51
|
Cucco F, Palumbo E, Camerini S, D’Alessio B, Quarantotti V, Casella ML, Rizzo IM, Cukrov D, Delia D, Russo A, Crescenzi M, Musio A. Separase prevents genomic instability by controlling replication fork speed. Nucleic Acids Res 2018; 46:267-278. [PMID: 29165708 PMCID: PMC5758895 DOI: 10.1093/nar/gkx1172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/26/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023] Open
Abstract
Proper chromosome segregation is crucial for preserving genomic integrity, and errors in this process cause chromosome mis-segregation, which may contribute to cancer development. Sister chromatid separation is triggered by Separase, an evolutionary conserved protease that cleaves the cohesin complex, allowing the dissolution of sister chromatid cohesion. Here we provide evidence that Separase participates in genomic stability maintenance by controlling replication fork speed. We found that Separase interacted with the replication licensing factors MCM2-7, and genome-wide data showed that Separase co-localized with MCM complex and cohesin. Unexpectedly, the depletion of Separase increased the fork velocity about 1.5-fold and caused a strong acetylation of cohesin's SMC3 subunit and altered checkpoint response. Notably, Separase silencing triggered genomic instability in both HeLa and human primary fibroblast cells. Our results show a novel mechanism for fork progression mediated by Separase and thus the basis for genomic instability associated with tumorigenesis.
Collapse
Affiliation(s)
- Francesco Cucco
- Institute for Biomedical and Genetic Research, National Research Council, Pisa, Italy
| | - Elisa Palumbo
- Department of Biology, University of Padua, Padua, Italy
| | - Serena Camerini
- Department of Cell Biology and Neurosciences, National Institute of Health, Rome, Italy
| | - Barbara D’Alessio
- Institute for Biomedical and Genetic Research, National Research Council, Pisa, Italy
| | - Valentina Quarantotti
- Institute for Biomedical and Genetic Research, National Research Council, Pisa, Italy
| | - Maria Luisa Casella
- Department of Cell Biology and Neurosciences, National Institute of Health, Rome, Italy
| | - Ilaria Maria Rizzo
- Institute for Biomedical and Genetic Research, National Research Council, Pisa, Italy
| | - Dubravka Cukrov
- Institute for Biomedical and Genetic Research, National Research Council, Pisa, Italy
| | - Domenico Delia
- Fondazione IRCCS Istituto Nazionale Tumori, Department of Experimental Oncology, Milan, Italy
| | - Antonella Russo
- Department of Biology, University of Padua, Padua, Italy
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Marco Crescenzi
- Department of Cell Biology and Neurosciences, National Institute of Health, Rome, Italy
| | - Antonio Musio
- Institute for Biomedical and Genetic Research, National Research Council, Pisa, Italy
- Tumour Institute of Tuscany, Florence, Italy
| |
Collapse
|
52
|
Murayama Y. DNA entry, exit and second DNA capture by cohesin: insights from biochemical experiments. Nucleus 2018; 9:492-502. [PMID: 30205748 PMCID: PMC6244732 DOI: 10.1080/19491034.2018.1516486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/28/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022] Open
Abstract
Cohesin is a ring-shaped, multi-subunit ATPase assembly that is fundamental to the spatiotemporal organization of chromosomes. The ring establishes a variety of chromosomal structures including sister chromatid cohesion and chromatin loops. At the core of the ring is a pair of highly conserved SMC (Structural Maintenance of Chromosomes) proteins, which are closed by the flexible kleisin subunit. In common with other essential SMC complexes including condensin and the SMC5-6 complex, cohesin encircles DNA inside its cavity, with the aid of HEAT (Huntingtin, elongation factor 3, protein phosphatase 2A and TOR) repeat auxiliary proteins. Through this topological embrace, cohesin is thought to establish a series of intra- and interchromosomal interactions by tethering more than one DNA molecule. Recent progress in biochemical reconstitution of cohesin provides molecular insights into how this ring complex topologically binds and mediates DNA-DNA interactions. Here, I review these studies and discuss how cohesin mediates such chromosome interactions.
Collapse
Affiliation(s)
- Yasuto Murayama
- Chromosome Biochemistry Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| |
Collapse
|
53
|
Bloom MS, Koshland D, Guacci V. Cohesin Function in Cohesion, Condensation, and DNA Repair Is Regulated by Wpl1p via a Common Mechanism in Saccharomyces cerevisiae. Genetics 2018; 208:111-124. [PMID: 29158426 PMCID: PMC5753852 DOI: 10.1534/genetics.117.300537] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/16/2017] [Indexed: 11/18/2022] Open
Abstract
Cohesin tethers DNA to mediate sister chromatid cohesion, chromosome condensation, and DNA repair. How the cell regulates cohesin to perform these distinct functions remains to be elucidated. One cohesin regulator, Wpl1p, was characterized in Saccharomyces cerevisiae as a promoter of efficient cohesion and an inhibitor of condensation. Wpl1p is also required for resistance to DNA-damaging agents. Here, we provide evidence that Wpl1p promotes the timely repair of DNA damage induced during S-phase. Previous studies have indicated that Wpl1p destabilizes cohesin's binding to DNA by modulating the interface between the cohesin subunits Mcd1p and Smc3p Our results suggest that Wpl1p likely modulates this interface to regulate all of cohesin's biological functions. Furthermore, we show that Wpl1p regulates cohesion and condensation through the formation of a functional complex with another cohesin-associated factor, Pds5p In contrast, Wpl1p regulates DNA repair independently of its interaction with Pds5p Together, these results suggest that Wpl1p regulates distinct biological functions of cohesin by Pds5p-dependent and -independent modulation of the Smc3p/Mcd1p interface.
Collapse
Affiliation(s)
- Michelle S Bloom
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
54
|
Frattini C, Villa-Hernández S, Pellicanò G, Jossen R, Katou Y, Shirahige K, Bermejo R. Cohesin Ubiquitylation and Mobilization Facilitate Stalled Replication Fork Dynamics. Mol Cell 2017; 68:758-772.e4. [PMID: 29129641 DOI: 10.1016/j.molcel.2017.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/11/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
Replication fork integrity is challenged in conditions of stress and protected by the Mec1/ATR checkpoint to preserve genome stability. Still poorly understood in fork protection is the role played by the structural maintenance of chromosomes (SMC) cohesin complex. We uncovered a role for the Rsp5Bul2 ubiquitin ligase in promoting survival to replication stress by preserving stalled fork integrity. Rsp5Bul2 physically interacts with cohesin and the Mec1 kinase, thus promoting checkpoint-dependent cohesin ubiquitylation and cohesin-mediated fork protection. Ubiquitylation mediated by Rsp5Bul2 promotes cohesin mobilization from chromatin neighboring stalled forks, likely by stimulating the Cdc48/p97 ubiquitin-selective segregase, and its timely association to nascent chromatids. This Rsp5Bul2 fork protection mechanism requires the Wpl1 cohesin mobilizer as well as the function of the Eco1 acetyltransferase securing sister chromatid entrapment. Our data indicate that ubiquitylation facilitates cohesin dynamic interfacing with replication forks within a mechanism preserving stalled-fork functional architecture.
Collapse
Affiliation(s)
- Camilla Frattini
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain; Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sara Villa-Hernández
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain; Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Grazia Pellicanò
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rachel Jossen
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Yuki Katou
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi Bunkyo-Ku, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi Bunkyo-Ku, Tokyo, Japan
| | - Rodrigo Bermejo
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain; Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
55
|
Zhang W, Yeung CHL, Wu L, Yuen KWY. E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae. eLife 2017; 6:28231. [PMID: 29058668 PMCID: PMC5699866 DOI: 10.7554/elife.28231] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022] Open
Abstract
Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1’s function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment. Most of the DNA in a cell is stored in structures called chromosomes. During every cell cycle, each cell needs to replicate its chromosomes, hold the two chromosome copies (also known as “sister chromatids”) together before cell division, and distribute them equally to the two new cells. Each step must be executed accurately otherwise the new cells will have extra or missing chromosomes – a condition that is seen in many cancer cells and that can cause embryos to die. Since these processes are so essential to life, they are highly similar in a range of species, from single-celled organisms such as yeast to multicellular organisms like humans. However, it was not clear when and how sister chromatids first join together, or how this process is linked to DNA replication. The DNA in the sister chromatids is wrapped around proteins called histones to form a structure known as chromatin. An enzyme called Bre1 plays roles in gene transcription and DNA replication and repair by adding ubiquitin molecules to a histone called H2B. Now, by using genetic, molecular and cell biological approaches to study baker and brewer yeast cells, Zhang et al. show that the activity of Bre1 helps to hold sister chromatids together. Specifically, Bre1 recruits proteins to the chromatin before and during DNA replication, which help to initiate replication and to establish cohesion between the sister chromatids. The ubiquitin molecule attached to H2B by Bre1 is also essential for establishing cohesion, acting as a mark that helps to link the two processes. In the future it will be worthwhile to investigate whether genetic mutations that prevent sister chromatids adhering to each other is a major cause of the chromosome abnormalities seen in cancer cells. This knowledge may be useful for diagnosing cancers. Drugs that prevent the activity of Bre1 and other proteins involved in holding together sister chromatids could also be developed as potential cancer treatments that kill cancer cells by causing instability in their number of chromosomes.
Collapse
Affiliation(s)
- Wei Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Liwen Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
56
|
Zhang W, Yeung CHL, Wu L, Yuen KWY. E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae. eLife 2017; 6:28231. [PMID: 29058668 DOI: 10.7554/elife.28231.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/22/2017] [Indexed: 05/25/2023] Open
Abstract
Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1's function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment.
Collapse
Affiliation(s)
- Wei Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Liwen Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
57
|
Increased LOH due to Defective Sister Chromatid Cohesion Is due Primarily to Chromosomal Aneuploidy and not Recombination. G3-GENES GENOMES GENETICS 2017; 7:3305-3315. [PMID: 28983067 PMCID: PMC5633381 DOI: 10.1534/g3.117.300091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss of heterozygosity (LOH) is an important factor in cancer, pathogenic fungi, and adaptation to changing environments. The sister chromatid cohesion process (SCC) suppresses aneuploidy and therefore whole chromosome LOH. SCC is also important to channel recombinational repair to sister chromatids, thereby preventing LOH mediated by allelic recombination. There is, however, insufficient information about the relative roles that the SCC pathway plays in the different modes of LOH. Here, we found that the cohesin mutation mcd1-1, and other mutations in SCC, differentially affect the various types of LOH. The greatest effect, by three orders of magnitude, was on whole chromosome loss (CL). In contrast, there was little increase in recombination-mediated LOH, even for telomeric markers. Some of the LOH events that were increased by SCC mutations were complex, i.e., they were the result of several chromosome transactions. Although these events were independent of POL32, the most parsimonious way to explain the formation of at least some of them was break-induced replication through the centromere. Interestingly, the mcd1-1 pol32Δ double mutant showed a significant reduction in the rate of CL in comparison with the mcd1-1 single mutant. Our results show that defects in SCC allow the formation of complex LOH events that, in turn, can promote drug or pesticide resistance in diploid microbes that are pathogenic to humans or plants.
Collapse
|
58
|
Litwin I, Bakowski T, Maciaszczyk-Dziubinska E, Wysocki R. The LSH/HELLS homolog Irc5 contributes to cohesin association with chromatin in yeast. Nucleic Acids Res 2017; 45:6404-6416. [PMID: 28383696 PMCID: PMC5499779 DOI: 10.1093/nar/gkx240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022] Open
Abstract
Accurate chromosome segregation is essential for every living cell as unequal distribution of chromosomes during cell division may result in genome instability that manifests in carcinogenesis and developmental disorders. Irc5 from Saccharomyces cerevisiae is a member of the conserved Snf2 family of ATP-dependent DNA translocases and its function is poorly understood. Here, we identify Irc5 as a novel interactor of the cohesin complex. Irc5 associates with Scc1 cohesin subunit and contributes to cohesin binding to chromatin. Disruption of IRC5 decreases cohesin levels at centromeres and chromosome arms, causing premature sister chromatid separation. Moreover, reduced cohesin occupancy at the rDNA region in cells lacking IRC5 leads to the loss of rDNA repeats. We also show that the translocase activity of Irc5 is required for its function in cohesion pathway. Finally, we demonstrate that in the absence of Irc5 both the level of chromatin-bound Scc2, a member of cohesin loading complex, and physical interaction between Scc1 and Scc2 are reduced. Our results suggest that Irc5 is an auxiliary factor that is involved in cohesin association with chromatin.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Tomasz Bakowski
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | | | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| |
Collapse
|
59
|
Branzei D, Szakal B. Building up and breaking down: mechanisms controlling recombination during replication. Crit Rev Biochem Mol Biol 2017; 52:381-394. [PMID: 28325102 DOI: 10.1080/10409238.2017.1304355] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The complete and faithful duplication of the genome is an essential prerequisite for proliferating cells to maintain genome integrity. This objective is greatly challenged by DNA damage encountered during replication, which causes fork stalling and in certain cases, fork breakage. DNA damage tolerance (DDT) pathways mitigate the effects on fork stability induced by replication fork stalling by mediating damage-bypass and replication fork restart. These DDT mechanisms, largely relying on homologous recombination (HR) and specialized polymerases, can however contribute to genome rearrangements and mutagenesis. There is a profound connection between replication and recombination: recombination proteins protect replication forks from nuclease-mediated degradation of the nascent DNA strands and facilitate replication completion in cells challenged by DNA damage. Moreover, in case of fork collapse and formation of double strand breaks (DSBs), the recombination factors present or recruited to the fork facilitate HR-mediated DSB repair, which is primarily error-free. Disruption of HR is inexorably linked to genome instability, but the premature activation of HR during replication often leads to genome rearrangements. Faithful replication necessitates the downregulation of HR and disruption of active RAD51 filaments at replication forks, but upon persistent fork stalling, building up of HR is critical for the reorganization of the replication fork and for filling-in of the gaps associated with discontinuous replication induced by DNA lesions. Here we summarize and reflect on our understanding of the mechanisms that either suppress recombination or locally enhance it during replication, and the principles that underlie this regulation.
Collapse
Affiliation(s)
- Dana Branzei
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| | - Barnabas Szakal
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| |
Collapse
|
60
|
Bot C, Pfeiffer A, Giordano F, Manjeera DE, Dantuma NP, Ström L. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage. J Cell Sci 2017; 130:1134-1146. [PMID: 28167679 PMCID: PMC5358341 DOI: 10.1242/jcs.197236] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Abstract
NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability.
Collapse
Affiliation(s)
- Christopher Bot
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm 171 77, Sweden
| | - Annika Pfeiffer
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm 171 77, Sweden
| | - Fosco Giordano
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm 171 77, Sweden
| | - Dharani E Manjeera
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm 171 77, Sweden
| | - Nico P Dantuma
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm 171 77, Sweden
| | - Lena Ström
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm 171 77, Sweden
| |
Collapse
|
61
|
Park YB, Hohl M, Padjasek M, Jeong E, Jin KS, Krężel A, Petrini JHJ, Cho Y. Eukaryotic Rad50 functions as a rod-shaped dimer. Nat Struct Mol Biol 2017; 24:248-257. [PMID: 28134932 PMCID: PMC5625350 DOI: 10.1038/nsmb.3369] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/05/2017] [Indexed: 11/08/2022]
Abstract
The Rad50 hook interface is crucial for assembly and various functions of the Mre11 complex. Previous analyses suggested that Rad50 molecules interact within (intracomplex) or between (intercomplex) dimeric complexes. In this study, we determined the structure of the human Rad50 hook and coiled-coil domains. The data suggest that the predominant structure is the intracomplex, in which the two parallel coiled coils proximal to the hook form a rod shape, and that a novel interface within the coiled-coil domains of Rad50 stabilizes the interaction of Rad50 protomers in the dimeric assembly. In yeast, removal of the coiled-coil interface compromised Tel1 activation without affecting DNA repair, while simultaneous disruption of that interface and the hook phenocopied a null mutation. The results demonstrate that the hook and coiled-coil interfaces coordinately promote intracomplex assembly and define the intracomplex as the functional form of the Mre11 complex.
Collapse
Affiliation(s)
- Young Bong Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Michał Padjasek
- Laboratory of Chemical Biology, University of Wrocław, Wrocław, Poland
| | - Eunyoung Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, South Korea
| | - Artur Krężel
- Laboratory of Chemical Biology, University of Wrocław, Wrocław, Poland
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
62
|
Forsburg SL, Shen KF. Centromere Stability: The Replication Connection. Genes (Basel) 2017; 8:genes8010037. [PMID: 28106789 PMCID: PMC5295031 DOI: 10.3390/genes8010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022] Open
Abstract
The fission yeast centromere, which is similar to metazoan centromeres, contains highly repetitive pericentromere sequences that are assembled into heterochromatin. This is required for the recruitment of cohesin and proper chromosome segregation. Surprisingly, the pericentromere replicates early in the S phase. Loss of heterochromatin causes this domain to become very sensitive to replication fork defects, leading to gross chromosome rearrangements. This review examines the interplay between components of DNA replication, heterochromatin assembly, and cohesin dynamics that ensures maintenance of genome stability and proper chromosome segregation.
Collapse
Affiliation(s)
- Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | - Kuo-Fang Shen
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| |
Collapse
|
63
|
Abstract
Cohesin is a large ring-shaped protein complex, conserved from yeast to human, which participates in most DNA transactions that take place in the nucleus. It mediates sister chromatid cohesion, which is essential for chromosome segregation and homologous recombination (HR)-mediated DNA repair. Together with architectural proteins and transcriptional regulators, such as CTCF and Mediator, respectively, it contributes to genome organization at different scales and thereby affects transcription, DNA replication, and locus rearrangement. Although cohesin is essential for cell viability, partial loss of function can affect these processes differently in distinct cell types. Mutations in genes encoding cohesin subunits and regulators of the complex have been identified in several cancers. Understanding the functional significance of these alterations may have relevant implications for patient classification, risk prediction, and choice of treatment. Moreover, identification of vulnerabilities in cancer cells harboring cohesin mutations may provide new therapeutic opportunities and guide the design of personalized treatments.
Collapse
Affiliation(s)
- Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| |
Collapse
|
64
|
Seeber A, Hegnauer AM, Hustedt N, Deshpande I, Poli J, Eglinger J, Pasero P, Gut H, Shinohara M, Hopfner KP, Shimada K, Gasser SM. RPA Mediates Recruitment of MRX to Forks and Double-Strand Breaks to Hold Sister Chromatids Together. Mol Cell 2016; 64:951-966. [PMID: 27889450 DOI: 10.1016/j.molcel.2016.10.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/29/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
The Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks (DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, abrogates MRX recruitment to both types of DNA damage. The rfa1 mutation is functionally epistatic with loss of any of the MRX subunits for survival of replication fork stress or DSB recovery, although it does not compromise end-resection. High-resolution imaging shows that either the rfa1-t11 or the rad50Δ mutation lets stalled replication forks collapse and allows the separation not only of opposing ends but of sister chromatids at breaks. Given that cohesin loss does not provoke visible sister separation as long as the RPA-MRX contacts are intact, we conclude that MRX also serves as a structural linchpin holding sister chromatids together at breaks.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Anna Maria Hegnauer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicole Hustedt
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Ishan Deshpande
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UPR 1142, 34090 Montpellier, France
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
65
|
Methods to Study the Atypical Roles of DNA Repair and SMC Proteins in Gene Silencing. Methods Mol Biol 2016. [PMID: 27797079 DOI: 10.1007/978-1-4939-6545-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Silenced heterochromatin influences all nuclear processes including chromosome structure, nuclear organization, transcription, replication, and repair. Proteins that mediate silencing affect all of these nuclear processes. Similarly proteins involved in replication, repair, and chromosome structure play a role in the formation and maintenance of silenced heterochromatin. In this chapter we describe a handful of simple tools and methods that can be used to study the atypical role of proteins in gene silencing.
Collapse
|
66
|
Replication-Associated Recombinational Repair: Lessons from Budding Yeast. Genes (Basel) 2016; 7:genes7080048. [PMID: 27548223 PMCID: PMC4999836 DOI: 10.3390/genes7080048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms.
Collapse
|
67
|
Moradi-Fard S, Sarthi J, Tittel-Elmer M, Lalonde M, Cusanelli E, Chartrand P, Cobb JA. Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE. PLoS Genet 2016; 12:e1006268. [PMID: 27564449 PMCID: PMC5001636 DOI: 10.1371/journal.pgen.1006268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/28/2016] [Indexed: 11/19/2022] Open
Abstract
SMC proteins constitute the core members of the Smc5/6, cohesin and condensin complexes. We demonstrate that Smc5/6 is present at telomeres throughout the cell cycle and its association with chromosome ends is dependent on Nse3, a subcomponent of the complex. Cells harboring a temperature sensitive mutant, nse3-1, are defective in Smc5/6 localization to telomeres and have slightly shorter telomeres. Nse3 interacts physically and genetically with two Rap1-binding factors, Rif2 and Sir4. Reduction in telomere-associated Smc5/6 leads to defects in telomere clustering, dispersion of the silencing factor, Sir4, and a loss in transcriptional repression for sub-telomeric genes and non-coding telomeric repeat-containing RNA (TERRA). SIR4 recovery at telomeres is reduced in cells lacking Smc5/6 functionality and vice versa. However, nse3-1/ sir4 Δ double mutants show additive defects for telomere shortening and TPE indicating the contribution of Smc5/6 to telomere homeostasis is only in partial overlap with SIR factor silencing. These findings support a role for Smc5/6 in telomere maintenance that is separate from its canonical role(s) in HR-mediated events during replication and telomere elongation.
Collapse
Affiliation(s)
- Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Sarthi
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mireille Tittel-Elmer
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maxime Lalonde
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Emilio Cusanelli
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Pascal Chartrand
- Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Jennifer A. Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
68
|
Gelot C, Guirouilh-Barbat J, Lopez BS. The cohesin complex prevents the end-joining of distant DNA double-strand ends in S phase: Consequences on genome stability maintenance. Nucleus 2016; 7:339-45. [PMID: 27326661 DOI: 10.1080/19491034.2016.1194159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
DNA double-strand break (DSB) repair is essential for genome stability maintenance, but the joining of distant DNA double strand ends (DSEs) inevitably leads to genome rearrangements. Therefore, DSB repair should be tightly controlled to secure genome stability while allowing genetic variability. Tethering of the proximal ends of a 2-ended DSB limits their mobility, protecting thus against their joining with a distant DSE. However, replication stress generates DSBs with only one DSE, on which tethering is impossible. Consistently, we demonstrated that the joining of 2 DSBs only 3.2 kb apart is repressed in the S, but not the G1, phase, revealing an additional mechanism limiting DNA ends mobility in S phase. The cohesin complex, by maintaining the 2 sister chromatids linked, limits DSEs mobility and thus represses the joining of distant DSEs, while allowing that of adjacent DSEs. At the genome scale, the cohesin complex protects against deletions, inversions, translocations and chromosome fusion.
Collapse
Affiliation(s)
- Camille Gelot
- a CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer , Villejuif , France
| | - Josée Guirouilh-Barbat
- a CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer , Villejuif , France
| | - Bernard S Lopez
- a CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer , Villejuif , France
| |
Collapse
|
69
|
Lin J, Countryman P, Chen H, Pan H, Fan Y, Jiang Y, Kaur P, Miao W, Gurgel G, You C, Piehler J, Kad NM, Riehn R, Opresko PL, Smith S, Tao YJ, Wang H. Functional interplay between SA1 and TRF1 in telomeric DNA binding and DNA-DNA pairing. Nucleic Acids Res 2016; 44:6363-76. [PMID: 27298259 PMCID: PMC5291270 DOI: 10.1093/nar/gkw518] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA–DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA–DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding.
Collapse
Affiliation(s)
- Jiangguo Lin
- School of Bioscience and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Preston Countryman
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Haijiang Chen
- Department of BioSciences, Rice University, Houston, TX 77005, USA Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Yanlin Fan
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Yunyun Jiang
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Wang Miao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Gisele Gurgel
- Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Changjiang You
- Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Robert Riehn
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, PA 15213, USA
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| |
Collapse
|
70
|
Abstract
Genome duplication is coupled with DNA damage tolerance (DDT) and chromatin structural changes. Recently we reported that mutations in Primase subunits or factors that bridge Polα/Primase with the replicative helicase, Ctf4, caused abnormal usage of DDT pathways, negatively influenced sister chromatid cohesion (SCC), and associated with increased fork reversal.1 We also found that cohesin, which is paradigmatic for SCC, facilitates recombination-mediated DDT. However, only the recombination defects of cohesin, but not of cohesion-defective Polα/Primase/Ctf4 mutants, were rescued by artificial tethering of sister chromatids. Genetic tests and electron microscopy analysis of replication intermediates made us propose that management of single-stranded DNA forming proximal to the fork is a critical determinant of chromosome and replication fork structure, and influences DDT pathway choice. Here we discuss the implications of our findings for understanding DDT regulation and cohesion establishment during replication, and outline directions to rationalize the relationship between these chromosome metabolism processes.
Collapse
Affiliation(s)
- Dana Branzei
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| | - Barnabas Szakal
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| |
Collapse
|
71
|
Abstract
The faithful replication of eukaryotic chromosomal DNA occurs during S phase once per cell cycle. Replication is highly regulated and is initiated at special structures, termed origins, from which replication forks move out bidirectionally. A wide variety of techniques have been developed to study the features and kinetics of replication. Many of these, such as those based on flow cytometry and two-dimensional and pulsed-field gel electrophoresis, give a population-level view of replication. However, an alternative approach, DNA fiber analysis, which was originally developed more than 50 years ago, has the advantage of revealing features of replication at the level of individual DNA fibers. Initially based on autoradiography, this technique has been superseded by immunofluorescence-based detection of incorporated halogenated thymidine analogs. Furthermore, derivations of this technique have been developed to distribute and stretch the labeled DNA fibers uniformly on optically clear surfaces. As described here, one such technique-DNA combing, in which DNA is combed onto silanized coverslips-has been used successfully to monitor replication fork progression and origin usage in budding yeast.
Collapse
|
72
|
Gelot C, Guirouilh-Barbat J, Le Guen T, Dardillac E, Chailleux C, Canitrot Y, Lopez BS. The Cohesin Complex Prevents the End Joining of Distant DNA Double-Strand Ends. Mol Cell 2016; 61:15-26. [PMID: 26687679 DOI: 10.1016/j.molcel.2015.11.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/25/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
The end joining of distant DNA double-strand ends (DSEs) can produce potentially deleterious rearrangements. We show that depletion of cohesion complex proteins specifically stimulates the end joining (both C-NHEJ and A-EJ) of distant, but not close, I-SceI-induced DSEs in S/G2 phases. At the genome level, whole-exome sequencing showed that ablation of RAD21 or Sororin produces large chromosomal rearrangements (translocation, duplication, deletion). Moreover, cytogenetic analysis showed that RAD21 silencing leads to the formation of chromosome fusions synergistically with replication stress, which generates distant single-ended DSEs. These data reveal a role for the cohesin complex in protecting against genome rearrangements arising from the ligation of distant DSEs in S/G2 phases (both long-range DSEs and those that are only a few kilobases apart), while keeping end joining fully active for close DSEs. Therefore, this role likely involves limitation of DSE motility specifically in S phase, rather than inhibition of the end-joining machinery itself.
Collapse
Affiliation(s)
- Camille Gelot
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Josée Guirouilh-Barbat
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Tangui Le Guen
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Elodie Dardillac
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Catherine Chailleux
- Université de Toulouse UPS, CNRS UMR 5088, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), 31062 Toulouse, France
| | - Yvan Canitrot
- Université de Toulouse UPS, CNRS UMR 5088, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), 31062 Toulouse, France
| | - Bernard S Lopez
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
73
|
Gupta P, Lavagnolli T, Mira-Bontenbal H, Fisher AG, Merkenschlager M. Cohesin's role in pluripotency and reprogramming. Cell Cycle 2015; 15:324-30. [PMID: 26701823 PMCID: PMC4943700 DOI: 10.1080/15384101.2015.1128593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022] Open
Abstract
Cohesin is required for ES cell self-renewal and iPS-mediated reprogramming of somatic cells. This may indicate a special role for cohesin in the regulation of pluripotency genes, perhaps by mediating long-range chromosomal interactions between gene regulatory elements. However, cohesin is also essential for genome integrity, and its depletion from cycling cells induces DNA damage responses. Hence, the failure of cohesin-depleted cells to establish or maintain pluripotency gene expression could be explained by a loss of long-range interactions or by DNA damage responses that undermine pluripotency gene expression. In recent work we began to disentangle these possibilities by analyzing reprogramming in the absence of cell division. These experiments showed that cohesin was not specifically required for reprogramming, and that the expression of most pluripotency genes was maintained when ES cells were acutely depleted of cohesin. Here we take this analysis to its logical conclusion by demonstrating that deliberately inflicted DNA damage - and the DNA damage that results from proliferation in the absence of cohesin - can directly interfere with pluripotency and reprogramming. The role of cohesin in pluripotency and reprogramming may therefore be best explained by essential cohesin functions in the cell cycle.
Collapse
Affiliation(s)
- Preksha Gupta
- Lymphocyte Development Group, MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, London, UK
| | - Thais Lavagnolli
- Lymphocyte Development Group, MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, London, UK
| | - Hegias Mira-Bontenbal
- Lymphocyte Development Group, MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, London, UK
| | - Amanda G. Fisher
- Lymphocyte Development Group, MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
74
|
Menolfi D, Delamarre A, Lengronne A, Pasero P, Branzei D. Essential Roles of the Smc5/6 Complex in Replication through Natural Pausing Sites and Endogenous DNA Damage Tolerance. Mol Cell 2015; 60:835-46. [PMID: 26698660 PMCID: PMC4691243 DOI: 10.1016/j.molcel.2015.10.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 02/07/2023]
Abstract
The essential functions of the conserved Smc5/6 complex remain elusive. To uncover its roles in genome maintenance, we established Saccharomyces cerevisiae cell-cycle-regulated alleles that enable restriction of Smc5/6 components to S or G2/M. Unexpectedly, the essential functions of Smc5/6 segregated fully and selectively to G2/M. Genetic screens that became possible with generated alleles identified processes that crucially rely on Smc5/6 specifically in G2/M: metabolism of DNA recombination structures triggered by endogenous replication stress, and replication through natural pausing sites located in late-replicating regions. In the first process, Smc5/6 modulates remodeling of recombination intermediates, cooperating with dissolution activities. In the second, Smc5/6 prevents chromosome fragility and toxic recombination instigated by prolonged pausing and the fork protection complex, Tof1-Csm3. Our results thus dissect Smc5/6 essential roles and reveal that combined defects in DNA damage tolerance and pausing site-replication cause recombination-mediated DNA lesions, which we propose to drive developmental and cancer-prone disorders. Cell-cycle-regulated alleles reveal Smc5/6-essential functions to segregate in G2/M Genetic screen with new hypomorphic allele identifies processes relying on Smc5/6 Smc5/6 acts on recombination structures triggered by endogenous replication stress Smc5/6 prevents fragility and mediates replication through natural pausing sites
Collapse
Affiliation(s)
- Demis Menolfi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Axel Delamarre
- IGH, Institute of Human Genetics CNRS UPR 1142, 141 rue de la Cardonille F-34396 Cedex 5, Montpellier, France
| | - Armelle Lengronne
- IGH, Institute of Human Genetics CNRS UPR 1142, 141 rue de la Cardonille F-34396 Cedex 5, Montpellier, France
| | - Philippe Pasero
- IGH, Institute of Human Genetics CNRS UPR 1142, 141 rue de la Cardonille F-34396 Cedex 5, Montpellier, France
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
75
|
Linking replication stress with heterochromatin formation. Chromosoma 2015; 125:523-33. [PMID: 26511280 PMCID: PMC4901112 DOI: 10.1007/s00412-015-0545-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/27/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
Abstract
The eukaryotic genome can be roughly divided into euchromatin and heterochromatin domains that are structurally and functionally distinct. Heterochromatin is characterized by its high compaction that impedes DNA transactions such as gene transcription, replication, or recombination. Beyond its role in regulating DNA accessibility, heterochromatin plays essential roles in nuclear architecture, chromosome segregation, and genome stability. The formation of heterochromatin involves special histone modifications and the recruitment and spreading of silencing complexes that impact the higher-order structures of chromatin; however, its molecular nature varies between different chromosomal regions and between species. Although heterochromatin has been extensively characterized, its formation and maintenance throughout the cell cycle are not yet fully understood. The biggest challenge for the faithful transmission of chromatin domains is the destabilization of chromatin structures followed by their reassembly on a novel DNA template during genomic replication. This destabilizing event also provides a window of opportunity for the de novo establishment of heterochromatin. In recent years, it has become clear that different types of obstacles such as tight protein-DNA complexes, highly transcribed genes, and secondary DNA structures could impede the normal progression of the replisome and thus have the potential to endanger the integrity of the genome. Multiple studies carried out in different model organisms have demonstrated the capacity of such replisome impediments to favor the formation of heterochromatin. Our review summarizes these reports and discusses the potential role of replication stress in the formation and maintenance of heterochromatin and the role that silencing proteins could play at sites where the integrity of the genome is compromised.
Collapse
|
76
|
Rahman S, Jones MJK, Jallepalli PV. Cohesin recruits the Esco1 acetyltransferase genome wide to repress transcription and promote cohesion in somatic cells. Proc Natl Acad Sci U S A 2015; 112:11270-5. [PMID: 26305936 PMCID: PMC4568707 DOI: 10.1073/pnas.1505323112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The cohesin complex links DNA molecules and plays key roles in the organization, expression, repair, and segregation of eukaryotic genomes. In vertebrates the Esco1 and Esco2 acetyltransferases both modify cohesin's Smc3 subunit to establish sister chromatid cohesion during S phase, but differ in their N-terminal domains and expression during development and across the cell cycle. Here we show that Esco1 and Esco2 also differ dramatically in their interaction with chromatin, as Esco1 is recruited by cohesin to over 11,000 sites, whereas Esco2 is infrequently enriched at REST/NRSF target genes. Esco1's colocalization with cohesin occurs throughout the cell cycle and depends on two short motifs (the A-box and B-box) present in and unique to all Esco1 orthologs. Deleting either motif led to the derepression of Esco1-proximal genes and functional uncoupling of cohesion from Smc3 acetylation. In contrast, other mutations that preserved Esco1's recruitment separated its roles in cohesion establishment and gene silencing. We conclude that Esco1 uses cohesin as both a substrate and a scaffold for coordinating multiple chromatin-based transactions in somatic cells.
Collapse
Affiliation(s)
- Sadia Rahman
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Mathew J K Jones
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
77
|
Inagaki A, Roset R, Petrini JHJ. Functions of the MRE11 complex in the development and maintenance of oocytes. Chromosoma 2015; 125:151-62. [PMID: 26232174 PMCID: PMC4734907 DOI: 10.1007/s00412-015-0535-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/12/2015] [Accepted: 07/14/2015] [Indexed: 12/22/2022]
Abstract
The MRE11 complex (MRE11, RAD50, and NBS1) is a central component of the DNA damage response, governing both double-strand break repair and DNA damage response signaling. To determine the functions of the MRE11 complex in the development and maintenance of oocytes, we analyzed ovarian phenotypes of mice harboring the hypomorphic Mre11ATLD1 allele. Mre11ATLD1/ATLD1 females exhibited premature oocyte elimination attributable to defects in homologous chromosome pairing and double-strand break repair during meiotic prophase. Other aspects of meiotic progression, including attachment of telomeres to the nuclear envelope and recruitment of RAD21L, a component of the meiotic cohesin complex to the synaptonemal complex, were normal. Unlike Dmc1−/− and Trp13Gt/Gt mice which exhibit comparable defects in double-strand break repair and oocyte depletion by 5 days post-partum, we found that oocyte attrition occurred by 12 weeks in Mre11ATLD1/ATLD1. Disruption of the oocyte checkpoint pathway governed by Chk2 gene further enhanced the survival of Mre11ATLD1/ATLD1 follicles. Together our data suggest that the MRE11 complex influences the elimination of oocytes with unrepaired meiotic double-strand breaks post-natally, in addition to its previously described role in double-strand break repair and homologous synapsis during female meiosis.
Collapse
Affiliation(s)
- Akiko Inagaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Ramon Roset
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
- Institut de Recerca Biomèdica de Lleida, 25198, Lleida, Spain
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA.
- Weill Graduate School of Medical Sciences, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
78
|
Sand LGL, Szuhai K, Hogendoorn PCW. Sequencing Overview of Ewing Sarcoma: A Journey across Genomic, Epigenomic and Transcriptomic Landscapes. Int J Mol Sci 2015; 16:16176-215. [PMID: 26193259 PMCID: PMC4519945 DOI: 10.3390/ijms160716176] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
Ewing sarcoma is an aggressive neoplasm occurring predominantly in adolescent Caucasians. At the genome level, a pathognomonic EWSR1-ETS translocation is present. The resulting fusion protein acts as a molecular driver in the tumor development and interferes, amongst others, with endogenous transcription and splicing. The Ewing sarcoma cell shows a poorly differentiated, stem-cell like phenotype. Consequently, the cellular origin of Ewing sarcoma is still a hot discussed topic. To further characterize Ewing sarcoma and to further elucidate the role of EWSR1-ETS fusion protein multiple genome, epigenome and transcriptome level studies were performed. In this review, the data from these studies were combined into a comprehensive overview. Presently, classical morphological predictive markers are used in the clinic and the therapy is dominantly based on systemic chemotherapy in combination with surgical interventions. Using sequencing, novel predictive markers and candidates for immuno- and targeted therapy were identified which were summarized in this review.
Collapse
Affiliation(s)
- Laurens G L Sand
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | - Pancras C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| |
Collapse
|
79
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
80
|
Kondratova A, Watanabe T, Marotta M, Cannon M, Segall AM, Serre D, Tanaka H. Replication fork integrity and intra-S phase checkpoint suppress gene amplification. Nucleic Acids Res 2015; 43:2678-90. [PMID: 25672394 PMCID: PMC4357702 DOI: 10.1093/nar/gkv084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene amplification is a phenotype-causing form of chromosome instability and is initiated by DNA double-strand breaks (DSBs). Cells with mutant p53 lose G1/S checkpoint and are permissive to gene amplification. In this study we show that mammalian cells become proficient for spontaneous gene amplification when the function of the DSB repair protein complex MRN (Mre11/Rad50/Nbs1) is impaired. Cells with impaired MRN complex experienced severe replication stress and gained substrates for gene amplification during replication, as evidenced by the increase of replication-associated single-stranded breaks that were converted to DSBs most likely through replication fork reversal. Impaired MRN complex directly compromised ATM/ATR-mediated checkpoints and allowed cells to progress through cell cycle in the presence of DSBs. Such compromised intra-S phase checkpoints promoted gene amplification independently from mutant p53. Finally, cells adapted to endogenous replication stress by globally suppressing genes for DNA replication and cell cycle progression. Our results indicate that the MRN complex suppresses gene amplification by stabilizing replication forks and by securing DNA damage response to replication-associated DSBs.
Collapse
Affiliation(s)
- Anna Kondratova
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Takaaki Watanabe
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Michael Marotta
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Matthew Cannon
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Anca M Segall
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| |
Collapse
|
81
|
Fumasoni M, Zwicky K, Vanoli F, Lopes M, Branzei D. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 Complex. Mol Cell 2015; 57:812-823. [PMID: 25661486 PMCID: PMC4352764 DOI: 10.1016/j.molcel.2014.12.038] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/15/2014] [Accepted: 12/22/2014] [Indexed: 01/02/2023]
Abstract
Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypass by template switching (TS) and have reduced sister chromatid cohesion. The decrease in error-free DDT is accompanied by increased usage of mutagenic DDT, fork reversal, and higher rates of genome rearrangements mediated by faulty strand annealing. Notably, the DDT defects of Polα/Primase/Ctf4 mutants are not the consequence of increased sister chromatid distance, but are instead caused by altered single-stranded DNA metabolism and abnormal replication fork topology. We propose that error-free TS is driven by timely replicative helicase-coupled re-priming. Defects in this event impact on replication fork architecture and sister chromatid proximity, and represent a frequent source of chromosome lesions upon replication dysfunctions. Polα/Primase and cohesin support damage tolerance and sister chromatid proximity Artificial cohesion bypasses cohesin, but not Polα/Primase role in recombination Defects in Polα/Primase cause faulty strand annealing and reversed fork formation Altered ssDNA metabolism underlies Polα/Primase mutants damage tolerance defects
Collapse
Affiliation(s)
- Marco Fumasoni
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Katharina Zwicky
- Institute of Molecular Cancer Research, University of Zurich, CH-8057, Zurich, Switzerland
| | - Fabio Vanoli
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, CH-8057, Zurich, Switzerland
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
82
|
Interdependence of the rad50 hook and globular domain functions. Mol Cell 2015; 57:479-91. [PMID: 25601756 DOI: 10.1016/j.molcel.2014.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 12/08/2014] [Indexed: 11/24/2022]
Abstract
Rad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double-strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end joining, and DNA double-strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled-coil and globular ATPase domains, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions.
Collapse
|
83
|
Lavagnolli T, Gupta P, Hörmanseder E, Mira-Bontenbal H, Dharmalingam G, Carroll T, Gurdon JB, Fisher AG, Merkenschlager M. Initiation and maintenance of pluripotency gene expression in the absence of cohesin. Genes Dev 2015; 29:23-38. [PMID: 25561493 PMCID: PMC4281562 DOI: 10.1101/gad.251835.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
Abstract
Cohesin is implicated in establishing and maintaining pluripotency. Whether this is because of essential cohesin functions in the cell cycle or in gene regulation is unknown. Here we tested cohesin's contribution to reprogramming in systems that reactivate the expression of pluripotency genes in the absence of proliferation (embryonic stem [ES] cell heterokaryons) or DNA replication (nuclear transfer). Contrary to expectations, cohesin depletion enhanced the ability of ES cells to initiate somatic cell reprogramming in heterokaryons. This was explained by increased c-Myc (Myc) expression in cohesin-depleted ES cells, which promoted DNA replication-dependent reprogramming of somatic fusion partners. In contrast, cohesin-depleted somatic cells were poorly reprogrammed in heterokaryons, due in part to defective DNA replication. Pluripotency gene induction was rescued by Myc, which restored DNA replication, and by nuclear transfer, where reprogramming does not require DNA replication. These results redefine cohesin's role in pluripotency and reveal a novel function for Myc in promoting the replication-dependent reprogramming of somatic nuclei.
Collapse
Affiliation(s)
- Thais Lavagnolli
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Preksha Gupta
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Eva Hörmanseder
- Wellcome Trust, Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom
| | - Hegias Mira-Bontenbal
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Gopuraja Dharmalingam
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Thomas Carroll
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - John B Gurdon
- Wellcome Trust, Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, United Kingdom; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 ONN, United Kingdom;
| |
Collapse
|
84
|
Gatei M, Kijas AW, Biard D, Dörk T, Lavin MF. RAD50 phosphorylation promotes ATR downstream signaling and DNA restart following replication stress. Hum Mol Genet 2014; 23:4232-48. [PMID: 24694934 DOI: 10.1093/hmg/ddu141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The MRE11/RAD50/NBN (MRN) complex plays a key role in detecting DNA double-strand breaks, recruiting and activating ataxia-telangiectasia mutated and in processing the breaks. Members of this complex also act as adaptor molecules for downstream signaling to the cell cycle and other cellular processes. Somewhat more controversial are the results to support a role for MRN in the ataxia-telangiectasia and Rad3-related (ATR) activation and signaling. We provide evidence that RAD50 is required for ATR activation in mammalian cells in response to DNA replication stress. It is in turn phosphorylated at a specific site (S635) by ATR, which is required for ATR signaling through Chk1 and other downstream substrates. We find that RAD50 phosphorylation is essential for DNA replication restart by promoting loading of cohesin at these sites. We also demonstrate that replication stress-induced RAD50 phosphorylation is functionally significant for cell survival and cell cycle checkpoint activation. These results highlight the importance of the adaptor role for a member of the MRN complex in all aspects of the response to DNA replication stress.
Collapse
Affiliation(s)
- Magtouf Gatei
- Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Amanda W Kijas
- Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Denis Biard
- CEA, DSV/iMETI/SEPIA; BP6, 92265 Fontenay-aux-Roses Cedex, France
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Gynaecology Research Unit, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany and
| | - Martin F Lavin
- Radiation Biology and Oncology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia Centre for Clinical Research, University of Queensland, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston, QLD 4029, Australia
| |
Collapse
|
85
|
Solomon DA, Kim JS, Waldman T. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance. BMB Rep 2014; 47:299-310. [PMID: 24856830 PMCID: PMC4163871 DOI: 10.5483/bmbrep.2014.47.6.092] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 12/30/2022] Open
Abstract
Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations.
Collapse
MESH Headings
- Carcinogenesis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Humans
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Urologic Neoplasms/genetics
- Urologic Neoplasms/metabolism
- Urologic Neoplasms/pathology
- Cohesins
Collapse
Affiliation(s)
- David A. Solomon
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Jung-Sik Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, United States
| | - Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, United States
| |
Collapse
|
86
|
Lu S, Lee KK, Harris B, Xiong B, Bose T, Saraf A, Hattem G, Florens L, Seidel C, Gerton JL. The cohesin acetyltransferase Eco1 coordinates rDNA replication and transcription. EMBO Rep 2014; 15:609-17. [PMID: 24631914 PMCID: PMC4210108 DOI: 10.1002/embr.201337974] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/13/2022] Open
Abstract
Eco1 is the acetyltransferase that establishes sister-chromatid cohesion during DNA replication. A budding yeast strain with an eco1 mutation that genocopies Roberts syndrome has reduced ribosomal DNA (rDNA) transcription and a transcriptional signature of starvation. We show that deleting FOB1--a gene that encodes a replication fork-blocking protein specific for the rDNA region--rescues rRNA production and partially rescues transcription genome-wide. Further studies show that deletion of FOB1 corrects the genome-wide replication defects, nucleolar structure, and rDNA segregation that occur in the eco1 mutant. Our study highlights that the presence of cohesin at the rDNA locus has a central role in controlling global DNA replication and gene expression.
Collapse
Affiliation(s)
- Shuai Lu
- Stowers Institute for Medical ResearchKansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas City, KS, USA
| | - Kenneth K Lee
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Bethany Harris
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Bo Xiong
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Tania Bose
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Anita Saraf
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Gaye Hattem
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | | | - Chris Seidel
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical ResearchKansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas City, KS, USA
| |
Collapse
|
87
|
Bailey ML, O'Neil NJ, van Pel DM, Solomon DA, Waldman T, Hieter P. Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition. Mol Cancer Ther 2014; 13:724-32. [PMID: 24356817 PMCID: PMC4130349 DOI: 10.1158/1535-7163.mct-13-0749] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent data have identified STAG2, a core subunit of the multifunctional cohesin complex, as a highly recurrently mutated gene in several types of cancer. We sought to identify a therapeutic strategy to selectively target cancer cells harboring inactivating mutations of STAG2 using two independent pairs of isogenic glioblastoma cell lines containing either an endogenous mutant STAG2 allele or a wild-type STAG2 allele restored by homologous recombination. We find that mutations in STAG2 are associated with significantly increased sensitivity to inhibitors of the DNA repair enzyme PARP. STAG2-mutated, PARP-inhibited cells accumulated in G2 phase and had a higher percentage of micronuclei, fragmented nuclei, and chromatin bridges compared with wild-type STAG2 cells. We also observed more 53BP1 foci in STAG2-mutated glioblastoma cells, suggesting that these cells have defects in DNA repair. Furthermore, cells with mutations in STAG2 were more sensitive than cells with wild-type STAG2 when PARP inhibitors were used in combination with DNA-damaging agents. These data suggest that PARP is a potential target for tumors harboring inactivating mutations in STAG2, and strongly recommend that STAG2 status be determined and correlated with therapeutic response to PARP inhibitors, both prospectively and retrospectively, in clinical trials.
Collapse
Affiliation(s)
- Melanie L Bailey
- Corresponding Author: Philip Hieter, Michael Smith Laboratories, 2185 East Mall, Room 323, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4.
| | | | | | | | | | | |
Collapse
|
88
|
Covo S, Puccia CM, Argueso JL, Gordenin DA, Resnick MA. The sister chromatid cohesion pathway suppresses multiple chromosome gain and chromosome amplification. Genetics 2014; 196:373-84. [PMID: 24298060 PMCID: PMC3914611 DOI: 10.1534/genetics.113.159202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
Gain or loss of chromosomes resulting in aneuploidy can be important factors in cancer and adaptive evolution. Although chromosome gain is a frequent event in eukaryotes, there is limited information on its genetic control. Here we measured the rates of chromosome gain in wild-type yeast and sister chromatid cohesion (SCC) compromised strains. SCC tethers the newly replicated chromatids until anaphase via the cohesin complex. Chromosome gain was measured by selecting and characterizing copper-resistant colonies that emerged due to increased copies of the metallothionein gene CUP1. Although all defective SCC diploid strains exhibited increased rates of chromosome gain, there were 15-fold differences between them. Of all mutants examined, a hypomorphic mutation at the cohesin complex caused the highest rate of chromosome gain while disruption of WPL1, an important regulator of SCC and chromosome condensation, resulted in the smallest increase in chromosome gain. In addition to defects in SCC, yeast cell type contributed significantly to chromosome gain, with the greatest rates observed for homozygous mating-type diploids, followed by heterozygous mating type, and smallest in haploids. In fact, wpl1-deficient haploids did not show any difference in chromosome gain rates compared to wild-type haploids. Genomic analysis of copper-resistant colonies revealed that the "driver" chromosome for which selection was applied could be amplified to over five copies per diploid cell. In addition, an increase in the expected driver chromosome was often accompanied by a gain of a small number of other chromosomes. We suggest that while chromosome gain due to SCC malfunction can have negative effects through gene imbalance, it could also facilitate opportunities for adaptive changes. In multicellular organisms, both factors could lead to somatic diseases including cancer.
Collapse
Affiliation(s)
- Shay Covo
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Christopher M. Puccia
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Dmitry A. Gordenin
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Michael A. Resnick
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
89
|
White NM, Feng FY, Maher CA. Recurrent rearrangements in prostate cancer: causes and therapeutic potential. Curr Drug Targets 2014; 14:450-9. [PMID: 23410129 DOI: 10.2174/1389450111314040006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/13/2012] [Accepted: 02/06/2013] [Indexed: 11/22/2022]
Abstract
DNA damage and genetic rearrangements are hallmarks of cancer. However, gene fusions as driver mutations in cancer have classically been a distinction in leukemia and other rare instances until recently with the discovery of gene fusion events occurring in 50 to 75% of prostate cancer patients. The discovery of the TMPRSS2-ERG fusion sparked an onslaught of discovery and innovation resulting in a delineation of prostate cancer via a molecular signature of gene fusion events. The increased commonality of high-throughput sequencing data coupled with improved bioinformatics approaches not only elucidated the molecular underpinnings of prostate cancer progression, but the mechanisms of gene fusion biogenesis. Interestingly, the androgen receptor (AR), already known to play a significant role in prostate cancer tumorigenesis, has recently been implicated in the processes resulting in gene fusions by inducing the spatial proximity of genes involved in rearrangements, promoting the formation of double-strand DNA breaks (DSB), and facilitating the recruitment of proteins for non-homologous end-joining (NHEJ). Our increased understanding of the mechanisms inducing genomic instability may lead to improved diagnostic and therapeutic strategies. To date, the majority of prostate cancer patients can be molecularly stratified based on their gene fusion status thereby increasing the potential for tailoring more specific and effective therapies.
Collapse
Affiliation(s)
- Nicole M White
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
90
|
Schröder-Heurich B, Wieland B, Lavin MF, Schindler D, Dörk T. Protective role of RAD50 on chromatin bridges during abnormal cytokinesis. FASEB J 2013; 28:1331-41. [PMID: 24344331 DOI: 10.1096/fj.13-236984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Faithful chromosome segregation is required for preserving genomic integrity. Failure of this process may entail chromatin bridges preventing normal cytokinesis. To test whether RAD50, a protein normally involved in DNA double-strand break repair, is involved in abnormal cytokinesis and formation of chromatin bridges, we used immunocytochemical and protein interaction assays. RAD50 localizes to chromatin bridges during aberrant cytokinesis and subsequent stages of the cell cycle, either decorating the entire bridge or focally accumulating at the midbody zone. Ionizing radiation led to an ∼4-fold increase in the rate of chromatin bridges in an ataxia telangiectatica mutated (ATM)-dependent manner in human RAD50-proficient fibroblasts but not in RAD50-deficient cells. Cells with a RAD50-positive chromatin bridge were able to continue cell cycling and to progress through S phase (44%), whereas RAD50 knockdown caused a deficiency in chromatin bridges as well as an ∼4-fold prolonged duration of mitosis. RAD50 colocalized and directly interacted with Aurora B kinase and phospho-histone H3, and Aurora B kinase inhibition led to a deficiency in RAD50-positive bridges. Based on these observations, we propose that RAD50 is a crucial factor for the stabilization and shielding of chromatin bridges. Our study provides evidence for a hitherto unknown role of RAD50 in abnormal cytokinesis.
Collapse
Affiliation(s)
- Bianca Schröder-Heurich
- 1Hannover Medical School, Gynaecology Research Unit (OE 6411), Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
91
|
Hoang SA, Bekiranov S. The network architecture of the Saccharomyces cerevisiae genome. PLoS One 2013; 8:e81972. [PMID: 24349163 PMCID: PMC3857230 DOI: 10.1371/journal.pone.0081972] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
We propose a network-based approach for surmising the spatial organization of genomes from high-throughput interaction data. Our strategy is based on methods for inferring architectural features of networks. Specifically, we employ a community detection algorithm to partition networks of genomic interactions. These community partitions represent an intuitive interpretation of genomic organization from interaction data. Furthermore, they are able to recapitulate known aspects of the spatial organization of the Saccharomyces cerevisiae genome, such as the rosette conformation of the genome, the clustering of centromeres, as well as tRNAs, and telomeres. We also demonstrate that simple architectural features of genomic interaction networks, such as cliques, can give meaningful insight into the functional role of the spatial organization of the genome. We show that there is a correlation between inter-chromosomal clique size and replication timing, as well as cohesin enrichment. Together, our network-based approach represents an effective and intuitive framework for interpreting high-throughput genomic interaction data. Importantly, there is a great potential for this strategy, given the rich literature and extensive set of existing tools in the field of network analysis.
Collapse
Affiliation(s)
- Stephen A. Hoang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
92
|
Dion V, Kalck V, Seeber A, Schleker T, Gasser SM. Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep 2013; 14:984-91. [PMID: 24018421 PMCID: PMC3818071 DOI: 10.1038/embor.2013.142] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/24/2022] Open
Abstract
The regulation of chromatin mobility in response to DNA damage is important for homologous recombination in yeast. Anchorage reduces rates of recombination, whereas increased chromatin mobility correlates with more efficient homology search. Here we tracked the mobility and localization of spontaneous S-phase lesions bound by Rad52, and find that these foci have reduced movement, unlike enzymatically induced double-strand breaks. Moreover, spontaneous repair foci are positioned in the nuclear core, abutting the nucleolus. We show that cohesin and nucleolar integrity constrain the mobility of these foci, consistent with the notion that spontaneous, S-phase damage is preferentially repaired from the sister chromatid.
Collapse
Affiliation(s)
- Vincent Dion
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
| | - Véronique Kalck
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Thomas Schleker
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
93
|
Replication checkpoint: tuning and coordination of replication forks in s phase. Genes (Basel) 2013; 4:388-434. [PMID: 24705211 PMCID: PMC3924824 DOI: 10.3390/genes4030388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/01/2022] Open
Abstract
Checkpoints monitor critical cell cycle events such as chromosome duplication and segregation. They are highly conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. During S phase, cells also provide a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication forks. The DNA replication checkpoint is crucial for maintaining genome stability, because replication forks become vulnerable to collapse when they encounter obstacles such as nucleotide adducts, nicks, RNA-DNA hybrids, or stable protein-DNA complexes. These can be exogenously induced or can arise from endogenous cellular activity. Here, we summarize the initiation and transduction of the replication checkpoint as well as its targets, which coordinate cell cycle events and DNA replication fork stability.
Collapse
|
94
|
Mazumder A, Pesudo LQ, McRee S, Bathe M, Samson LD. Genome-wide single-cell-level screen for protein abundance and localization changes in response to DNA damage in S. cerevisiae. Nucleic Acids Res 2013; 41:9310-24. [PMID: 23935119 PMCID: PMC3814357 DOI: 10.1093/nar/gkt715] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An effective response to DNA damaging agents involves modulating numerous facets of cellular homeostasis in addition to DNA repair and cell-cycle checkpoint pathways. Fluorescence microscopy-based imaging offers the opportunity to simultaneously interrogate changes in both protein level and subcellular localization in response to DNA damaging agents at the single-cell level. We report here results from screening the yeast Green Fluorescent Protein (GFP)-fusion library to investigate global cellular protein reorganization on exposure to the alkylating agent methyl methanesulfonate (MMS). Broad groups of induced, repressed, nucleus- and cytoplasm-enriched proteins were identified. Gene Ontology and interactome analyses revealed the underlying cellular processes. Transcription factor (TF) analysis identified principal regulators of the response, and targets of all major stress-responsive TFs were enriched amongst the induced proteins. An unexpected partitioning of biological function according to the number of TFs targeting individual genes was revealed. Finally, differential modulation of ribosomal proteins depending on methyl methanesulfonate dose was shown to correlate with cell growth and with the translocation of the Sfp1 TF. We conclude that cellular responses can navigate different routes according to the extent of damage, relying on both expression and localization changes of specific proteins.
Collapse
Affiliation(s)
- Aprotim Mazumder
- Department of Biological Engineering, Center for Environmental Health Sciences, Laboratory for Computational Biology and Biophysics, Department of Biology and The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
95
|
Abstract
Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain;
| | | |
Collapse
|
96
|
O'Neil NJ, van Pel DM, Hieter P. Synthetic lethality and cancer: cohesin and PARP at the replication fork. Trends Genet 2013; 29:290-7. [PMID: 23333522 PMCID: PMC3868440 DOI: 10.1016/j.tig.2012.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 01/19/2023]
Abstract
Cohesins are mutated in a significant number of tumors of various types making them attractive targets for chemotherapeutic intervention. However, cohesins have a spectrum of cellular roles including sister chromatid cohesion, transcription, replication, and repair. Which of these roles are central to cancer biology and which roles can be exploited for therapeutic intervention? Genetic interaction networks in yeast have identified synthetic lethal interactions between mutations in cohesin and replication fork mediators. These interactions are conserved in worms and in human cells suggesting that inhibition of replication fork stability mediators such as poly (ADP-ribose) polymerase (PARP) could result in the specific killing of tumors with cohesin mutations. These findings also highlight the utility of genetic interaction networks in model organisms for the identification of clinically relevant interactions. Here, we review this type of approach, emphasizing the power of synthetic lethal interactions to reveal new avenues for developing cancer therapeutics.
Collapse
Affiliation(s)
- Nigel J O'Neil
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | |
Collapse
|
97
|
Merkenschlager M, Odom DT. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 2013; 152:1285-97. [PMID: 23498937 DOI: 10.1016/j.cell.2013.02.029] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Current epigenomics approaches have facilitated the genome-wide identification of regulatory elements based on chromatin features and transcriptional regulator binding and have begun to map long-range interactions between regulatory elements and their targets. Here, we focus on the emerging roles of CTCF and the cohesin in coordinating long-range interactions between regulatory elements. We discuss how species-specific transposable elements may influence such interactions by remodeling the CTCF binding repertoire and suggest that cohesin's association with enhancers, promoters, and sites defined by CTCF binding has the potential to form developmentally regulated networks of long-range interactions that reflect and promote cell-type-specific transcriptional programs.
Collapse
Affiliation(s)
- Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
98
|
Benmerzouga I, Concepción-Acevedo J, Kim HS, Vandoros AV, Cross GAM, Klingbeil MM, Li B. Trypanosoma brucei Orc1 is essential for nuclear DNA replication and affects both VSG silencing and VSG switching. Mol Microbiol 2012; 87:196-210. [PMID: 23216794 DOI: 10.1111/mmi.12093] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 11/29/2022]
Abstract
Binding of the Origin Recognition Complex (ORC) to replication origins is essential for initiation of DNA replication, but ORC has non-essential functions outside of DNA replication, including in heterochromatic gene silencing and telomere maintenance. Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis, uses antigenic variation as a major virulence mechanism to evade the host's immune attack by expressing its major surface antigen, the Variant Surface Glycoprotein (VSG), in a monoallelic manner. An Orc1/Cdc6 homologue has been identified in T. brucei, but its role in DNA replication has not been directly confirmed and its potential involvement in VSG repression or switching has not been thoroughly investigated. In this study, we show that TbOrc1 is essential for nuclear DNA replication in mammalian-infectious bloodstream and tsetse procyclic forms (BF and PF). Depletion of TbOrc1 resulted in derepression of telomere-linked silent VSGs in both BF and PF, and increased VSG switching particularly through the in situ transcriptional switching mechanism. TbOrc1 associates with telomere repeats but appears to do so independently of two known T. brucei telomere proteins, TbRAP1 and TbTRF. We conclude that TbOrc1 has conserved functions in DNA replication and is also required to control telomere-linked VSG expression and VSG switching.
Collapse
Affiliation(s)
- Imaan Benmerzouga
- Center for Gene Regulation in Health & Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | | | | | | | |
Collapse
|