumorigenesis and progression of glioma through modulating ribosome assembly and protein synthesis, and predicted that NAF1 may be a potential therapeutic target and valuable prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Jing Wei
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Shi
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bingyin Shi
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
74
|
Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci U S A 2019; 116:6784-6789. [PMID: 30872485 PMCID: PMC6452723 DOI: 10.1073/pnas.1817334116] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The field of RNA modification would be significantly advanced by the development of sensitive, accurate, single-base resolution methods for profiling multiple common RNA modifications in the same RNA molecule. Our work provides several advances toward that goal, including (i) quantitative methods for profiling Ψ sites at true base-pair resolution transcriptome-wide, (ii) a chemical understanding of our observed Ψ-dependent deletion signature, (iii) improved methods for profiling m5C and m1A, and (iv) a coupling of these methods for the simultaneous detection of all three modifications in the same RNA. Together, the combinatorial ability and relative ease of execution provided by this procedure should greatly forward epitranscriptome studies involving these three very common RNA modifications. The breadth and importance of RNA modifications are growing rapidly as modified ribonucleotides can impact the sequence, structure, function, stability, and fate of RNAs and their interactions with other molecules. Therefore, knowing cellular RNA modifications at single-base resolution could provide important information regarding cell status and fate. A current major limitation is the lack of methods that allow the reproducible profiling of multiple modifications simultaneously, transcriptome-wide and at single-base resolution. Here we developed RBS-Seq, a modification of RNA bisulfite sequencing that enables the sensitive and simultaneous detection of m5C, Ψ, and m1A at single-base resolution transcriptome-wide. With RBS-Seq, m5C and m1A are accurately detected based on known signature base mismatches and are detected here simultaneously along with Ψ sites that show a 1–2 base deletion. Structural analyses revealed the mechanism underlying the deletion signature, which involves Ψ-monobisulfite adduction, heat-induced ribose ring opening, and Mg2+-assisted reorientation, causing base-skipping during cDNA synthesis. Detection of each of these modifications through a unique chemistry allows high-precision mapping of all three modifications within the same RNA molecule, enabling covariation studies. Application of RBS-Seq on HeLa RNA revealed almost all known m5C, m1A, and ψ sites in tRNAs and rRNAs and provided hundreds of new m5C and Ψ sites in noncoding RNAs and mRNAs. However, our results diverge greatly from earlier work, suggesting ∼10-fold fewer m5C sites in noncoding and coding RNAs and the absence of substantial m1A in mRNAs. Taken together, the approaches and refined datasets in this work will greatly enable future epitranscriptome studies.
Collapse
|
75
|
Kolora SRR, Weigert A, Saffari A, Kehr S, Walter Costa MB, Spröer C, Indrischek H, Chintalapati M, Lohse K, Doose G, Overmann J, Bunk B, Bleidorn C, Grimm-Seyfarth A, Henle K, Nowick K, Faria R, Stadler PF, Schlegel M. Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation. Gigascience 2019; 8:giy160. [PMID: 30535196 PMCID: PMC6381762 DOI: 10.1093/gigascience/giy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. FINDINGS Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. CONCLUSION The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.
Collapse
Affiliation(s)
- Sree Rohit Raj Kolora
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| | - Anne Weigert
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Amin Saffari
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Maria Beatriz Walter Costa
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Embrapa Agroenergia, Parque Estacaeo Biologica (PqEB), Asa Norte, Brasilia/DF, 70770-901, Brazil
| | - Cathrin Spröer
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, 01307, Germany
- Max Planck Institute for Physics of Complex Systems, Noethnitzerstrasse 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01397 Dresden, Germany
| | - Manjusha Chintalapati
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Gero Doose
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Jörg Overmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Animal Evolution and Biodiversity, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, 28006, Spain
| | - Annegret Grimm-Seyfarth
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
- Plant Ecology and Nature Conservation, University of Potsdam, Am Mühlenberg 3, Potsdam, 14476, Germany
| | - Klaus Henle
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
| | - Katja Nowick
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Rui Faria
- Department of Animal and Plant Sciences, Alfred Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Peter F Stadler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig, Augustusplatz 12, Leipzig, 04107, Germany
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany
- Fraunhofer Institut Für Zelltherapie Und Immunologie, Perlickstrasse 1, Leipzig, 04103, Germany
- Department of Theoretical Chemistry, University of Vienna, Währinger strasse 17, Wien, 1090, Austria
- Center for non-Coding RNA in Technology and Health, University of Copenhagen, Gronnegardsvej 3, Frederiksberg C, 1870, Denmark
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501, USA
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| |
Collapse
|
76
|
Tatosyan KA, Koval AP, Kramerov DA. Small Noncoding 4.5SH and 4.5SI RNAs and Their Binding to Proteins. Mol Biol 2018. [DOI: 10.1134/s002689331806016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
77
|
The H/ACA complex disrupts triplex in hTR precursor to permit processing by RRP6 and PARN. Nat Commun 2018; 9:5430. [PMID: 30575725 PMCID: PMC6303318 DOI: 10.1038/s41467-018-07822-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
Human telomerase RNA (hTR) is transcribed as a precursor that is then posttranscriptionally modified and processed. A fraction of the transcripts is oligoadenylated by TRAMP and either processed into the mature hTR or degraded by the exosome. Here, we characterize the processing of 3′ extended forms of varying length by PARN and RRP6. We show that tertiary RNA interactions unique to the longer transcripts favor RNA degradation, whereas H/ACA RNP assembly stimulates productive processing. Interestingly, the H/ACA complex actively promotes processing in addition to protecting the mature 3′ end. Processing occurs in two steps with longer forms first being trimmed by RRP6 and shorter forms then being processed by PARN. These results reveal how RNA structure and RNP assembly affect the kinetics of processing and degradation and ultimately determine the amount of functional telomerase produced in cells. Telomerase RNA (hTR) is transcribed as a 3′-extended precursor. Here the authors examine the processing of hTR precursors of various lengths and show that processing occurs in distinct steps involving different nucleases PARN and RRP6.
Collapse
|
78
|
Chow RD, Chen S. Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene 2018; 37:6442-6462. [PMID: 30072739 PMCID: PMC6294694 DOI: 10.1038/s41388-018-0420-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
Small nucleolar RNAs (snoRNAs) constitute a family of noncoding RNAs that are classically known as guide RNAs for processing and modification of ribosomal RNAs. Recently, it was discovered that snoRNAs can be further processed into sno-derived RNAs (sdRNAs), some of which are known to exhibit microRNA-like properties. SdRNAs have been implicated in human cancer; however, a systems-level sdRNA landscape in human cancers is lacking. Through integrative analysis of ~22 nt size-selected smRNA-seq datasets from 10,262 patient samples across 32 cancer types, we mapped a pan-cancer sdRNAome and interrogated its signatures in multiple clinically relevant features, particularly cancer immunity and clinical outcome. Aggregating sdRNA abundances by parental snoRNAs, these expression signatures alone are sufficient to distinguish patients with distinct cancer types. Interestingly, a large panel of sdRNAs are significantly correlated with features of the tumor-immune microenvironment, such as immunosuppressive markers, CD8+ T cell infiltration, cytolytic T cell activity, and tumor vasculature. A set of individual sdRNAs with tumor-immune signatures can also stratify patient survival. These findings implicate snoRNAs and their derivative sdRNAs as a class of prevalent noncoding molecular markers of human cancer immunity.
Collapse
Affiliation(s)
- Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University School of Medicine, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University School of Medicine, West Haven, CT, USA.
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA.
- Biological and Biomedical Sciences Program, Yale University School of Medicine, New Haven, CT, USA.
- Immunobiology Program, Yale University School of Medicine, New Haven, CT, USA.
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
79
|
Gaviraghi M, Vivori C, Pareja Sanchez Y, Invernizzi F, Cattaneo A, Santoliquido BM, Frenquelli M, Segalla S, Bachi A, Doglioni C, Pelechano V, Cittaro D, Tonon G. Tumor suppressor PNRC1 blocks rRNA maturation by recruiting the decapping complex to the nucleolus. EMBO J 2018; 37:embj.201899179. [PMID: 30373810 DOI: 10.15252/embj.201899179] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Focal deletions occur frequently in the cancer genome. However, the putative tumor-suppressive genes residing within these regions have been difficult to pinpoint. To robustly identify these genes, we implemented a computational approach based on non-negative matrix factorization, NMF, and interrogated the TCGA dataset. This analysis revealed a metagene signature including a small subset of genes showing pervasive hemizygous deletions, reduced expression in cancer patient samples, and nucleolar function. Amid the genes belonging to this signature, we have identified PNRC1, a nuclear receptor coactivator. We found that PNRC1 interacts with the cytoplasmic DCP1α/DCP2 decapping machinery and hauls it inside the nucleolus. PNRC1-dependent nucleolar translocation of the decapping complex is associated with a decrease in the 5'-capped U3 and U8 snoRNA fractions, hampering ribosomal RNA maturation. As a result, PNRC1 ablates the enhanced proliferation triggered by established oncogenes such as RAS and MYC These observations uncover a previously undescribed mechanism of tumor suppression, whereby the cytoplasmic decapping machinery is hauled within nucleoli, tightly regulating ribosomal RNA maturation.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Vivori
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Yerma Pareja Sanchez
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Francesca Invernizzi
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Cattaneo
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Benedetta Maria Santoliquido
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Bachi
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vicent Pelechano
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy .,Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
80
|
A Pan-cancer Analysis of the Expression and Clinical Relevance of Small Nucleolar RNAs in Human Cancer. Cell Rep 2018; 21:1968-1981. [PMID: 29141226 DOI: 10.1016/j.celrep.2017.10.070] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/01/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence has demonstrated that small nucleolar RNAs (snoRNAs) play important roles in tumorigenesis. We systematically investigated the expression landscape and clinical relevance of snoRNAs in >10,000 samples across 31 cancer types from The Cancer Genome Atlas. We observed overall elevated expression of snoRNAs and their ribonucleoproteins in multiple cancer types. We showed complex regulation of snoRNA expression by their host genes, copy number variation, and DNA methylation. Unsupervised clustering revealed that the snoRNA expression subtype is highly concordant with other molecular/clinical subtypes. We further identified 46 clinically relevant snoRNAs and experimentally demonstrated functional roles of SNORD46 in promoting cell proliferation, migration, and invasion. We developed a user-friendly data portal, SNORic, to benefit the research community. Our study highlights the significant roles of snoRNAs in the development and implementation of biomarkers or therapeutic targets for cancer and provides a valuable resource for cancer research.
Collapse
|
81
|
Chuang TD, Xie Y, Yan W, Khorram O. Next-generation sequencing reveals differentially expressed small noncoding RNAs in uterine leiomyoma. Fertil Steril 2018; 109:919-929. [PMID: 29778390 PMCID: PMC6445395 DOI: 10.1016/j.fertnstert.2018.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the expression profile of small noncoding RNAs (sncRNAs) in leiomyoma, which has not been investigated to date. DESIGN Laboratory-based investigation. SETTING Academic center. PATIENT(S) Women undergoing hysterectomy for benign indications. INTERVENTION(S) Next-generation sequencing and screening of an sncRNA database with confirmatory analysis by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). MAIN OUTCOME MEASURE(S) Expression profile of sncRNAs in leiomyoma and matched myometrium. RESULT(S) Screening our previously determined RNA sequencing data with the sncRNA database resulted in identification of 15 small nuclear (sn) RNAs, 284 small nucleolar (sno) RNAs, 98 Piwi-interacting (pi) RNAs, 152 transfer (t) RNAs, and 45 ribosomal (r) RNAs, of which 15 snoRNAs, 24 piRNAs, 7 tRNAs, and 6 rRNAs were differentially expressed at a 1.5-fold change cutoff in leiomyoma compared with myometrium. We selected 5 snoRNAs, 4 piRNAs, 1 tRNA, and 1 rRNA that were differentially expressed and confirmed their expression in paired tissues (n = 20) from both phases of the menstrual cycle with the use of qRT-PCR. The results indicated up-regulation of the snoRNAs (SNORD30, SNORD27, SNORA16A, SNORD46, and SNORD56) and down-regulation of the piRNAs (piR-1311, piR-16677, piR-20365, piR-4153), tRNA (TRG-GCC5-1), and rRNA (RNA5SP202) expression in leiomyoma compared with myometrium (P<.05). The pattern of expression of these sncRNAs was similar to RNA sequencing analysis, with no menstrual cycle-dependent differences detected except for SNORD30. Because Argonaute 2 (AGO2) is required for sncRNA-mediated gene silencing, we determined its expression and found greater abundance in leiomyoma. CONCLUSION(S) Our results provide the first evidence for the differential expression of additional classes of sncRNAs and AGO2 in leiomyoma, implicating their roles as a gene regulatory mechanism.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA-Biomed Research Institute, Torrance, California
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and LA-Biomed Research Institute, Torrance, California.
| |
Collapse
|
82
|
|
83
|
Tillault AS, Schultz SK, Wieden HJ, Kothe U. Molecular Determinants for 23S rRNA Recognition and Modification by the E. coli Pseudouridine Synthase RluE. J Mol Biol 2018; 430:1284-1294. [PMID: 29555553 DOI: 10.1016/j.jmb.2018.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/25/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
The isomerization of uridine to pseudouridine is the most common type of RNA modification found in RNAs across all domains of life and is performed by RNA-dependent and RNA-independent enzymes. The Escherichia coli pseudouridine synthase RluE acts as a stand-alone, highly specific enzyme forming the universally conserved pseudouridine at position 2457, located in helix 89 (H89) of the 23S rRNA in the peptidyltransferase center. Here, we conduct a detailed structure-function analysis to determine the structural elements both in RluE and in 23S rRNA required for RNA-protein interaction and pseudouridine formation. We determined that RluE recognizes a large part of 23S rRNA comprising both H89 and the single-stranded flanking regions which explains the high substrate specificity of RluE. Within RluE, the target RNA is recognized through sequence-specific contacts with loop L7-8 as well as interactions with loop L1-2 and the flexible N-terminal region. We demonstrate that RluE is a faster pseudouridine synthase than other enzymes which likely enables it to act in the early stages of ribosome formation. In summary, our biochemical characterization of RluE provides detailed insight into the molecular mechanism of RluE forming a highly conserved pseudouridine during ribosome biogenesis.
Collapse
Affiliation(s)
- Anne-Sophie Tillault
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Sarah K Schultz
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
84
|
Zhao Y, Dunker W, Yu YT, Karijolich J. The Role of Noncoding RNA Pseudouridylation in Nuclear Gene Expression Events. Front Bioeng Biotechnol 2018; 6:8. [PMID: 29473035 PMCID: PMC5809436 DOI: 10.3389/fbioe.2018.00008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudouridine is the most abundant internal RNA modification in stable noncoding RNAs (ncRNAs). It can be catalyzed by both RNA-dependent and RNA-independent mechanisms. Pseudouridylation impacts both the biochemical and biophysical properties of RNAs and thus influences RNA-mediated cellular processes. The investigation of nuclear-ncRNA pseudouridylation has demonstrated that it is critical for the proper control of multiple stages of gene expression regulation. Here, we review how nuclear-ncRNA pseudouridylation contributes to transcriptional regulation and pre-mRNA splicing.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| |
Collapse
|
85
|
Caton EA, Kelly EK, Kamalampeta R, Kothe U. Efficient RNA pseudouridylation by eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning of guide RNA. Nucleic Acids Res 2018; 46:905-916. [PMID: 29177505 PMCID: PMC5778458 DOI: 10.1093/nar/gkx1167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
H/ACA ribonucleoproteins (H/ACA RNPs) are responsible for introducing many pseudouridines into RNAs, but are also involved in other cellular functions. Utilizing a purified and reconstituted yeast H/ACA RNP system that is active in pseudouridine formation under physiological conditions, we describe here the quantitative characterization of H/ACA RNP formation and function. This analysis reveals a surprisingly tight interaction of H/ACA guide RNA with the Cbf5p-Nop10p-Gar1p trimeric protein complex whereas Nhp2p binds comparably weakly to H/ACA guide RNA. Substrate RNA is bound to H/ACA RNPs with nanomolar affinity which correlates with the GC content in the guide-substrate RNA base pairing. Both Nhp2p and the conserved Box ACA element in guide RNA are required for efficient pseudouridine formation, but not for guide RNA or substrate RNA binding. These results suggest that Nhp2p and the Box ACA motif indirectly facilitate loading of the substrate RNA in the catalytic site of Cbf5p by correctly positioning the upper and lower parts of the H/ACA guide RNA on the H/ACA proteins. In summary, this study provides detailed insight into the molecular mechanism of H/ACA RNPs.
Collapse
Affiliation(s)
- Evan A Caton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Erin K Kelly
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Rajashekhar Kamalampeta
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
86
|
Cao T, Rajasingh S, Samanta S, Dawn B, Bittel DC, Rajasingh J. Biology and clinical relevance of noncoding sno/scaRNAs. Trends Cardiovasc Med 2017; 28:81-90. [PMID: 28869095 DOI: 10.1016/j.tcm.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that perform various biological functions, including biochemical modifications of other RNAs, precursors of miRNA, splicing, and telomerase activity. The small Cajal body-associated RNAs (scaRNAs) are a subset of the snoRNA family and collect in the Cajal body where they perform their canonical function to biochemically modify spliceosomal RNAs prior to maturation. Failure of sno/scaRNAs have been implicated in pathology such as congenital heart anomalies, neuromuscular disorders, and various malignancies. Thus, understanding of sno/scaRNAs demonstrates the clinical value.
Collapse
Affiliation(s)
- Thuy Cao
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Sheeja Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Saheli Samanta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | | | - Johnson Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
87
|
Hapangama DK, Kamal A, Saretzki G. Implications of telomeres and telomerase in endometrial pathology. Hum Reprod Update 2017; 23:166-187. [PMID: 27979878 PMCID: PMC5850744 DOI: 10.1093/humupd/dmw044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eukaryotic chromosomal ends are linear and are protected by nucleoprotein complexes known as telomeres. The complex structural anatomy and the diverse functions of telomeres as well as the unique reverse transcriptase enzyme, telomerase that maintains telomeres are under intensive scientific scrutiny. Both are involved in many human diseases including cancer, but also in ageing and chronic disease such as diabetes. Their intricate involvement in many cellular processes and pathways is being dynamically deciphered in many organs including the endometrium. This review summarizes our current knowledge on the topic of telomeres and telomerase and their potential role in providing plausible explanations for endometrial aberrations related to common gynaecological pathologies. OBJECTIVE AND RATIONALE This review outlines the recent major findings in telomere and telomerase functions in the context of endometrial biology. It highlights the contemporary discoveries in hormonal regulation, normal endometrial regeneration, stem cells and common gynaecological diseases such as endometriosis, infertility, recurrent reproductive failure and endometrial cancer (EC). SEARCH METHODS The authors carried out systematic PubMed (Medline) and Ovid searches using the key words: telomerase, telomeres, telomere length, human telomerase reverse transcriptase, telomeric RNA component, with endometrium, hormonal regulation, endometrial stem/progenitor cells, endometrial regeneration, endometriosis, recurrent miscarriage, infertility, endometrial hyperplasia, EC and uterine cancer. Publications used in this review date from 1995 until 31st June 2016. OUTCOMES The human endometrium is a unique somatic organ, which displays dynamic telomerase activity (TA) related to the menstrual cycle. Telomerase is implicated in almost all endometrial pathologies and appears to be crucial to endometrial stem cells. In particular, it is vital for normal endometrial regeneration, providing a distinct route to formulate possible curative, non-hormonal therapies to treat chronic endometrial conditions. Furthermore, our current understanding of telomere maintenance in EC is incomplete. Data derived from other malignancies on the role of telomerase in carcinogenesis cannot be extrapolated to EC because unlike in other cancers, TA is already present in proliferating healthy endometrial cells. WIDER IMPLICATIONS Since telomerase is pivotal to endometrial regeneration, further studies elucidating the role of telomeres, telomerase, their associated proteins and their regulation in normal endometrial regeneration as well as their role in endometrial pathologies are essential. This approach may allow future development of novel treatment strategies that are not only non-hormonal but also potentially curative.
Collapse
Affiliation(s)
- D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,Liverpool Women's Hospital NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK
| | - A Kamal
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, L8 7SS, UK.,The National Center for Early Detection of Cancer, Oncology Teaching Hospital, Baghdad Medical City, Baghdad, Iraq
| | - G Saretzki
- Institute for Ageing and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
88
|
Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 2017; 14:23-31. [PMID: 28032622 DOI: 10.1038/nmeth.4110] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022]
Abstract
In recent years, major breakthroughs in RNA-modification-mediated regulation of gene expression have been made, leading to the emerging field of epitranscriptomics.Our understanding of the distribution, regulation and function of these dynamic RNA modifications is based on sequencing technologies. In this Review, we focus on the major mRNA modifications in the transcriptome of eukaryotic cells: N6-methyladenosine, N6, 2'-O-dimethyladenosine, 5-methylcytidine, 5-hydroxylmethylcytidine, inosine, pseudouridine and N1-methyladenosine. We discuss the sequencing technologies used to profile these epitranscriptomic marks, including scale, resolution, quantitative feature, pre-enrichment capability and the corresponding bioinformatics tools. We also discuss the challenges of epitranscriptome profiling and highlight the prospect of future detection tools. We aim to guide the choice of different detection methods and inspire new ideas in RNA biology.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xushen Xiong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
89
|
Abstract
Telomerase is an RNA-protein complex that extends the 3' ends of linear chromosomes, using a unique telomerase reverse transcriptase (TERT) and template in the telomerase RNA (TR), thereby helping to maintain genome integrity. TR assembles with TERT and species-specific proteins, and telomerase function in vivo requires interaction with telomere-associated proteins. Over the past two decades, structures of domains of TR and TERT as well as other telomerase- and telomere-interacting proteins have provided insights into telomerase function. A recently reported 9-Å cryo-electron microscopy map of the Tetrahymena telomerase holoenzyme has provided a framework for understanding how TR, TERT, and other proteins from ciliate as well as vertebrate telomerase fit and function together as well as unexpected insight into telomerase interaction at telomeres. Here we review progress in understanding the structural basis of human and Tetrahymena telomerase activity, assembly, and interactions.
Collapse
Affiliation(s)
- Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| |
Collapse
|
90
|
Abstract
All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.
Collapse
|
91
|
Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 2017; 18:175-186. [PMID: 28096526 PMCID: PMC5589191 DOI: 10.1038/nrm.2016.171] [Citation(s) in RCA: 507] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The shortening of human telomeres has two opposing effects during cancer development. On the one hand, telomere shortening can exert a tumour-suppressive effect through the proliferation arrest induced by activating the kinases ATM and ATR at unprotected chromosome ends. On the other hand, loss of telomere protection can lead to telomere crisis, which is a state of extensive genome instability that can promote cancer progression. Recent data, reviewed here, provide new evidence for the telomere tumour suppressor pathway and has revealed that telomere crisis can induce numerous cancer-relevant changes, including chromothripsis, kataegis and tetraploidization.
Collapse
Affiliation(s)
- John Maciejowski
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
92
|
Abstract
The first chemical modification to RNA was discovered nearly 60 years ago; to date, more than 100 chemically distinct modifications have been identified in cellular RNA. With the recent development of novel chemical and/or biochemical methods, dynamic modifications to RNA have been identified in the transcriptome, including N6-methyladenosine (m6A), inosine (I), 5-methylcytosine (m5C), pseudouridine (Ψ), 5-hydroxymethylcytosine (hm5C), and N1-methyladenosine (m1A). Collectively, the multitude of RNA modifications are termed epitranscriptome, leading to the emerging field of epitranscriptomics. In this review, we primarily focus on recently reported chemical modifications to mRNA; we discuss their chemical properties, biological functions, and mechanisms with an emphasis on their high-throughput detection methods. We also envision that future tools, particularly novel chemical biology methods, could further facilitate and enable studies in the field of epitranscriptomics.
Collapse
Affiliation(s)
- Jinghui Song
- State
Key Laboratory of Protein and Plant Gene Research, School of Life
Sciences, and Peking-Tsinghua Center for Life Sciences and ‡Department of Chemical
Biology and Synthetic and Functional Biomolecules Center, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State
Key Laboratory of Protein and Plant Gene Research, School of Life
Sciences, and Peking-Tsinghua Center for Life Sciences and ‡Department of Chemical
Biology and Synthetic and Functional Biomolecules Center, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
93
|
Rintala-Dempsey AC, Kothe U. Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression? RNA Biol 2017; 14:1185-1196. [PMID: 28045575 PMCID: PMC5699540 DOI: 10.1080/15476286.2016.1276150] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
For a long time, eukaryotic stand-alone pseudouridine synthases (Pus enzymes) were neglected as non-essential enzymes adding seemingly simple modifications to tRNAs and small nuclear RNAs. Most studies were limited to the identification and initial characterization of the yeast Pus enzymes. However, recent transcriptome-wide mapping of pseudouridines in yeast and humans revealed pervasive modification of mRNAs and other non-coding RNAs by Pus enzymes which is dynamically regulated in response to cellular stress. Moreover, mutations in at least 2 genes encoding human Pus enzymes cause inherited diseases affecting muscle and brain function. Together, the recent findings suggest a broader-than-anticipated role of the Pus enzymes which are emerging as potential regulators of gene expression. In this review, we summarize the current knowledge on Pus enzymes, generate hypotheses regarding their cellular function and outline future areas of research of pseudouridine synthases.
Collapse
Affiliation(s)
- Anne C Rintala-Dempsey
- a Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry , University of Lethbridge , Lethbridge , AB , Canada
| | - Ute Kothe
- a Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry , University of Lethbridge , Lethbridge , AB , Canada
| |
Collapse
|
94
|
Abstract
Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes also act as RNA chaperones. Using TruB as a model, we demonstrate that TruB folds tRNA independent of its catalytic activity, thus increasing the fraction of tRNA that can be aminoacylated. By rapid kinetic stopped-flow analysis, we identified the molecular mechanism of TruB's RNA chaperone activity: TruB binds and unfolds both misfolded and folded tRNAs thereby providing misfolded tRNAs a second chance at folding. Previously, it has been shown that a catalytically inactive TruB variant has no phenotype when expressed in an Escherichia coli truB KO strain [Gutgsell N, et al. (2000) RNA 6(12):1870-1881]. However, here we uncover that E. coli strains expressing a TruB variant impaired in tRNA binding and in in vitro tRNA folding cannot compete with WT E. coli. Consequently, the tRNA chaperone activity of TruB is critical for bacterial fitness. In conclusion, we prove the tRNA chaperone activity of the pseudouridine synthase TruB, reveal its molecular mechanism, and demonstrate its importance for cellular fitness. We discuss the likelihood that other RNA modification enzymes are also RNA chaperones.
Collapse
|
95
|
Ketele A, Kiss T, Jády BE. Human intron-encoded AluACA RNAs and telomerase RNA share a common element promoting RNA accumulation. RNA Biol 2016; 13:1274-1285. [PMID: 27726486 PMCID: PMC5207380 DOI: 10.1080/15476286.2016.1239689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mammalian cells express hundreds of intron-encoded box H/ACA RNAs which fold into a common hairpin-hinge-hairpin-tail structure, interact with 4 evolutionarily conserved proteins, dyskerin, Nop10, Nhp2 and Gar1, and function mainly in RNA pseudouridylation. The human telomerase H/ACA RNA (hTR) directs telomeric DNA synthesis and it carries a 5'-terminal domain encompassing the telomeric template sequence. The primary hTR transcript is synthesized from an independent gene by RNA polymerase II and undergoes 3' end processing controlled by the 3'-terminal H/ACA domain. The apical stem-loop of the 3' hairpin of hTR carries a unique biogenesis-promoting element, the BIO motif that promotes hTR processing and RNP assembly. AluACA RNAs represent a distinct class of human H/ACA RNAs; they are processed from intronic Alu repetitive sequences. As compared to canonical H/ACA RNAs, the AluACA RNAs carry unusually short or long 5' hairpins and generally, they accumulate at low levels. Here, we demonstrate that the suboptimal 5' hairpins are responsible for the weak expression of AluACA RNAs. We also show that AluACA RNAs frequently carry a processing/stabilization element that is structurally and functionally indistinguishable from the hTR BIO motif. Both hTR and AluACA biogenesis-promoting elements are located in the terminal stem-loop of the 3'-terminal H/ACA hairpin, they show perfect structural conservation and are functionally interchangeable in in vivo RNA processing reactions. Our results demonstrate that the BIO motif, instead of being confined to hTR, is a more general H/ACA RNP biogenesis-facilitating element that can also promote processing/assembly of intron-encoded AluACA RNPs.
Collapse
Affiliation(s)
- Amandine Ketele
- a Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Center de Biologie Intégrative, Université Paul Sabatier , Toulouse Cedex 9, France
| | - Tamás Kiss
- a Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Center de Biologie Intégrative, Université Paul Sabatier , Toulouse Cedex 9, France.,b Biological Research Center, Hungarian Academy of Sciences , Szeged , Hungary
| | - Beáta E Jády
- a Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Center de Biologie Intégrative, Université Paul Sabatier , Toulouse Cedex 9, France
| |
Collapse
|
96
|
Majumder M, Bosmeny MS, Gupta R. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation. RNA (NEW YORK, N.Y.) 2016; 22:1604-1619. [PMID: 27539785 PMCID: PMC5029457 DOI: 10.1261/rna.057547.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/25/2016] [Indexed: 05/31/2023]
Abstract
In Eukarya and Archaea, in addition to protein-only pseudouridine (Ψ) synthases, complexes containing one guide RNA and four proteins can also produce Ψ. Cbf5 protein is the Ψ synthase in the complex. Previously, we showed that Ψ's at positions 1940, 1942, and 2605 of Haloferax volcanii 23S rRNA are absent in a cbf5-deleted strain, and a plasmid-borne copy of cbf5 can rescue the synthesis of these Ψ's. Based on published reports of the structure of archaeal Cbf5 complexed with other proteins and RNAs, we identified several potential residues and structures in H. volcanii Cbf5, which were expected to play important roles in pseudouridylation. We mutated these structures and determined their effects on Ψ production at the three rRNA positions under in vivo conditions. Mutations of several residues in the catalytic domain and certain residues in the thumb loop either abolished Ψ's or produced partial modification; the latter indicates a slower rate of Ψ formation. The universal catalytic aspartate of Ψ synthases could be replaced by glutamate in Cbf5. A conserved histidine, which is common to Cbf5 and TruB is not needed, but another conserved histidine of Cbf5 is required for the in vivo RNA-guided Ψ formation. We also identified a previously unreported novelty in the pseudouridylation activity of Cbf5 where a single stem-loop of a guide H/ACA RNA is used to produce two closely placed Ψ's and mutations of certain residues of Cbf5 abolished one of these two Ψ's. In summary, this first in vivo study identifies several structures of an archaeal Cbf5 protein that are important for its RNA-guided pseudouridylation activity.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Michael S Bosmeny
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
97
|
Trinkle-Mulcahy L, Sleeman JE. The Cajal body and the nucleolus: "In a relationship" or "It's complicated"? RNA Biol 2016; 14:739-751. [PMID: 27661468 DOI: 10.1080/15476286.2016.1236169] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
From their initial identification as 'nucleolar accessory bodies' more than a century ago, the relationship between Cajal bodies and nucleoli has been a subject of interest and controversy. In this review, we seek to place recent developments in the understanding of the physical and functional relationships between the 2 structures in the context of historical observations. Biophysical models of nuclear body formation, the molecular nature of CB/nucleolus interactions and the increasing list of joint roles for CBs and nucleoli, predominantly in assembling ribonucleoprotein (RNP) complexes, are discussed.
Collapse
Affiliation(s)
- Laura Trinkle-Mulcahy
- a Department of Cellular and Molecular Medicine , Ottawa Institute of Systems Biology, University of Ottawa , Ottawa , ON , Canada
| | - Judith E Sleeman
- b BSRC Complex, School of Biology, University of St Andrews , UK
| |
Collapse
|
98
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
99
|
Deep Sequencing Analysis of Nucleolar Small RNAs: Bioinformatics. Methods Mol Biol 2016. [PMID: 27576724 DOI: 10.1007/978-1-4939-3792-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Small RNAs (size 20-30 nt) of various types have been actively investigated in recent years, and their subcellular compartmentalization and relative concentrations are likely to be of importance to their cellular and physiological functions. Comprehensive data on this subset of the transcriptome can only be obtained by application of high-throughput sequencing, which yields data that are inherently complex and multidimensional, as sequence composition, length, and abundance will all inform to the small RNA function. Subsequent data analysis, hypothesis testing, and presentation/visualization of the results are correspondingly challenging. We have constructed small RNA libraries derived from different cellular compartments, including the nucleolus, and asked whether small RNAs exist in the nucleolus and whether they are distinct from cytoplasmic and nuclear small RNAs, the miRNAs. Here, we present a workflow for analysis of small RNA sequencing data generated by the Ion Torrent PGM sequencer from samples derived from different cellular compartments.
Collapse
|
100
|
Vogan JM, Zhang X, Youmans DT, Regalado SG, Johnson JZ, Hockemeyer D, Collins K. Minimized human telomerase maintains telomeres and resolves endogenous roles of H/ACA proteins, TCAB1, and Cajal bodies. eLife 2016; 5. [PMID: 27525486 PMCID: PMC5005035 DOI: 10.7554/elife.18221] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/14/2016] [Indexed: 01/22/2023] Open
Abstract
We dissected the importance of human telomerase biogenesis and trafficking pathways for telomere maintenance. Biological stability of human telomerase RNA (hTR) relies on H/ACA proteins, but other eukaryotes use other RNP assembly pathways. To investigate additional rationale for human telomerase assembly as H/ACA RNP, we developed a minimized cellular hTR. Remarkably, with only binding sites for telomerase reverse transcriptase (TERT), minimized hTR assembled biologically active enzyme. TERT overexpression was required for cellular interaction with minimized hTR, indicating that H/ACA RNP assembly enhances endogenous hTR-TERT interaction. Telomere maintenance by minimized telomerase was unaffected by the elimination of the telomerase holoenzyme Cajal body chaperone TCAB1 or the Cajal body scaffold protein Coilin. Surprisingly, wild-type hTR also maintained and elongated telomeres in TCAB1 or Coilin knockout cells, with distinct changes in telomerase action. Overall, we elucidate trafficking requirements for telomerase biogenesis and function and expand mechanisms by which altered telomere maintenance engenders human disease. DOI:http://dx.doi.org/10.7554/eLife.18221.001 Most cells in the human body can only divide a certain number of times before they die. This is because regions called telomeres at the ends of the cell’s DNA get shorter every time the cell divides, to the point that they disappear and halt cell growth. Particular types of cells – including some stem cells and cancer cells – can avoid death and continue to divide indefinitely because they produce an enzyme called telomerase that extends the telomere regions. The process by which the telomerase enzyme binds to and lengthens the DNA has several stages and involves many different proteins. One of the stages involves moving telomerase from the sites where it is assembled within the cell to a place where it can find telomeres in need of elongation (different areas within the cell compartment called the nucleus). Structures inside the nucleus called Cajal bodies were thought to help the enzyme bind to the telomeres. It is not clear why the process of extending telomeres is so complex. Vogan et al. engineered altered versions of telomerase that use simpler pathways to bind to and act on telomeres and inserted them into ‘pluripotent’ stem cells and cancer cells from humans. The experiments show that a pathway that helps to move the enzyme from its normal storage place in the nucleus is less important for extending telomeres in cancer cells than in pluripotent stem cells. Unexpectedly, Cajal bodies are not critical for bringing telomerase into contact with the telomeres in either cell type. The findings show that many of the proteins involved in extending telomeres in cells are not strictly essential. The simplified pathway developed by Vogan et al. opens up new opportunities to study the details of how telomerase extends telomeres. DOI:http://dx.doi.org/10.7554/eLife.18221.002
Collapse
Affiliation(s)
- Jacob M Vogan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Daniel T Youmans
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Samuel G Regalado
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Joshua Z Johnson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|