51
|
Supek F, Lehner B. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes. Cell 2017; 170:534-547.e23. [PMID: 28753428 DOI: 10.1016/j.cell.2017.07.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/17/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations.
Collapse
Affiliation(s)
- Fran Supek
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Division of Electronics, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Ben Lehner
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
52
|
Kanao R, Masutani C. Regulation of DNA damage tolerance in mammalian cells by post-translational modifications of PCNA. Mutat Res 2017; 803-805:82-88. [PMID: 28666590 DOI: 10.1016/j.mrfmmm.2017.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/25/2017] [Accepted: 06/19/2017] [Indexed: 11/29/2022]
Abstract
DNA damage tolerance pathways, which include translesion DNA synthesis (TLS) and template switching, are crucial for prevention of DNA replication arrest and maintenance of genomic stability. However, these pathways utilize error-prone DNA polymerases or template exchange between sister DNA strands, and consequently have the potential to induce mutations or chromosomal rearrangements. Post-translational modifications of proliferating cell nuclear antigen (PCNA) play important roles in controlling these pathways. For example, TLS is mediated by mono-ubiquitination of PCNA at lysine 164, for which RAD6-RAD18 is the primary E2-E3 complex. Elaborate protein-protein interactions between mono-ubiquitinated PCNA and Y-family DNA polymerases constitute the core of the TLS regulatory system, and enhancers of PCNA mono-ubiquitination and de-ubiquitinating enzymes finely regulate TLS and suppress TLS-mediated mutagenesis. The template switching pathway is promoted by K63-linked poly-ubiquitination of PCNA at lysine 164. Poly-ubiquitination is achieved by a coupled reaction mediated by two sets of E2-E3 complexes, RAD6-RAD18 and MMS2-UBC13-HTLF/SHPRH. In addition to these mono- and poly-ubiquitinations, simultaneous mono-ubiquitinations on multiple units of the PCNA homotrimeric ring promote an unidentified damage tolerance mechanism that remains to be fully characterized. Furthermore, SUMOylation of PCNA in mammalian cells can negatively regulate recombination. Other modifications, including ISGylation, acetylation, methylation, or phosphorylation, may also play roles in DNA damage tolerance and control of genomic stability.
Collapse
Affiliation(s)
- Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
53
|
Talhaoui I, Matkarimov BT, Tchenio T, Zharkov DO, Saparbaev MK. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases. Free Radic Biol Med 2017; 107:266-277. [PMID: 27890638 DOI: 10.1016/j.freeradbiomed.2016.11.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
In cellular organisms composition of DNA is constrained to only four nucleobases A, G, T and C, except for minor DNA base modifications such as methylation which serves for defence against foreign DNA or gene expression regulation. Interestingly, this severe evolutionary constraint among other things demands DNA repair systems to discriminate between regular and modified bases. DNA glycosylases specifically recognize and excise damaged bases among vast majority of regular bases in the base excision repair (BER) pathway. However, the mismatched base pairs in DNA can occur from a spontaneous conversion of 5-methylcytosine to thymine and DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved special DNA repair systems that target the non-damaged DNA strand in a duplex to remove mismatched regular DNA bases. Mismatch-specific adenine- and thymine-DNA glycosylases (MutY/MUTYH and TDG/MBD4, respectively) initiated BER and mismatch repair (MMR) pathways can recognize and remove normal DNA bases in mismatched DNA duplexes. Importantly, in DNA repair deficient cells bacterial MutY, human TDG and mammalian MMR can act in the aberrant manner: MutY and TDG removes adenine and thymine opposite misincorporated 8-oxoguanine and damaged adenine, respectively, whereas MMR removes thymine opposite to O6-methylguanine. These unusual activities lead either to mutations or futile DNA repair, thus indicating that the DNA repair pathways which target non-damaged DNA strand can act in aberrant manner and introduce genome instability in the presence of unrepaired DNA lesions. Evidences accumulated showing that in addition to the accumulation of oxidatively damaged DNA in cells, the aberrant DNA repair can also contribute to cancer, brain disorders and premature senescence. For example, the aberrant BER and MMR pathways for oxidized guanine residues can lead to trinucleotide expansion that underlies Huntington's disease, a severe hereditary neurodegenerative syndrome. This review summarises the present knowledge about the aberrant DNA repair pathways for oxidized base modifications and their possible role in age-related diseases.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Thierry Tchenio
- LBPA, UMR8113 ENSC - CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Murat K Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
54
|
RalBP1 and p19-VHL play an oncogenic role, and p30-VHL plays a tumor suppressor role during the blebbishield emergency program. Cell Death Discov 2017; 3:17023. [PMID: 28580172 PMCID: PMC5447132 DOI: 10.1038/cddiscovery.2017.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023] Open
Abstract
Cancer stem cells evade apoptotic death by blebbishield emergency program, which constructs blebbishields from apoptotic bodies and drives cellular transformation. Von Hippel-Lindau (VHL) plays both tumor suppressor and oncogenic roles, and the reason behind is poorly understood. Here we demonstrate that dimers and trimers of p19-VHL interact with RalBP1 to construct blebbishields. Expression of RalBP1, p19-VHL, and high-molecular weight VHL is required to evade apoptosis by blebbishield-mediated transformation. In contrast, p30-VHL plays a tumor suppressor role by inhibiting blebbishield-mediated transformation. Furthermore, target genes of VHL that suppress oxidative stress were elevated during blebbishield-mediated cellular transformation. Thus, RalBP1 and p19-VHL play an oncogenic role, whereas p30-VHL plays a tumor suppressor role during the blebbishield emergency program by regulating oxidative stress management genes.
Collapse
|
55
|
Maiuri AR, Peng M, Podicheti R, Sriramkumar S, Kamplain CM, Rusch DB, DeStefano Shields CE, Sears CL, O'Hagan HM. Mismatch Repair Proteins Initiate Epigenetic Alterations during Inflammation-Driven Tumorigenesis. Cancer Res 2017; 77:3467-3478. [PMID: 28522752 DOI: 10.1158/0008-5472.can-17-0056] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/30/2017] [Accepted: 05/04/2017] [Indexed: 01/05/2023]
Abstract
Aberrant silencing of genes by DNA methylation contributes to cancer, yet how this process is initiated remains unclear. Using a murine model of inflammation-induced tumorigenesis, we tested the hypothesis that inflammation promotes recruitment of epigenetic proteins to chromatin, initiating methylation and gene silencing in tumors. Compared with normal epithelium and noninflammation-induced tumors, inflammation-induced tumors gained DNA methylation at CpG islands, some of which are associated with putative tumor suppressor genes. Hypermethylated genes exhibited enrichment of repressive chromatin marks and reduced expression prior to tumorigenesis, at a time point coinciding with peak levels of inflammation-associated DNA damage. Loss of MutS homolog 2 (MSH2), a mismatch repair (MMR) protein, abrogated early inflammation-induced epigenetic alterations and DNA hypermethylation alterations observed in inflammation-induced tumors. These results indicate that early epigenetic alterations initiated by inflammation and MMR proteins lead to gene silencing during tumorigenesis, revealing a novel mechanism of epigenetic alterations in inflammation-driven cancer. Understanding such mechanisms will inform development of pharmacotherapies to reduce carcinogenesis. Cancer Res; 77(13); 3467-78. ©2017 AACR.
Collapse
Affiliation(s)
- Ashley R Maiuri
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Michael Peng
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | | | - Shruthi Sriramkumar
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Caitlin M Kamplain
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | | | | | - Cynthia L Sears
- Departments of Medicine and Oncology, Johns Hopkins University, Baltimore, Maryland.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Heather M O'Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| |
Collapse
|
56
|
Girelli Zubani G, Zivojnovic M, De Smet A, Albagli-Curiel O, Huetz F, Weill JC, Reynaud CA, Storck S. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs. J Exp Med 2017; 214:1169-1180. [PMID: 28283534 PMCID: PMC5379981 DOI: 10.1084/jem.20161576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Girelli Zubani et al. show that the Pms2 component of the mismatch repair complex and multiple uracil glycosylases contribute, each with a distinct strand bias, to enlarge the Ig gene mutation spectrum from G-C to A-T bases. During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung−/−Pms2−/− mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases.
Collapse
Affiliation(s)
- Giulia Girelli Zubani
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Marija Zivojnovic
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Annie De Smet
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Olivier Albagli-Curiel
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Faculté de Médecine-Site Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - François Huetz
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France.,Département d'Immunologie, Institut Pasteur, 75015 Paris, France
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Sébastien Storck
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| |
Collapse
|
57
|
Matkarimov BT, Saparbaev MK. Aberrant DNA glycosylase-initiated repair pathway of free radicals in-duced DNA damage: implications for age-related diseases and natural aging. ACTA ACUST UNITED AC 2017. [DOI: 10.7124/bc.000943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
58
|
Tanaka M, Takahara M, Nukina K, Hayashi A, Sakai W, Sugasawa K, Shiomi Y, Nishitani H. Mismatch repair proteins recruited to ultraviolet light-damaged sites lead to degradation of licensing factor Cdt1 in the G1 phase. Cell Cycle 2017; 16:673-684. [PMID: 28278049 DOI: 10.1080/15384101.2017.1295179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cdt1 is rapidly degraded by CRL4Cdt2 E3 ubiquitin ligase after UV (UV) irradiation. Previous reports revealed that the nucleotide excision repair (NER) pathway is responsible for the rapid Cdt1-proteolysis. Here, we show that mismatch repair (MMR) proteins are also involved in the degradation of Cdt1 after UV irradiation in the G1 phase. First, compared with the rapid (within ∼15 min) degradation of Cdt1 in normal fibroblasts, Cdt1 remained stable for ∼30 min in NER-deficient XP-A cells, but was degraded within ∼60 min. The delayed degradation was also dependent on PCNA and CRL4Cdt2. The MMR proteins Msh2 and Msh6 were recruited to the UV-damaged sites of XP-A cells in the G1 phase. Depletion of these factors with small interfering RNAs prevented Cdt1 degradation in XP-A cells. Similar to the findings in XP-A cells, depletion of XPA delayed Cdt1 degradation in normal fibroblasts and U2OS cells, and co-depletion of Msh6 further prevented Cdt1 degradation. Furthermore, depletion of Msh6 alone delayed Cdt1 degradation in both cell types. When Cdt1 degradation was attenuated by high Cdt1 expression, repair synthesis at the damaged sites was inhibited. Our findings demonstrate that UV irradiation induces multiple repair pathways that activate CRL4Cdt2 to degrade its target proteins in the G1 phase of the cell cycle, leading to efficient repair of DNA damage.
Collapse
Affiliation(s)
- Miyuki Tanaka
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Michiyo Takahara
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Kohei Nukina
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Akiyo Hayashi
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Wataru Sakai
- b Biosignal Research Center , Kobe University , Kobe , Hyogo , Japan
| | - Kaoru Sugasawa
- b Biosignal Research Center , Kobe University , Kobe , Hyogo , Japan
| | - Yasushi Shiomi
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Hideo Nishitani
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| |
Collapse
|
59
|
Gao Y, Mutter-Rottmayer E, Zlatanou A, Vaziri C, Yang Y. Mechanisms of Post-Replication DNA Repair. Genes (Basel) 2017; 8:genes8020064. [PMID: 28208741 PMCID: PMC5333053 DOI: 10.3390/genes8020064] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Accurate DNA replication is crucial for cell survival and the maintenance of genome stability. Cells have developed mechanisms to cope with the frequent genotoxic injuries that arise from both endogenous and environmental sources. Lesions encountered during DNA replication are often tolerated by post-replication repair mechanisms that prevent replication fork collapse and avert the formation of DNA double strand breaks. There are two predominant post-replication repair pathways, trans-lesion synthesis (TLS) and template switching (TS). TLS is a DNA damage-tolerant and low-fidelity mode of DNA synthesis that utilizes specialized ‘Y-family’ DNA polymerases to replicate damaged templates. TS, however, is an error-free ‘DNA damage avoidance’ mode of DNA synthesis that uses a newly synthesized sister chromatid as a template in lieu of the damaged parent strand. Both TLS and TS pathways are tightly controlled signaling cascades that integrate DNA synthesis with the overall DNA damage response and are thus crucial for genome stability. This review will cover the current knowledge of the primary mediators of post-replication repair and how they are regulated in the cell.
Collapse
Affiliation(s)
- Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (E.M.-R.); (A.Z.); (C.V.); (Y.Y.)
- Correspondence:
| | - Elizabeth Mutter-Rottmayer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (E.M.-R.); (A.Z.); (C.V.); (Y.Y.)
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anastasia Zlatanou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (E.M.-R.); (A.Z.); (C.V.); (Y.Y.)
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (E.M.-R.); (A.Z.); (C.V.); (Y.Y.)
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (E.M.-R.); (A.Z.); (C.V.); (Y.Y.)
| |
Collapse
|
60
|
Despras E, Sittewelle M, Pouvelle C, Delrieu N, Cordonnier AM, Kannouche PL. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat Commun 2016; 7:13326. [PMID: 27811911 PMCID: PMC5097173 DOI: 10.1038/ncomms13326] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 09/23/2016] [Indexed: 01/08/2023] Open
Abstract
Translesion polymerase eta (polη) was characterized for its ability to replicate ultraviolet-induced DNA lesions that stall replicative polymerases, a process promoted by Rad18-dependent PCNA mono-ubiquitination. Recent findings have shown that polη also acts at intrinsically difficult to replicate sequences. However, the molecular mechanisms that regulate its access to these loci remain elusive. Here, we uncover that polη travels with replication forks during unchallenged S phase and this requires its SUMOylation on K163. Abrogation of polη SUMOylation results in replication defects in response to mild replication stress, leading to chromosome fragments in mitosis and damage transmission to daughter cells. Rad18 plays a pivotal role, independently of its ubiquitin ligase activity, acting as a molecular bridge between polη and the PIAS1 SUMO ligase to promote polη SUMOylation. Our results provide the first evidence that SUMOylation represents a new way to target polη to replication forks, independent of the Rad18-mediated PCNA ubiquitination, thereby preventing under-replicated DNA. Translesion synthesis polymerase eta has a well characterized role in replicating past UV-induced DNA lesions and has recently been shown to act at difficult to replicate sequences. Here the authors show that its SUMOylation is required to recruit pol eta at the replication fork and to prevent under-replicated DNA.
Collapse
Affiliation(s)
- Emmanuelle Despras
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Méghane Sittewelle
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Caroline Pouvelle
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Noémie Delrieu
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| | - Agnès M Cordonnier
- CNRS-UMR 7242, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Ecole Supérieure de Biotechnologie, Illkirch 67412, France
| | - Patricia L Kannouche
- Univ Paris-Sud, Laboratory Genetic stability and Oncogenesis, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif 94805, France.,CNRS-UMR 8200, Villejuif 94805, France.,Gustave Roussy Cancer Campus, Villejuif 94805, France
| |
Collapse
|
61
|
Li H, An J, Wu M, Zheng Q, Gui X, Li T, Pu H, Lu D. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Oncotarget 2016; 6:27847-64. [PMID: 26172293 PMCID: PMC4695030 DOI: 10.18632/oncotarget.4443] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/19/2015] [Indexed: 02/02/2023] Open
Abstract
Long non-coding RNA HOTAIR predicts negative tumor prognosis and exhibits oncogenic activity. Herein, we demonstrate HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2. Mechanistically, HOTAIR reduces the recuritment of the CREB, P300, RNA polII onto the SETD2 promoter region that inhibits SETD2 expression and its phosphorylation. Thereby, the SETD2 binding capacity to substrate histone H3 is weakened, triggering a reduction of trimethylation on histone H3 thirty-sixth lysine, and thereby the H3K36me3–hMSH2-hMSH6-SKP2 complex is also decreased. Strikingly, the complex occupancy on chromosome is depressed, preventing from mismatch DNA repair. While reducing the degradation capacity of Skp2 for aging histone H3 bound to damaged DNA, the aging histone repair is impaired. Furthermore, that the damaged DNA escaped to repair can causes microsatellite instability(MSI) and abnormal expression of cell cycle related genes that may trigger the hepatocarcinogenesis. This study provides evidence for HOTAIR to promote tumorigenesis via downregulating SETD2 in liver cancer stem cells.
Collapse
Affiliation(s)
- Haiyan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
62
|
Gao Y, Mutter-Rottmayer E, Greenwalt AM, Goldfarb D, Yan F, Yang Y, Martinez-Chacin RC, Pearce KH, Tateishi S, Major MB, Vaziri C. A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis. Nat Commun 2016; 7:12105. [PMID: 27377895 PMCID: PMC4935975 DOI: 10.1038/ncomms12105] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
Trans-lesion synthesis (TLS) is an important DNA-damage tolerance mechanism that permits ongoing DNA synthesis in cells harbouring damaged genomes. The E3 ubiquitin ligase RAD18 activates TLS by promoting recruitment of Y-family DNA polymerases to sites of DNA-damage-induced replication fork stalling. Here we identify the cancer/testes antigen melanoma antigen-A4 (MAGE-A4) as a tumour cell-specific RAD18-binding partner and an activator of TLS. MAGE-A4 depletion from MAGE-A4-expressing cancer cells destabilizes RAD18. Conversely, ectopic expression of MAGE-A4 (in cell lines lacking endogenous MAGE-A4) promotes RAD18 stability. DNA-damage-induced mono-ubiquitination of the RAD18 substrate PCNA is attenuated by MAGE-A4 silencing. MAGE-A4-depleted cells fail to resume DNA synthesis normally following ultraviolet irradiation and accumulate γH2AX, thereby recapitulating major hallmarks of TLS deficiency. Taken together, these results demonstrate a mechanism by which reprogramming of ubiquitin signalling in cancer cells can influence DNA damage tolerance and probably contribute to an altered genomic landscape.
Collapse
Affiliation(s)
- Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, 614 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599, USA
| | - Elizabeth Mutter-Rottmayer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, 614 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599, USA
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alicia M. Greenwalt
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, 614 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Dennis Goldfarb
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Feng Yan
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, 614 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599, USA
| | - Raquel C. Martinez-Chacin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, 614 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kenneth H. Pearce
- Center For Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Satoshi Tateishi
- Division of Cell Maintenance, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | - Michael B. Major
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 101 Manning Drive, 614 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599, USA
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
63
|
Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks. Proc Natl Acad Sci U S A 2016; 113:E3667-75. [PMID: 27298372 DOI: 10.1073/pnas.1602827113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.
Collapse
|
64
|
Margara LM, Fernández MM, Malchiodi EL, Argaraña CE, Monti MR. MutS regulates access of the error-prone DNA polymerase Pol IV to replication sites: a novel mechanism for maintaining replication fidelity. Nucleic Acids Res 2016; 44:7700-13. [PMID: 27257069 PMCID: PMC5027486 DOI: 10.1093/nar/gkw494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/20/2016] [Indexed: 12/02/2022] Open
Abstract
Translesion DNA polymerases (Pol) function in the bypass of template lesions to relieve stalled replication forks but also display potentially deleterious mutagenic phenotypes that contribute to antibiotic resistance in bacteria and lead to human disease. Effective activity of these enzymes requires association with ring-shaped processivity factors, which dictate their access to sites of DNA synthesis. Here, we show for the first time that the mismatch repair protein MutS plays a role in regulating access of the conserved Y-family Pol IV to replication sites. Our biochemical data reveals that MutS inhibits the interaction of Pol IV with the β clamp processivity factor by competing for binding to the ring. Moreover, the MutS–β clamp association is critical for controlling Pol IV mutagenic replication under normal growth conditions. Thus, our findings reveal important insights into a non-canonical function of MutS in the regulation of a replication activity.
Collapse
Affiliation(s)
- Lucía M Margara
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Marisa M Fernández
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Profesor Ricardo A. Margni, CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Profesor Ricardo A. Margni, CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Carlos E Argaraña
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Mariela R Monti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| |
Collapse
|
65
|
Grin I, Ishchenko AA. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation. Nucleic Acids Res 2016; 44:3713-27. [PMID: 26843430 PMCID: PMC4856981 DOI: 10.1093/nar/gkw059] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/22/2016] [Indexed: 01/02/2023] Open
Abstract
Active DNA demethylation (ADDM) in mammals occurs via hydroxylation of 5-methylcytosine (5mC) by TET and/or deamination by AID/APOBEC family enzymes. The resulting 5mC derivatives are removed through the base excision repair (BER) pathway. At present, it is unclear how the cell manages to eliminate closely spaced 5mC residues whilst avoiding generation of toxic BER intermediates and whether alternative DNA repair pathways participate in ADDM. It has been shown that non-canonical DNA mismatch repair (ncMMR) can remove both alkylated and oxidized nucleotides from DNA. Here, a phagemid DNA containing oxidative base lesions and methylated sites are used to examine the involvement of various DNA repair pathways in ADDM in murine and human cell-free extracts. We demonstrate that, in addition to short-patch BER, 5-hydroxymethyluracil and uracil mispaired with guanine can be processed by ncMMR and long-patch BER with concomitant removal of distant 5mC residues. Furthermore, the presence of multiple mispairs in the same MMR nick/mismatch recognition region together with BER-mediated nick formation promotes proficient ncMMR resulting in the reactivation of an epigenetically silenced reporter gene in murine cells. These findings suggest cooperation between BER and ncMMR in the removal of multiple mismatches that might occur in mammalian cells during ADDM.
Collapse
Affiliation(s)
- Inga Grin
- Laboratoire «Stabilité Génétique et Oncogenèse» CNRS, UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, F-94805 Villejuif, France Gustave Roussy Cancer Campus, F-94805 Villejuif, France SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Laboratoire «Stabilité Génétique et Oncogenèse» CNRS, UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, F-94805 Villejuif, France Gustave Roussy Cancer Campus, F-94805 Villejuif, France
| |
Collapse
|
66
|
Zhao J, Yu S, Zheng Y, Yang H, Zhang J. Oxidative Modification and Its Implications for the Neurodegeneration of Parkinson’s Disease. Mol Neurobiol 2016; 54:1404-1418. [DOI: 10.1007/s12035-016-9743-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
|
67
|
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 2016; 38:94-101. [PMID: 26704428 PMCID: PMC4740233 DOI: 10.1016/j.dnarep.2015.11.019] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted.
Collapse
Affiliation(s)
- Zhongdao Li
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Alexander H Pearlman
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA.
| |
Collapse
|
68
|
de Melo JTA, de Souza Timoteo AR, Lajus TBP, Brandão JA, de Souza-Pinto NC, Menck CFM, Campalans A, Radicella JP, Vessoni AT, Muotri AR, Agnez-Lima LF. XPC deficiency is related to APE1 and OGG1 expression and function. Mutat Res 2016; 784-785:25-33. [PMID: 26811994 DOI: 10.1016/j.mrfmmm.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/04/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Oxidative DNA damage is considered to be a major cause of neurodegeneration and internal tumors observed in syndromes that result from nucleotide excision repair (NER) deficiencies, such as Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS). Recent evidence has shown that NER aids in removing oxidized DNA damage and may interact with base excision repair (BER) enzymes. Here, we investigated APE1 and OGG1 expression, localization and activity after oxidative stress in XPC-deficient cells. The endogenous APE1 and OGG1 mRNA levels were lower in XPC-deficient fibroblasts. However, XPC-deficient cells did not show hypersensitivity to oxidative stress compared with NER-proficient cells. To confirm the impact of an XPC deficiency in regulating APE1 and OGG1 expression and activity, we established an XPC-complemented cell line. Although the XPC complementation was only partial and transient, the transfected cells exhibited greater OGG1 expression and activity compared with XPC-deficient cells. However, the APE1 expression and activity did not significantly change. Furthermore, we observed a physical interaction between the XPC and APE1 proteins. Together, the results indicate that the responses of XPC-deficient cells under oxidative stress may not only be associated with NER deficiency per se but may also include new XPC functions in regulating BER proteins.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Rafaela de Souza Timoteo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Tirzah Braz Petta Lajus
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Juliana Alves Brandão
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Nadja Cristhina de Souza-Pinto
- Laboratório de Genética Mitocondrial, Departamento de Química, Instituto de Química, Universidade de São Paulo-USP, São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- Laboratório de Reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo-USP, São Paulo, Brazil
| | - Anna Campalans
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, 18 Route du Panorama, F-92265 Fontenay aux Roses, France
| | - J Pablo Radicella
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, 18 Route du Panorama, F-92265 Fontenay aux Roses, France
| | - Alexandre Teixeira Vessoni
- Laboratório de Reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo-USP, São Paulo, Brazil; Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Alysson Renato Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
69
|
Wang Z, Huang M, Ma X, Li H, Tang T, Guo C. REV1 promotes PCNA monoubiquitination through interacting with ubiquitinated RAD18. J Cell Sci 2016; 129:1223-33. [DOI: 10.1242/jcs.179408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/18/2016] [Indexed: 01/11/2023] Open
Abstract
Translesion DNA synthesis (TLS) is one mode of DNA damage tolerance, which plays an important role in genome mutagenesis and chromatin integrity maintenance. PCNA monoubiquitination is one of the key factors for TLS pathway choice. So far, it remains unclear how TLS pathway is elaborately regulated. Here, we report that TLS polymerase REV1 can promote PCNA monoubiquitination after UV radiation. Further studies revealed that this stimulatory effect is mediated through the enhanced interaction between REV1 and ubiquitinated RAD18, which facilitates the release of nonubiquitinated RAD18 from ubiquitinated RAD18 trapping followed by more RAD18 recruiting to chromatin for its TLS function. Furthermore, we found that this stimulatory effect could also be detected after exposure to hydroxyurea or mitomycin C, but not methyl methanesulfonate (MMS), which is in line with the fact that ubiquitinated RAD18 could not be detected after exposure to MMS.
Collapse
Affiliation(s)
- Zhifeng Wang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Huang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolu Ma
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiming Li
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tieshan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
70
|
Machado-Silva A, Cerqueira PG, Grazielle-Silva V, Gadelha FR, Peloso EDF, Teixeira SMR, Machado CR. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:8-22. [DOI: 10.1016/j.mrrev.2015.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
|
71
|
Kashiwaba SI, Kanao R, Masuda Y, Kusumoto-Matsuo R, Hanaoka F, Masutani C. USP7 Is a Suppressor of PCNA Ubiquitination and Oxidative-Stress-Induced Mutagenesis in Human Cells. Cell Rep 2015; 13:2072-80. [PMID: 26673319 DOI: 10.1016/j.celrep.2015.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/27/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022] Open
Abstract
Mono-ubiquitinated PCNA activates error-prone DNA polymerases; therefore, strict regulation of PCNA mono-ubiquitination is crucial in avoiding undesired mutagenesis. In this study, we used an in vitro assay system to identify USP7 as a deubiquitinating enzyme of mono-ubiquitinated PCNA. Suppression of USP1, a previously identified PCNA deubiquitinase, or USP7 increased UV- and H2O2-induced PCNA mono-ubiquitination in a distinct and additive manner, suggesting that USP1 and USP7 make different contributions to PCNA deubiquitination in human cells. Cell-cycle-synchronization analyses revealed that USP7 suppression increased H2O2-induced PCNA ubiquitination throughout interphase, whereas USP1 suppression specifically increased ubiquitination in S-phase cells. UV-induced mutagenesis was elevated in USP1-suppressed cells, whereas H2O2-induced mutagenesis was elevated in USP7-suppressed cells. These results suggest that USP1 suppresses UV-induced mutations produced in a manner involving DNA replication, whereas USP7 suppresses H2O2-induced mutagenesis involving cell-cycle-independent processes such as DNA repair.
Collapse
Affiliation(s)
- Shu-ichiro Kashiwaba
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Toxicogenomics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Rika Kusumoto-Matsuo
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
72
|
Abstract
Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling.
Collapse
|
73
|
Kanemaru Y, Suzuki T, Niimi N, Grúz P, Matsumoto K, Adachi N, Honma M, Nohmi T. Catalytic and non-catalytic roles of DNA polymerase κ in the protection of human cells against genotoxic stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:650-62. [PMID: 26031400 DOI: 10.1002/em.21961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 05/07/2023]
Abstract
DNA polymerase κ (Pol κ) is a specialized DNA polymerase involved in translesion DNA synthesis. Although its bypass activities across lesions are well characterized in biochemistry, its cellular protective roles against genotoxic insults are still elusive. To better understand the in vivo protective roles, we have established a human cell line deficient in the expression of Pol κ (KO) and another expressing catalytically dead Pol κ (CD), to examine the cytotoxic sensitivity to 11 genotoxins including ultraviolet C light (UV). These cell lines were established in a genetic background of Nalm-6-MSH+, a human lymphoblastic cell line that has high efficiency for gene targeting, and functional p53 and mismatch repair activities. We classified the genotoxins into four groups. Group 1 includes benzo[a]pyrene diolepoxide, mitomycin C, and bleomycin, where the sensitivity was equally higher in KO and CD than in the cell line expressing wild-type Pol κ (WT). Group 2 includes hydrogen peroxide and menadione, where hypersensitivity was observed only in KO. Group 3 includes methyl methanesulfonate and ethyl methanesulfonate, where hypersensitivity was observed only in CD. Group 4 includes UV and three chemicals, where the chemicals exhibited similar cytotoxicity to all three cell lines. The results suggest that Pol κ not only protects cells from genotoxic DNA lesions via DNA polymerase activities, but also contributes to genome integrity by acting as a non-catalytic protein against oxidative damage caused by hydrogen peroxide and menadione. The non-catalytic roles of Pol κ in protection against oxidative damage by hydrogen peroxide are discussed.
Collapse
Affiliation(s)
- Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
- Division of Toxicology, Department of Pharmacology Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa-Ku, Tokyo, 142-0064, Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, Joso-Shi, Ibaraki, 303-0043, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| |
Collapse
|
74
|
Ding N, Bonham EM, Hannon BE, Amick TR, Baylin SB, O'Hagan HM. Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage. J Mol Cell Biol 2015; 8:244-54. [PMID: 26186941 DOI: 10.1093/jmcb/mjv050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022] Open
Abstract
At sites of chronic inflammation, epithelial cells are exposed to high levels of reactive oxygen species and undergo cancer-associated DNA methylation changes, suggesting that inflammation may initiate epigenetic alterations. Previously, we demonstrated that oxidative damage causes epigenetic silencing proteins to become part of a large complex that is localized to GC-rich regions of the genome, including promoter CpG islands that are epigenetically silenced in cancer. However, whether these proteins were recruited directly to damaged DNA or during the DNA repair process was unknown. Here we demonstrate that the mismatch repair protein heterodimer MSH2-MSH6 participates in the oxidative damage-induced recruitment of DNA methyltransferase 1 (DNMT1) to chromatin. Hydrogen peroxide treatment induces the interaction of MSH2-MSH6 with DNMT1, suggesting that the recruitment is through a protein-protein interaction. Importantly, the reduction in transcription for genes with CpG island-containing promoters caused by oxidative damage is abrogated by knockdown of MSH6 and/or DNMT1. Our findings provide evidence that the role of DNMT1 at sites of oxidative damage is to reduce transcription, potentially preventing transcription from interfering with the repair process. This study uniquely brings together several factors that are known to contribute to colon cancer, namely inflammation, mismatch repair proteins, and epigenetic changes.
Collapse
Affiliation(s)
- Ning Ding
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Emily M Bonham
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Brooke E Hannon
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Thomas R Amick
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Heather M O'Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
75
|
Grazielle-Silva V, Zeb TF, Bolderson J, Campos PC, Miranda JB, Alves CL, Machado CR, McCulloch R, Teixeira SMR. Distinct Phenotypes Caused by Mutation of MSH2 in Trypanosome Insect and Mammalian Life Cycle Forms Are Associated with Parasite Adaptation to Oxidative Stress. PLoS Negl Trop Dis 2015; 9:e0003870. [PMID: 26083967 PMCID: PMC4470938 DOI: 10.1371/journal.pntd.0003870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/02/2015] [Indexed: 11/19/2022] Open
Abstract
Background DNA repair mechanisms are crucial for maintenance of the genome in all organisms, including parasites where successful infection is dependent both on genomic stability and sequence variation. MSH2 is an early acting, central component of the Mismatch Repair (MMR) pathway, which is responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. In addition, recent evidence suggests that MSH2 might also play an important, but poorly understood, role in responding to oxidative damage in both African and American trypanosomes. Methodology/Principal Findings To investigate the involvement of MMR in the oxidative stress response, null mutants of MSH2 were generated in Trypanosoma brucei procyclic forms and in Trypanosoma cruzi epimastigote forms. Unexpectedly, the MSH2 null mutants showed increased resistance to H2O2 exposure when compared with wild type cells, a phenotype distinct from the previously observed increased sensitivity of T. brucei bloodstream forms MSH2 mutants. Complementation studies indicated that the increased oxidative resistance of procyclic T. brucei was due to adaptation to MSH2 loss. In both parasites, loss of MSH2 was shown to result in increased tolerance to alkylation by MNNG and increased accumulation of 8-oxo-guanine in the nuclear and mitochondrial genomes, indicating impaired MMR. In T. cruzi, loss of MSH2 also increases the parasite capacity to survive within host macrophages. Conclusions/Significance Taken together, these results indicate MSH2 displays conserved, dual roles in MMR and in the response to oxidative stress. Loss of the latter function results in life cycle dependent differences in phenotypic outcomes in T. brucei MSH2 mutants, most likely because of the greater burden of oxidative stress in the insect stage of the parasite. Trypanosoma brucei and Trypanosoma cruzi are protozoa parasites that cause sleeping sickness and Chagas disease, respectively, two neglected tropical diseases endemic in sub-Saharan Africa and Latin America. The high genetic diversity found in the T. cruzi population and the highly diverse repertoire of surface glycoprotein genes found in T. brucei are crucial factors that ensure a successful infection in their hosts. Besides responding to host immune responses, these parasites must deal with various sources of oxidative stress that can cause DNA damage. Thus, by determining the right balance between genomic stability and genetic variation, DNA repair pathways have a big impact in the ability of these parasites to maintain infection. This study is focused on the role of a DNA mismatch repair (MMR) protein named MSH2 in protecting these parasites’ DNA against oxidative assault. Using knock-out mutants, we showed that, besides acting in the MMR pathway as a key protein that recognizes and repairs base mismatches, insertions or deletions that can occur after DNA replication, MSH2 has an additional role in the oxidative stress response. Importantly, this extra role of MSH2 seems to be independent of other MMR components and dependent on the parasite developmental stage.
Collapse
Affiliation(s)
- Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Tehseen Fatima Zeb
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jason Bolderson
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Priscila C. Campos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julia B. Miranda
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ceres L. Alves
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos R. Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Richard McCulloch
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail: (RM); (SMRT)
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (RM); (SMRT)
| |
Collapse
|
76
|
USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene 2015; 35:965-76. [PMID: 25961918 DOI: 10.1038/onc.2015.149] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 01/08/2023]
Abstract
Rad18 functions at the cross-roads of three different DNA damage response (DDR) pathways involved in protecting stressed replication forks: homologous recombination repair, DNA inter-strand cross-link repair and DNA damage tolerance. Although Rad18 serves to facilitate replication of damaged genomes by promoting translesion synthesis (TLS), this comes at a cost of potentially error-prone lesion bypass. In contrast, loss of Rad18-dependent TLS potentiates the collapse of stalled forks and leads to incomplete genome replication. Given the pivotal nature with which Rad18 governs the fine balance between replication fidelity and genome stability, Rad18 levels and activity have a major impact on genomic integrity. Here, we identify the de-ubiquitylating enzyme USP7 as a critical regulator of Rad18 protein levels. Loss of USP7 destabilizes Rad18 and compromises UV-induced PCNA mono-ubiquitylation and Pol η recruitment to stalled replication forks. USP7-depleted cells also fail to elongate nascent daughter strand DNA following UV irradiation and show reduced DNA damage tolerance. We demonstrate that USP7 associates with Rad18 directly via a consensus USP7-binding motif and can disassemble Rad18-dependent poly-ubiquitin chains both in vitro and in vivo. Taken together, these observations identify USP7 as a novel component of the cellular DDR involved in preserving the genome stability.
Collapse
|
77
|
Tsaalbi-Shtylik A, Ferrás C, Pauw B, Hendriks G, Temviriyanukul P, Carlée L, Calléja F, van Hees S, Akagi JI, Iwai S, Hanaoka F, Jansen JG, de Wind N. Excision of translesion synthesis errors orchestrates responses to helix-distorting DNA lesions. J Cell Biol 2015; 209:33-46. [PMID: 25869665 PMCID: PMC4395481 DOI: 10.1083/jcb.201408017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/13/2015] [Indexed: 01/13/2023] Open
Abstract
In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa-Atr-Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects.
Collapse
Affiliation(s)
| | - Cristina Ferrás
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Bea Pauw
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Giel Hendriks
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Piya Temviriyanukul
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Leone Carlée
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Fabienne Calléja
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Sandrine van Hees
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Jun-Ichi Akagi
- Faculty of Science, Gakushuin University, Tokyo 171-0031, Japan
| | - Shigenori Iwai
- School of Engineering Science, Osaka University, Osaka 565-0871, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Tokyo 171-0031, Japan
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| |
Collapse
|
78
|
Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 2015; 50:142-67. [PMID: 25608779 DOI: 10.3109/10409238.2014.999192] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.
Collapse
Affiliation(s)
- Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, NIH , Bethesda, MD , USA
| | | | | |
Collapse
|
79
|
Wit N, Buoninfante OA, van den Berk PCM, Jansen JG, Hogenbirk MA, de Wind N, Jacobs H. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage. Nucleic Acids Res 2014; 43:282-94. [PMID: 25505145 PMCID: PMC4288191 DOI: 10.1093/nar/gku1301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Collapse
Affiliation(s)
- Niek Wit
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Paul C M van den Berk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc A Hogenbirk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Jacobs
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
80
|
Tomi NS, Davari K, Grotzky D, Loos F, Böttcher K, Frankenberger S, Jungnickel B. Analysis of SHPRH functions in DNA repair and immunoglobulin diversification. DNA Repair (Amst) 2014; 24:63-72. [PMID: 25311267 DOI: 10.1016/j.dnarep.2014.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 12/18/2022]
Abstract
During replication, bypass of DNA lesions is orchestrated by the Rad6 pathway. Monoubiquitination of proliferating cell nuclear antigen (PCNA) by Rad6/Rad18 leads to recruitment of translesion polymerases for direct and potentially mutagenic damage bypass. An error-free bypass pathway may be initiated via K63-linked PCNA polyubiquitination by Ubc13/Mms2 and the E3 ligase Rad5 in yeast, or HLTF/SHPRH in vertebrates. For the latter two enzymes, redundancy with a third E3 ligase and alternative functions have been reported. We have previously shown that the Rad6 pathway is involved in somatic hypermutation of immunoglobulin genes in B lymphocytes. Here, we have used knockout strategies targeting expression of the entire SHPRH protein or functionally significant domains in chicken DT40 cells that do not harbor a HLTF ortholog. We show that SHPRH is apparently redundant with another E3 ligase during DNA damage-induced PCNA modification. SHPRH plays no substantial role in cellular resistance to drugs initiating excision repair and the Rad6 pathway, but is important in survival of topoisomerase II inhibitor treatment. Removal of only the C-terminal RING domain does not interfere with this SHPRH function. SHPRH inactivation does not substantially impact on the overall efficacy of Ig diversification. Redundancy of E3 ligases in the Rad6 pathway may be linked to its different functions in genome maintenance and genetic plasticity.
Collapse
Affiliation(s)
- Nils-Sebastian Tomi
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Kathrin Davari
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - David Grotzky
- Institute of Clinical and Molecular Biology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Friedemann Loos
- Institute of Clinical and Molecular Biology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Katrin Böttcher
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745 Jena, Germany
| | - Samantha Frankenberger
- Institute of Clinical and Molecular Biology, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
81
|
Chaib-Mezrag H, Lemaçon D, Fontaine H, Bellon M, Bai XT, Drac M, Coquelle A, Nicot C. Tax impairs DNA replication forks and increases DNA breaks in specific oncogenic genome regions. Mol Cancer 2014; 13:205. [PMID: 25185513 PMCID: PMC4168069 DOI: 10.1186/1476-4598-13-205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/26/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-I) is a human retrovirus associated with adult T-cell leukemia (ATL), an aggressive CD4 T-cell proliferative disease with dismal prognosis. The long latency preceding the development of the disease and the low incidence suggests that the virus itself is not sufficient for transformation and that genetic defects are required to create a permissive environment for leukemia. In fact, ATL cells are characterized by profound genetic modifications including structural and numerical chromosome alterations. RESULTS In this study we used molecular combing techniques to study the effect of the oncoprotein Tax on DNA replication. We found that replication forks have difficulties replicating complex DNA, fork progression is slower, and they pause or stall more frequently in the presence of Tax expression. Our results also show that Tax-associated replication defects are partially compensated by an increase in the firing of back-up origins. Consistent with these effects of Tax on DNA replication, an increase in double strand DNA breaks (DDSB) was seen in Tax expressing cells. Tax-mediated increases in DDSBs were associated with the ability of Tax to activate NF-kB and to stimulate intracellular nitric oxide production. We also demonstrated a reduced expression of human translesion synthesis (TLS) DNA polymerases Pol-H and Pol-K in HTLV-I-transformed T cells and ATL cells. This was associated with an increase in DNA breaks induced by Tax at specific genome regions, such as the c-Myc and the Bcl-2 major breakpoints. Consistent with the notion that the non-homologous end joining (NHEJ) pathway is hyperactive in HTLV-I-transformed cells, we found that inhibition of the NHEJ pathway induces significant killing of HTLV-I transformed cells and patient-derived leukemic ATL cells. CONCLUSION Our results suggest that, replication problems increase genetic instability in HTLV-I-transformed cells. As a result, abuse of NHEJ and a defective homologous repair (HR) DNA repair pathway can be targeted as a new therapeutic approach for the treatment of adult T-cell leukemia.
Collapse
Affiliation(s)
- Hassiba Chaib-Mezrag
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| | - Delphine Lemaçon
- />IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298 France
- />INSERM, U896, Montpellier, F-34298 France
- />Université Montpellier 1, Montpellier, F-34298 France
- />Institut régional du Cancer Montpellier, Montpellier, F-34298 France
| | - Hélène Fontaine
- />IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298 France
- />INSERM, U896, Montpellier, F-34298 France
- />Université Montpellier 1, Montpellier, F-34298 France
- />Institut régional du Cancer Montpellier, Montpellier, F-34298 France
| | - Marcia Bellon
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| | - Xue Tao Bai
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| | - Marjorie Drac
- />DNA Combing Facility, Institut de Génétique Moléculaire, CNRS UMR5535 & BioCampus Montpellier (UMS3426), 1919 route de Mende, Montpellier cedex 5, 34293 France
| | - Arnaud Coquelle
- />IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298 France
- />INSERM, U896, Montpellier, F-34298 France
- />Université Montpellier 1, Montpellier, F-34298 France
- />Institut régional du Cancer Montpellier, Montpellier, F-34298 France
| | - Christophe Nicot
- />Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 USA
| |
Collapse
|
82
|
Bak ST, Sakellariou D, Pena-Diaz J. The dual nature of mismatch repair as antimutator and mutator: for better or for worse. Front Genet 2014; 5:287. [PMID: 25191341 PMCID: PMC4139959 DOI: 10.3389/fgene.2014.00287] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023] Open
Abstract
DNA is constantly under attack by a number of both exogenous and endogenous agents that challenge its integrity. Among the mechanisms that have evolved to counteract this deleterious action, mismatch repair (MMR) has specialized in removing DNA biosynthetic errors that occur when replicating the genome. Malfunction or inactivation of this system results in an increase in spontaneous mutability and a strong predisposition to tumor development. Besides this key corrective role, MMR proteins are involved in other pathways of DNA metabolism such as mitotic and meiotic recombination and processing of oxidative damage. Surprisingly, MMR is also required for certain mutagenic processes. The mutagenic MMR has beneficial consequences contributing to the generation of a vast repertoire of antibodies through class switch recombination and somatic hypermutation processes. However, this non-canonical mutagenic MMR also has detrimental effects; it promotes repeat expansions associated with neuromuscular and neurodegenerative diseases and may contribute to cancer/disease-related aberrant mutations and translocations. The reaction responsible for replication error correction has been the most thoroughly studied and it is the subject to numerous reviews. This review describes briefly the biochemistry of MMR and focuses primarily on the non-canonical MMR activities described in mammals as well as emerging research implicating interplay of MMR and chromatin.
Collapse
Affiliation(s)
- Sara Thornby Bak
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| | - Despoina Sakellariou
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| | - Javier Pena-Diaz
- Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
83
|
Rotte A, Li G, Bhandaru M. Tumor suppressor Ing1b facilitates DNA repair and prevents oxidative stress induced cell death. Apoptosis 2014; 19:518-26. [PMID: 24242916 DOI: 10.1007/s10495-013-0940-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inhibitor of growth (ING) family of proteins are known to coordinate with histone acetyltransferases and regulate the key events of cell cycle and DNA repair. Previous work from our lab showed that Ing1b regulated the nucleotide excision repair by facilitating histone acetylation and subsequent chromatin relaxation. Further, it was also shown that Ing1b protected the cells from genomic instability induced cell death by promoting ubiquitination of proliferating cell nuclear antigen (PCNA). In the present study we explored the role of Ing1b in the repair of oxidized DNA and prevention of oxidative stress induced genotoxic cell death. Using HCT116 cells we show that Ing1b protein expression is induced by treatment with H2O2. Ing1b lacking cells showed decreased ability to repair the oxidized DNA. PCNA monoubiquitination, a critical event of DNA repair was blunted in Ing1b knock down cells and augmented in Ing1b over expressing cells. Moreover, oxidative stress induced cell death was higher in cells lacking Ing1b whereas it was lower in Ing1b over expressing cells. Finally we show that inhibition of histone deacetylases, rescued the Ing1b knock down cells from cytotoxic effects of H2O2 treatment.
Collapse
Affiliation(s)
- Anand Rotte
- Department of Dermatology and Skin Science, University of British Columbia, Research Pavilion, 828 West, 10th Avenue, Vancouver, BC, V5Z 1L8, Canada,
| | | | | |
Collapse
|
84
|
Bridge G, Rashid S, Martin SA. DNA mismatch repair and oxidative DNA damage: implications for cancer biology and treatment. Cancers (Basel) 2014; 6:1597-614. [PMID: 25099886 PMCID: PMC4190558 DOI: 10.3390/cancers6031597] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/02/2014] [Accepted: 07/18/2014] [Indexed: 11/26/2022] Open
Abstract
Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.
Collapse
Affiliation(s)
- Gemma Bridge
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Sukaina Rashid
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Sarah A Martin
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
85
|
Base excision repair AP endonucleases and mismatch repair act together to induce checkpoint-mediated autophagy. Nat Commun 2014; 4:2674. [PMID: 24154628 PMCID: PMC3826653 DOI: 10.1038/ncomms3674] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/26/2013] [Indexed: 12/18/2022] Open
Abstract
Cellular responses to DNA damage involve distinct DNA repair pathways, such as mismatch repair (MMR) and base excision repair (BER). Using Caenorhabditis elegans as a model system, we present genetic and molecular evidence of a mechanistic link between processing of DNA damage and activation of autophagy. Here we show that the BER AP endonucleases APN-1 and EXO-3 function in the same pathway as MMR, to elicit DNA-directed toxicity in response to 5-fluorouracil, a mainstay of systemic adjuvant treatment of solid cancers. Immunohistochemical analyses suggest that EXO-3 generates the DNA nicks required for MMR activation. Processing of DNA damage via this pathway, in which both BER and MMR enzymes are required, leads to induction of autophagy in C. elegans and human cells. Hence, our data show that MMR- and AP endonuclease-dependent processing of 5-fluorouracil-induced DNA damage leads to checkpoint activation and induction of autophagy, whose hyperactivation contributes to cell death.
Collapse
|
86
|
Talhaoui I, Couve S, Gros L, Ishchenko AA, Matkarimov B, Saparbaev MK. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands. Nucleic Acids Res 2014; 42:6300-13. [PMID: 24692658 PMCID: PMC4041421 DOI: 10.1093/nar/gku246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/09/2014] [Accepted: 03/13/2014] [Indexed: 12/13/2022] Open
Abstract
The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duplex. TDG targets the non-damaged DNA strand and efficiently excises T opposite of hypoxanthine (Hx), 1,N(6)-ethenoadenine, 7,8-dihydro-8-oxoadenine and abasic site in TpG/CpX context, where X is a modified residue. In vitro reconstitution of BER with duplex DNA containing Hx•T pair and TDG results in incorporation of cytosine across Hx. Furthermore, analysis of the mutation spectra inferred from single nucleotide polymorphisms in human population revealed a highly biased mutation pattern within CpG islands (CGIs), with enhanced mutation rate at CpA and TpG sites. These findings demonstrate that under experimental conditions used TDG catalyzes sequence context-dependent aberrant removal of thymine, which results in TpG, CpA→CpG mutations, thus providing a plausible mechanism for the putative evolutionary origin of the CGIs in mammalian genomes.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Sophie Couve
- Laboratoire de Génétique Oncologique EPHE, INSERM U753, Gustave Roussy, F-94805 Villejuif, France
| | - Laurent Gros
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
- AB Science SA, 75008 Paris, France
| | - Alexander A. Ishchenko
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Bakhyt Matkarimov
- Nazarbayev University Research and Innovation System, Astana 010000, Kazakhstan
| | - Murat K. Saparbaev
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
| |
Collapse
|
87
|
Yang Q, Ou C, Liu M, Xiao W, Wen C, Sun F. NRAGE promotes cell proliferation by stabilizing PCNA in a ubiquitin-proteasome pathway in esophageal carcinomas. Carcinogenesis 2014; 35:1643-51. [PMID: 24710624 DOI: 10.1093/carcin/bgu084] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurotrophin receptor-interacting melanoma antigen-encoding gene homolog (NRAGE) is generally recognized as a tumor suppressor as it induces cell apoptosis and suppresses cell metastasis. However, it has recently been reported that NRAGE is overexpressed in lung cancer, melanoma and colon cancer, implicating a complicated role of NRAGE as we have expected. In the study, we aim to elucidate the functional roles and molecular mechanisms of NRAGE in esophageal carcinoma. We found that both NRAGE mRNA and protein were significantly overexpressed in esophageal tumor tissues. Consistently, both in vivo and in vitro analyses demonstrated that knockdown of NRAGE apparently inhibited cell growth, and cell cycle analysis further demonstrated that NRAGE knockdown cells were mainly arrested in G2M cell phase, accompanied with an apparent reduction of S phase. In the process of exploring molecular mechanisms, we found that either knockdown in vitro or knockout in vivo of NRAGE reduced proliferating cell nuclear antigen (PCNA) protein, expression of which could completely rescue the inhibited proliferation in NRAGE defective cells. Furthermore, NRAGE physically interacted with PCNA in esophageal cancer cells through DNA polymerase III subunit, and knockdown of NRAGE facilitated PCNA K48-linked polyubiquitination, leading PCNA to the proteasome-dependent degradation and a ubiquitin-specific protease USP10 was identified to be a key regulator in the process of K48 polyubiquitination in NRAGE-deleted cells. In conclusion, our study highlights a unique role of NRAGE and implies that NRAGE is likely to be an attractive oncotarget in developing novel genetic anticancer therapeutic strategies for esophageal squamous cell carcinomas.
Collapse
Affiliation(s)
- Qingyuan Yang
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai 200072, China, Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing 210023, China and The Central Laboratory, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Chao Ou
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing 210023, China and
| | - Weifan Xiao
- The Central Laboratory, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Chuanjun Wen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing 210023, China and
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Tenth People's Hospital of Tongji University, Shanghai 200072, China, Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing 210023, China and The Central Laboratory, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| |
Collapse
|
88
|
The Rad6/18 ubiquitin complex interacts with the Epstein-Barr virus deubiquitinating enzyme, BPLF1, and contributes to virus infectivity. J Virol 2014; 88:6411-22. [PMID: 24672041 DOI: 10.1128/jvi.00536-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) encodes BPLF1, a lytic cycle protein with deubiquitinating activity that is contained in its N-terminal domain and conserved across the Herpesviridae. EBV replication is associated with cellular DNA replication and repair factors, and initiation of EBV lytic replication induces a DNA damage response, which can be regulated at least in part by BPLF1. The cellular DNA repair pathway, translesion synthesis (TLS), is disrupted by BPLF1, which deubiquitinates the DNA processivity factor, PCNA, and inhibits the recruitment of the TLS polymerase, polymerase eta (Pol eta), after damage to DNA by UV irradiation. Here we showed that the E3 ubiquitin ligase, which activates TLS repair by monoubiquitination of PCNA, is also affected by BPLF1 deubiquitinating activity. First, BPLF1 interacts directly with Rad18, and overexpression of BPLF1 results in increased levels of the Rad18 protein, suggesting that it stabilizes Rad18. Next, expression of functionally active BPLF1 caused relocalization of Rad18 into nuclear foci, which is consistent with sites of cellular DNA replication that occur during S phase. Also, levels of Rad18 remain constant during lytic reactivation of wild-type virus, but reactivation of BPLF1 knockout virus resulted in decreased levels of Rad18. Finally, the contribution of Rad18 levels to infectious virus production was examined with small interfering RNA (siRNA) targeting Rad18. Results demonstrated that reducing levels of Rad18 decreased production of infectious virus, and infectious titers of BPLF1 knockout virus were partially restored by overexpression of Rad18. Thus, BPLF1 interacts with and maintains Rad18 at high levels during lytic replication, which assists in production of infectious virus. IMPORTANCE Characterization of EBV BPLF1's deubiquitinating activity and identification of its targets and subsequent functional effects remain little studied. All members of the Herpesviridae contain BPLF1 homologs with conserved enzymatic activity, and findings discovered with EBV BPLF1 are likely applicable to other members of the family. Discovery of new targets of BPLF1 will point to cellular pathways and viral processes regulated by the enzymatic activity of the EBV-encoded deubiquitinating enzyme. Here we determined the importance of the cellular ubiquitin ligase Rad18 in these processes and how it is affected by BPLF1. Our findings demonstrate that EBV can co-opt Rad18 as a novel accessory factor in the production of infectious virus.
Collapse
|
89
|
Tsanov N, Kermi C, Coulombe P, Van der Laan S, Hodroj D, Maiorano D. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage. Nucleic Acids Res 2014; 42:3692-706. [PMID: 24423875 PMCID: PMC3973308 DOI: 10.1093/nar/gkt1400] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence that CRL4Cdt2-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4Cdt2 as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4Cdt2 pathway in the switch of PCNA partners on DNA damage.
Collapse
Affiliation(s)
- Nikolay Tsanov
- Genome Surveillance and Stability Laboratory, Department of Molecular Bases of Human Diseases, CNRS-UPR1142, Institute of Human Genetics, 141, rue de la cardonille, 34396 Cedex 5, Montpellier, France and Replication and Genome Dynamics Laboratory, Department of Genome Dynamics, CNRS-UPR1142, Institute of Human Genetics, 141, rue de la cardonille, 34396 Cedex 5, Montpellier, France
| | | | | | | | | | | |
Collapse
|
90
|
Huang OW, Cochran AG. Regulation of deubiquitinase proteolytic activity. Curr Opin Struct Biol 2013; 23:806-11. [DOI: 10.1016/j.sbi.2013.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/29/2013] [Accepted: 07/19/2013] [Indexed: 11/29/2022]
|
91
|
Lv L, Wang F, Ma X, Yang Y, Wang Z, Liu H, Li X, Liu Z, Zhang T, Huang M, Friedberg EC, Tang TS, Guo C. Mismatch repair protein MSH2 regulates translesion DNA synthesis following exposure of cells to UV radiation. Nucleic Acids Res 2013; 41:10312-22. [PMID: 24038355 PMCID: PMC3905884 DOI: 10.1093/nar/gkt793] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Translesion DNA synthesis (TLS) can use specialized DNA polymerases to insert and/or extend nucleotides across lesions, thereby limiting stalled replication fork collapse and the potential for cell death. Recent studies have shown that monoubiquitinated proliferating cell nuclear antigen (PCNA) plays an important role in recruitment of Y-family TLS polymerases to stalled replication forks after DNA damage treatment. To explore the possible roles of other factors that regulate the ultraviolet (UV)-induced assembly of specialized DNA polymerases at arrested replication forks, we performed immunoprecipitation experiments combined with mass spectrometry and established that DNA polymerase kappa (Polκ) can partner with MSH2, an important mismatch repair protein associated with hereditary non-polyposis colorectal cancer. We found that depletion of MSH2 impairs PCNA monoubiquitination and the formation of foci containing Polκ and other TLS polymerases after UV irradiation of cells. Interestingly, expression of MSH2 in Rad18-deficient cells increased UV-induced Polκ and REV1 focus formation without detectable changes in PCNA monoubiquitination, indicating that MSH2 can regulate post-UV focus formation by specialized DNA polymerases in both PCNA monoubiquitination-dependent and -independent fashions. Moreover, we observed that MSH2 can facilitate TLS across cyclobutane pyrimidine dimers photoproducts in living cells, presenting a novel role of MSH2 in post-UV cellular responses.
Collapse
Affiliation(s)
- Lingna Lv
- Laboratory of Cancer Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Sedletska Y, Radicella JP, Sage E. Replication fork collapse is a major cause of the high mutation frequency at three-base lesion clusters. Nucleic Acids Res 2013; 41:9339-48. [PMID: 23945941 PMCID: PMC3814351 DOI: 10.1093/nar/gkt731] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Unresolved repair of clustered DNA lesions can lead to the formation of deleterious double strand breaks (DSB) or to mutation induction. Here, we investigated the outcome of clusters composed of base lesions for which base excision repair enzymes have different kinetics of excision/incision. We designed multiply damaged sites (MDS) composed of a rapidly excised uracil (U) and two oxidized bases, 5-hydroxyuracil (hU) and 8-oxoguanine (oG), excised more slowly. Plasmids harboring these U-oG/hU MDS-carrying duplexes were introduced into Escherichia coli cells either wild type or deficient for DNA n-glycosylases. Induction of DSB was estimated from plasmid survival and mutagenesis determined by sequencing of surviving clones. We show that a large majority of MDS is converted to DSB, whereas almost all surviving clones are mutated at hU. We demonstrate that mutagenesis at hU is correlated with excision of the U placed on the opposite strand. We propose that excision of U by Ung initiates the loss of U-oG-carrying strand, resulting in enhanced mutagenesis at the lesion present on the opposite strand. Our results highlight the importance of the kinetics of excision by base excision repair DNA n-glycosylases in the processing and fate of MDS and provide evidence for the role of strand loss/replication fork collapse during the processing of MDS on their mutational consequences.
Collapse
Affiliation(s)
- Yuliya Sedletska
- Institut Curie, Centre de Recherche, F-91405 Orsay, France; CNRS UMR3348, F-91405 Orsay, France and CEA, Institut de Radiobiologie Cellulaire et Moléculaire, 18 route du Panorama, F-92265 Fontenay aux Roses, France
| | | | | |
Collapse
|
93
|
Oxidative damage and mutagenesis in Saccharomyces cerevisiae: genetic studies of pathways affecting replication fidelity of 8-oxoguanine. Genetics 2013; 195:359-67. [PMID: 23893481 PMCID: PMC3781965 DOI: 10.1534/genetics.113.153874] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oxidative damage to DNA constitutes a major threat to the faithful replication of DNA in all organisms and it is therefore important to understand the various mechanisms that are responsible for repair of such damage and the consequences of unrepaired damage. In these experiments, we make use of a reporter system in Saccharomyces cerevisiae that can measure the specific increase of each type of base pair mutation by measuring reversion to a Trp+ phenotype. We demonstrate that increased oxidative damage due to the absence of the superoxide dismutase gene, SOD1, increases all types of base pair mutations and that mismatch repair (MMR) reduces some, but not all, types of mutations. By analyzing various strains that can revert only via a specific CG → AT transversion in backgrounds deficient in Ogg1 (encoding an 8-oxoG glycosylase), we can study mutagenesis due to a known 8-oxoG base. We show as expected that MMR helps prevent mutagenesis due to this damaged base and that Pol η is important for its accurate replication. In addition we find that its accurate replication is facilitated by template switching, as loss of either RAD5 or MMS2 leads to a significant decrease in accurate replication. We observe that these ogg1 strains accumulate revertants during prolonged incubation on plates, in a process most likely due to retromutagenesis.
Collapse
|
94
|
Georgakilas AG, O'Neill P, Stewart RD. Induction and Repair of Clustered DNA Lesions: What Do We Know So Far? Radiat Res 2013; 180:100-109. [DOI: 10.1667/rr3041.1] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
95
|
Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 2013; 4:1568. [PMID: 23463011 PMCID: PMC3615374 DOI: 10.1038/ncomms2532] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/21/2013] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, deubiquitinases (DUBs) remove ubiquitin conjugates from diverse substrates, altering their stabilities, localizations or activities. Here we show that many DUBs of the USP and UCH subfamilies can be reversibly inactivated upon oxidation by reactive oxygen species in vitro and in cells. Oxidation occurs preferentially on the catalytic cysteine, abrogating the isopeptide-cleaving activity without affecting these enzymes’ affinity to ubiquitin. Sensitivity to oxidative inhibition is associated with DUB activation wherein the active site cysteine is converted to a deprotonated state prone to oxidation. We demonstrate that this redox regulation is essential for mono-ubiquitination of proliferating-cell nuclear antigen in response to oxidative DNA damage, which initiates a DNA damage-tolerance programme. These findings establish a novel mechanism of DUB regulation that may be integrated with other redox-dependent signalling circuits to govern cellular adaptation to oxidative stress, a process intimately linked to aging and cancer. Deubiquitinases regulate protein stability, localization and activity, and yet the mechanisms controlling their activity remain poorly understood. Lee et al. show that these enzymes are reversibly inhibited by reactive oxygen species through oxidation of catalytic cysteine residues.
Collapse
|
96
|
Bacquin A, Pouvelle C, Siaud N, Perderiset M, Salomé-Desnoulez S, Tellier-Lebegue C, Lopez B, Charbonnier JB, Kannouche PL. The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells. Nucleic Acids Res 2013; 41:6501-13. [PMID: 23677613 PMCID: PMC3711418 DOI: 10.1093/nar/gkt397] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During replication, DNA damage can challenge replication fork progression and cell viability. Homologous Recombination (HR) and Translesion Synthesis (TLS) pathways appear as major players involved in the resumption and completion of DNA replication. How both pathways are coordinated in human cells to maintain genome stability is unclear. Numerous helicases are involved in HR regulation. Among them, the helicase FBH1 accumulates at sites of DNA damage and potentially constrains HR via its anti-recombinase activity. However, little is known about its regulation in vivo. Here, we report a mechanism that controls the degradation of FBH1 after DNA damage. Firstly, we found that the sliding clamp Proliferating Cell Nuclear Antigen (PCNA) is critical for FBH1 recruitment to replication factories or DNA damage sites. We then showed the anti-recombinase activity of FBH1 is partially dependent on its interaction with PCNA. Intriguingly, after its re-localization, FBH1 is targeted for degradation by the Cullin-ring ligase 4-Cdt2 (CRL4Cdt2)–PCNA pathway via a PCNA-interacting peptide (PIP) degron. Importantly, expression of non-degradable FBH1 mutant impairs the recruitment of the TLS polymerase eta to chromatin in UV-irradiated cells. Thus, we propose that after DNA damage, FBH1 might be required to restrict HR and then degraded by the Cdt2–proteasome pathway to facilitate TLS pathway.
Collapse
Affiliation(s)
- Agathe Bacquin
- Université Paris-Sud, CNRS-UMR8200 Unit of Genetic Stability and Oncogenesis, Institut de cancérologie Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
The mismatch repair (MMR) system detects non-Watson-Crick base pairs and strand misalignments arising during DNA replication and mediates their removal by catalyzing excision of the mispair-containing tract of nascent DNA and its error-free resynthesis. In this way, MMR improves the fidelity of replication by several orders of magnitude. It also addresses mispairs and strand misalignments arising during recombination and prevents synapses between nonidentical DNA sequences. Unsurprisingly, MMR malfunction brings about genomic instability that leads to cancer in mammals. But MMR proteins have recently been implicated also in other processes of DNA metabolism, such as DNA damage signaling, antibody diversification, and repair of interstrand cross-links and oxidative DNA damage, in which their functions remain to be elucidated. This article reviews the progress in our understanding of the mechanism of replication error repair made during the past decade.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
98
|
Mouse DNA polymerase kappa has a functional role in the repair of DNA strand breaks. DNA Repair (Amst) 2013; 12:377-88. [PMID: 23522793 DOI: 10.1016/j.dnarep.2013.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/20/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
Abstract
The Y-family of DNA polymerases support of translesion DNA synthesis (TLS) associated with stalled DNA replication by DNA damage. Recently, a number of studies suggest that some specialized TLS polymerases also support other aspects of DNA metabolism beyond TLS in vivo. Here we show that mouse polymerase kappa (Polκ) could accumulate at laser-induced sites of damage in vivo resembling polymerases eta and iota. The recruitment was mediated through Polκ C-terminus which contains the PCNA-interacting peptide, ubiquitin zinc finger motif 2 and nuclear localization signal. Interestingly, this recruitment was significantly reduced in MSH2-deficient LoVo cells and Rad18-depleted cells. We further observed that Polκ-deficient mouse embryo fibroblasts were abnormally sensitive to H2O2 treatment and displayed defects in both single-strand break repair and double-strand break repair. We speculate that Polκ may have an important role in strand break repair following oxidative stress in vivo.
Collapse
|
99
|
Yang Y, Durando M, Smith-Roe SL, Sproul C, Greenwalt AM, Kaufmann W, Oh S, Hendrickson EA, Vaziri C. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage. Nucleic Acids Res 2013; 41:2296-312. [PMID: 23295675 PMCID: PMC3575850 DOI: 10.1093/nar/gks1325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H(2)O(2)-induced DNA damage. UVC and H(2)O(2) treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G(0), G(1) and S-phase. Rad18 was important for repressing H(2)O(2)-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G(1), indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H(2)O(2)-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H(2)O(2)-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G(1). In contrast with G(1)-synchronized cultures, S-phase cells were H(2)O(2)-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G(1) (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Fang Y, Wang X, Michaelis EK, Fang J. Classifying Aging Genes into DNA Repair or Non-DNA Repair-Related Categories. LECTURE NOTES IN COMPUTER SCIENCE 2013:20-29. [DOI: 10.1007/978-3-642-39482-9_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|