51
|
Vicente C, Stirparo R, Demeyer S, de Bock CE, Gielen O, Atkins M, Yan J, Halder G, Hassan BA, Cools J. The CCR4-NOT complex is a tumor suppressor in Drosophila melanogaster eye cancer models. J Hematol Oncol 2018; 11:108. [PMID: 30144809 PMCID: PMC6109294 DOI: 10.1186/s13045-018-0650-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CNOT3 protein is a subunit of the CCR4-NOT complex, which is involved in mRNA degradation. We recently identified CNOT3 loss-of-function mutations in patients with T-cell acute lymphoblastic leukemia (T-ALL). METHODS Here, we use different Drosophila melanogaster eye cancer models to study the potential tumor suppressor function of Not3, the CNOT3 orthologue, and other members of the CCR4-NOT complex. RESULTS Our data show that knockdown of Not3, the structural components Not1/Not2, and the deadenylases twin/Pop2 all result in increased tumor formation. In addition, overexpression of Not3 could reduce tumor formation. Not3 downregulation has a mild but broad effect on gene expression and leads to increased levels of genes involved in DNA replication and ribosome biogenesis. CycB upregulation also contributes to the Not3 tumor phenotype. Similar findings were obtained in human T-ALL cell lines, pointing out the conserved function of Not3. CONCLUSIONS Together, our data establish a critical role for Not3 and the entire CCR4-NOT complex as tumor suppressor.
Collapse
Affiliation(s)
- Carmen Vicente
- Center for Cancer Biology, VIB, Leuven, Belgium. .,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium. .,Centro de Investigación Médica Aplicada, Av. de Pío XII, 55, 31008, Pamplona, Spain.
| | - Rocco Stirparo
- Center for Cancer Biology, VIB, Leuven, Belgium.,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium
| | - Sofie Demeyer
- Center for Cancer Biology, VIB, Leuven, Belgium.,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium
| | - Charles E de Bock
- Center for Cancer Biology, VIB, Leuven, Belgium.,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium
| | - Olga Gielen
- Center for Cancer Biology, VIB, Leuven, Belgium.,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium
| | - Mardelle Atkins
- Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jiekun Yan
- Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Georg Halder
- Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Bassem A Hassan
- Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium.,Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, UPMC, Sorbonne Universités, Inserm, CNRS, Paris, France
| | - Jan Cools
- Center for Cancer Biology, VIB, Leuven, Belgium. .,Center for Human Genetics, KU Leuven, Herestraat 49, box 912, B-3000, Leuven, Belgium.
| |
Collapse
|
52
|
Degradation of a Novel DNA Damage Response Protein, Tankyrase 1 Binding Protein 1, following Adenovirus Infection. J Virol 2018; 92:JVI.02034-17. [PMID: 29593045 PMCID: PMC5974482 DOI: 10.1128/jvi.02034-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/09/2018] [Indexed: 01/02/2023] Open
Abstract
Infection by most DNA viruses activates a cellular DNA damage response (DDR), which may be to the detriment or advantage of the virus. In the case of adenoviruses, they neutralize antiviral effects of DDR activation by targeting a number of proteins for rapid proteasome-mediated degradation. We have now identified a novel DDR protein, tankyrase 1 binding protein 1 (TNKS1BP1) (also known as Tab182), which is degraded during infection by adenovirus serotype 5 and adenovirus serotype 12. In both cases, degradation requires the action of the early region 1B55K (E1B55K) and early region 4 open reading frame 6 (E4orf6) viral proteins and is mediated through the proteasome by the action of cullin-based cellular E3 ligases. The degradation of Tab182 appears to be serotype specific, as the protein remains relatively stable following infection with adenovirus serotypes 4, 7, 9, and 11. We have gone on to confirm that Tab182 is an integral component of the CNOT complex, which has transcriptional regulatory, deadenylation, and E3 ligase activities. The levels of at least 2 other members of the complex (CNOT3 and CNOT7) are also reduced during adenovirus infection, whereas the levels of CNOT4 and CNOT1 remain stable. The depletion of Tab182 with small interfering RNA (siRNA) enhances the expression of early region 1A proteins (E1As) to a limited extent during adenovirus infection, but the depletion of CNOT1 is particularly advantageous to the virus and results in a marked increase in the expression of adenovirus early proteins. In addition, the depletion of Tab182 and CNOT1 results in a limited increase in the viral DNA level during infection. We conclude that the cellular CNOT complex is a previously unidentified major target for adenoviruses during infection. IMPORTANCE Adenoviruses target a number of cellular proteins involved in the DNA damage response for rapid degradation. We have now shown that Tab182, which we have confirmed to be an integral component of the mammalian CNOT complex, is degraded following infection by adenovirus serotypes 5 and 12. This requires the viral E1B55K and E4orf6 proteins and is mediated by cullin-based E3 ligases and the proteasome. In addition to Tab182, the levels of other CNOT proteins are also reduced during adenovirus infection. Thus, CNOT3 and CNOT7, for example, are degraded, whereas CNOT4 and CNOT1 are not. The siRNA-mediated depletion of components of the complex enhances the expression of adenovirus early proteins and increases the concentration of viral DNA produced during infection. This study highlights a novel protein complex, CNOT, which is targeted for adenovirus-mediated protein degradation. To our knowledge, this is the first time that the CNOT complex has been identified as an adenoviral target.
Collapse
|
53
|
Heck AM, Wilusz J. The Interplay between the RNA Decay and Translation Machinery in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:a032839. [PMID: 29311343 PMCID: PMC5932591 DOI: 10.1101/cshperspect.a032839] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA decay plays a major role in regulating gene expression and is tightly networked with other aspects of gene expression to effectively coordinate post-transcriptional regulation. The goal of this work is to provide an overview of the major factors and pathways of general messenger RNA (mRNA) decay in eukaryotic cells, and then discuss the effective interplay of this cytoplasmic process with the protein synthesis machinery. Given the transcript-specific and fluid nature of mRNA stability in response to changing cellular conditions, understanding the fundamental networking between RNA decay and translation will provide a foundation for a complete mechanistic understanding of this important aspect of cell biology.
Collapse
Affiliation(s)
- Adam M Heck
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
54
|
Sgromo A, Raisch T, Backhaus C, Keskeny C, Alva V, Weichenrieder O, Izaurralde E. Drosophila Bag-of-marbles directly interacts with the CAF40 subunit of the CCR4-NOT complex to elicit repression of mRNA targets. RNA (NEW YORK, N.Y.) 2018; 24:381-395. [PMID: 29255063 PMCID: PMC5824357 DOI: 10.1261/rna.064584.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/02/2017] [Indexed: 05/24/2023]
Abstract
Drosophila melanogaster Bag-of-marbles (Bam) promotes germline stem cell (GSC) differentiation by repressing the expression of mRNAs encoding stem cell maintenance factors. Bam interacts with Benign gonial cell neoplasm (Bgcn) and the CCR4 deadenylase, a catalytic subunit of the CCR4-NOT complex. Bam has been proposed to bind CCR4 and displace it from the CCR4-NOT complex. Here, we investigated the interaction of Bam with the CCR4-NOT complex by using purified recombinant proteins. Unexpectedly, we found that Bam does not interact with CCR4 directly but instead binds to the CAF40 subunit of the complex in a manner mediated by a conserved N-terminal CAF40-binding motif (CBM). The crystal structure of the Bam CBM bound to CAF40 reveals that the CBM peptide adopts an α-helical conformation after binding to the concave surface of the crescent-shaped CAF40 protein. We further show that Bam-mediated mRNA decay and translational repression depend entirely on Bam's interaction with CAF40. Thus, Bam regulates the expression of its mRNA targets by recruiting the CCR4-NOT complex through interaction with CAF40.
Collapse
Affiliation(s)
- Annamaria Sgromo
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Charlotte Backhaus
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Csilla Keskeny
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| |
Collapse
|
55
|
Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3-GENES GENOMES GENETICS 2018; 8:315-330. [PMID: 29158339 PMCID: PMC5765359 DOI: 10.1534/g3.117.300415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ccr4 (carbon catabolite repression 4)-Not complex is a major regulator of stress responses that controls gene expression at multiple levels, from transcription to mRNA decay. Ccr4, a “core” subunit of the complex, is the main cytoplasmic deadenylase in Saccharomyces cerevisiae; however, its mRNA targets have not been mapped on a genome-wide scale. Here, we describe a genome-wide approach, RNA immunoprecipitation (RIP) high-throughput sequencing (RIP-seq), to identify the RNAs bound to Ccr4, and two proteins that associate with it, Dhh1 and Puf5. All three proteins were preferentially bound to lowly abundant mRNAs, most often at the 3′ end of the transcript. Furthermore, Ccr4, Dhh1, and Puf5 are recruited to mRNAs that are targeted by other RNA-binding proteins that promote decay and mRNA transport, and inhibit translation. Although Ccr4-Not regulates mRNA transcription and decay, Ccr4 recruitment to mRNAs correlates better with decay rates, suggesting it imparts greater control over transcript abundance through decay. Ccr4-enriched mRNAs are refractory to control by the other deadenylase complex in yeast, Pan2/3, suggesting a division of labor between these deadenylation complexes. Finally, Ccr4 and Dhh1 associate with mRNAs whose abundance increases during nutrient starvation, and those that fluctuate during metabolic and oxygen consumption cycles, which explains the known genetic connections between these factors and nutrient utilization and stress pathways.
Collapse
|
56
|
Reconstitution of Targeted Deadenylation by the Ccr4-Not Complex and the YTH Domain Protein Mmi1. Cell Rep 2017; 17:1978-1989. [PMID: 27851962 PMCID: PMC5120349 DOI: 10.1016/j.celrep.2016.10.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/10/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
Ccr4-Not is a conserved protein complex that shortens the 3' poly(A) tails of eukaryotic mRNAs to regulate transcript stability and translation into proteins. RNA-binding proteins are thought to facilitate recruitment of Ccr4-Not to certain mRNAs, but lack of an in-vitro-reconstituted system has slowed progress in understanding the mechanistic details of this specificity. Here, we generate a fully recombinant Ccr4-Not complex that removes poly(A) tails from RNA substrates. The intact complex is more active than the exonucleases alone and has an intrinsic preference for certain RNAs. The RNA-binding protein Mmi1 is highly abundant in preparations of native Ccr4-Not. We demonstrate a high-affinity interaction between recombinant Ccr4-Not and Mmi1. Using in vitro assays, we show that Mmi1 accelerates deadenylation of target RNAs. Together, our results support a model whereby both RNA-binding proteins and the sequence context of mRNAs influence deadenylation rate to regulate gene expression.
Collapse
|
57
|
Chapat C, Chettab K, Simonet P, Wang P, De La Grange P, Le Romancer M, Corbo L. Alternative splicing of CNOT7 diversifies CCR4-NOT functions. Nucleic Acids Res 2017; 45:8508-8523. [PMID: 28591869 PMCID: PMC5737658 DOI: 10.1093/nar/gkx506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
The CCR4-associated factor CAF1, also called CNOT7, is a catalytic subunit of the CCR4–NOT complex, which has been implicated in all aspects of the mRNA life cycle, from mRNA synthesis in the nucleus to degradation in the cytoplasm. In human cells, alternative splicing of the CNOT7 gene yields a second CNOT7 transcript leading to the formation of a shorter protein, CNOT7 variant 2 (CNOT7v2). Biochemical characterization indicates that CNOT7v2 interacts with CCR4–NOT subunits, although it does not bind to BTG proteins. We report that CNOT7v2 displays a distinct expression profile in human tissues, as well as a nuclear sub-cellular localization compared to CNOT7v1. Despite a conserved DEDD nuclease domain, CNOT7v2 is unable to degrade a poly(A) tail in vitro and preferentially associates with the protein arginine methyltransferase PRMT1 to regulate its activity. Using both in vitro and in cellulo systems, we have also demonstrated that CNOT7v2 regulates the inclusion of CD44 variable exons. Altogether, our findings suggest a preferential involvement of CNOT7v2 in nuclear processes, such as arginine methylation and alternative splicing, rather than mRNA turnover. These observations illustrate how the integration of a splicing variant inside CCR4–NOT can diversify its cell- and tissue-specific functions.
Collapse
Affiliation(s)
- Clément Chapat
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Kamel Chettab
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Pierre Simonet
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Peng Wang
- McGill University, Department of Biochemistry, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
| | | | - Muriel Le Romancer
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Laura Corbo
- Univ. Lyon, Université Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| |
Collapse
|
58
|
Opitz N, Schmitt K, Hofer-Pretz V, Neumann B, Krebber H, Braus GH, Valerius O. Capturing the Asc1p/ Receptor for Activated C Kinase 1 (RACK1) Microenvironment at the Head Region of the 40S Ribosome with Quantitative BioID in Yeast. Mol Cell Proteomics 2017; 16:2199-2218. [PMID: 28982715 DOI: 10.1074/mcp.m116.066654] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
The Asc1 protein of Saccharomyces cerevisiae is a scaffold protein at the head region of ribosomal 40S that links mRNA translation to cellular signaling. In this study, proteins that colocalize with Asc1p were identified with proximity-dependent Biotin IDentification (BioID), an in vivo labeling technique described here for the first time for yeast. Biotinylated Asc1p-birA*-proximal proteins were identified and quantitatively verified against controls applying SILAC and mass spectrometry. The mRNA-binding proteins Sro9p and Gis2p appeared together with Scp160p, each providing ribosomes with nuclear transcripts. The cap-binding protein eIF4E (Cdc33p) and the eIF3/a-subunit (Rpg1p) were identified reflecting the encounter of proteins involved in the initiation of mRNA translation at the head region of ribosomal 40S. Unexpectedly, a protein involved in ribosome preservation (the clamping factor Stm1p), the deubiquitylation complex Ubp3p-Bre5p, the RNA polymerase II degradation factor 1 (Def1p), and transcription factors (Spt5p, Mbf1p) colocalize with Asc1p in exponentially growing cells. For Asc1R38D, K40Ep, a variant considered to be deficient in binding to ribosomes, BioID revealed its predominant ribosome localization. Glucose depletion replaced most of the Asc1p colocalizing proteins for additional ribosomal proteins, suggesting a ribosome aggregation process during early nutrient limitation, possibly concomitant with ribosomal subunit clamping. Overall, the characterization of the Asc1p microenvironment with BioID confirmed and substantiated our recent findings that the β-propeller broadly contributes to signal transduction influencing phosphorylation of colocalizing proteins (e.g. of Bre5p), and by that might affect nuclear gene transcription and the fate of ribosomes.
Collapse
Affiliation(s)
- Nadine Opitz
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Kerstin Schmitt
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Verena Hofer-Pretz
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Bettina Neumann
- §Department of Molecular Genetics, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Heike Krebber
- §Department of Molecular Genetics, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Gerhard H Braus
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Oliver Valerius
- From the ‡Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
59
|
Comprehensive Identification of Nuclear and Cytoplasmic TNRC6A-Associating Proteins. J Mol Biol 2017; 429:3319-3333. [DOI: 10.1016/j.jmb.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
|
60
|
Brönner C, Salvi L, Zocco M, Ugolini I, Halic M. Accumulation of RNA on chromatin disrupts heterochromatic silencing. Genome Res 2017; 27:1174-1183. [PMID: 28404620 PMCID: PMC5495069 DOI: 10.1101/gr.216986.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) play a conserved role in regulating gene expression, chromatin dynamics, and cell differentiation. They serve as a platform for RNA interference (RNAi)–mediated heterochromatin formation or DNA methylation in many eukaryotic organisms. We found in Schizosaccharomyces pombe that heterochromatin is lost at transcribed regions in the absence of RNA degradation. We show that heterochromatic RNAs are retained on chromatin, form DNA:RNA hybrids, and need to be degraded by the Ccr4-Not complex or RNAi to maintain heterochromatic silencing. The Ccr4-Not complex is localized to chromatin independently of H3K9me and degrades chromatin-associated transcripts, which is required for transcriptional silencing. Overexpression of heterochromatic RNA, but not euchromatic RNA, leads to chromatin localization and loss of silencing of a distant ade6 reporter in wild-type cells. Our results demonstrate that chromatin-bound RNAs disrupt heterochromatin organization and need to be degraded in a process of heterochromatin formation.
Collapse
Affiliation(s)
- Cornelia Brönner
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Luca Salvi
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Manuel Zocco
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Ilaria Ugolini
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich (LMU), 81377 Munich, Germany
| |
Collapse
|
61
|
Miller TE, Gomez-Cambronero J. A feedback mechanism between PLD and deadenylase PARN for the shortening of eukaryotic poly(A) mRNA tails that is deregulated in cancer cells. Biol Open 2017; 6:176-186. [PMID: 28011629 PMCID: PMC5312095 DOI: 10.1242/bio.021261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The removal of mRNA transcript poly(A) tails by 3′→5′ exonucleases is the rate-limiting step in mRNA decay in eukaryotes. Known cellular deadenylases are the CCR4-NOT and PAN complexes, and poly(A)-specific ribonuclease (PARN). The physiological roles and regulation for PARN is beginning to be elucidated. Since phospholipase D (PLD2 isoform) gene expression is upregulated in breast cancer cells and PARN is downregulated, we examined whether a signaling connection existed between these two enzymes. Silencing PARN with siRNA led to an increase in PLD2 protein, whereas overexpression of PARN had the opposite effect. Overexpression of PLD2, however, led to an increase in PARN expression. Thus, PARN downregulates PLD2 whereas PLD2 upregulates PARN. Co-expression of both PARN and PLD2 mimicked this pattern in non-cancerous cells (COS-7 fibroblasts) but, surprisingly, not in breast cancer MCF-7 cells, where PARN switches from inhibition to activation of PLD2 gene and protein expression. Between 30 and 300 nM phosphatidic acid (PA), the product of PLD enzymatic reaction, added exogenously to culture cells had a stabilizing role of both PARN and PLD2 mRNA decay. Lastly, by immunofluorescence microscopy, we observed an intracellular co-localization of PA-loaded vesicles (0.1-1 nm) and PARN. In summary, we report for the first time the involvement of a phospholipase (PLD2) and PA in mediating PARN-induced eukaryotic mRNA decay and the crosstalk between the two enzymes that is deregulated in breast cancer cells. Summary: Cell signaling enzyme phospholipase D2 (PLD2) and its reaction product, phospholipid phosphatidic acid (PA), are involved in mediating PARN-induced eukaryotic mRNA decay.
Collapse
Affiliation(s)
- Taylor E Miller
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA
| | - Julian Gomez-Cambronero
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA .,Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA
| |
Collapse
|
62
|
Wells ML, Perera L, Blackshear PJ. An Ancient Family of RNA-Binding Proteins: Still Important! Trends Biochem Sci 2017; 42:285-296. [PMID: 28096055 DOI: 10.1016/j.tibs.2016.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
Abstract
RNA-binding proteins are important modulators of mRNA stability, a crucial process that determines the ultimate cellular levels of mRNAs and their encoded proteins. The tristetraprolin (TTP) family of RNA-binding proteins appeared early in the evolution of eukaryotes, and has persisted in modern eukaryotes. The domain structures and biochemical functions of family members from widely divergent lineages are remarkably similar, but their mRNA 'targets' can be very different, even in closely related species. Recent gene knockout studies in species as distantly related as plants, flies, yeasts, and mice have demonstrated crucial roles for these proteins in a wide variety of physiological processes. Inflammatory and hematopoietic phenotypes in mice have suggested potential therapeutic approaches for analogous human disorders.
Collapse
Affiliation(s)
- Melissa L Wells
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
63
|
Chou WL, Chung YL, Fang JC, Lu CA. Novel interaction between CCR4 and CAF1 in rice CCR4-NOT deadenylase complex. PLANT MOLECULAR BIOLOGY 2017; 93:79-96. [PMID: 27714489 DOI: 10.1007/s11103-016-0548-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. In yeast and humans, CCR4 can interact with CAF1 via its N-terminal LRR domain. However, no CCR4 protein containing N-terminal LRR motifs have been found in plants. In this manuscript, we demonstrate a novel pattern of interaction between OsCCR4 and OsCAF1 in the rice CCR4-NOT complex, and that OsCAF1 acts as a bridge between OsCCR4 and OsNOT1 in this complex. Our results revealed that the Mynd-like domain at the N-terminus of rice CCR4 proteins and the PXLXP motif at the rice CAF1 N-terminus play critical roles in OsCCR4-OsCAF1 interaction. Deadenylation, also called poly(A) tail shortening, is the first rate-limiting step in general cytoplasmic mRNA degradation in eukaryotic cells. Carbon catabolite repressor (CCR)4 and CCR4-associated factor (CAF)1 in the CCR4-NOT complex function in mRNA poly(A) tail shortening. CCR4s contain N-terminal leucine-rich repeat (LRR) motifs that interact with CAF1s in yeast, fruit fly and mammals. In silico analysis has not identified any plant CCR4 proteins that contain LRR motifs. Here, two rice CCR4 homologous genes, OsCCR4a and OsCCR4b, were identified. The isolated recombinant exonuclease-endonuclease-phosphatase domain of OsCCR4a and OsCCR4b exhibited 3'-5' exonuclease activity in vitro, and point mutation of a catalytic residue in this domain disrupted the deadenylase activity. Both OsCCR4a and OsCCR4b fluorescent fusion proteins were localized in the rice cytoplasm and nucleus, and both associated with processing bodies via their N-terminus. Binding analyses showed that OsCCR4a and OsCCR4b directly interacted with three rice CAF1 family members: OsCAF1A, OsCAF1G and OsCAF1H. The zf-MYND-like domain at the N terminus of rice CCR4 and the PXLXP motif of rice CAF1 play critical roles in OsCCR4-OsCAF1 interaction. OsCAF1 proteins, but not OsCCR4 proteins, can interact with the MIG4G domain of rice OsNOT1. Our studies thus reveal a hitherto undiscovered novel interaction pattern that connects OsCCR4 and OsCAF1 in the rice CCR4-NOT complex.
Collapse
Affiliation(s)
- Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Yue-Lin Chung
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC.
| |
Collapse
|
64
|
Goossens J, De Geyter N, Walton A, Eeckhout D, Mertens J, Pollier J, Fiallos-Jurado J, De Keyser A, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Goormachtig S, Goossens A. Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:476-489. [PMID: 27377668 DOI: 10.1111/tpj.13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 05/26/2023]
Abstract
Tandem affinity purification coupled to mass spectrometry (TAP-MS) is one of the most powerful techniques to isolate protein complexes and elucidate protein interaction networks. Here, we describe the development of a TAP-MS strategy for the model legume Medicago truncatula, which is widely studied for its ability to produce valuable natural products and to engage in endosymbiotic interactions. As biological material, transgenic hairy roots, generated through Agrobacterium rhizogenes-mediated transformation of M. truncatula seedlings, were used. As proof of concept, proteins involved in the cell cycle, transcript processing and jasmonate signalling were chosen as bait proteins, resulting in a list of putative interactors, many of which confirm the interologue concept of protein interactions, and which can contribute to biological information about the functioning of these bait proteins in planta. Subsequently, binary protein-protein interactions among baits and preys, and among preys were confirmed by a systematic yeast two-hybrid screen. Together, by establishing a M. truncatula TAP-MS platform, we extended the molecular toolbox of this model species.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Nathan De Geyter
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alan Walton
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jan Mertens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jennifer Fiallos-Jurado
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
65
|
Niinuma S, Fukaya T, Tomari Y. CCR4 and CAF1 deadenylases have an intrinsic activity to remove the post-poly(A) sequence. RNA (NEW YORK, N.Y.) 2016; 22:1550-1559. [PMID: 27484313 PMCID: PMC5029453 DOI: 10.1261/rna.057679.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 05/31/2023]
Abstract
MicroRNAs (miRNAs) recruit the CCR4-NOT complex, which contains two deadenylases, CCR4 and CAF1, to promote shortening of the poly(A) tail. Although both CCR4 and CAF1 generally have a strong preference for poly(A) RNA substrates, it has been reported from yeast to humans that they can also remove non-A residues in vitro to various degrees. However, it remains unknown how CCR4 and CAF1 remove non-A sequences. Herein we show that Drosophila miRNAs can promote the removal of 3'-terminal non-A residues in an exonucleolytic manner, but only if an upstream poly(A) sequence exists. This non-A removing reaction is directly catalyzed by both CCR4 and CAF1 and depends on the balance between the length of the internal poly(A) sequence and that of the downstream non-A sequence. These results suggest that the CCR4-NOT complex has an intrinsic activity to remove the 3'-terminal non-A modifications downstream from the poly(A) tail.
Collapse
Affiliation(s)
- Sho Niinuma
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, JapanDepartment of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Fukaya
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, JapanDepartment of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, JapanDepartment of Computational Biology and Medical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
66
|
Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 2016; 7:12626. [PMID: 27558897 PMCID: PMC5007331 DOI: 10.1038/ncomms12626] [Citation(s) in RCA: 1069] [Impact Index Per Article: 118.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/19/2016] [Indexed: 12/27/2022] Open
Abstract
Methylation at the N6 position of adenosine (m6A) is the most abundant RNA modification within protein-coding and long noncoding RNAs in eukaryotes and is a reversible process with important biological functions. YT521-B homology domain family (YTHDF) proteins are the readers of m6A, the binding of which results in the alteration of the translation efficiency and stability of m6A-containing RNAs. However, the mechanism by which YTHDF proteins cause the degradation of m6A-containing RNAs is poorly understood. Here we report that m6A-containing RNAs exhibit accelerated deadenylation that is mediated by the CCR4–NOT deadenylase complex. We further show that YTHDF2 recruits the CCR4–NOT complex through a direct interaction between the YTHDF2 N-terminal region and the SH domain of the CNOT1 subunit, and that this recruitment is essential for the deadenylation of m6A-containing RNAs by CAF1 and CCR4. Therefore, we have uncovered the mechanism of YTHDF2-mediated degradation of m6A-containing RNAs in mammalian cells. The YTHDF family of proteins are able to bind and regulate the stability of methylated N6 RNA. Here the authors show that this decreased m6A RNA stability is mediated by direct recruitment of the CCR4–NOT deadenylase complex through YTHDF proteins.
Collapse
Affiliation(s)
- Hao Du
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,CAS-Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya Zhao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,CAS-Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinqiu He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yao Zhang
- Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China
| | - Hairui Xi
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,CAS-Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Mofang Liu
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,CAS-Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
67
|
Abstract
In a recent issue of Nature Communications Ukleja and co‐workers reported a cryo‐EM 3D reconstruction of the Ccr4‐Not complex from Schizosaccharomyces pombe with an immunolocalization of the different subunits. The newly gained architectural knowledge provides cues to apprehend the functional diversity of this major eukaryotic regulator. Indeed, in the cytoplasm alone, Ccr4‐Not regulates translational repression, decapping and deadenylation, and the Not module additionally plays a positive role in translation. The spatial distribution of the subunits within the structure is compatible with a model proposing that the Ccr4‐Not complex interacts with the 5′ and 3′ ends of target mRNAs, allowing different functional modules of the complex to act at different stages of the translation process, possibly within a circular constellation of the mRNA. This work opens new avenues, and reveals important gaps in our understanding regarding structure and mode of function of the Ccr4‐Not complex that need to be addressed in the future.
Collapse
Affiliation(s)
- Zoltan Villanyi
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics Geneva, Geneva, Switzerland
| | - Martine A Collart
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics Geneva, Geneva, Switzerland.
| |
Collapse
|
68
|
Ukleja M, Valpuesta JM, Dziembowski A, Cuellar J. Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: New structural insights to unravel CCR4-NOT mRNA processing machinery. Bioessays 2016; 38:1048-58. [PMID: 27502453 DOI: 10.1002/bies.201600092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery.
Collapse
Affiliation(s)
- Marta Ukleja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland. .,Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain. .,Institute of Structural and Molecular Biology, University College London and Birkbeck, London, UK.
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
69
|
Mishima Y, Tomari Y. Codon Usage and 3' UTR Length Determine Maternal mRNA Stability in Zebrafish. Mol Cell 2016; 61:874-85. [PMID: 26990990 DOI: 10.1016/j.molcel.2016.02.027] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/25/2016] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
The control of mRNA stability plays a central role in regulating gene expression. In metazoans, the earliest stages of development are driven by maternally supplied mRNAs. The degradation of these maternal mRNAs is critical for promoting the maternal-to-zygotic transition of developmental programs, although the underlying mechanisms are poorly understood in vertebrates. Here, we characterized maternal mRNA degradation pathways in zebrafish using a transcriptome analysis and systematic reporter assays. Our data demonstrate that ORFs enriched with uncommon codons promote deadenylation by the CCR4-NOT complex in a translation-dependent manner. This codon-mediated mRNA decay is conditional on the context of the 3' UTR, with long 3' UTRs conferring resistance to deadenylation. These results indicate that the combined effect of codon usage and 3' UTR length determines the stability of maternal mRNAs in zebrafish embryos. Our study thus highlights the codon-mediated mRNA decay as a conserved regulatory mechanism in eukaryotes.
Collapse
Affiliation(s)
- Yuichiro Mishima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
70
|
Alhusaini N, Coller J. The deadenylase components Not2p, Not3p, and Not5p promote mRNA decapping. RNA (NEW YORK, N.Y.) 2016; 22:709-721. [PMID: 26952104 PMCID: PMC4836645 DOI: 10.1261/rna.054742.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Decay of mRNA is essential for the efficient regulation of gene expression. A major pathway of mRNA degradation is initiated by the shortening of the poly(A) tail via the CCR4/NOT deadenylase complex. Deadenylation is followed by removal of the 5' cap (i.e., decapping) and then 5' to 3' exonucleolytic decay of the message body. The highly conserved CCR4/NOT deadenylase complex consists of the exonucleases CCR4 and POP2/CAF1, as well as a group of four or five (depending on organism) accessory factors of unknown function, i.e., the NOT proteins. In this study, we find thatSaccharomyces cerevisiaeNot2p, Not3p, and Not5p (close paralogs of each other) are involved in promoting mRNA decapping. Furthermore, we find that Not3p and Not5p bind to the decapping activator protein Pat1p. Together, these data implicate the deadenylase complex in coordinating the downstream decapping reaction via Not2p, Not3p, and Not5p. This suggests that the coupling of deadenylation with decapping is, in part, a direct consequence of coordinated assembly of decay factors.
Collapse
Affiliation(s)
- Najwa Alhusaini
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jeff Coller
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
71
|
Zhang Q, Yan D, Guo E, Ding B, Yang W, Liu R, Yamamoto T, Bartlam M. Structural basis for inhibition of the deadenylase activity of human CNOT6L. FEBS Lett 2016; 590:1270-9. [PMID: 27013054 DOI: 10.1002/1873-3468.12160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/08/2022]
Abstract
Human CNOT6L/CCR4, a member of the endonuclease-exonuclease-phosphatase (EEP) family enzymes, is one of the two deadenylase enzymes in the conserved CCR4-NOT complex. Here, we report inhibitor-bound crystal structures of the human CNOT6L nuclease domain in complex with the nucleotide CMP and the aminoglycoside neomycin. Deadenylase activity assays show that nucleotides are effective inhibitors of both CNOT6L and CNOT7, with AMP more effective than other nucleotides, and that neomycin is a weak deadenylase inhibitor. Structural analysis shows that all inhibitors occupy the substrate and magnesium-binding sites of CNOT6L, suggesting that inhibitors compete with both substrate and divalent magnesium ions for overlapping binding sites.
Collapse
Affiliation(s)
- Qionglin Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Dongke Yan
- College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Erhong Guo
- College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Bojian Ding
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wen Yang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami, Okinawa, Japan
| | - Mark Bartlam
- College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
72
|
Stupfler B, Birck C, Séraphin B, Mauxion F. BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat Commun 2016; 7:10811. [PMID: 26912148 PMCID: PMC4773420 DOI: 10.1038/ncomms10811] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
While BTG2 plays an important role in cellular differentiation and cancer, its precise molecular function remains unclear. BTG2 interacts with CAF1 deadenylase through its APRO domain, a defining feature of BTG/Tob factors. Our previous experiments revealed that expression of BTG2 promoted mRNA poly(A) tail shortening through an undefined mechanism. Here we report that the APRO domain of BTG2 interacts directly with the first RRM domain of the poly(A)-binding protein PABPC1. Moreover, PABPC1 RRM and BTG2 APRO domains are sufficient to stimulate CAF1 deadenylase activity in vitro in the absence of other CCR4–NOT complex subunits. Our results unravel thus the mechanism by which BTG2 stimulates mRNA deadenylation, demonstrating its direct role in poly(A) tail length control. Importantly, we also show that the interaction of BTG2 with the first RRM domain of PABPC1 is required for BTG2 to control cell proliferation. BTG2 promotes mRNA poly(A) tail shortening and regulates cellular differentiation. Here, Stupfler et al. show that the BTG2 APRO domain interacts with PABPC1 RRM1, allowing the former to recruit and stimulate the poly(A) tail shortening activity of CAF1 deadenylase and to control cell proliferation.
Collapse
Affiliation(s)
- Benjamin Stupfler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
73
|
The architecture of the Schizosaccharomyces pombe CCR4-NOT complex. Nat Commun 2016; 7:10433. [PMID: 26804377 PMCID: PMC4737751 DOI: 10.1038/ncomms10433] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/11/2015] [Indexed: 11/08/2022] Open
Abstract
CCR4-NOT is a large protein complex present both in cytoplasm and the nucleus of eukaryotic cells. Although it is involved in a variety of distinct processes related to expression of genetic information such as poly(A) tail shortening, transcription regulation, nuclear export and protein degradation, there is only fragmentary information available on some of its nine subunits. Here we show a comprehensive structural characterization of the native CCR4-NOT complex from Schizosaccharomyces pombe. Our cryo-EM 3D reconstruction of the complex, combined with techniques such as immunomicroscopy, RNA-nanogold labelling, docking of the available high-resolution structures and models of different subunits and domains, allow us to propose its full molecular architecture. We locate all functionally defined domains endowed with deadenylating and ubiquitinating activities, the nucleus-specific RNA-interacting subunit Mmi1, as well as surfaces responsible for protein–protein interactions. This information provides insight into cooperation of the different CCR4-NOT complex functions. CCR4-NOT is a protein complex involved in a variety of important genetic processes. Here, the authors report the mid-resolution structure of this complex, and model the positions and contacts between the subunits, providing structural support for the previously reported functions of the complex.
Collapse
|
74
|
Complex Reconstitution from Individual Protein Modules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:305-14. [PMID: 27165333 DOI: 10.1007/978-3-319-27216-0_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cellular function relies on protein complexes that work as nano-machines. The structure and function of protein complexes is an outcome of the specific combination of protein subunits, or modules, within the complex. A major focus of molecular biology is thus to understand how protein subunits assemble to form complexes with distinct biological function. To this end, in vitro reconstitution of complexes from individual subunits to study their assembly, structure and activity is of central importance. With purified individual subunits and sub-modules at hand one can systematically dissect the hierarchical assembly of larger complexes using direct protein-protein interaction assays. Furthermore, activity assays can be carried out with individual subunits or smaller sub-complexes and compared to those of the fully assembled complex to precisely map functional sites and provide a molecular basis for in vivo observations. In this chapter we review methods for protein complex assembly from individual subunits and provide examples of advantages and potential pitfalls to this approach.
Collapse
|
75
|
Abstract
In this mini-review, we summarize our current knowledge about the cross-talk between the different levels of gene expression. We introduce the Ccr4 (carbon catabolite repressed 4)–Not (negative on TATA-less) complex as a candidate to be a master regulator that orchestrates between the different levels of gene expression. An integrated view of the findings about the Ccr4–Not complex suggests that it is involved in gene expression co-ordination. Since the discovery of the Not proteins in a selection for transcription regulators in yeast [Collart and Struhl (1994) Genes Dev. 8, 525–537], the Ccr4–Not complex has been connected to every step of the mRNA lifecycle. Moreover, it has been found to be relevant for appropriate protein folding and quaternary protein structure by being involved in co-translational protein complex assembly.
Collapse
|
76
|
Atias N, Kupiec M, Sharan R. Systematic identification and correction of annotation errors in the genetic interaction map of Saccharomyces cerevisiae. Nucleic Acids Res 2015; 44:e50. [PMID: 26602688 PMCID: PMC4797274 DOI: 10.1093/nar/gkv1284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
The yeast mutant collections are a fundamental tool in deciphering genomic organization and function. Over the last decade, they have been used for the systematic exploration of ∼6 000 000 double gene mutants, identifying and cataloging genetic interactions among them. Here we studied the extent to which these data are prone to neighboring gene effects (NGEs), a phenomenon by which the deletion of a gene affects the expression of adjacent genes along the genome. Analyzing ∼90,000 negative genetic interactions observed to date, we found that more than 10% of them are incorrectly annotated due to NGEs. We developed a novel algorithm, GINGER, to identify and correct erroneous interaction annotations. We validated the algorithm using a comparative analysis of interactions from Schizosaccharomyces pombe. We further showed that our predictions are significantly more concordant with diverse biological data compared to their mis-annotated counterparts. Our work uncovered about 9500 new genetic interactions in yeast.
Collapse
Affiliation(s)
- Nir Atias
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
77
|
CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins. Sci Rep 2015. [DOI: 10.1038/srep14779 205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
78
|
CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins. Sci Rep 2015; 5:14779. [PMID: 26437789 PMCID: PMC4594005 DOI: 10.1038/srep14779] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
The CCR4-NOT complex is conserved in eukaryotes and is involved in mRNA metabolism, though its molecular physiological roles remain to be established. We show here that CNOT3-depleted mouse embryonic fibroblasts (MEFs) undergo cell death. Levels of other complex subunits are decreased in CNOT3-depleted MEFs. The death phenotype is rescued by introduction of wild-type (WT), but not mutated CNOT3, and is not suppressed by the pan-caspase inhibitor, zVAD-fluoromethylketone. Gene expression profiling reveals that mRNAs encoding cell death-related proteins, including receptor-interacting protein kinase 1 (RIPK1) and RIPK3, are stabilized in CNOT3-depleted MEFs. Some of these mRNAs bind to CNOT3, and in the absence of CNOT3 their poly(A) tails are elongated. Inhibition of RIPK1-RIPK3 signaling by a short-hairpin RNA or a necroptosis inhibitor, necrostatin-1, confers viability upon CNOT3-depleted MEFs. Therefore, we conclude that CNOT3 targets specific mRNAs to prevent cells from being disposed to necroptotic death.
Collapse
|
79
|
Ozgur S, Basquin J, Kamenska A, Filipowicz W, Standart N, Conti E. Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex. Cell Rep 2015; 13:703-711. [DOI: 10.1016/j.celrep.2015.09.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/05/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
|
80
|
Waghray S, Williams C, Coon JJ, Wickens M. Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo. RNA (NEW YORK, N.Y.) 2015; 21:1335-45. [PMID: 26015597 PMCID: PMC4478352 DOI: 10.1261/rna.051565.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/22/2015] [Indexed: 05/25/2023]
Abstract
RNA-regulatory factors bound to 3' UTRs control translation and stability. Repression often is associated with poly(A) removal. The deadenylase CAF1 is a core component of the CCR4-NOT complex. Our prior studies established that CAF1 represses translation independent of deadenylation. We sought the mechanism of its deadenylation-independent repression in Xenopus oocytes. Our data reveal a chain of interacting proteins that links CAF1 to CCR4-NOT and to Xp54 and 4E-T. Association of CAF1 with NOT1, the major subunit of CCR4-NOT, is required for repression by CAF1 tethered to a reporter mRNA. Affinity purification-mass spectrometry and coimmunoprecipitation revealed that at least five members of the CCR4-NOT complex were recruited by CAF1. The recruitment of these proteins required NOT1, as did the ability of tethered CAF1 to repress translation. In turn, NOT1 was needed to recruit Xp54 and 4E-T. We examined the role of 4E-T in repression using mutations that disrupted either eIF4E-dependent or -independent mechanisms. Expression of a 4E-T truncation that still bound eIF4E alleviated repression by tethered CAF1, NOT1, and Xp54. In contrast, a mutant 4E-T that failed to bind eIF4E did not. Repression of global translation was affected only by the eIF4E-dependent mechanism. Reporters bearing IRES elements revealed that repression via tethered CAF1 and Xp54 is cap- and eIF4E-independent, but requires one or more of eIF4A, eIF4B, and eIF4G. We propose that RNA-binding proteins, and perhaps miRNAs, repress translation through an analogous chain of interactions that begin with the 3' UTR-bound repressor and end with the noncanonical activity of 4E-T.
Collapse
Affiliation(s)
- Shruti Waghray
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Clay Williams
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
81
|
Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015; 16:421-33. [PMID: 26077373 DOI: 10.1038/nrg3965] [Citation(s) in RCA: 1400] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a conserved class of small non-coding RNAs that assemble with Argonaute proteins into miRNA-induced silencing complexes (miRISCs) to direct post-transcriptional silencing of complementary mRNA targets. Silencing is accomplished through a combination of translational repression and mRNA destabilization, with the latter contributing to most of the steady-state repression in animal cell cultures. Degradation of the mRNA target is initiated by deadenylation, which is followed by decapping and 5'-to-3' exonucleolytic decay. Recent work has enhanced our understanding of the mechanisms of silencing, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5'-to-3' degradation. Furthermore, an intricate interplay between translational repression and mRNA degradation is emerging.
Collapse
Affiliation(s)
- Stefanie Jonas
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| |
Collapse
|
82
|
Preissler S, Reuther J, Koch M, Scior A, Bruderek M, Frickey T, Deuerling E. Not4-dependent translational repression is important for cellular protein homeostasis in yeast. EMBO J 2015; 34:1905-24. [PMID: 25971775 DOI: 10.15252/embj.201490194] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/12/2015] [Indexed: 11/09/2022] Open
Abstract
Translation of aberrant or problematic mRNAs can cause ribosome stalling which leads to the production of truncated or defective proteins. Therefore, cells evolved cotranslational quality control mechanisms that eliminate these transcripts and target arrested nascent polypeptides for proteasomal degradation. Here we show that Not4, which is part of the multifunctional Ccr4-Not complex in yeast, associates with polysomes and contributes to the negative regulation of protein synthesis. Not4 is involved in translational repression of transcripts that cause transient ribosome stalling. The absence of Not4 affected global translational repression upon nutrient withdrawal, enhanced the expression of arrested nascent polypeptides and caused constitutive protein folding stress and aggregation. Similar defects were observed in cells with impaired mRNA decapping protein function and in cells lacking the mRNA decapping activator and translational repressor Dhh1. The results suggest a role for Not4 together with components of the decapping machinery in the regulation of protein expression on the mRNA level and emphasize the importance of translational repression for the maintenance of proteome integrity.
Collapse
Affiliation(s)
- Steffen Preissler
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Julia Reuther
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Miriam Koch
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Annika Scior
- Molecular Microbiology, University of Konstanz, Konstanz, Germany Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Michael Bruderek
- Molecular Microbiology, University of Konstanz, Konstanz, Germany
| | - Tancred Frickey
- Applied Bioinformatics, University of Konstanz, Konstanz, Germany
| | - Elke Deuerling
- Molecular Microbiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
83
|
The enzyme activities of Caf1 and Ccr4 are both required for deadenylation by the human Ccr4-Not nuclease module. Biochem J 2015; 469:169-76. [PMID: 25944446 PMCID: PMC4613498 DOI: 10.1042/bj20150304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/06/2015] [Indexed: 01/02/2023]
Abstract
In eukaryotic cells, the shortening and removal of the poly(A) tail (deadenylation) of cytoplasmic mRNA is a key event in regulated mRNA degradation. A major enzyme involved in deadenylation is the Ccr4-Not deadenylase complex, which can be recruited to its target mRNA by RNA-binding proteins or the miRNA repression complex. In addition to six non-catalytic components, the complex contains two enzymatic subunits with ribonuclease activity: Ccr4 and Caf1 (Pop2). In vertebrates, each deadenylase subunit is encoded by two paralogues: Caf1, which can interact with the anti-proliferative protein BTG2, is encoded by CNOT7 and CNOT8, whereas Ccr4 is encoded by the highly similar genes CNOT6 and CNOT6L. Currently, it is unclear whether the catalytic subunits work co-operatively or whether the nuclease components have unique roles in deadenylation. We therefore developed a method to express and purify a minimal human BTG2-Caf1-Ccr4 nuclease sub-complex from bacterial cells. By using chemical inhibition and well-characterized inactivating amino acid substitutions, we demonstrate that the enzyme activities of Caf1 and Ccr4 are both required for deadenylation in vitro. These results indicate that Caf1 and Ccr4 cooperate in mRNA deadenylation and suggest that the enzyme activities of Caf1 and Ccr4 are regulated via allosteric interactions within the nuclease module.
Collapse
|
84
|
Bhaskar V, Basquin J, Conti E. Architecture of the ubiquitylation module of the yeast Ccr4-Not complex. Structure 2015; 23:921-928. [PMID: 25914052 PMCID: PMC4431670 DOI: 10.1016/j.str.2015.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/25/2022]
Abstract
The Ccr4-Not complex regulates eukaryotic gene expression at multiple levels, including mRNA turnover, translational repression, and transcription. We have studied the ubiquitylation module of the yeast Ccr4-Not complex and addressed how E3 ligase binds cognate E2 and how it is tethered to the complex. The 2.8-Å resolution crystal structure of the N-terminal RING domain of Not4 in complex with Ubc4 shows the detailed interactions of this E3-E2 complex. The 3.6-Å resolution crystal structure of the C-terminal domain of the yeast Not4 in complex with the C-terminal domain of Not1 reveals how a largely extended region at the C-terminus of Not4 wraps around a HEAT-repeat region of Not1. This C-terminal region of Not4 is only partly conserved in metazoans, rationalizing its weaker Not1-binding properties. The structural and biochemical data show how Not1 can incorporate both the ubiquitylation module and the Not2-Not3/5 module concomitantly in the Ccr4-Not complex. The Not1 C-terminal domain tethers the Not4 ubiquitylation module to yeast Ccr4-Not A low-complexity region of Not4 wraps around the C-terminal HEAT repeats of Not1 In metazoans, Not4 lacks residues that confer high affinity binding to Not1 in yeast Not1C can recruit Not4 and Not2-Not5 concomitantly to the Ccr4-Not complex
Collapse
Affiliation(s)
- Varun Bhaskar
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Munich, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Munich, Germany.
| |
Collapse
|
85
|
Makino S, Mishima Y, Inoue K, Inada T. Roles of mRNA fate modulators Dhh1 and Pat1 in TNRC6-dependent gene silencing recapitulated in yeast. J Biol Chem 2015; 290:8331-47. [PMID: 25657010 DOI: 10.1074/jbc.m114.615088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CCR4-NOT complex, the major deadenylase in eukaryotes, plays crucial roles in gene expression at the levels of transcription, mRNA decay, and protein degradation. GW182/TNRC6 proteins, which are core components of the microRNA-induced silencing complex in animals, stimulate deadenylation and repress translation via recruitment of the CCR4-NOT complex. Here we report a heterologous experimental system that recapitulates the recruitment of CCR4-NOT complex by TNRC6 in S. cerevisiae. Using this system, we characterize conserved functions of the CCR4-NOT complex. The complex stimulates degradation of mRNA from the 5' end by Xrn1, in a manner independent of both translation and deadenylation. This degradation pathway is probably conserved in miRNA-mediated gene silencing in zebrafish. Furthermore, the mRNA fate modulators Dhh1 and Pat1 redundantly stimulate mRNA decay, but both factors are required for poly(A) tail-independent translation repression by tethered TNRC6A. Our tethering-based reconstitution system reveals that the conserved architecture of Not1/CNOT1 provides a binding surface for TNRC6, thereby connecting microRNA-induced silencing complex to the decapping machinery as well as the translation apparatus.
Collapse
Affiliation(s)
- Shiho Makino
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yuichiro Mishima
- the Institute of Molecular and Cellular Biosciences and the Department of Medical Genome Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan, and
| | - Kunio Inoue
- the Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Toshifumi Inada
- From the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan,
| |
Collapse
|
86
|
A highly conserved region essential for NMD in the Upf2 N-terminal domain. J Mol Biol 2014; 426:3689-3702. [PMID: 25277656 DOI: 10.1016/j.jmb.2014.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022]
Abstract
Upf1, Upf2, and Upf3 are the principal regulators of nonsense-mediated mRNA decay (NMD), a cytoplasmic surveillance pathway that accelerates the degradation of mRNAs undergoing premature translation termination. These three proteins interact with each other, the ribosome, the translation termination machinery, and multiple mRNA decay factors, but the precise mechanism allowing the selective detection and degradation of nonsense-containing transcripts remains elusive. Here, we have determined the crystal structure of the N-terminal mIF4G domain from Saccharomyces cerevisiae Upf2 and identified a highly conserved region in this domain that is essential for NMD and independent of Upf2's binding sites for Upf1 and Upf3. Mutations within this conserved region not only inactivate NMD but also disrupt Upf2 binding to specific proteins, including Dbp6, a DEAD-box helicase. Although current models indicate that Upf2 functions principally as an activator of Upf1 and a bridge between Upf1 and Upf3, our data suggest that it may also serve as a platform for the association of additional factors that play roles in premature translation termination and NMD.
Collapse
|
87
|
Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ 2014; 22:22-33. [PMID: 25190144 DOI: 10.1038/cdd.2014.112] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/10/2014] [Accepted: 06/25/2014] [Indexed: 01/01/2023] Open
Abstract
Since their discovery 20 years ago, miRNAs have attracted much attention from all areas of biology. These short (∼22 nt) non-coding RNA molecules are highly conserved in evolution and are present in nearly all eukaryotes. They have critical roles in virtually every cellular process, particularly determination of cell fate in development and regulation of the cell cycle. Although it has long been known that miRNAs bind to mRNAs to trigger translational repression and degradation, there had been much debate regarding their precise mode of action. It is now believed that translational control is the primary event, only later followed by mRNA destabilisation. This review will discuss the most recent advances in our understanding of the molecular underpinnings of miRNA-mediated repression. Moreover, we highlight the multitude of regulatory mechanisms that modulate miRNA function.
Collapse
Affiliation(s)
- A Wilczynska
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | - M Bushell
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| |
Collapse
|
88
|
Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA (NEW YORK, N.Y.) 2014; 20:1398-409. [PMID: 25035296 PMCID: PMC4138323 DOI: 10.1261/rna.045302.114] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/20/2014] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs) play critical roles in a variety of biological processes through widespread effects on protein synthesis. Upon association with the miRNA-induced silencing complex (miRISC), miRNAs repress target mRNA translation and accelerate mRNA decay. Degradation of the mRNA is initiated by shortening of the poly(A) tail by the CCR4-NOT deadenylase complex followed by the removal of the 5' cap structure and exonucleolytic decay of the mRNA. Here, we report a direct interaction between the large scaffolding subunit of CCR4-NOT, CNOT1, with the translational repressor and decapping activator protein, DDX6. DDX6 binds to a conserved CNOT1 subdomain in a manner resembling the interaction of the translation initiation factor eIF4A with eIF4G. Importantly, mutations that disrupt the DDX6-CNOT1 interaction impair miRISC-mediated gene silencing in human cells. Thus, CNOT1 facilitates recruitment of DDX6 to miRNA-targeted mRNAs, placing DDX6 as a downstream effector in the miRNA silencing pathway.
Collapse
Affiliation(s)
- Christopher Rouya
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Nadeem Siddiqui
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Masahiro Morita
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3A 1A3, Canada
| |
Collapse
|
89
|
Shirai YT, Suzuki T, Morita M, Takahashi A, Yamamoto T. Multifunctional roles of the mammalian CCR4-NOT complex in physiological phenomena. Front Genet 2014; 5:286. [PMID: 25191340 PMCID: PMC4139912 DOI: 10.3389/fgene.2014.00286] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023] Open
Abstract
The carbon catabolite repression 4 (CCR4)–negative on TATA-less (NOT) complex serves as one of the major deadenylases of eukaryotes. Although it was originally identified and characterized in yeast, recent studies have revealed that the CCR4–NOT complex also exerts important functions in mammals, -including humans. However, there are some differences in the composition and functions of the CCR4–NOT complex between mammals and yeast. It is noteworthy that each subunit of the CCR4–NOT complex has unique, multifunctional roles and is responsible for various physiological phenomena. This heterogeneity and versatility of the CCR4–NOT complex makes an overall understanding of this complex difficult. Here, we describe the functions of each subunit of the mammalian CCR4–NOT complex and discuss the molecular mechanisms by which it regulates homeostasis in mammals. Furthermore, a possible link between the disruption of the CCR4–NOT complex and various diseases will be discussed. Finally, we propose that the analysis of mice with each CCR4–NOT subunit knocked out is an effective strategy for clarifying its complicated functions and networks in mammals.
Collapse
Affiliation(s)
- Yo-Taro Shirai
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Toru Suzuki
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Masahiro Morita
- Department of Biochemistry, McGill University Montreal, QC, Canada ; Goodman Cancer Research Centre, McGill University Montreal, QC, Canada
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University Onna-son, Japan
| |
Collapse
|
90
|
Chapat C, Corbo L. Novel roles of the CCR4-NOT complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:883-901. [PMID: 25044499 DOI: 10.1002/wrna.1254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
Abstract
The CCR4-NOT complex is a multi-subunit protein complex evolutionarily conserved across eukaryotes which regulates several aspects of gene expression. A fascinating model is emerging in which this complex acts as a regulation platform, controlling gene products 'from birth to death' through the coordination of different cellular machineries involved in diverse cellular functions. Recently the CCR4-NOT functions have been extended to the control of the innate immune response through the regulation of interferon signaling. Thus, a more comprehensive picture of how CCR4-NOT allows the rapid adaptation of cells to external stress, from transcription to mRNA and protein decay, is presented and discussed here. Overall, CCR4-NOT permits the efficient and rapid adaptation of cellular gene expression in response to changes in environmental conditions and stimuli.
Collapse
Affiliation(s)
- Clément Chapat
- Université Lyon 1, Lyon, France; CNRS UMR 5286, Lyon, France; Inserm U1052, Lyon, France; Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | | |
Collapse
|
91
|
Schäfer IB, Rode M, Bonneau F, Schüssler S, Conti E. The structure of the Pan2-Pan3 core complex reveals cross-talk between deadenylase and pseudokinase. Nat Struct Mol Biol 2014; 21:591-8. [PMID: 24880344 DOI: 10.1038/nsmb.2834] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/02/2014] [Indexed: 01/21/2023]
Abstract
Pan2-Pan3 is a conserved complex involved in the shortening of mRNA poly(A) tails, the initial step in eukaryotic mRNA turnover. We show that recombinant Saccharomyces cerevisiae Pan2-Pan3 can deadenylate RNAs in vitro without needing the poly(A)-binding protein Pab1. The crystal structure of an active ~200-kDa core complex reveals that Pan2 and Pan3 interact with an unusual 1:2 stoichiometry imparted by the asymmetric nature of the Pan3 homodimer. An extended region of Pan2 wraps around Pan3 and provides a major anchoring point for complex assembly. A Pan2 module formed by the pseudoubiquitin-hydrolase and RNase domains latches onto the Pan3 pseudokinase with intertwined interactions that orient the deadenylase active site toward the A-binding site of the interacting Pan3. The molecular architecture of Pan2-Pan3 suggests how the nuclease and its pseudokinase regulator act in synergy to promote deadenylation.
Collapse
Affiliation(s)
- Ingmar B Schäfer
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michaela Rode
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Fabien Bonneau
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Steffen Schüssler
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elena Conti
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
92
|
An asymmetric PAN3 dimer recruits a single PAN2 exonuclease to mediate mRNA deadenylation and decay. Nat Struct Mol Biol 2014; 21:599-608. [PMID: 24880343 DOI: 10.1038/nsmb.2837] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/07/2014] [Indexed: 11/09/2022]
Abstract
The PAN2-PAN3 complex functions in general and microRNA-mediated mRNA deadenylation. However, mechanistic insight into PAN2 and its complex with the asymmetric PAN3 dimer is lacking. Here, we describe crystal structures that show that Neurospora crassa PAN2 comprises two independent structural units: a C-terminal catalytic unit and an N-terminal assembly unit that engages in a bipartite interaction with PAN3 dimers. The catalytic unit contains the exonuclease domain in an intimate complex with a potentially modulatory ubiquitin-protease-like domain. The assembly unit contains a WD40 propeller connected to an adaptable linker. The propeller contacts the PAN3 C-terminal domain, whereas the linker reinforces the asymmetry of the PAN3 dimer and prevents the recruitment of a second PAN2 molecule. Functional data indicate an essential role for PAN3 in coordinating PAN2-mediated deadenylation with subsequent steps in mRNA decay, which lead to complete mRNA degradation.
Collapse
|
93
|
Temme C, Simonelig M, Wahle E. Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Front Genet 2014; 5:143. [PMID: 24904643 PMCID: PMC4033318 DOI: 10.3389/fgene.2014.00143] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/02/2014] [Indexed: 11/13/2022] Open
Abstract
Controlled shortening of the poly(A) tail of mRNAs is the first step in eukaryotic mRNA decay and can also be used for translational inactivation of mRNAs. The CCR4-NOT complex is the most important among a small number of deadenylases, enzymes catalyzing poly(A) tail shortening. Rates of poly(A) shortening differ between mRNAs as the CCR4-NOT complex is recruited to specific mRNAs by means of either sequence-specific RNA binding proteins or miRNAs. This review summarizes our current knowledge concerning the subunit composition and deadenylation activity of the Drosophila CCR4-NOT complex and the mechanisms by which the complex is recruited to particular mRNAs. We discuss genetic data implicating the complex in the regulation of specific mRNAs, in particular in the context of development.
Collapse
Affiliation(s)
- Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg Halle, Germany
| | - Martine Simonelig
- Genetics and Development, Institute of Human Genetics - CNRS UPR1142 Montpellier, France
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg Halle, Germany
| |
Collapse
|
94
|
Inada T, Makino S. Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation. Front Genet 2014; 5:135. [PMID: 24904636 PMCID: PMC4033010 DOI: 10.3389/fgene.2014.00135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022] Open
Abstract
The CCR4-NOT complex is a highly conserved specific gene silencer that also serves more general post-transcriptional functions. Specific regulatory proteins including the miRNA-induced silencing complex and its associated proteins, bind to 3’-UTR elements of mRNA and recruit the CCR4-NOT complex thereby promoting poly(A) shortening and repressing translation and/or mRNA degradation. Recent studies have shown that the CCR4-NOT complex that is tethered to mRNA by such regulator(s) represses translation and facilitates mRNA decay independent of a poly(A) tail and its shortening. In addition to deadenylase activity, the CCR4-NOT complex also has an E3 ubiquitin ligase activity and is involved in a novel protein quality control system, i.e., co-translational proteasomal-degradation of aberrant proteins. In this review, we describe recent progress in elucidation of novel roles of the multi-functional complex CCR4-NOT in post-transcriptional regulation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| | - Shiho Makino
- Laboratory of Gene Regulation, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| |
Collapse
|
95
|
Panasenko OO. The role of the E3 ligase Not4 in cotranslational quality control. Front Genet 2014; 5:141. [PMID: 24904641 PMCID: PMC4032911 DOI: 10.3389/fgene.2014.00141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 12/04/2022] Open
Abstract
Cotranslational quality control (QC) is the mechanism by which the cell checks the integrity of newly synthesized proteins and mRNAs. In the event of mistakes these molecules are degraded. The Ccr4-Not complex has been proposed to play a role in this process. It contains both deadenylation and ubiquitination activities, thus it may target both aberrant proteins and mRNAs. Deadenylation is the first step in mRNA degradation. In yeast it is performed by the Ccr4 subunit of the Ccr4-Not complex. Another complex subunit, namely Not4, is a RING E3 ligase and it provides the ubiquitination activity of the complex. It was found associated with translating ribosomes. Thus, it has been suggested that Not4 is involved in ribosome-associated ubiquitination and degradation of aberrant peptides. However, several other E3 ligases have been associated with peptide ubiquitination on the ribosome and the relevance of Not4 in this process remains unclear. In this review we summarize the recent data and suggest a role for Not4 in cotranslational protein QC.
Collapse
Affiliation(s)
- Olesya O Panasenko
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics of Geneva - University Medical Center, Faculty of Medicine, University of Geneva Geneva, Switzerland
| |
Collapse
|
96
|
Xu K, Bai Y, Zhang A, Zhang Q, Bartlam MG. Insights into the structure and architecture of the CCR4-NOT complex. Front Genet 2014; 5:137. [PMID: 24904637 PMCID: PMC4032980 DOI: 10.3389/fgene.2014.00137] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/26/2014] [Indexed: 12/22/2022] Open
Abstract
The CCR4–NOT complex is a highly conserved, multifunctional machinery with a general role in controlling mRNA metabolism. It has been implicated in a number of different aspects of mRNA and protein expression, including mRNA degradation, transcription initiation and elongation, ubiquitination, and protein modification. The core CCR4–NOT complex is evolutionarily conserved and consists of at least three NOT proteins and two catalytic subunits. The L-shaped complex is characterized by two functional modules bound to the CNOT1/Not1 scaffold protein: the deadenylase or nuclease module containing two enzymes required for deadenylation, and the NOT module. In this review, we will summarize the currently available information regarding the three-dimensional structure and assembly of the CCR4–NOT complex, in order to provide insight into its roles in mRNA degradation and other biological processes.
Collapse
Affiliation(s)
- Kun Xu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin, China ; College of Life Sciences, Nankai University Tianjin, China
| | - Yuwei Bai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin, China
| | - Aili Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin, China ; College of Life Sciences, Nankai University Tianjin, China
| | - Qionglin Zhang
- College of Life Sciences, Nankai University Tianjin, China
| | - Mark G Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin, China ; College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
97
|
Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A, Dziembowski A, Nowotny M, Conti E, Filipowicz W. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol Cell 2014; 54:751-65. [PMID: 24768538 DOI: 10.1016/j.molcel.2014.03.036] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/04/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) control gene expression by regulating mRNA translation and stability. The CCR4-NOT complex is a key effector of miRNA function acting downstream of GW182/TNRC6 proteins. We show that miRNA-mediated repression requires the central region of CNOT1, the scaffold protein of CCR4-NOT. A CNOT1 domain interacts with CNOT9, which in turn interacts with the silencing domain of TNRC6 in a tryptophan motif-dependent manner. These interactions are direct, as shown by the structure of a CNOT9-CNOT1 complex with bound tryptophan. Another domain of CNOT1 with an MIF4G fold recruits the DEAD-box ATPase DDX6, a known translational inhibitor. Structural and biochemical approaches revealed that CNOT1 modulates the conformation of DDX6 and stimulates ATPase activity. Structure-based mutations showed that the CNOT1 MIF4G-DDX6 interaction is important for miRNA-mediated repression. These findings provide insights into the repressive steps downstream of the GW182/TNRC6 proteins and the role of the CCR4-NOT complex in posttranscriptional regulation in general.
Collapse
Affiliation(s)
- Hansruedi Mathys
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jérôme Basquin
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, 82152 Martinsried/Munich, Germany
| | - Sevim Ozgur
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, 82152 Martinsried/Munich, Germany
| | - Mariusz Czarnocki-Cieciura
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-109 Warsaw, Poland; Faculty of Biology, University of Warsaw, 02-109 Warsaw, Poland; International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Fabien Bonneau
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, 82152 Martinsried/Munich, Germany
| | - Aafke Aartse
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-109 Warsaw, Poland; Faculty of Biology, University of Warsaw, 02-109 Warsaw, Poland
| | - Marcin Nowotny
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Elena Conti
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, 82152 Martinsried/Munich, Germany.
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
98
|
Yan YB. Deadenylation: enzymes, regulation, and functional implications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:421-43. [PMID: 24523229 DOI: 10.1002/wrna.1221] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 12/27/2022]
Abstract
Lengths of the eukaryotic messenger RNA (mRNA) poly(A) tails are dynamically changed by the opposing effects of poly(A) polymerases and deadenylases. Modulating poly(A) tail length provides a highly regulated means to control almost every stage of mRNA lifecycle including transcription, processing, quality control, transport, translation, silence, and decay. The existence of diverse deadenylases with distinct properties highlights the importance of regulating poly(A) tail length in cellular functions. The deadenylation activity can be modulated by subcellular locations of the deadenylases, cis-acting elements in the target mRNAs, trans-acting RNA-binding proteins, posttranslational modifications of deadenylase and associated factors, as well as transcriptional and posttranscriptional regulation of the deadenylase genes. Among these regulators, the physiological functions of deadenylases are largely dependent on the interactions with the trans-acting RNA-binding proteins, which recruit deadenylases to the target mRNAs. The task of these RNA-binding proteins is to find and mark the target mRNAs based on their sequence features. Regulation of the regulators can switch on or switch off deadenylation and thereby destabilize or stabilize the targeted mRNAs, respectively. The distinct domain compositions and cofactors provide various deadenylases the structural basis for the recruitments by distinct RNA-binding protein subsets to meet dissimilar cellular demands. The diverse deadenylases, the numerous types of regulators, and the reversible posttranslational modifications together make up a complicated network to precisely regulate intracellular mRNA homeostasis. This review will focus on the diverse regulators of various deadenylases and will discuss their functional implications, remaining problems, and future challenges.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
99
|
Abstract
The eIF4A (eukaryotic initiation factor 4A) proteins belong to the extensive DEAD-box RNA helicase family, the members of which are involved in many aspects of RNA metabolism by virtue of their RNA-binding capacity and ATPase activity. Three eIF4A proteins have been characterized in vertebrates: eIF4A1 and eIF4A2 are cytoplasmic, whereas eIF4A3 is nuclear-localized. Although highly similar, they have been shown to possess rather diverse roles in the mRNA lifecycle. Their specific and diverse functions are often regulated and dictated by interacting partner proteins. The key differences between eIF4A family members are discussed in the present review.
Collapse
|
100
|
Halter D, Collart MA, Panasenko OO. The Not4 E3 ligase and CCR4 deadenylase play distinct roles in protein quality control. PLoS One 2014; 9:e86218. [PMID: 24465968 PMCID: PMC3895043 DOI: 10.1371/journal.pone.0086218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/08/2013] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome.
Collapse
Affiliation(s)
- David Halter
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Martine A. Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Olesya O. Panasenko
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|