51
|
Génin P, Cuvelier F, Lambin S, Côrte-Real Filipe J, Autrusseau E, Laurent C, Laplantine E, Weil R. Optineurin regulates the interferon response in a cell cycle-dependent manner. PLoS Pathog 2015; 11:e1004877. [PMID: 25923723 PMCID: PMC4414543 DOI: 10.1371/journal.ppat.1004877] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/13/2015] [Indexed: 01/12/2023] Open
Abstract
Viral invasion into a host is initially recognized by the innate immune system, mainly through activation of the intracellular cytosolic signaling pathway and coordinated activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB) transcription factors that promote type I interferon gene induction. The TANK-binding Kinase 1 (TBK1) phosphorylates and activates IRF3. Here, we show that Optineurin (Optn) dampens the antiviral innate immune response by targeting the deubiquitinating enzyme CYLD to TBK1 in order to inhibit its enzymatic activity. Importantly, we found that this regulatory mechanism is abolished at the G2/M phase as a consequence of the nuclear translocation of CYLD and Optn. As a result, we observed, at this cell division stage, an increased activity and phosphorylation of TBK1 that lead to its relocalization to mitochondria and to enhanced interferon production, suggesting that this process, which relies on Optn function, might be of major importance to mount a preventive antiviral response during mitosis. The innate immune system has evolved to detect and neutralize viral invasion. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate an intracellular antiviral defense mechanism. The protein Optineurin was shown to negatively regulate this process. Importantly, we discovered the mechanism by which Optineurin inhibits antiviral activity and showed that this regulation is prevented during a critical step of cell division leading to enhancement of the cellular defense mechanism. This paper shows that the antiviral immune system is controlled during the cell cycle and that Optineurin-mediated induction of this system might serve to protect cells from infection during cell division.
Collapse
Affiliation(s)
- Pierre Génin
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
- * E-mail:
| | - Frédérique Cuvelier
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Sandrine Lambin
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| | | | - Elodie Autrusseau
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| | | | - Emmanuel Laplantine
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Robert Weil
- Laboratoire de Signalisation et Pathogenèse, CNRS UMR3691, Institut Pasteur, Paris, France
| |
Collapse
|
52
|
Bansal M, Swarup G, Balasubramanian D. Functional analysis of optineurin and some of its disease-associated mutants. IUBMB Life 2015; 67:120-8. [DOI: 10.1002/iub.1355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/07/2015] [Accepted: 01/16/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Megha Bansal
- Centre for Cellular and Molecular Biology; Hyderabad Telangana India
| | - Ghanshyam Swarup
- Centre for Cellular and Molecular Biology; Hyderabad Telangana India
| | - Dorairajan Balasubramanian
- Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute; Hyderabad Telangana India
| |
Collapse
|
53
|
Visual impairment in an optineurin mouse model of primary open-angle glaucoma. Neurobiol Aging 2015; 36:2201-12. [PMID: 25818176 DOI: 10.1016/j.neurobiolaging.2015.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
Primary open-angle glaucoma (POAG) is characterized by progressive neurodegeneration of retinal ganglion cells (RGCs). Why RGCs degenerate in low-pressure POAG remains poorly understood. To gain mechanistic insights, we developed a novel mouse model based on a mutation in human optineurin associated with hereditary, low-pressure POAG. This mouse improves the design and phenotype of currently available optineurin mice, which showed high global overexpression. Although both 18-month-old optineurin and nontransgenic control mice showed an age-related decrease in healthy axons and RGCs, the expression of mutant optineurin enhanced axonal degeneration and decreased RGC survival. Mouse visual function was determined using visual evoked potentials, which revealed specific visual impairment in contrast sensitivity. The E50K optineurin transgenic mouse described here exhibited clinical features of POAG and may be useful for mechanistic dissection of POAG and therapeutic development.
Collapse
|
54
|
Wang L, Guo Q, Fisher LA, Liu D, Peng A. Regulation of polo-like kinase 1 by DNA damage and PP2A/B55α. Cell Cycle 2015; 14:157-66. [PMID: 25483054 PMCID: PMC4615057 DOI: 10.4161/15384101.2014.986392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/24/2022] Open
Abstract
In addition to governing mitotic progression, Plk1 also suppresses the activation of the G2 DNA damage checkpoint and promotes checkpoint recovery. Previous studies have shown that checkpoint activation after DNA damage requires inhibition of Plk1, but the underlying mechanism of Plk1 regulation was unknown. In this study we show that the specific phosphatase activity toward Plk1 Thr-210 in interphase Xenopus egg extracts is predominantly PP2A-dependent, and this phosphatase activity is upregulated by DNA damage. Consistently, PP2A associates with Plk1 and the association increases after DNA damage. We further revealed that B55α, a targeting subunit of PP2A and putative tumor suppressor, mediates PP2A/Plk1 association and Plk1 dephosphorylation. B55α and PP2A association is greatly strengthened after DNA damage in an ATM/ATR and checkpoint kinase-dependent manner. Collectively, we report a phosphatase-dependent mechanism that responds to DNA damage and regulates Plk1 and checkpoint recovery.
Collapse
Affiliation(s)
- Ling Wang
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
| | - Qingyuan Guo
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
- Department of Orthodontics; Shandong Provincial Key Laboratory of Oral Biomedicine; Shandong University; Jinan, China
| | - Laura A Fisher
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
| | - Dongxu Liu
- Department of Orthodontics; Shandong Provincial Key Laboratory of Oral Biomedicine; Shandong University; Jinan, China
| | - Aimin Peng
- Department of Oral Biology; College of Dentistry; University of Nebraska Medical Center; Lincoln, NE USA
| |
Collapse
|
55
|
Kachaner D, Pinson X, El Kadhi KB, Normandin K, Talje L, Lavoie H, Lépine G, Carréno S, Kwok BH, Hickson GR, Archambault V. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis. ACTA ACUST UNITED AC 2014; 207:201-11. [PMID: 25332165 PMCID: PMC4210448 DOI: 10.1083/jcb.201408081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aurora B phosphorylation of the Polo kinase activation loop disrupts its binding to Map205 and central spindle microtubules, allowing it to be recruited to the site of cytokinesis. Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks.
Collapse
Affiliation(s)
- David Kachaner
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Xavier Pinson
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Khaled Ben El Kadhi
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Karine Normandin
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Lama Talje
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Hugo Lavoie
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Guillaume Lépine
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sébastien Carréno
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Benjamin H Kwok
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Gilles R Hickson
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Vincent Archambault
- Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Institut de Recherche en Immunologie et en Cancérologie, Départment de Biochimie et Médecine Moléculaire, Centre Hospitalier Universitaire Sainte-Justine, Département de Pathologie et de Biologie Cellulaire, Département de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
56
|
Paulus JD, Link BA. Loss of optineurin in vivo results in elevated cell death and alters axonal trafficking dynamics. PLoS One 2014; 9:e109922. [PMID: 25329564 PMCID: PMC4199637 DOI: 10.1371/journal.pone.0109922] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in Optineurin have been associated with ALS, glaucoma, and Paget’s disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work.
Collapse
Affiliation(s)
- Jeremiah D. Paulus
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Brian A. Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
57
|
Optineurin associates with the podocyte Golgi complex to maintain its structure. Cell Tissue Res 2014; 358:567-83. [PMID: 25096716 DOI: 10.1007/s00441-014-1968-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/09/2014] [Indexed: 12/22/2022]
Abstract
Optineurin, a cytosolic protein associated with the actin cytoskeleton, microtubules, and the Golgi complex, appears to have an important function in neurons, as mutations in its gene are causative for neurodegenerative diseases such as primary open-angle glaucoma and amyotrophic lateral sclerosis. Here, we report that optineurin is localized in podocytes of the kidney and induced upon injury following treatment with puromycin aminonucleoside. In cultured human podocytes, optineurin localizes to the Golgi complex. Optineurin depletion by RNA interference causes Golgi fragmentation. Moreover, if the Golgi complex is fragmented following microtubule destabilization induced by nocodazole treatment, optineurin dissociates from Golgi vesicles. Furthermore, optineurin colocalizes with vinculin-labeled focal contacts of cultured podocytes and with lysosome-like structures. Optineurin is essential for the survival of cultured podocytes, as optineurin depletion causes cell death. Thus, optineurin appears to play an important role in the maintenance of the podocyte Golgi complex and in the trafficking of vesicles to focal contacts and lysosomes.
Collapse
|
58
|
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15:433-52. [PMID: 24954208 DOI: 10.1038/nrm3819] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Adán Guerrero
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. [2] Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca Mor., Mexico
| | | |
Collapse
|
59
|
E50K-OPTN-induced retinal cell death involves the Rab GTPase-activating protein, TBC1D17 mediated block in autophagy. PLoS One 2014; 9:e95758. [PMID: 24752605 PMCID: PMC3994150 DOI: 10.1371/journal.pone.0095758] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/28/2014] [Indexed: 12/18/2022] Open
Abstract
The protein optineurin coded by OPTN gene is involved in several functions including regulation of endocytic trafficking, autophagy and signal transduction. Certain missense mutations in the gene OPTN cause normal tension glaucoma. A glaucoma-causing mutant of optineurin, E50K, induces death selectively in retinal cells. This mutant induces defective endocytic recycling of transferrin receptor by causing inactivation of Rab8 mediated by the GTPase-activating protein, TBC1D17. Here, we have explored the mechanism of E50K-induced cell death. E50K-OPTN-induced cell death was inhibited by co-expression of a catalytically inactive mutant of TBC1D17 and also by shRNA mediated knockdown of TBC1D17. Endogenous TBC1D17 colocalized with E50K-OPTN in vesicular structures. Co-expression of transferrin receptor partially protected against E50K-induced cell death. Overexpression of the E50K-OPTN but not WT-OPTN inhibited autophagy flux. Treatment of cells with rapamycin, an inducer of autophagy, reduced E50K-OPTN-induced cell death. An LC3-binding-defective mutant of E50K-OPTN showed reduced cell death, further suggesting the involvement of autophagy. TBC1D17 localized to autophagosomes and inhibited autophagy flux dependent on its catalytic activity. Knockdown of TBC1D17 rescued cells from E50K-mediated inhibition of autophagy flux. Overall, our results suggest that E50K mutant induced death of retinal cells involves impaired autophagy as well as impaired transferrin receptor function. TBC1D17, a GTPase-activating protein for Rab GTPases, plays a crucial role in E50K-induced impaired autophagy and cell death.
Collapse
|
60
|
Turturro S, Shen X, Shyam R, Yue BY, Ying H. Effects of mutations and deletions in the human optineurin gene. SPRINGERPLUS 2014; 3:99. [PMID: 24683533 PMCID: PMC3967732 DOI: 10.1186/2193-1801-3-99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023]
Abstract
Optineurin is a gene associated with normal tension glaucoma (NTG) and amyotrophic lateral sclerosis (ALS). Foci formation and functional consequences including Golgi fragmentation, impairment of vesicle trafficking and apoptosis were observed previously upon overexpression and/or mutation of optineurin. In the current study, a total of 15 GFP tagged constructs that included NTG (E50K and 2 bp-AG insertion), ALS (exon 5 deletion, R96L, Q398X, and E478G) and non-disease (L157A and D474N) associated mutants and a series of deletion fragments were cloned into mammalian expression vectors and transfected into RGC5 and/or Neuro2A cells to evaluate whether their expression confer the optineurin phenotypes. The cells were monitored for foci formation and stained by immunofluorescence with anti-GM130 to analyze the Golgi integrity. Transferrin uptake experiments were performed to evaluate the protein trafficking process and apoptosis was assessed with the active caspase 3/7 detection kit. We demonstrated that cells expressing E50K and R96L optineurin exhibited all of the optineurin phenotypes. Q398X mutant did not induce foci formation, but triggered Golgi fragmentation, impairment of transferrin uptake and increase in apoptosis. The 2 bp-AG insertion mutant had a nuclear localization, compromised the transferrin uptake and strongly induced apoptosis. The foci formation, which might not predict the rest of the phenotypes, appeared to require both the leucine zipper and ubiquitin binding domains of the optineurin sequence. Interactions of optineurin with proteins including Rab8, myosin VI, huntingtin and transferrin receptor might directly determine whether the Golgi and protein trafficking phenotypes would be manifested. Examination of mutants and deletion fragments located at various sites of optineurin gene provide clues as to what regions of the gene may play a critical role in the development of pathologic consequences.
Collapse
Affiliation(s)
- Sanja Turturro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Beatrice Yjt Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| |
Collapse
|
61
|
Bruinsma W, Macurek L, Freire R, Lindqvist A, Medema RH. Bora and Aurora-A continue to activate Plk1 in mitosis. J Cell Sci 2014; 127:801-11. [PMID: 24338364 DOI: 10.1242/jcs.137216] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polo-like kinase-1 (Plk1) is required for proper cell division. Activation of Plk1 requires phosphorylation on a conserved threonine in the T-loop of the kinase domain (T210). Plk1 is first phosphorylated on T210 in G2 phase by the kinase Aurora-A, in concert with its cofactor Bora. However, Bora was shown to be degraded prior to entry into mitosis, and it is currently unclear how Plk1 activity is sustained in mitosis. Here we show that the Bora-Aurora-A complex remains the major activator of Plk1 in mitosis. We show that a small amount of Aurora-A activity is sufficient to phosphorylate and activate Plk1 in mitosis. In addition, a fraction of Bora is retained in mitosis, which is essential for continued Aurora-A-dependent T210 phosphorylation of Plk1. We find that once Plk1 is activated, minimal amounts of the Bora-Aurora-A complex are sufficient to sustain Plk1 activity. Thus, the activation of Plk1 by Aurora-A may function as a bistable switch; highly sensitive to inhibition of Aurora-A in its initial activation, but refractory to fluctuations in Aurora-A activity once Plk1 is fully activated. This provides a cell with robust Plk1 activity once it has committed to mitosis.
Collapse
Affiliation(s)
- Wytse Bruinsma
- Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
62
|
Valori CF, Brambilla L, Martorana F, Rossi D. The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci 2014; 71:287-97. [PMID: 23912896 PMCID: PMC11113174 DOI: 10.1007/s00018-013-1429-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
Abstract
Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells. These observations not only have drawn attention to the physiopathological changes glial cells undergo during ALS progression, but they have moved the focus of the investigations from intrinsic defects and weakening of motor neurons to glia-neuron interactions. In this review, we summarize the growing body of evidence supporting the concept that different glial populations are critically involved in the dreadful chain of events leading to motor neuron sufferance and death in various forms of ALS. The outlined observations strongly suggest that glial cells can be the targets for novel therapeutic interventions in ALS.
Collapse
Affiliation(s)
- Chiara F. Valori
- Department of Neuropathology, German Center for Neurodegenerative Diseases (DZNE), Paul-Ehrlich-Strasse 17, 72076, Tübingen, Germany
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| | - Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
63
|
Munitic I, Torchia MLG, Meena NP, Zhu G, Li CC, Ashwell JD. Optineurin insufficiency impairs IRF3 but not NF-κB activation in immune cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:6231-40. [PMID: 24244017 PMCID: PMC3886234 DOI: 10.4049/jimmunol.1301696] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optineurin is a widely expressed polyubiquitin-binding protein that has been implicated in regulating cell signaling via its NF-κB essential modulator-homologous C-terminal ubiquitin (Ub)-binding region. Its functions are controversial, with in vitro studies finding that optineurin suppressed TNF-mediated NF-κB activation and virus-induced activation of IFN regulatory factor 3 (IRF3), whereas bone marrow-derived macrophages (BMDMs) from mice carrying an optineurin Ub-binding point mutation had normal TLR-mediated NF-κB activation and diminished IRF3 activation. We have generated a mouse model in which the entire Ub-binding C-terminal region is deleted (Optn(470T)). Akin to C-terminal optineurin mutations found in patients with certain neurodegenerative diseases, Optn(470T) was expressed at substantially lower levels than the native protein, allowing assessment not only of the lack of Ub binding, but also of protein insufficiency. Embryonic lethality with incomplete penetrance was observed for 129 × C57BL/6 Optn(470T/470T) mice, but after further backcrossing to C57BL/6, offspring viability was restored. Moreover, the mice that survived were indistinguishable from wild type littermates and had normal immune cell distributions. Activation of NF-κB in Optn(470T) BMDM and BM-derived dendritic cells with TNF or via TLR4, T cells via the TCR, and B cells with LPS or anti-CD40 was normal. In contrast, optineurin and/or its Ub-binding function was necessary for optimal TANK binding kinase 1 and IRF3 activation, and both Optn(470T) BMDMs and bone marrow-derived dendritic cells had diminished IFN-β production upon LPS stimulation. Importantly, Optn(470T) mice produced less IFN-β upon LPS challenge. Therefore, endogenous optineurin is dispensable for NF-κB activation but necessary for optimal IRF3 activation in immune cells.
Collapse
Affiliation(s)
- Ivana Munitic
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Netra Pal Meena
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Guozhi Zhu
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Caiyi C. Li
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D. Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
64
|
He L, Zhou L, Wang T, Li Z, Tang X. Identification of potent virtual leads to design novel PLK1 inhibitors: pharmacophore modelling, virtual screening and molecular docking studies. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.758849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
65
|
Zhang G, Zhang Z, Liu Z. Polo-like kinase 1 is overexpressed in renal cancer and participates in the proliferation and invasion of renal cancer cells. Tumour Biol 2013; 34:1887-94. [PMID: 23494182 DOI: 10.1007/s13277-013-0732-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is an interesting molecule both as a biomarker and as a target for highly specific cancer therapy for several reasons. However, the functional significance of Plk1 in renal cell carcinoma (RCC) has not been reported. To explore whether Plk1 plays a general role in renal carcinoma, we examined the expression of Plk1 protein in renal urothelial carcinoma and cell lines, and analyzed the relationship between Plk1 protein expression and development, proliferation, and invasion of renal carcinoma. Immunohistochemisty was used to detect the expression of Plk1 in 100 renal carcinoma tissues. Moreover, the expression of Plk1 was analyzed by western blot and real-time polymerase chain reaction (PCR) in 80 renal carcinoma tissues and 20 normal renal tissues. CCK-8 assay, colony formation assay, and Transwell assay were used to examine proliferation and invasion ability of renal cancer cells with treatment of scytonemin (the specific inhibitor of Plk1). Statistical analysis was used to discuss the association between Plk1 expression and clinicopathologic parameters, and proliferation and invasion ability of renal cancer cells. Plk1 expressions were greater in cancerous tissues than in normal tissues (P<0.05). With an increase in tumor grade and stage, tumor metastasis, and recurrence, the level of Plk1 increased significantly in renal cancerous tissues. Moreover, there was a significantly higher expression of Plk1 in higher degree of malignant renal adenocarcinoma cell ACHN than that in renal adenocarcinoma cell 769-P. With increasing concentration of scytonemin, we found that cell proliferation and invasion activity decreased significantly. Plk1 expression status was closely correlated with important histopathologic characteristics (grades, stages, metastasis, and recurrence) of renal carcinomas. Furthermore, Plk1 played an important function on renal cancer cells' proliferation and invasion.
Collapse
Affiliation(s)
- Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang City, 110022, People's Republic of China.
| | | | | |
Collapse
|
66
|
The role of 'eat-me' signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol 2013; 16:339-48. [PMID: 23623150 DOI: 10.1016/j.mib.2013.03.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Selective autophagy is an important effector mechanism of cell autonomous immunity, in particular against invasive bacterial species. Anti-bacterial autophagy is activated by rupture of bacteria-containing vacuoles and exposure of bacteria to the cytosol. The autophagy cargo receptors p62, NDP52 and Optineurin detect incoming bacteria that have become associated with specific 'eat-me' signals such as Galectin-8 and poly-ubiquitin and feed them into the autophagy pathway via interactions with phagophore-associated ATG8-like proteins. Here we review recent progress in the field regarding the origin of bacteria-associated 'eat-me' signals, the specific roles of individual cargo receptors and how disrupting cargo receptor function may be important for bacterial evasion of autophagy.
Collapse
|
67
|
Substrate recognition in selective autophagy and the ubiquitin-proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:163-81. [PMID: 23545414 DOI: 10.1016/j.bbamcr.2013.03.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/21/2022]
Abstract
Dynamic protein turnover through regulated protein synthesis and degradation ensures cellular growth, proliferation, differentiation and adaptation. Eukaryotic cells utilize two mechanistically distinct but largely complementary systems - the 26S proteasome and the lysosome (or vacuole in yeast and plants) - to effectively target a wide range of proteins for degradation. The concerted action of the ubiquitination machinery and the 26S proteasome ensures the targeted and tightly regulated degradation of a subset of commonly short-lived cellular proteins. Autophagy is a distinct degradation pathway, which transports a highly heterogeneous set of cargos in dedicated vesicles, called autophagosomes, to the lysosome. There the cargo becomes degraded and its molecular building blocks are recycled. While general autophagy randomly engulfs portions of the cytosol, selective autophagy employs dedicated cargo adaptors to specifically enrich the forming autophagosomes for a certain type of cargo as a response to various intra- or extracellular signals. Selective autophagy targets a wide range of cargos including long-lived proteins and protein complexes, organelles, protein aggregates and even intracellular microbes. In this review we summarize available data on cargo recognition mechanisms operating in selective autophagy and the ubiquitin-proteasome system (UPS), and emphasize their differences and common themes. Moreover, we derive general regulatory principles underlying cargo recognition in selective autophagy, and describe the system-wide crosstalk between these two cellular protein degradation systems. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
|
68
|
Sirohi K, Chalasani MLS, Sudhakar C, Kumari A, Radha V, Swarup G. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy 2013; 9:510-27. [PMID: 23357852 DOI: 10.4161/auto.23458] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the autophagy receptor OPTN/optineurin are associated with the pathogenesis of glaucoma and amyotrophic lateral sclerosis, but the underlying molecular basis is poorly understood. The OPTN variant, M98K has been described as a risk factor for normal tension glaucoma in some ethnic groups. Here, we examined the consequence of the M98K mutation in affecting cellular functions of OPTN. Overexpression of M98K-OPTN induced death of retinal ganglion cells (RGC-5 cell line), but not of other neuronal and non-neuronal cells. Enhanced levels of the autophagy marker, LC3-II, a post-translationally modified form of LC3, in M98K-OPTN-expressing cells and the inability of an LC3-binding-defective M98K variant of OPTN to induce cell death, suggested that autophagy contributes to cell death. Knockdown of Atg5 reduced M98K-induced death of RGC-5 cells, further supporting the involvement of autophagy. Overexpression of M98K-OPTN enhanced autophagosome formation and potentiated the delivery of transferrin receptor to autophagosomes for degradation resulting in reduced cellular transferrin receptor levels. Coexpression of transferrin receptor or supplementation of media with an iron donor reduced M98K-induced cell death. OPTN complexes with RAB12, a GTPase involved in vesicle trafficking, and M98K variant shows enhanced colocalization with RAB12. Knockdown of Rab12 increased transferrin receptor level and reduced M98K-induced cell death. RAB12 is present in autophagosomes and knockdown of Rab12 resulted in reduced formation of autolysosomes during starvation-induced autophagy, implicating a role for RAB12 in autophagy. These results also show that transferrin receptor degradation and autophagy play a crucial role in RGC-5 cell death induced by M98K variant of OPTN.
Collapse
Affiliation(s)
- Kapil Sirohi
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
69
|
A method to resolve the composition of heterogeneous affinity-purified protein complexes assembled around a common protein by chemical cross-linking, gel electrophoresis and mass spectrometry. Nat Protoc 2012; 8:75-97. [PMID: 23237831 DOI: 10.1038/nprot.2012.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein complexes form, dissociate and re-form in order to perform specific cellular functions. In this two-pronged protocol, noncovalent protein complexes are initially isolated by affinity purification for subsequent identification of the components by liquid chromatography high-resolution mass spectrometry (LC-MS) on a hybrid LTQ Orbitrap Velos. In the second prong of the approach, the affinity-purification strategy includes a chemical cross-linking step to 'freeze' a series of concurrently formed, heterogeneous protein subcomplex species that are visualized by gel electrophoresis. This branch of the methodology amalgamates standard and well-practiced laboratory methods to reveal compositional changes that occur in protein complex architecture. By using mouse N-terminally tagged streptavidin-binding peptide-hemagglutinin-TANK-binding kinase 1 (SH-TBK1), we chemically cross-linked the affinity-purified complex of SH-TBK1 with the homobifunctional lysine-specific reagent bis(sulfosuccinimidyl) suberate (BS(3)), and we separated the resultant protein complexes by denaturation and by silver-stained one- and two-dimensional SDS-PAGE. We observed a range of cross-linked TBK1 complexes of variable pI and M(r) and confirmed them by immunoblotting. LC-MS analysis of in situ-digested cross-linked proteins shows differences in the composition of the TBK1 subcomplexes. The protocol is inherently simple and can be readily extended to the investigation of a range of protein complexes. From cell lysis to data generation by LC-MS, the protocol takes approximately 2.5 to 5.5 d to perform.
Collapse
|
70
|
Bruinsma W, Raaijmakers JA, Medema RH. Switching Polo-like kinase-1 on and off in time and space. Trends Biochem Sci 2012; 37:534-42. [PMID: 23141205 DOI: 10.1016/j.tibs.2012.09.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/16/2012] [Accepted: 09/21/2012] [Indexed: 01/24/2023]
Abstract
Polo-like kinase (Plk)1 executes several essential functions to promote cell division. These functions range from centrosome maturation in late G2 phase to the regulation of cytokinesis, which necessitates precise separation of Plk1-dependent substrate phosphorylation over time. Multiple levels of control are in place to ensure that Plk1-dependent phosphorylation of its various substrates is properly coordinated in time and space. Here, we review the current knowledge on the mechanisms that enforce the temporal and spatial control of Plk1 activity, and how this results in coordinated phosphorylation of its many different substrates. We also review a number of newly discovered functions of Plk1 that provide more insights into the spatiotemporal control of Plk1-dependent substrate phosphorylation.
Collapse
Affiliation(s)
- Wytse Bruinsma
- Department of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
71
|
Korac J, Schaeffer V, Kovacevic I, Clement AM, Jungblut B, Behl C, Terzic J, Dikic I. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci 2012. [PMID: 23178947 DOI: 10.1242/jcs.114926] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aggregation of misfolded proteins and the associated loss of neurons are considered a hallmark of numerous neurodegenerative diseases. Optineurin is present in protein inclusions observed in various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Huntington's disease, Alzheimer's disease, Parkinson's disease, Creutzfeld-Jacob disease and Pick's disease. Optineurin deletion mutations have also been described in ALS patients. However, the role of optineurin in mechanisms of protein aggregation remains unclear. In this report, we demonstrate that optineurin recognizes various protein aggregates via its C-terminal coiled-coil domain in a ubiquitin-independent manner. We also show that optineurin depletion significantly increases protein aggregation in HeLa cells and that morpholino-silencing of the optineurin ortholog in zebrafish causes the motor axonopathy phenotype similar to a zebrafish model of ALS. A more severe phenotype is observed when optineurin is depleted in zebrafish carrying ALS mutations. Furthermore, TANK1 binding kinase 1 (TBK1) is colocalized with optineurin on protein aggregates and is important in clearance of protein aggregates through the autophagy-lysosome pathway. TBK1 phosphorylates optineurin at serine 177 and regulates its ability to interact with autophagy modifiers. This study provides evidence for a ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates as well as additional relevance for TBK1 as an upstream regulator of the autophagic pathway.
Collapse
Affiliation(s)
- Jelena Korac
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Kachaner D, Génin P, Laplantine E, Weil R. Toward an integrative view of Optineurin functions. Cell Cycle 2012; 11:2808-18. [PMID: 22801549 DOI: 10.4161/cc.20946] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review highlights recent advances in our understanding of the mechanisms of Optineurin (Optn) action and its implication in diseases. Optn has emerged as a key player regulating various physiological processes, including membrane trafficking, protein secretion, cell division and host defense against pathogens. Furthermore, there is growing evidence for an association of Optn mutations with human diseases such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Optn functions depend on its precise subcellular localization and its interaction with other proteins. Here, we review the mechanisms that allow Optn to ensure a timely and spatially coordinated integration of different physiological processes and discuss how their deregulation may lead to different pathologies.
Collapse
Affiliation(s)
- David Kachaner
- Institut Pasteur, Unité de Signalisation Moléculaire et Activation Cellulaire, CNRS URA 2582, Paris, France
| | | | | | | |
Collapse
|
73
|
Kachaner D, Laplantine E, Génin P, Weil R. Optineurin: a new vision of cell division control. Cell Cycle 2012; 11:1481-2. [PMID: 22487679 DOI: 10.4161/cc.20116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|