51
|
Saldi T, Cortazar MA, Sheridan RM, Bentley DL. Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing. J Mol Biol 2016; 428:2623-2635. [PMID: 27107644 DOI: 10.1016/j.jmb.2016.04.017] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 01/07/2023]
Abstract
Pre-mRNA maturation frequently occurs at the same time and place as transcription by RNA polymerase II. The co-transcriptionality of mRNA processing has permitted the evolution of mechanisms that functionally couple transcription elongation with diverse events that occur on the nascent RNA. This review summarizes the current understanding of the relationship between transcriptional elongation through a chromatin template and co-transcriptional splicing including alternative splicing decisions that affect the expression of most human genes.
Collapse
Affiliation(s)
- Tassa Saldi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Michael A Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
52
|
Pance A. Oct-1, to go or not to go? That is the PolII question. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:820-4. [PMID: 27063953 DOI: 10.1016/j.bbagrm.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
The Oct transcription factors recognise an octamer DNA element from which they regulate transcription of specific target genes. Oct-1 is the only member of the subfamily that is ubiquitously expressed and has a wide role in transcriptional control. Through interaction with various partner proteins, Oct-1 can modulate accessibility to the chromatin to recruit the transcription machinery and form the pre-initiation complex. The recruited PolII is induced to initiate transcription and stalled until elongation is triggered on interaction with signalling transcription factors. In this way, Oct-1 can fulfil general roles in transcription by opening the chromatin as well as transduce extracellular signals by relaying activation through various interacting partners. The emerging picture of Oct-1 is that of a complex and versatile transcription factor with fundamental functions in cell homeostasis and signal response in general as well as cell specific contexts. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Alena Pance
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK.
| |
Collapse
|
53
|
Poss ZC, Ebmeier CC, Odell AT, Tangpeerachaikul A, Lee T, Pelish HE, Shair MD, Dowell RD, Old WM, Taatjes DJ. Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics. Cell Rep 2016; 15:436-50. [PMID: 27050516 DOI: 10.1016/j.celrep.2016.03.030] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/08/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
Cortistatin A (CA) is a highly selective inhibitor of the Mediator kinases CDK8 and CDK19. Using CA, we now report a large-scale identification of Mediator kinase substrates in human cells (HCT116). We identified over 16,000 quantified phosphosites including 78 high-confidence Mediator kinase targets within 64 proteins, including DNA-binding transcription factors and proteins associated with chromatin, DNA repair, and RNA polymerase II. Although RNA-seq data correlated with Mediator kinase targets, the effects of CA on gene expression were limited and distinct from CDK8 or CDK19 knockdown. Quantitative proteome analyses, tracking around 7,000 proteins across six time points (0-24 hr), revealed that CA selectively affected pathways implicated in inflammation, growth, and metabolic regulation. Contrary to expectations, increased turnover of Mediator kinase targets was not generally observed. Collectively, these data support Mediator kinases as regulators of chromatin and RNA polymerase II activity and suggest their roles extend beyond transcription to metabolism and DNA repair.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cell, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Aaron T Odell
- Department of Molecular, Cell, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | | | - Thomas Lee
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Henry E Pelish
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew D Shair
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robin D Dowell
- Department of Molecular, Cell, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - William M Old
- Department of Molecular, Cell, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
54
|
Malik N, Dwivedi N, Singh AK, Parida SK, Agarwal P, Thakur JK, Tyagi AK. An Integrated Genomic Strategy Delineates Candidate Mediator Genes Regulating Grain Size and Weight in Rice. Sci Rep 2016; 6:23253. [PMID: 27000976 PMCID: PMC4802383 DOI: 10.1038/srep23253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/02/2016] [Indexed: 12/31/2022] Open
Abstract
The present study deployed a Mediator (MED) genes-mediated integrated genomic strategy for understanding the complex genetic architecture of grain size/weight quantitative trait in rice. The targeted multiplex amplicon resequencing of 55 MED genes annotated from whole rice genome in 384 accessions discovered 3971 SNPs, which were structurally and functionally annotated in diverse coding and non-coding sequence-components of genes. Association analysis, using the genotyping information of 3971 SNPs in a structured population of 384 accessions (with 50–100 kb linkage disequilibrium decay), detected 10 MED gene-derived SNPs significantly associated (46% combined phenotypic variation explained) with grain length, width and weight in rice. Of these, one strong grain weight-associated non-synonymous SNP (G/A)-carrying OsMED4_2 gene was validated successfully in low- and high-grain weight parental accessions and homozygous individuals of a rice mapping population. The seed-specific expression, including differential up/down-regulation of three grain size/weight-associated MED genes (including OsMED4_2) in six low and high-grain weight rice accessions was evident. Altogether, combinatorial genomic approach involving haplotype-based association analysis delineated diverse functionally relevant natural SNP-allelic variants in 10 MED genes, including three potential novel SNP haplotypes in an OsMED4_2 gene governing grain size/weight differentiation in rice. These molecular tags have potential to accelerate genomics-assisted crop improvement in rice.
Collapse
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Dwivedi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashok K Singh
- Division of Genetics, Rice Section, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
55
|
Liang K, Woodfin AR, Slaughter BD, Unruh JR, Box AC, Rickels RA, Gao X, Haug JS, Jaspersen SL, Shilatifard A. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis. Mol Cell 2016; 60:435-45. [PMID: 26527278 DOI: 10.1016/j.molcel.2015.09.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.
Collapse
Affiliation(s)
- Kaiwei Liang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Andrew C Box
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Xin Gao
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
56
|
Vad-Nielsen J, Jakobsen KR, Daugaard TF, Thomsen R, Brügmann A, Sørensen BS, Nielsen AL. Regulatory dissection of the CBX5 and hnRNPA1 bi-directional promoter in human breast cancer cells reveals novel transcript variants differentially associated with HP1α down-regulation in metastatic cells. BMC Cancer 2016; 16:32. [PMID: 26791953 PMCID: PMC4721113 DOI: 10.1186/s12885-016-2059-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 01/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The three members of the human heterochromatin protein 1 (HP1) family of proteins, HP1α, HP1β, and HPγ, are involved in chromatin packing and epigenetic gene regulation. HP1α is encoded from the CBX5 gene and is a suppressor of metastasis. CBX5 is down-regulated at the transcriptional and protein level in metastatic compared to non-metastatic breast cancer. CBX5 shares a bi-directional promoter structure with the hnRNPA1 gene. But whereas CBX5 expression is down-regulated in metastatic cells, hnRNAP1 expression is constant. Here, we address the regulation of CBX5 in human breast cancer. METHODS Transient transfection and transposon mediated integration of dual-reporter mini-genes containing the bi-directional hnRNPA1 and CBX5 promoter was performed to investigate transcriptional regulation in breast cancer cell lines. Bioinformatics and functional analysis were performed to characterize transcriptional events specifically regulating CBX5 expression. TSA treatment and Chromatin Immunoprecipitation (ChIP) were performed to investigate the chromatin structure along CBX5 in breast cancer cells. Finally, expression of hnRNPA1 and CBX5 mRNA isoforms were measured by quantitative reverse transcriptase PCR (qRT-PCR) in breast cancer tissue samples. RESULTS We demonstrate that an hnRNPA1 and CBX5 bi-directional core promoter fragment does not comprise intrinsic capacity for specific CBX5 down-regulation in metastatic cells. Characterization of transcriptional events in the 20 kb CBX5 intron 1 revealed existence of several novel CBX5 transcripts. Two of these encode consensus HP1α protein but used autonomous promoters in intron 1 by which HP1α expression could be de-coupled from the bi-directional promoter. In addition, another CBX5 transcriptional isoform, STET, was discovered. This transcript includes CBX5 exon 1 and part of intron 1 sequences but lacks inclusion of HP1α encoding exons. Inverse correlation between STET and HP1α coding CBX5 mRNA expression was observed in breast cancer cell lines and tissue samples from breast cancer patients. CONCLUSION We find that HP1α is down-regulated in a mechanism involving CBX5 promoter downstream sequences and that regulation through alternative polyadenylation and splicing generates a transcript, STET, with potential importance in carcinogenesis.
Collapse
Affiliation(s)
- Johan Vad-Nielsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Kristine Raaby Jakobsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark.,Department of Clinical-Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Fuglsang Daugaard
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Rune Thomsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Anja Brügmann
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Boe Sandahl Sørensen
- Department of Clinical-Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
57
|
Gudipaty SA, D’Orso I. Functional interplay between PPM1G and the transcription elongation machinery. RNA & DISEASE 2016; 3:e1215. [PMID: 27088130 PMCID: PMC4830430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transcription elongation is a critical regulatory step in the gene expression cycle. One key regulator of the switch between transcription initiation and elongation is the P-TEFb kinase, which phosphorylates RNA polymerase II (Pol II) and several negative elongation factors to relieve the elongation block at paused promoters to facilitate productive elongation. Here, we highlight recent findings signifying the role of the PPM1G/PP2Cγ phosphatase in activating and maintaining the active transcription elongation state by regulating the availability of P-TEFb and blocking its assembly into the catalytic inactive 7SK small nuclear ribonucleoprotein (snRNP) complex.
Collapse
Affiliation(s)
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
58
|
Vad-Nielsen J, Nielsen AL. Beyond the histone tale: HP1α deregulation in breast cancer epigenetics. Cancer Biol Ther 2015; 16:189-200. [PMID: 25588111 DOI: 10.1080/15384047.2014.1001277] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) encoded from the CBX5-gene is an evolutionary conserved protein that binds histone H3 di- or tri-methylated at position lysine 9 (H3K9me2/3), a hallmark for heterochromatin, and has an essential role in forming higher order chromatin structures. HP1α has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. Emerging evidence has shown that HP1α serves a unique biological role in breast cancer related processes and in particular for epigenetic control mechanisms involved in aberrant cell proliferation and metastasis. However, how HP1α deregulation plays dual mechanistic functions for cancer cell proliferation and metastasis suppression and the underlying cellular mechanisms are not yet comprehensively described. In this paper we provide an overview of the role of HP1α as a new sight of epigenetics in proliferation and metastasis of human breast cancer. This highlights the importance of addressing HP1α in breast cancer diagnostics and therapeutics.
Collapse
Key Words
- CBX, chromobox homolog
- CD, chromo domain
- CSC, cancer stem cells
- CSD, cromo shadow domain
- CTE, C-terminal extension
- DNMT, DNA-methyltransferase
- EMT, epithelial-to-mesenchymal transition
- HDMT, histone demethylase
- HMT, histone methyltransferase
- HP1, heterochromatin protein 1
- NTE, N-terminal extension
- PEV, position effect variegation
- SOMU, sumoylation
- TGS, transcriptional gene silencing
- TSS, transcriptional start site
- bp, base pair
- breast-cancer, metastasis
- chromatin
- epigenetics
- histone-modifications
- invasion
- mitosis
- proliferation
Collapse
|
59
|
Occupancy of RNA Polymerase II Phosphorylated on Serine 5 (RNAP S5P) and RNAP S2P on Varicella-Zoster Virus Genes 9, 51, and 66 Is Independent of Transcript Abundance and Polymerase Location within the Gene. J Virol 2015; 90:1231-43. [PMID: 26559844 DOI: 10.1128/jvi.02617-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Regulation of gene transcription in varicella-zoster virus (VZV), a ubiquitous human neurotropic alphaherpesvirus, requires coordinated binding of multiple host and virus proteins onto specific regions of the virus genome. Chromatin immunoprecipitation (ChIP) is widely used to determine the location of specific proteins along a genomic region. Since the size range of sheared virus DNA fragments governs the limit of accurate protein localization, particularly for compact herpesvirus genomes, we used a quantitative PCR (qPCR)-based assay to determine the efficiency of VZV DNA shearing before ChIP, after which the assay was used to determine the relationship between transcript abundance and the occupancy of phosphorylated RNA polymerase II (RNAP) on the gene promoter, body, and terminus of VZV genes 9, 51, and 66. The abundance of VZV gene 9, 51, and 66 transcripts in VZV-infected human fetal lung fibroblasts was determined by reverse transcription-linked quantitative PCR. Our results showed that the C-terminal domain of RNAP is hyperphosphorylated at serine 5 (S5(P)) on VZV genes 9, 51, and 66 independently of transcript abundance and the location within the virus gene at both 1 and 3 days postinfection (dpi). In contrast, phosphorylated serine 2 (S2(P))-modified RNAP was not detected at any virus gene location at 3 dpi and was detected at levels only slightly above background levels at 1 dpi. IMPORTANCE Regulation of herpesvirus gene transcription is an elaborate choreography between proteins and DNA that is revealed by chromatin immunoprecipitation (ChIP). We used a quantitative PCR-based assay to determine fragment size after DNA shearing, a critical parameter in ChIP assays, and exposed a basic difference in the mechanism of transcription between mammalian cells and VZV. We found that hyperphosphorylation at serine 5 of the C-terminal domain of RNAP along the lengths of VZV genes (the promoter, body, and transcription termination site) was independent of mRNA abundance. In contrast, little to no enrichment of serine 3 phosphorylation of RNAP was detected at these virus gene regions. This is distinct from the findings for RNAP at highly regulated host genes, where RNAP S5(P) occupancy decreased and S2(P) levels increased as the polymerase transited through the gene. Overall, these results suggest that RNAP associates with human and virus transcriptional units through different mechanisms.
Collapse
|
60
|
Li J, Gilmour DS. Reconstitution of factor-dependent, promoter proximal pausing in Drosophila nuclear extracts. Methods Mol Biol 2015; 1276:133-52. [PMID: 25665561 DOI: 10.1007/978-1-4939-2392-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Genomic analyses reveal that RNA polymerase II initiates transcription but pauses shortly downstream on thousands of promoters in Drosophila and mammalian cells. Here, we describe the reconstitution of this promoter proximal pausing in nuclear extracts from Drosophila embryos. This approach is useful for dissecting the role(s) of transcription factors in promoter proximal pausing. Most of our studies employ the hsp70 heat shock gene promoter; however, this technique has successfully reconstituted RNA polymerase II pausing downstream of several other Drosophila promoters. A pulse/chase method is employed to restrict incorporation of radiolabel to the 5' portion of the RNA such that the specific activity of most transcripts are nearly identical and the intensity of radioactive RNA bands detected on gels reflects the molar ratios and quantities of each RNA product, regardless of length. The radiolabeled RNAs are isolated by hybridization to a biotinylated oligonucleotide and captured on magnetic beads. We also describe the use of antibodies to investigate mechanistic aspects of promoter proximal pausing.
Collapse
Affiliation(s)
- Jian Li
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, 465A North Frear Laboratory, University Park, PA, 16802, USA
| | | |
Collapse
|
61
|
Luse DS. The RNA polymerase II preinitiation complex. Through what pathway is the complex assembled? Transcription 2015; 5:e27050. [PMID: 25764109 DOI: 10.4161/trns.27050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The general transcription factors required for the assembly of the RNA polymerase II preinitiation complex at TATA-dependent promoters are well known. However, recent studies point to two quite distinct pathways for assembly of these components into functional transcription complexes. In this review, the two pathways are compared and potential implications for gene regulatory mechanisms are discussed.
Collapse
Affiliation(s)
- Donal S Luse
- a Department of Molecular Genetics; Lerner Research Institute; Cleveland Clinic; Cleveland, OH USA
| |
Collapse
|
62
|
Scheidegger A, Nechaev S. RNA polymerase II pausing as a context-dependent reader of the genome. Biochem Cell Biol 2015; 94:82-92. [PMID: 26555214 DOI: 10.1139/bcb-2015-0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Sergei Nechaev
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| |
Collapse
|
63
|
Bunch H, Calderwood SK. TRIM28 as a novel transcriptional elongation factor. BMC Mol Biol 2015; 16:14. [PMID: 26293668 PMCID: PMC4545989 DOI: 10.1186/s12867-015-0040-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/22/2015] [Indexed: 12/21/2022] Open
Abstract
TRIM28 is a multidomain protein with versatile functions in transcription and DNA repair. Recently it was shown that this factor plays unanticipated roles in transcriptional elongation. TRIM28 was shown to stabilize the pausing of RNA polymerase II (Pol II) close to the transcriptional start site in many unactivated genes, permitting Pol II accumulation and readying genes for induction. In addition, the factor was shown to respond rapidly to signals accompanying transcriptional activation permitting the productive elongation of RNA by previously paused Pol II. We discuss here critical regulatory mechanisms of TRIM28 in transcriptional control and DNA repair that may illuminate the novel roles of this factor in pausing and elongation of Pol II.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan circle, Boston, MA, 02115, USA.
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Sciences, 3 Blackfan circle, Boston, MA, 02115, USA.
| |
Collapse
|
64
|
Chen FX, Woodfin AR, Gardini A, Rickels RA, Marshall SA, Smith ER, Shiekhattar R, Shilatifard A. PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell 2015; 162:1003-15. [PMID: 26279188 DOI: 10.1016/j.cell.2015.07.042] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/16/2015] [Accepted: 07/02/2015] [Indexed: 10/25/2022]
Abstract
The control of promoter-proximal pausing and the release of RNA polymerase II (Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify that Pol-II-associated factor 1 (PAF1) possesses an evolutionarily conserved function in metazoans in the regulation of promoter-proximal pausing. Reduction in PAF1 levels leads to an increased release of paused Pol II into gene bodies at thousands of genes. PAF1 depletion results in increased nascent and mature transcripts and increased levels of phosphorylation of Pol II's C-terminal domain on serine 2 (Ser2P). These changes can be explained by the recruitment of the Ser2P kinase super elongation complex (SEC) effecting increased release of paused Pol II into productive elongation, thus establishing PAF1 as a regulator of promoter-proximal pausing by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Alessandro Gardini
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
65
|
Nilson KA, Guo J, Turek ME, Brogie JE, Delaney E, Luse DS, Price DH. THZ1 Reveals Roles for Cdk7 in Co-transcriptional Capping and Pausing. Mol Cell 2015; 59:576-87. [PMID: 26257281 DOI: 10.1016/j.molcel.2015.06.032] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/01/2015] [Accepted: 06/23/2015] [Indexed: 12/31/2022]
Abstract
The Cdk7 subunit of TFIIH phosphorylates RNA polymerase II (Pol II) during initiation, and, while recent studies show that inhibition of human Cdk7 negatively influences transcription, the mechanisms involved are unclear. Using in vitro transcription with nuclear extract, we demonstrate that THZ1, a covalent Cdk7 inhibitor, causes defects in Pol II phosphorylation, co-transcriptional capping, promoter proximal pausing, and productive elongation. THZ1 does not affect initiation but blocks essentially all Pol II large subunit C-terminal domain (CTD) phosphorylation. We found that guanylylation of nascent RNAs is length dependent and modulated by a THZ1-sensitive factor present in nuclear extract. THZ1 impacts pausing through a capping-independent block of DSIF and NELF loading. The P-TEFb-dependent transition into productive elongation was also inhibited by THZ1, likely due to loss of DSIF. Capping and pausing were also reduced in THZ1-treated cells. Our results provide mechanistic insights into THZ1 action and how Cdk7 broadly influences transcription and capping.
Collapse
Affiliation(s)
- Kyle A Nilson
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | - Jiannan Guo
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - Michael E Turek
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - John E Brogie
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth Delaney
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Donal S Luse
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David H Price
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA; Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
66
|
Liu X, Kraus WL, Bai X. Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways. Trends Biochem Sci 2015; 40:516-25. [PMID: 26254229 DOI: 10.1016/j.tibs.2015.07.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/07/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
Promoter-proximal pausing by RNA polymerase II (Pol II) is a well-established mechanism to control the timing, rate, and possibly the magnitude of transcriptional responses. Recent studies have shown that cellular signaling pathways can regulate gene transcription and signaling outcomes by controlling Pol II pausing in a wide array of biological systems. Identification of the proteins and small molecules that affect the establishment and release of paused Pol II is shedding new light on the mechanisms and biology of Pol II pausing. This review focuses on the interplay between cellular signaling pathways and Pol II pausing during normal development and under disease conditions.
Collapse
Affiliation(s)
- Xiuli Liu
- Molecular Genetics of Blood Development Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Signaling and Gene Regulation Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoying Bai
- Molecular Genetics of Blood Development Laboratory, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, TX 75390, USA; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
67
|
Scholz B, Kowarz E, Rössler T, Ahmad K, Steinhilber D, Marschalek R. AF4 and AF4N protein complexes: recruitment of P-TEFb kinase, their interactome and potential functions. AMERICAN JOURNAL OF BLOOD RESEARCH 2015; 5:10-24. [PMID: 26171280 PMCID: PMC4497493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
AF4/AFF1 and AF5/AFF4 are the molecular backbone to assemble "super-elongation complexes" (SECs) that have two main functions: (1) control of transcriptional elongation by recruiting the positive transcription elongation factor b (P-TEFb = CyclinT1/CDK9) that is usually stored in inhibitory 7SK RNPs; (2) binding of different histone methyltransferases, like DOT1L, NSD1 and CARM1. This way, transcribed genes obtain specific histone signatures (e.g. H3K79me2/3, H3K36me2) to generate a transcriptional memory system. Here we addressed several questions: how is P-TEFb recruited into SEC, how is the AF4 interactome composed, and what is the function of the naturally occuring AF4N protein variant which exhibits only the first 360 amino acids of the AF4 full-length protein. Noteworthy, shorter protein variants are a specific feature of all AFF protein family members. Here, we demonstrate that full-length AF4 and AF4N are both catalyzing the transition of P-TEFb from 7SK RNP to their N-terminal domain. We have also mapped the protein-protein interaction network within both complexes. In addition, we have first evidence that the AF4N protein also recruits TFIIH and the tumor suppressor MEN1. This indicate that AF4N may have additional functions in transcriptional initiation and in MEN1-dependend transcriptional processes.
Collapse
Affiliation(s)
- Bastian Scholz
- Institute of Pharmaceutical Biology, Goethe-University of FrankfurtBiocenter, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe-University of FrankfurtBiocenter, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | - Tanja Rössler
- Institute of Pharmaceutical Biology, Goethe-University of FrankfurtBiocenter, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | - Khalil Ahmad
- Institute of Pharmaceutical Chemistry, Goethe-University of FrankfurtBiocenter, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University of FrankfurtBiocenter, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University of FrankfurtBiocenter, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
68
|
Bottardi S, Mavoungou L, Milot E. IKAROS: a multifunctional regulator of the polymerase II transcription cycle. Trends Genet 2015; 31:500-8. [PMID: 26049627 DOI: 10.1016/j.tig.2015.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/16/2022]
Abstract
Transcription factors are important determinants of lineage specification during hematopoiesis. They favor recruitment of cofactors involved in epigenetic regulation, thereby defining patterns of gene expression in a development- and lineage-specific manner. Additionally, transcription factors can facilitate transcription preinitiation complex (PIC) formation and assembly on chromatin. Interestingly, a few lineage-specific transcription factors, including IKAROS, also regulate transcription elongation. IKAROS is a tumor suppressor frequently inactivated in leukemia and associated with a poor prognosis. It forms a complex with the nucleosome remodeling and deacetylase (NuRD) complex and the positive transcription elongation factor b (P-TEFb), which is required for productive transcription elongation. It has also been reported that IKAROS interacts with factors involved in transcription termination. Here we review these and other recent findings that establish IKAROS as the first transcription factor found to act as a multifunctional regulator of the transcription cycle in hematopoietic cells.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Lionel Mavoungou
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada.
| |
Collapse
|
69
|
Laitem C, Zaborowska J, Isa NF, Kufs J, Dienstbier M, Murphy S. CDK9 inhibitors define elongation checkpoints at both ends of RNA polymerase II-transcribed genes. Nat Struct Mol Biol 2015; 22:396-403. [PMID: 25849141 PMCID: PMC4424039 DOI: 10.1038/nsmb.3000] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/06/2015] [Indexed: 12/23/2022]
Abstract
Transcription through early-elongation checkpoints requires phosphorylation of negative transcription elongation factors (NTEFs) by the cyclin-dependent kinase (CDK) 9. Using CDK9 inhibitors and global run-on sequencing (GRO-seq), we have mapped CDK9 inhibitor-sensitive checkpoints genome wide in human cells. Our data indicate that early-elongation checkpoints are a general feature of RNA polymerase (pol) II-transcribed human genes and occur independently of polymerase stalling. Pol II that has negotiated the early-elongation checkpoint can elongate in the presence of inhibitors but, remarkably, terminates transcription prematurely close to the terminal polyadenylation (poly(A)) site. Our analysis has revealed an unexpected poly(A)-associated elongation checkpoint, which has major implications for the regulation of gene expression. Interestingly, the pattern of modification of the C-terminal domain of pol II terminated at this new checkpoint largely mirrors the pattern normally found downstream of the poly(A) site, thus suggesting common mechanisms of termination.
Collapse
Affiliation(s)
- Clélia Laitem
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Nur F Isa
- 1] Sir William Dunn School of Pathology, University of Oxford, Oxford, UK. [2] Department of Biotechnology, International Islamic University Malaysia, Pahang, Malaysia
| | - Johann Kufs
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Martin Dienstbier
- Computational Genomics Analysis and Training Programme, Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
70
|
Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015; 16:167-77. [PMID: 25693130 PMCID: PMC4782187 DOI: 10.1038/nrm3953] [Citation(s) in RCA: 617] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in sequencing techniques that measure nascent transcripts and that reveal the positioning of RNA polymerase II (Pol II) have shown that the pausing of Pol II in promoter-proximal regions and its release to initiate a phase of productive elongation are key steps in transcription regulation. Moreover, after the release of Pol II from the promoter-proximal region, elongation rates are highly dynamic throughout the transcription of a gene, and vary on a gene-by-gene basis. Interestingly, Pol II elongation rates affect co-transcriptional processes such as splicing, termination and genome stability. Increasing numbers of factors and regulatory mechanisms have been associated with the steps of transcription elongation by Pol II, revealing that elongation is a highly complex process. Elongation is thus now recognized as a key phase in the regulation of transcription by Pol II.
Collapse
Affiliation(s)
- Iris Jonkers
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, 416 Biotechnology Building, 14853, Ithaca, New York, USA
| |
Collapse
|
71
|
Chen F, Gao X, Shilatifard A. Stably paused genes revealed through inhibition of transcription initiation by the TFIIH inhibitor triptolide. Genes Dev 2015; 29:39-47. [PMID: 25561494 PMCID: PMC4281563 DOI: 10.1101/gad.246173.114] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genome-wide studies have demonstrated that the phenomenon of promoter-bound Pol II pausing is widespread, especially for genes involved in developmental and stimulus-responsive pathways. Here, Chen et al. used the small molecule triptolide (TPL), an XPB/TFIIH inhibitor, to block transcriptional initiation and then measured Pol II occupancy by ChIP-seq. This revealed that most genes with paused Pol II show significant clearance of Pol II during the period of TPL treatment. They also identified a group of genes with unexpectedly stably paused Pol II, with unchanged Pol II occupancy during 1 h of inhibition of initiation. Transcription by RNA polymerase II (Pol II) in metazoans is regulated in several steps, including preinitiation complex (PIC) formation, initiation, Pol II escape, productive elongation, cotranscriptional RNA processing, and termination. Genome-wide studies have demonstrated that the phenomenon of promoter-bound Pol II pausing is widespread, especially for genes involved in developmental and stimulus-responsive pathways. However, a mechanistic understanding of the paused Pol II state at promoters is limited. For example, at a global level, it is unclear to what extent the engaged paused Pol II is stably tethered to the promoter or undergoes rapid cycles of initiation and termination. Here we used the small molecule triptolide (TPL), an XPB/TFIIH inhibitor, to block transcriptional initiation and then measured Pol II occupancy by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq). This inhibition of initiation enabled us to investigate different states of paused Pol II. Specifically, our global analysis revealed that most genes with paused Pol II, as defined by a pausing index, show significant clearance of Pol II during the period of TPL treatment. Our study further identified a group of genes with unexpectedly stably paused Pol II, with unchanged Pol II occupancy even after 1 h of inhibition of initiation. This group of genes constitutes a small portion of all paused genes defined by the conventional criterion of pausing index. These findings could pave the way for evaluating the contribution of different elongation/pausing factors on different states of Pol II pausing in developmental and other stimulus-responsive pathways.
Collapse
Affiliation(s)
- Fei Chen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Xin Gao
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ali Shilatifard
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
72
|
Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16:155-66. [PMID: 25693131 DOI: 10.1038/nrm3951] [Citation(s) in RCA: 657] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA polymerase II (Pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator - a large, conformationally flexible protein complex with a variable subunit composition (for example, a four-subunit cyclin-dependent kinase 8 module can reversibly associate with it). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes that are important for transcription, including the organization of chromatin architecture and the regulation of Pol II pre-initiation, initiation, re-initiation, pausing and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions seem to be specific to metazoans, which is indicative of more diverse regulatory requirements.
Collapse
Affiliation(s)
- Benjamin L Allen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|
73
|
Samanta S, Thakur JK. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:757. [PMID: 26442070 PMCID: PMC4584954 DOI: 10.3389/fpls.2015.00757] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.
Collapse
Affiliation(s)
| | - Jitendra K. Thakur
- *Correspondence: Jitendra K. Thakur, Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
74
|
Bunch H, Zheng X, Burkholder A, Dillon ST, Motola S, Birrane G, Ebmeier CC, Levine S, Fargo D, Hu G, Taatjes DJ, Calderwood SK. TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nat Struct Mol Biol 2014; 21:876-83. [PMID: 25173174 PMCID: PMC4189995 DOI: 10.1038/nsmb.2878] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 07/30/2014] [Indexed: 01/19/2023]
Abstract
Promoter-proximal pausing of RNA polymerase II (Pol II) is a major checkpoint in transcription. An unbiased search for new human proteins that could regulate paused Pol II at the HSPA1B gene identified TRIM28. In vitro analyses indicated HSF1-dependent attenuation of Pol II pausing upon TRIM28 depletion, whereas in vivo data revealed de novo expression of HSPA1B and other known genes regulated by paused Pol II upon TRIM28 knockdown. These results were supported by genome-wide ChIP-sequencing analyses of Pol II occupancy that revealed a global role for TRIM28 in regulating Pol II pausing and pause release. Furthermore, in vivo and in vitro mechanistic studies suggest that transcription-coupled phosphorylation regulates Pol II pause release by TRIM28. Collectively, our findings identify TRIM28 as a new factor that modulates Pol II pausing and transcriptional elongation at a large number of mammalian genes.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Xiaofeng Zheng
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27705, USA
| | - Adam Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27705, USA
| | - Simon T. Dillon
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Genomics and Proteomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Shmulik Motola
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gabriel Birrane
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Christopher C. Ebmeier
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Stuart Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27705, USA
| | - Guang Hu
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27705, USA
| | - Dylan J. Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
75
|
Hu J, Yang Y, Turner PC, Jain V, McIntyre LM, Renne R. LANA binds to multiple active viral and cellular promoters and associates with the H3K4methyltransferase hSET1 complex. PLoS Pathog 2014; 10:e1004240. [PMID: 25033463 PMCID: PMC4102568 DOI: 10.1371/journal.ppat.1004240] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus associated with KS and two lymphoproliferative diseases. Recent studies characterized epigenetic modification of KSHV episomes during latency and determined that latency-associated genes are associated with H3K4me3 while most lytic genes are associated with the silencing mark H3K27me3. Since the latency-associated nuclear antigen (LANA) (i) is expressed very early after de novo infection, (ii) interacts with transcriptional regulators and chromatin remodelers, and (iii) regulates the LANA and RTA promoters, we hypothesized that LANA may contribute to the establishment of latency through epigenetic control. We performed a detailed ChIP-seq analysis in cells of lymphoid and endothelial origin and compared H3K4me3, H3K27me3, polII, and LANA occupancy. On viral episomes LANA binding was detected at numerous lytic and latent promoters, which were transactivated by LANA using reporter assays. LANA binding was highly enriched at H3K4me3 peaks and this co-occupancy was also detected on many host gene promoters. Bioinformatic analysis of enriched LANA binding sites in combination with biochemical binding studies revealed three distinct binding patterns. A small subset of LANA binding sites showed sequence homology to the characterized LBS1/2 sequence in the viral terminal repeat. A large number of sites contained a novel LANA binding motif (TCCAT)3 which was confirmed by gel shift analysis. Third, some viral and cellular promoters did not contain LANA binding sites and are likely enriched through protein/protein interaction. LANA was associated with H3K4me3 marks and in PEL cells 86% of all LANA bound promoters were transcriptionally active, leading to the hypothesis that LANA interacts with the machinery that methylates H3K4. Co-immunoprecipitation demonstrated LANA association with endogenous hSET1 complexes in both lymphoid and endothelial cells suggesting that LANA may contribute to the epigenetic profile of KSHV episomes. KSHV is a DNA tumor virus which is associated with Kaposi's sarcoma and some lymphoproliferative diseases. During latent infection, the viral genome persists as circular extrachromosomal DNA in the nucleus and expresses a very limited number of viral proteins, including LANA, a multi-functional protein. KSHV viral episomes, like host genomic DNA, are subject to chromatin formation and histone modifications which contribute to tightly controlled gene expression during latency. We determined where LANA binds on the KSHV and human genomes, and mapped activating and repressing histone marks and RNA polymerase II binding. We found that LANA bound near transcription start sites, and binding correlated with the transcription active mark H3K4me3, but not silencing mark H3K27me3. Binding sites for transcription factors including znf143, CTCF, and Stat1 are enriched at regions where LANA is bound. We identified some LANA binding sites near human gene promoters that resembled KSHV sequences known to bind LANA. We also found a novel motif that occurs frequently in the human genome and that binds LANA directly despite being different from known LANA-binding sequences. Furthermore, we demonstrate that LANA associates with the H3K4 methyltransferase hSET1 which creates activating histone marks.
Collapse
Affiliation(s)
- Jianhong Hu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Yajie Yang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Peter C. Turner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren M. McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
76
|
Bowman EA, Kelly WG. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Nucleus 2014; 5:224-36. [PMID: 24879308 DOI: 10.4161/nucl.29347] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition between initiation and productive elongation during RNA Polymerase II (Pol II) transcription is a well-appreciated point of regulation across many eukaryotes. Elongating Pol II is modified by phosphorylation of serine 2 (Ser2) on its carboxy terminal domain (CTD) by two kinases, Bur1/Ctk1 in yeast and Cdk9/Cdk12 in metazoans. Here, we discuss the roles and regulation of these kinases and their relationship to Pol II elongation control, and focus on recent data from work in C. elegans that point out gaps in our current understand of transcription elongation.
Collapse
Affiliation(s)
- Elizabeth A Bowman
- National Institute of Environmental Health Sciences; Research Triangle Park, NC USA
| | | |
Collapse
|
77
|
Function and control of RNA polymerase II C-terminal domain phosphorylation in vertebrate transcription and RNA processing. Mol Cell Biol 2014; 34:2488-98. [PMID: 24752900 DOI: 10.1128/mcb.00181-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The C-terminal domain of the RNA polymerase II largest subunit (the Rpb1 CTD) is composed of tandem heptad repeats of the consensus sequence Y(1)S(2)P(3)T(4)S(5)P(6)S(7). We reported previously that Thr 4 is phosphorylated and functions in histone mRNA 3'-end formation in chicken DT40 cells. Here, we have extended our studies on Thr 4 and to other CTD mutations by using these cells. We found that an Rpb1 derivative containing only the N-terminal half of the CTD, as well as a similar derivative containing all-consensus repeats (26r), conferred full viability, while the C-terminal half, with more-divergent repeats, did not, reflecting a strong and specific defect in snRNA 3'-end formation. Mutation in 26r of all Ser 2 (S2A) or Ser 5 (S5A) residues resulted in lethality, while Ser 7 (S7A) mutants were fully viable. While S2A and S5A cells displayed defects in transcription and RNA processing, S7A cells behaved identically to 26r cells in all respects. Finally, we found that Thr 4 was phosphorylated by cyclin-dependent kinase 9 in cells and dephosphorylated both in vitro and in vivo by the phosphatase Fcp1.
Collapse
|
78
|
Negative elongation factor is required for the maintenance of proviral latency but does not induce promoter-proximal pausing of RNA polymerase II on the HIV long terminal repeat. Mol Cell Biol 2014; 34:1911-28. [PMID: 24636995 DOI: 10.1128/mcb.01013-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the negative elongation factor (NELF) in maintaining HIV latency was investigated following small hairpin RNA (shRNA) knockdown of the NELF-E subunit, a condition that induced high levels of proviral transcription in latently infected Jurkat T cells. Chromatin immunoprecipitation (ChIP) assays showed that latent proviruses accumulate RNA polymerase II (RNAP II) on the 5' long terminal repeat (LTR) but not on the 3' LTR. NELF colocalizes with RNAP II, and its level increases following proviral induction. RNAP II pause sites on the HIV provirus were mapped to high resolution by ChIP with high-throughput sequencing (ChIP-Seq). Like cellular promoters, RNAP II accumulates at around position +30, but HIV also shows additional pausing at +90, which is immediately downstream of a transactivation response (TAR) element and other distal sites on the HIV LTR. Following NELF-E knockdown or tumor necrosis factor alpha (TNF-α) stimulation, promoter-proximal RNAP II levels increase up to 3-fold, and there is a dramatic increase in RNAP II levels within the HIV genome. These data support a kinetic model for proviral transcription based on continuous replacement of paused RNAP II during both latency and productive transcription. In contrast to most cellular genes, HIV is highly activated by the combined effects of NELF-E depletion and activation of initiation by TNF-α, suggesting that opportunities exist to selectively activate latent HIV proviruses.
Collapse
|
79
|
Guo J, Turek ME, Price DH. Regulation of RNA polymerase II termination by phosphorylation of Gdown1. J Biol Chem 2014; 289:12657-65. [PMID: 24634214 PMCID: PMC4007455 DOI: 10.1074/jbc.m113.537662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gdown1 is a substoichiometric subunit of RNA polymerase II (Pol II) that has been recently demonstrated to be involved in stabilizing promoter-proximal paused Pol II. It was shown to inhibit termination of Pol II by transcription termination factor 2 (TTF2) as well as block elongation stimulation by transcription factor IIF (TFIIF). Here, using in vitro transcription assays, we identified two functional domains in Gdown1. Although both are required to maintain a tight association with Pol II, the N- and C-terminal domains are responsible for blocking TTF2 and TFIIF, respectively. A highly conserved LPDKG motif found in the N-terminal domain of Gdown1 is also highly conserved in TTF2. Deletion of this motif eliminated the TTF2 inhibitory activity of Gdown1. We identified a phosphorylated form of Gdown1 with altered mobility in SDS-PAGE that appears during mitosis. A kinase in HeLa nuclear extract that caused the shift was partially purified. In vitro, Gdown1 phosphorylated by this kinase demonstrated reduced activity in blocking both TTF2 and TFIIF because of its reduced affinity for Pol II. Mass spectrometry identified Ser-270 as the site of this phosphorylation. An S270A mutation was not phosphorylated by the partially purified kinase, and an S270E mutation partially mimicked the properties of phospho-Gdown1. Gdown1 Ser-270 phosphorylation occurs predominately during mitosis, and we suggest that this would enable TTF2 to terminate all Pol II even if it is associated with Gdown1.
Collapse
Affiliation(s)
- Jiannan Guo
- From the Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | | | | |
Collapse
|
80
|
Mullen Davis MA, Guo J, Price DH, Luse DS. Functional interactions of the RNA polymerase II-interacting proteins Gdown1 and TFIIF. J Biol Chem 2014; 289:11143-11152. [PMID: 24596085 DOI: 10.1074/jbc.m113.544395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gdown1, the substoichiometric 13th subunit of RNA polymerase II (pol II), has an important role in pausing during the initial stage of transcript elongation. However, Gdown1 quantitatively displaces the essential initiation factor TFIIF from free pol II and elongating pol II. Thus, it is not clear how or even if pol II can initiate in the presence of Gdown1. Using an in vitro transcription system with purified factors and pol II lacking Gdown1, we found that although Gdown1 is strongly inhibitory to transcription when prebound to pol II, a fraction of complexes do remain active. Surprisingly, when Gdown1 is added to complete preinitiation complexes (PICs), it does not inhibit initiation or functionally associate with the PICs. Gdown1 does associate with pol II during the early stage of transcript elongation but this association is competitive with TFIIF. By phosphorylating TFIIF, PICs can be assembled that do not retain TFIIF. Gdown1 also fails to functionally associate with these TFIIF-less PICs, but once polymerase enters transcript elongation, complexes lacking TFIIF quantitatively bind Gdown1. Our results provide a partial resolution of the paradox of the competition between Gdown1 and TFIIF for association with pol II. Although Gdown1 completely displaces TFIIF from free pol II and elongation complexes, Gdown1 does not functionally associate with the PIC. Gdown1 can enter the transcription complex immediately after initiation. Modification of TFIIF provides one pathway through which efficient Gdown1 loading can occur early in elongation, allowing downstream pausing to be regulated.
Collapse
Affiliation(s)
- Melissa A Mullen Davis
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | | | - David H Price
- Department of Biochemistry and; Molecular and Cellular Biology Program, University of Iowa, Iowa City, Iowa 52242
| | - Donal S Luse
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and.
| |
Collapse
|
81
|
Abstract
ChIP-seq has become the primary method for identifying in vivo protein-DNA interactions on a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of December 2012. Individually and in aggregate, these data are an important and information-rich resource. However, uncertainties about data quality confound their use by the wider research community. Recently, the Encyclopedia of DNA Elements (ENCODE) project developed and applied metrics to objectively measure ChIP-seq data quality. The ENCODE quality analysis was useful for flagging datasets for closer inspection, eliminating or replacing poor data, and for driving changes in experimental pipelines. There had been no similarly systematic quality analysis of the large and disparate body of published ChIP-seq profiles. Here, we report a uniform analysis of vertebrate transcription factor ChIP-seq datasets in the Gene Expression Omnibus (GEO) repository as of April 1, 2012. The majority (55%) of datasets scored as being highly successful, but a substantial minority (20%) were of apparently poor quality, and another ∼25% were of intermediate quality. We discuss how different uses of ChIP-seq data are affected by specific aspects of data quality, and we highlight exceptional instances for which the metric values should not be taken at face value. Unexpectedly, we discovered that a significant subset of control datasets (i.e., no immunoprecipitation and mock immunoprecipitation samples) display an enrichment structure similar to successful ChIP-seq data. This can, in turn, affect peak calling and data interpretation. Published datasets identified here as high-quality comprise a large group that users can draw on for large-scale integrated analysis. In the future, ChIP-seq quality assessment similar to that used here could guide experimentalists at early stages in a study, provide useful input in the publication process, and be used to stratify ChIP-seq data for different community-wide uses.
Collapse
|
82
|
Brd4 and HEXIM1: multiple roles in P-TEFb regulation and cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:232870. [PMID: 24592384 PMCID: PMC3925632 DOI: 10.1155/2014/232870] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/19/2013] [Indexed: 12/31/2022]
Abstract
Bromodomain-containing protein 4 (Brd4) and hexamethylene bisacetamide (HMBA) inducible protein 1 (HEXIM1) are two opposing regulators of the positive transcription elongation factor b (P-TEFb), which is the master modulator of RNA polymerase II during transcriptional elongation. While Brd4 recruits P-TEFb to promoter-proximal chromatins to activate transcription, HEXIM1 sequesters P-TEFb into an inactive complex containing the 7SK small nuclear RNA. Besides regulating P-TEFb's transcriptional activity, recent evidence demonstrates that both Brd4 and HEXIM1 also play novel roles in cell cycle progression and tumorigenesis. Here we will discuss the current knowledge on Brd4 and HEXIM1 and their implication as novel therapeutic options against cancer.
Collapse
|
83
|
Regulation of MYC expression and differential JQ1 sensitivity in cancer cells. PLoS One 2014; 9:e87003. [PMID: 24466310 PMCID: PMC3900694 DOI: 10.1371/journal.pone.0087003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
High level MYC expression is associated with almost all human cancers. JQ1, a chemical compound that inhibits MYC expression is therapeutically effective in preclinical animal models in midline carcinoma, and Burkitt's lymphoma (BL). Here we show that JQ1 does not inhibit MYC expression to a similar extent in all tumor cells. The BL cells showed a ∼90% decrease in MYC transcription upon treatment with JQ1, however, no corresponding reduction was seen in several non-BL cells. Molecularly, these differences appear due to requirements of Brd4, the most active version of the Positive Transcription Elongation Factor B (P-TEFb) within the Super Elongation Complex (SEC), and transcription factors such as Gdown1, and MED26 and also other unknown cell specific factors. Our study demonstrates that the regulation of high levels of MYC expression in different cancer cells is driven by unique regulatory mechanisms and that such exclusive regulatory signatures in each cancer cells could be employed for targeted therapeutics.
Collapse
|
84
|
Guo J, Li T, Schipper J, Nilson KA, Fordjour FK, Cooper JJ, Gordân R, Price DH. Sequence specificity incompletely defines the genome-wide occupancy of Myc. Genome Biol 2014; 15:482. [PMID: 25287278 PMCID: PMC4242493 DOI: 10.1186/s13059-014-0482-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Myc-Max heterodimer is a transcription factor that regulates expression of a large number of genes. Genome occupancy of Myc-Max is thought to be driven by Enhancer box (E-box) DNA elements, CACGTG or variants, to which the heterodimer binds in vitro. RESULTS By analyzing ChIP-Seq datasets, we demonstrate that the positions occupied by Myc-Max across the human genome correlate with the RNA polymerase II, Pol II, transcription machinery significantly better than with E-boxes. Metagene analyses show that in promoter regions, Myc is uniformly positioned about 100 bp upstream of essentially all promoter proximal paused polymerases with Max about 15 bp upstream of Myc. We re-evaluate the DNA binding properties of full length Myc-Max proteins. Electrophoretic mobility shift assay results demonstrate Myc-Max heterodimers display significant sequence preference, but have high affinity for any DNA. Quantification of the relative affinities of Myc-Max for all possible 8-mers using universal protein-binding microarray assays shows that sequences surrounding core 6-mers significantly affect binding. Compared to the in vitro sequence preferences,Myc-Max genomic occupancy measured by ChIP-Seq is largely, although not completely, independent of sequence specificity. CONCLUSIONS We quantified the affinity of Myc-Max to all possible 8-mers and compared this with the sites of Myc binding across the human genome. Our results indicate that the genomic occupancy of Myc cannot be explained by its intrinsic DNA specificity and suggest that the transcription machinery and associated promoter accessibility play a predominant role in Myc recruitment.
Collapse
Affiliation(s)
- Jiannan Guo
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
| | - Tiandao Li
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
- />The Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Joshua Schipper
- />Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708 USA
| | - Kyle A Nilson
- />Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242 USA
| | - Francis K Fordjour
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
| | - Jeffrey J Cooper
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
| | - Raluca Gordân
- />Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708 USA
| | - David H Price
- />Department of Biochemistry, University of Iowa, Iowa City, IA 52242 USA
- />Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
85
|
Abstract
Most transcription factors specify the subset of genes that will be actively transcribed in the cell by stimulating transcription initiation at these genes, but MYC has a fundamentally different role. MYC binds E-box sites in the promoters of active genes and stimulates recruitment of the elongation factor P-TEFb and thus transcription elongation. Consequently, rather than specifying the set of genes that will be transcribed in any particular cell, MYC's predominant role is to increase the production of transcripts from active genes. This increase in the transcriptional output of the cell's existing gene expression program, called transcriptional amplification, has a profound effect on proliferation and other behaviors of a broad range of cells. Transcriptional amplification may reduce rate-limiting constraints for tumor cell proliferation and explain MYC's broad oncogenic activity among diverse tissues.
Collapse
Affiliation(s)
- Peter B Rahl
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | |
Collapse
|
86
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
87
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
88
|
Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol Cell 2013; 52:517-28. [PMID: 24184211 DOI: 10.1016/j.molcel.2013.10.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 01/17/2023]
Abstract
Metazoan gene expression is often regulated after the recruitment of RNA polymerase II (Pol II) to promoters, through the controlled release of promoter-proximally paused Pol II into productive RNA synthesis. Despite the prevalence of paused Pol II, very little is known about the dynamics of these early elongation complexes or the fate of the short transcription start site-associated (tss) RNAs they produce. Here, we demonstrate that paused elongation complexes can be remarkably stable, with half-lives exceeding 15 min at genes with inefficient pause release. Promoter-proximal termination by Pol II is infrequent, and released tssRNAs are targeted for rapid degradation. Further, we provide evidence that the predominant tssRNA species observed are nascent RNAs held within early elongation complexes. We propose that stable pausing of polymerase provides a temporal window of opportunity for recruitment of factors to modulate gene expression and that the nascent tssRNA represents an appealing target for these interactions.
Collapse
|
89
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
90
|
Carlsten JOP, Zhu X, Gustafsson CM. The multitalented Mediator complex. Trends Biochem Sci 2013; 38:531-7. [PMID: 24074826 DOI: 10.1016/j.tibs.2013.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
The Mediator complex is needed for regulated transcription of RNA polymerase II (Pol II)-dependent genes. Initially, Mediator was only seen as a protein bridge that conveyed regulatory information from enhancers to the promoter. Later studies have added many other functions to the Mediator repertoire. Indeed, recent findings show that Mediator influences nearly all stages of transcription and coordinates these events with concomitant changes in chromatin organization. We review the multitude of activities associated with Mediator and discuss how this complex coordinates transcription with other cellular events. We also discuss the inherent difficulties associated with in vivo characterization of a coactivator complex that can indirectly affect diverse cellular processes via changes in gene transcription.
Collapse
Affiliation(s)
- Jonas O P Carlsten
- University of Gothenburg, Institute of Biomedicine, PO Box 440, 40530 Gothenburg, Sweden
| | | | | |
Collapse
|
91
|
Freaney JE, Kim R, Mandhana R, Horvath CM. Extensive cooperation of immune master regulators IRF3 and NFκB in RNA Pol II recruitment and pause release in human innate antiviral transcription. Cell Rep 2013; 4:959-73. [PMID: 23994473 PMCID: PMC3792498 DOI: 10.1016/j.celrep.2013.07.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022] Open
Abstract
Transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NFκB) are activated by external stimuli, including virus infection, to translocate to the nucleus and bind genomic targets important for immunity and inflammation. To investigate RNA polymerase II (Pol II) recruitment and elongation in the human antiviral gene regulatory network, a comprehensive genome-wide analysis was conducted during the initial phase of virus infection. Results reveal extensive integration of IRF3 and NFκB with Pol II and associated machinery and implicate partners for antiviral transcription. Analysis indicates that both de novo polymerase recruitment and stimulated release of paused polymerase work together to control virus-induced gene activation. In addition to known messenger-RNA-encoding loci, IRF3 and NFκB stimulate transcription at regions not previously associated with antiviral transcription, including abundant unannotated loci that encode novel virus-inducible RNAs (nviRNAs). These nviRNAs are widely induced by virus infections in diverse cell types and represent a previously overlooked cellular response to virus infection.
Collapse
Affiliation(s)
- Jonathan E. Freaney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Rebecca Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Roli Mandhana
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Curt M. Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
92
|
Abstract
Elongation is becoming increasingly recognized as a critical step in eukaryotic transcriptional regulation. Although traditional genetic and biochemical studies have identified major players of transcriptional elongation, our understanding of the importance and roles of these factors is evolving rapidly through the recent advances in genome-wide and single-molecule technologies. Here, we focus on how elongation can modulate the transcriptional outcome through the rate-liming step of RNA polymerase II (Pol II) pausing near promoters and how the participating factors were identified. Among the factors we describe are the pausing factors--NELF (negative elongation factor) and DSIF (DRB sensitivity-inducing factor)--and P-TEFb (positive elongation factor b), which is the key player in pause release. We also describe the high-resolution view of Pol II pausing and propose nonexclusive models for how pausing is achieved. We then discuss Pol II elongation through the bodies of genes and the roles of FACT and SPT6, factors that allow Pol II to move through nucleosomes.
Collapse
Affiliation(s)
- Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703; ,
| | | |
Collapse
|
93
|
Li J, Liu Y, Rhee HS, Ghosh SKB, Bai L, Pugh BF, Gilmour DS. Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol Cell 2013; 50:711-22. [PMID: 23746353 DOI: 10.1016/j.molcel.2013.05.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/03/2013] [Accepted: 05/10/2013] [Indexed: 11/29/2022]
Abstract
Pausing of RNA polymerase II (Pol II) 20-60 bp downstream of transcription start sites is a major checkpoint during transcription in animal cells. Mechanisms that control pausing are largely unknown. We developed permanganate-ChIP-seq to evaluate the state of Pol II at promoters throughout the Drosophila genome, and a biochemical system that reconstitutes promoter-proximal pausing to define pausing mechanisms. Stable open complexes of Pol II are largely absent from the transcription start sites of most mRNA genes but are present at snRNA genes and the highly transcribed heat shock genes following their induction. The location of the pause is influenced by the timing between when NELF loads onto Pol II and how fast Pol II escapes the promoter region. Our biochemical analysis reveals that the sequence-specific transcription factor, GAF, orchestrates efficient pausing by recruiting NELF to promoters before transcription initiation and by assisting in loading NELF onto Pol II after initiation.
Collapse
Affiliation(s)
- Jian Li
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Ansari SA, Morse RH. Mechanisms of Mediator complex action in transcriptional activation. Cell Mol Life Sci 2013; 70:2743-56. [PMID: 23361037 PMCID: PMC11113466 DOI: 10.1007/s00018-013-1265-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Mediator is a large multisubunit complex that plays a central role in the regulation of RNA Pol II transcribed genes. Conserved in overall structure and function among eukaryotes, Mediator comprises 25-30 protein subunits that reside in four distinct modules, termed head, middle, tail, and CDK8/kinase. Different subunits of Mediator contact other transcriptional regulators including activators, co-activators, general transcription factors, subunits of RNA Pol II, and specifically modified histones, leading to the regulated expression of target genes. This review is focused on the interactions of specific Mediator subunits with diverse transcription regulators and how those interactions contribute to Mediator function in transcriptional activation.
Collapse
Affiliation(s)
- Suraiya A. Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
| | - Randall H. Morse
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
- Department of Biomedical Science, University at Albany School of Public Health, Albany, NY USA
| |
Collapse
|
95
|
Smith E, Shilatifard A. Transcriptional elongation checkpoint control in development and disease. Genes Dev 2013; 27:1079-88. [PMID: 23699407 DOI: 10.1101/gad.215137.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transcriptional elongation control by RNA polymerase II and its associated factors has taken center stage as a process essential for the regulation of gene expression throughout development. In this review, we analyze recent findings on the identification of factors functioning in the regulation of the transcriptional elongation checkpoint control (TECC) stage of gene expression and how the factors' misregulation is associated with disease pathogenesis, including cancer.
Collapse
Affiliation(s)
- Edwin Smith
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
96
|
Kawauchi J, Inoue M, Fukuda M, Uchida Y, Yasukawa T, Conaway RC, Conaway JW, Aso T, Kitajima S. Transcriptional properties of mammalian elongin A and its role in stress response. J Biol Chem 2013; 288:24302-15. [PMID: 23828199 DOI: 10.1074/jbc.m113.496703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Elongin A was shown previously to be capable of potently activating the rate of RNA polymerase II (RNAPII) transcription elongation in vitro by suppressing transient pausing by the enzyme at many sites along DNA templates. The role of Elongin A in RNAPII transcription in mammalian cells, however, has not been clearly established. In this report, we investigate the function of Elongin A in RNAPII transcription. We present evidence that Elongin A associates with the IIO form of RNAPII at sites of newly transcribed RNA and is relocated to dotlike domains distinct from those containing RNAPII when cells are treated with the kinase inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole. Significantly, Elongin A is required for maximal induction of transcription of the stress response genes ATF3 and p21 in response to several stimuli. Evidence from structure-function studies argues that Elongin A transcription elongation activity, but not its ubiquitination activity, is most important for its function in induction of transcription of ATF3 and p21. Taken together, our data provide new insights into the function of Elongin A in RNAPII transcription and bring to light a previously unrecognized role for Elongin A in the regulation of stress response genes.
Collapse
Affiliation(s)
- Junya Kawauchi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23202475 DOI: 10.1016/j.bbagrm.2012.11.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) were originally identified as factors responsible for transcriptional inhibition by 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole (DRB) and were later found to control transcription elongation, together with P-TEFb, at the promoter-proximal region. Although there is ample evidence that these factors play roles throughout the genome, other data also suggest gene- or tissue-specific roles for these factors. In this review, we discuss how these apparently conflicting data can be reconciled. In light of recent findings, we also discuss the detailed mechanism by which these factors control the elongation process at the molecular level. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
98
|
Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012; 13:720-31. [PMID: 22986266 DOI: 10.1038/nrg3293] [Citation(s) in RCA: 906] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed a sea change in our understanding of transcription regulation: whereas traditional models focused solely on the events that brought RNA polymerase II (Pol II) to a gene promoter to initiate RNA synthesis, emerging evidence points to the pausing of Pol II during early elongation as a widespread regulatory mechanism in higher eukaryotes. Current data indicate that pausing is particularly enriched at genes in signal-responsive pathways. Here the evidence for pausing of Pol II from recent high-throughput studies will be discussed, as well as the potential interconnected functions of promoter-proximally paused Pol II.
Collapse
|
99
|
Lo SM, Follmer NE, Lengsfeld BM, Madamba EV, Seong S, Grau DJ, Francis NJ. A bridging model for persistence of a polycomb group protein complex through DNA replication in vitro. Mol Cell 2012; 46:784-96. [PMID: 22749399 DOI: 10.1016/j.molcel.2012.05.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 01/13/2023]
Abstract
Epigenetic regulation may involve heritable chromatin states, but how chromatin features can be inherited through DNA replication is incompletely understood. We address this question using cell-free replication of chromatin. Previously, we showed that a Polycomb group complex, PRC1, remains continuously associated with chromatin through DNA replication. Here we investigate the mechanism of persistence. We find that a single PRC1 subunit, Posterior sex combs (PSC), can reconstitute persistence through DNA replication. PSC binds nucleosomes and self-interacts, bridging nucleosomes into a stable, oligomeric structure. Within these structures, individual PSC-chromatin contacts are dynamic. Stable association of PSC with chromatin, including through DNA replication, depends on PSC-PSC interactions. Our data suggest that labile individual PSC-chromatin contacts allow passage of the DNA replication machinery while PSC-PSC interactions prevent PSC from dissociating, allowing it to rebind to replicated chromatin. This mechanism may allow inheritance of chromatin proteins including PRC1 through DNA replication to maintain chromatin states.
Collapse
Affiliation(s)
- Stanley M Lo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Enhancers are regulatory DNA sequences that activate transcription over long distances. Recent studies revealed a widespread role of distant activation in eukaryotic gene regulation and in development of various human diseases, including cancer. Genomic and gene-targeted studies of enhancer action revealed novel mechanisms of transcriptional activation over a distance. They include formation of stable, inactive DNA-protein complexes at the enhancer and target promoter before activation, facilitated distant communication by looping of the spacer chromatin-covered DNA, and promoter activation by mechanisms that are different from classic recruiting. These studies suggest the similarity between the looping mechanisms involved in enhancer action on DNA in bacteria and in chromatin of higher organisms.
Collapse
|