51
|
Marabelli C, Marrocco B, Mattevi A. The growing structural and functional complexity of the LSD1/KDM1A histone demethylase. Curr Opin Struct Biol 2016; 41:135-144. [DOI: 10.1016/j.sbi.2016.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
|
52
|
Ricq EL, Hooker JM, Haggarty SJ. Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity via H3K4 methylation. Psychiatry Clin Neurosci 2016; 70:536-550. [PMID: 27485392 PMCID: PMC5764164 DOI: 10.1111/pcn.12426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
The mammalian brain dynamically activates or silences gene programs in response to environmental input and developmental cues. This neuroplasticity is controlled by signaling pathways that modify the activity, localization, and/or expression of transcriptional-regulatory enzymes in combination with alterations in chromatin structure in the nucleus. Consistent with this key neurobiological role, disruptions in the fine-tuning of epigenetic and transcriptional regulation have emerged as a recurrent theme in studies of the genetics of neurodevelopmental and neuropsychiatric disorders. Furthermore, environmental factors have been implicated in the increased risk of heterogeneous, multifactorial, neuropsychiatric disorders via epigenetic mechanisms. Aberrant epigenetic regulation of gene expression thus provides an attractive unifying model for understanding the complex risk architecture of mental illness. Here, we review emerging genetic evidence implicating dysregulation of histone lysine methylation in neuropsychiatric disease and outline advancements in small-molecule probes targeting this chromatin modification. The emerging field of neuroepigenetic research is poised to provide insight into the biochemical basis of genetic risk for diverse neuropsychiatric disorders and to develop the highly selective chemical tools and imaging agents necessary to dissect dynamic transcriptional-regulatory mechanisms in the nervous system. On the basis of these findings, continued advances may lead to the validation of novel, disease-modifying therapeutic targets for a range of disorders with aberrant chromatin-mediated neuroplasticity.
Collapse
Affiliation(s)
- Emily L. Ricq
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jacob M. Hooker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
53
|
Maiques-Diaz A, Somervaille TCP. LSD1: biologic roles and therapeutic targeting. Epigenomics 2016; 8:1103-16. [PMID: 27479862 PMCID: PMC5066116 DOI: 10.2217/epi-2016-0009] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022] Open
Abstract
LSD1 (KDM1A; BHC110; AOF2) was the first protein reported to exhibit histone demethylase activity and has since been shown to have multiple essential roles in mammalian biology. Given its enzymatic activity and its high-level expression in many human malignancies, a significant recent focus has been the development of pharmacologic inhibitors. Here we summarize structural and biochemical knowledge of this important epigenetic regulator, with a particular emphasis on the functional and preclinical studies in oncology that have provided justification for the evaluation of tranylcypromine derivative LSD1 inhibitors in early phase clinical trials.
Collapse
Affiliation(s)
- Alba Maiques-Diaz
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Tim CP Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
54
|
Liu Y, Tempel W, Zhang Q, Liang X, Loppnau P, Qin S, Min J. Family-wide Characterization of Histone Binding Abilities of Human CW Domain-containing Proteins. J Biol Chem 2016; 291:9000-13. [PMID: 26933034 DOI: 10.1074/jbc.m116.718973] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 01/08/2023] Open
Abstract
Covalent modifications of histone N-terminal tails play a critical role in regulating chromatin structure and controlling gene expression. These modifications are controlled by histone-modifying enzymes and read out by histone-binding proteins. Numerous proteins have been identified as histone modification readers. Here we report the family-wide characterization of histone binding abilities of human CW domain-containing proteins. We demonstrate that the CW domains in ZCWPW2 and MORC3/4 selectively recognize histone H3 trimethylated at Lys-4, similar to ZCWPW1 reported previously, while the MORC1/2 and LSD2 lack histone H3 Lys-4 binding ability. Our crystal structures of the CW domains of ZCWPW2 and MORC3 in complex with the histone H3 trimethylated at Lys-4 peptide reveal the molecular basis of this interaction. In each complex, two tryptophan residues in the CW domain form the "floor" and "right wall," respectively, of the methyllysine recognition cage. Our mutation results based on ZCWPW2 reveal that the right wall tryptophan residue is essential for binding, and the floor tryptophan residue enhances binding affinity. Our structural and mutational analysis highlights the conserved roles of the cage residues of CW domain across the histone methyllysine binders but also suggests why some CW domains lack histone binding ability.
Collapse
Affiliation(s)
- Yanli Liu
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, the Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Wolfram Tempel
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Qi Zhang
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Xiao Liang
- the Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Peter Loppnau
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Su Qin
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, the Life Science Research Center, South University of Science and Technology of China, Shenzhen 518055, China, and
| | - Jinrong Min
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, the Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China, the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
55
|
Abstract
The lysine-specific demethylase (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from histone H3 at the Lys4 position. Along with histone deacetylases 1 and 2, LSD1 is involved in epigenetically silencing gene expression. LSD1 has been implicated as a potential therapeutic target in cancer and other diseases. In this chapter, we discuss several approaches to measure LSD1 demethylase activity and their relative strengths and limitations for inhibitor discovery and mechanistic characterization. In addition, we review the principal established chemical functional groups derived from monoamine oxidase inhibitors that have been investigated in the context of LSD1 as demethylase inhibitors. Finally, we highlight a few examples of recently developed LSD1 mechanism-based inactivators and their biomedical applications.
Collapse
Affiliation(s)
- D Hayward
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - P A Cole
- Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
56
|
Kakizawa T, Mizukami T, Itoh Y, Hasegawa M, Sasaki R, Suzuki T. Evaluation of phenylcyclopropylamine compounds by enzymatic assay of lysine-specific demethylase 2 in the presence of NPAC peptide. Bioorg Med Chem Lett 2016; 26:1193-5. [PMID: 26794039 DOI: 10.1016/j.bmcl.2016.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 11/20/2022]
Abstract
Lysine-specific demethylase 2 (LSD2) demethylates mono- and dimethylated Lys-4 of histone H3 (H3K4me1 and H3K4me2). NPAC protein is known to interact with LSD2 and promote its H3K4 demethylase activity. In this study, we established a demethylation assay system that utilizes recombinant LSD2 in the presence of a synthetic NPAC peptide. Several phenylcyclopropylamine (PCPA)-based inhibitors were examined for their LSD2 inhibitory activity in the LSD2 enzymatic assay with the NPAC peptide. The assay results showed that the PCPA derivatives, including NCD41, selectively inhibited LSD1 in preference to LSD2.
Collapse
Affiliation(s)
- Taeko Kakizawa
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Tamio Mizukami
- Graduate School of Bio-Science, Nagahama Institute of Bio-Science Technology, 1226 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Makoto Hasegawa
- Graduate School of Bio-Science, Nagahama Institute of Bio-Science Technology, 1226 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Ryuzo Sasaki
- Graduate School of Bio-Science, Nagahama Institute of Bio-Science Technology, 1226 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| |
Collapse
|
57
|
Speranzini V, Pilotto S, Sixma TK, Mattevi A. Touch, act and go: landing and operating on nucleosomes. EMBO J 2016; 35:376-88. [PMID: 26787641 DOI: 10.15252/embj.201593377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022] Open
Abstract
Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
58
|
Stewart KR, Veselovska L, Kim J, Huang J, Saadeh H, Tomizawa SI, Smallwood SA, Chen T, Kelsey G. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev 2015; 29:2449-62. [PMID: 26584620 PMCID: PMC4691949 DOI: 10.1101/gad.271353.115] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.
Collapse
Affiliation(s)
- Kathleen R Stewart
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Lenka Veselovska
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Jeesun Kim
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 77030, USA
| | - Jiahao Huang
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Heba Saadeh
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | | | | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 77030, USA
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom; Centre for Trophoblast Research, University of Cambridge CB2 3EG, Cambridge, United Kingdom
| |
Collapse
|
59
|
Cortopassi WA, Simion R, Honsby CE, França TCC, Paton RS. Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment. Chemistry 2015; 21:18983-92. [PMID: 26577067 DOI: 10.1002/chem.201502983] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 12/17/2022]
Abstract
JMJD2A catalyses the demethylation of di- and trimethylated lysine residues in histone tails and is a target for the development of new anticancer medicines. Mechanistic details of demethylation are yet to be elucidated and are important for the understanding of epigenetic processes. We have evaluated the initial step of histone demethylation by JMJD2A and demonstrate the dramatic effect of the protein environment upon oxygen binding using quantum mechanics/molecular mechanics (QM/MM) calculations. The changes in electronic structure have been studied for possible spin states and different conformations of O2 , using a combination of quantum and classical simulations. O2 binding to this histone demethylase is computed to occur preferentially as an end-on superoxo radical bound to a high-spin ferric centre, yielding an overall quintet ground state. The favourability of binding is strongly influenced by the surrounding protein: we have quantified this effect using an energy decomposition scheme into electrostatic and dispersion contributions. His182 and the methylated lysine assist while Glu184 and the oxoglutarate cofactor are deleterious for O2 binding. Charge separation in the superoxo-intermediate benefits from the electrostatic stabilization provided by the surrounding residues, stabilizing the binding process significantly. This work demonstrates the importance of the extended protein environment in oxygen binding, and the role of energy decomposition in understanding the physical origin of binding/recognition.
Collapse
Affiliation(s)
- Wilian A Cortopassi
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA (UK) paton.chem.ox.ac.uk.,Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ (UK)
| | - Robert Simion
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA (UK) paton.chem.ox.ac.uk.,Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ (UK)
| | - Charles E Honsby
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA (UK) paton.chem.ox.ac.uk.,Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ (UK)
| | - Tanos C C França
- Department of Chemical Engineering, Military Institute of Engineering, 80 Praça General Tibúrcio, Urca, 22290 270, Rio de Janeiro (Brazil).,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove (Czech Republic)
| | - Robert S Paton
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA (UK) paton.chem.ox.ac.uk. .,Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ (UK).
| |
Collapse
|
60
|
Zheng YC, Ma J, Wang Z, Li J, Jiang B, Zhou W, Shi X, Wang X, Zhao W, Liu HM. A Systematic Review of Histone Lysine-Specific Demethylase 1 and Its Inhibitors. Med Res Rev 2015; 35:1032-71. [PMID: 25990136 DOI: 10.1002/med.21350] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
Histone lysine-specific demethylase 1 (LSD1) is the first discovered and reported histone demethylase by Dr. Shi Yang's group in 2004. It is classified as a member of amine oxidase superfamily, the common feature of which is using the flavin adenine dinucleotide (FAD) as its cofactor. Since it is located in cell nucleus and acts as a histone methylation eraser, LSD1 specifically removes mono- or dimethylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been indicated that LSD1 and its downstream targets are involved in a wide range of biological courses, including embryonic development and tumor-cell growth and metastasis. LSD1 has been reported to be overexpressed in variety of tumors. Inactivating LSD1 or downregulating its expression inhibits cancer-cell development. LSD1 targeting inhibitors may represent a new insight in anticancer drug discovery. This review summarizes recent studies about LSD1 and mainly focuses on the basic physiological function of LSD1 and its involved mechanisms in pathophysiologic conditions, as well as the development of LSD1 inhibitors as potential anticancer therapeutic agents.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Jinlian Ma
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Zhiru Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Jinfeng Li
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Bailing Jiang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Wenjuan Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xiaojing Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xixin Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
61
|
Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 2015; 104:213-46. [PMID: 25787087 PMCID: PMC4747437 DOI: 10.1002/bip.22643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1-selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance.
Collapse
|
62
|
Li K, Chen WH, Bruner SD. Structure and Mechanism of the Siderophore-Interacting Protein from the Fuscachelin Gene Cluster of Thermobifida fusca. Biochemistry 2015; 54:3989-4000. [PMID: 26043104 DOI: 10.1021/acs.biochem.5b00354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial iron acquisition is a complex process and frequently a key and necessary step for survival. Among the several paths for iron assimilation, small molecule siderophore-mediated transport is a commonly employed strategy of many microorganisms. The chemistry and biology of the extraordinary tight and specific binding of siderophores to metal is also exploited in therapeutic treatments for microbial virulence and metal toxicity. The intracellular fate of iron acquired via the siderophore pathway is one of the least understood steps in the complex process at the molecular level. A common route to cellular incorporation is the single-electron reduction of ferric to ferrous iron catalyzed by specific and/or nonspecific reducing agents. The biosynthetic gene clusters for siderophores often contain representatives of one or two families of redox-active enzymes: the flavin-containing "siderophore-interacting protein" and iron-sulfur ferric siderophore reductases. Here we present the structure and characterization of the siderophore-interacting protein, FscN, from the fuscachelin siderophore gene cluster of Thermobifida fusca. The structure shows a flavoreductase fold with a noncovalently bound FAD cofactor along with an unexpected metal bound adjacent to the flavin site. We demonstrated that FscN is redox-active and measured the binding and reduction of ferric fuscachelin. This work provides a structural basis for the activity of a siderophore-interacting protein and further insight into the complex and important process of iron acquisition and utilization.
Collapse
Affiliation(s)
- Kunhua Li
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Wei-Hung Chen
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
63
|
Yang Y, Yin X, Yang H, Xu Y. Histone demethylase LSD2 acts as an E3 ubiquitin ligase and inhibits cancer cell growth through promoting proteasomal degradation of OGT. Mol Cell 2015; 58:47-59. [PMID: 25773598 DOI: 10.1016/j.molcel.2015.01.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 10/23/2022]
Abstract
Histone demethylases play important roles in various biological processes in a manner dependent on their demethylase activities. However, little is known about their demethylase-independent activities. Here, we report that LSD2, a well-known histone H3K4me1/me2 demethylase, possesses an unexpected E3 ubiquitin ligase activity. LSD2 directly ubiquitylates and promotes proteasome-dependent degradation of O-GlcNAc transferase (OGT), and inhibits A549 lung cancer cell growth in a manner dependent on its E3 ligase activity, but not demethylase activity. The depletion of LSD2 stabilizes OGT and promotes colony formation of 293T cells. LSD2 regulates distinct groups of target genes through histone demethylase and E3 ligase activities, respectively. Such regulation suggests a mechanism through which LSD2 suppresses tumorigenesis by promoting the degradation of OGT and other substrates yet to be discovered. Our study reveals an antigrowth function of LSD2 dependent on its E3 ligase activity and establishes a connection between histone demethylase and ubiquitin-dependent pathway.
Collapse
Affiliation(s)
- Yi Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiaotong Yin
- Fudan University Shanghai Cancer Center, Department of Oncology, and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Department of Oncology, and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China; Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
64
|
Nagaoka K, Hino S, Sakamoto A, Anan K, Takase R, Umehara T, Yokoyama S, Sasaki Y, Nakao M. Lysine-specific demethylase 2 suppresses lipid influx and metabolism in hepatic cells. Mol Cell Biol 2015; 35:1068-80. [PMID: 25624347 PMCID: PMC4355535 DOI: 10.1128/mcb.01404-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/12/2014] [Accepted: 01/21/2015] [Indexed: 01/04/2023] Open
Abstract
Cells link environmental fluctuations, such as nutrition, to metabolic remodeling. Epigenetic factors are thought to be involved in such cellular processes, but the molecular basis remains unclear. Here we report that the lysine-specific demethylase 2 (LSD2) suppresses the flux and metabolism of lipids to maintain the energy balance in hepatic cells. Using transcriptome and chromatin immunoprecipitation-sequencing analyses, we revealed that LSD2 represses the genes involved in lipid influx and metabolism through demethylation of histone H3K4. Selective recruitment of LSD2 at lipid metabolism gene loci was mediated in part by a stress-responsive transcription factor, c-Jun. Intriguingly, LSD2 depletion increased the intracellular levels of many lipid metabolites, which was accompanied by an increased susceptibility to toxic cell damage in response to fatty acid exposure. Our data demonstrate that LSD2 maintains metabolic plasticity under fluctuating environment in hepatocytes by mediating the cross talk between the epigenome and metabolism.
Collapse
Affiliation(s)
- Katsuya Nagaoka
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akihisa Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kotaro Anan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryuta Takase
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takashi Umehara
- RIKEN Systems and Structural Biology Center, Yokohama, Japan
| | | | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
65
|
Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proc Natl Acad Sci U S A 2015; 112:3841-6. [PMID: 25755260 DOI: 10.1073/pnas.1502971112] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
More than a thousand proteins are thought to contribute to mammalian chromatin and its regulation, but our understanding of the genomic occupancy and function of most of these proteins is limited. Here we describe an approach, which we call "chromatin proteomic profiling," to identify proteins associated with genomic regions marked by specifically modified histones. We used ChIP-MS to identify proteins associated with genomic regions marked by histones modified at specific lysine residues, including H3K27ac, H3K4me3, H3K79me2, H3K36me3, H3K9me3, and H4K20me3, in ES cells. We identified 332 known and 114 novel proteins associated with these histone-marked genomic segments. Many of the novel candidates have been implicated in various diseases, and their chromatin association may provide clues to disease mechanisms. More than 100 histone modifications have been described, so similar chromatin proteomic profiling studies should prove to be valuable for identifying many additional chromatin-associated proteins in a broad spectrum of cell types.
Collapse
|
66
|
Interplay among nucleosomal DNA, histone tails, and corepressor CoREST underlies LSD1-mediated H3 demethylation. Proc Natl Acad Sci U S A 2015; 112:2752-7. [PMID: 25730864 DOI: 10.1073/pnas.1419468112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With its noncatalytic domains, DNA-binding regions, and a catalytic core targeting the histone tails, LSD1-CoREST (lysine-specific demethylase 1; REST corepressor) is an ideal model system to study the interplay between DNA binding and histone modification in nucleosome recognition. To this end, we covalently associated LSD1-CoREST to semisynthetic nucleosomal particles. This enabled biochemical and biophysical characterizations of nucleosome binding and structural elucidation by small-angle X-ray scattering, which was extensively validated through binding assays and site-directed mutagenesis of functional interfaces. Our results suggest that LSD1-CoREST functions as an ergonomic clamp that induces the detachment of the H3 histone tail from the nucleosomal DNA to make it available for capture by the enzyme active site. The key notion emerging from these studies is the inherently competitive nature of the binding interactions because nucleosome tails, chromatin modifiers, transcription factors, and DNA represent sites for multiple and often mutually exclusive interactions.
Collapse
|
67
|
Maes T, Mascaró C, Ortega A, Lunardi S, Ciceri F, Somervaille TCP, Buesa C. KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics 2015; 7:609-26. [PMID: 26111032 DOI: 10.2217/epi.15.9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone methylation and demethylation are important processes associated with the regulation of gene transcription, and alterations in histone methylation status have been linked to a large number of human diseases. Initially thought to be an irreversible process, histone methylation is now known to be reversed by two families of proteins containing over 30 members that act to remove methyl groups from specific lysine residues present in the tails of histone H3 and histone H4. A rapidly growing number of reports have implicated the FAD-dependent lysine specific demethylase (KDM1) family in cancer, and several small-molecule inhibitors are in development for the treatment of cancer. An additional role has emerged for KDM1 in brain function, offering additional opportunities for the development of novel therapeutic strategies in neurodegenerative disease. A decade after the identification of KDM1A as a histone demethylase, the first selective inhibitors have now reached the clinic.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Alberto Ortega
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Serena Lunardi
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Filippo Ciceri
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, Manchester, M20 4BX, UK
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, 08940 Cornella de Llobregat, Barcelona, España
| |
Collapse
|
68
|
Thinnes CC, England KS, Kawamura A, Chowdhury R, Schofield CJ, Hopkinson RJ. Targeting histone lysine demethylases - progress, challenges, and the future. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:1416-32. [PMID: 24859458 PMCID: PMC4316176 DOI: 10.1016/j.bbagrm.2014.05.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022]
Abstract
N-Methylation of lysine and arginine residues has emerged as a major mechanism of transcriptional regulation in eukaryotes. In humans, N(ε)-methyllysine residue demethylation is catalysed by two distinct subfamilies of demethylases (KDMs), the flavin-dependent KDM1 subfamily and the 2-oxoglutarate- (2OG) dependent JmjC subfamily, which both employ oxidative mechanisms. Modulation of histone methylation status is proposed to be important in epigenetic regulation and has substantial medicinal potential for the treatment of diseases including cancer and genetic disorders. This article provides an introduction to the enzymology of the KDMs and the therapeutic possibilities and challenges associated with targeting them, followed by a review of reported KDM inhibitors and their mechanisms of action from kinetic and structural perspectives.
Collapse
Affiliation(s)
- Cyrille C Thinnes
- The Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Akane Kawamura
- The Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|
69
|
Dong C, Zhang H, Xu C, Arrowsmith CH, Min J. Structure and function of dioxygenases in histone demethylation and DNA/RNA demethylation. IUCRJ 2014; 1:540-9. [PMID: 25485134 PMCID: PMC4224472 DOI: 10.1107/s2052252514020922] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 05/18/2023]
Abstract
Iron(II) and 2-oxoglutarate (2OG)-dependent dioxygenases involved in histone and DNA/RNA demethylation convert the cosubstrate 2OG and oxygen to succinate and carbon dioxide, resulting in hydroxylation of the methyl group of the substrates and subsequent demethylation. Recent evidence has shown that these 2OG dioxygenases play vital roles in a variety of biological processes, including transcriptional regulation and gene expression. In this review, the structure and function of these dioxygenases in histone and nucleic acid demethylation will be discussed. Given the important roles of these 2OG dioxygenases, detailed analysis and comparison of the 2OG dioxygenases will guide the design of target-specific small-molecule chemical probes and inhibitors.
Collapse
Affiliation(s)
- Cheng Dong
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Heng Zhang
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Chao Xu
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
70
|
Qin S, Min J. Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 2014; 39:536-47. [PMID: 25277115 DOI: 10.1016/j.tibs.2014.09.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
PWWP domain-containing proteins are often involved in chromatin-associated biological processes, such as transcriptional regulation and DNA repair, and recent studies have shown that the PWWP domain specifies chromatin localization. Mutations in the PWWP domain, a 100-150 amino acid motif, have been linked to various human diseases, emphasizing its importance. Structural studies reveal that PWWP domains possess a conserved aromatic cage for histone methyl-lysine recognition, and synergistically bind both histone and DNA, which contributes to their nucleosome-binding ability and chromatin localization. Furthermore, the PWWP domain often cooperates with other histone and DNA 'reader' or 'modifier' domains to evoke crosstalk between various epigenetic marks. Here, we discuss these recent advances in understanding the structure and function of the PWWP domain.
Collapse
Affiliation(s)
- Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
71
|
Best A, James K, Dalgliesh C, Hong E, Kheirolahi-Kouhestani M, Curk T, Xu Y, Danilenko M, Hussain R, Keavney B, Wipat A, Klinck R, Cowell IG, Cheong Lee K, Austin CA, Venables JP, Chabot B, Santibanez Koref M, Tyson-Capper A, Elliott DJ. Human Tra2 proteins jointly control a CHEK1 splicing switch among alternative and constitutive target exons. Nat Commun 2014; 5:4760. [PMID: 25208576 PMCID: PMC4175592 DOI: 10.1038/ncomms5760] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/22/2014] [Indexed: 01/11/2023] Open
Abstract
Alternative splicing--the production of multiple messenger RNA isoforms from a single gene--is regulated in part by RNA binding proteins. While the RBPs transformer2 alpha (Tra2α) and Tra2β have both been implicated in the regulation of alternative splicing, their relative contributions to this process are not well understood. Here we find simultaneous--but not individual--depletion of Tra2α and Tra2β induces substantial shifts in splicing of endogenous Tra2β target exons, and that both constitutive and alternative target exons are under dual Tra2α-Tra2β control. Target exons are enriched in genes associated with chromosome biology including CHEK1, which encodes a key DNA damage response protein. Dual Tra2 protein depletion reduces expression of full-length CHK1 protein, results in the accumulation of the DNA damage marker γH2AX and decreased cell viability. We conclude Tra2 proteins jointly control constitutive and alternative splicing patterns via paralog compensation to control pathways essential to the maintenance of cell viability.
Collapse
Affiliation(s)
- Andrew Best
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Katherine James
- School of Computing Science, Claremont Tower, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Elaine Hong
- Institute for Cellular Medicine, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK
| | | | - Tomaz Curk
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, SI-1000, Ljubljana, Slovenia
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Marina Danilenko
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Rafiq Hussain
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Bernard Keavney
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
- Institute of Cardiovascular Sciences, The University of Manchester, Manchester M13 9NT, UK
| | - Anil Wipat
- School of Computing Science, Claremont Tower, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Roscoe Klinck
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Ian G. Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Ka Cheong Lee
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Caroline A. Austin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Julian P. Venables
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Mauro Santibanez Koref
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Alison Tyson-Capper
- Institute for Cellular Medicine, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK
| | - David J. Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| |
Collapse
|
72
|
Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 2014; 71:3439-63. [PMID: 24676717 PMCID: PMC11113154 DOI: 10.1007/s00018-014-1605-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/11/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
The dynamic nature of chromatin and its myriad modifications play a crucial role in gene regulation (expression and repression) during development, cellular survival, homeostasis, ageing, and apoptosis/death. Histone 3 lysine 4 methylation (H3K4 methylation) catalyzed by H3K4 specific histone methyltransferases is one of the more critical chromatin modifications that is generally associated with gene activation. Additionally, the deposition of H3 variant(s) in conjunction with H3K4 methylation generates an intricately reliable epigenetic regulatory circuit that guides transcriptional activity in normal development and homeostasis. Consequently, alterations in this epigenetic circuit may trigger disease development. The mechanistic relationship between H3 variant deposition and H3K4 methylation during normal development has remained foggy. However, recent investigations in the field of chromatin dynamics in various model organisms, tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model reconstituted chromatins reveal that there may be different subsets of chromatin assemblage with specific patterns of histone replacement executing similar functions. In this light, we attempt to explain the intricate control system that maintains chromatin structure and dynamics during normal development as well as during tumor development and cancer progression in this review. Our focus is to highlight the contribution of H3K4 methylation-histone variant crosstalk in regulating chromatin architecture and subsequently its function.
Collapse
Affiliation(s)
- Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sandip K. Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Vedang A. Londhe
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752 USA
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
73
|
Hashimoto H, Pais JE, Zhang X, Saleh L, Fu ZQ, Dai N, Corrêa IR, Zheng Y, Cheng X. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Nature 2013; 506:391-5. [PMID: 24390346 PMCID: PMC4364404 DOI: 10.1038/nature12905] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022]
Abstract
Cytosine residues in mammalian DNA occur in five forms, cytosine (C), 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). The ten-eleven translocation (Tet) dioxygenases convert 5mC to 5hmC, 5fC and 5caC in three consecutive, Fe(II)- and α-ketoglutarate-dependent oxidation reactions1–4. The Tet family of dioxygenases is widely distributed across the tree of life5, including the heterolobosean amoeboflagellate Naegleria gruberi. The genome of Naegleria6 encodes homologs of mammalian DNA methyltransferase and Tet proteins7. Here we study biochemically and structurally one of the Naegleria Tet-like proteins (NgTet1), which shares significant sequence conservation (approximately 14% identity or 39% similarity) with mammalian Tet1. Like mammalian Tet proteins, NgTet1 acts on 5mC and generates 5hmC, 5fC and 5caC. The crystal structure of NgTet1 complexed with DNA containing a 5mCpG site revealed that NgTet1 uses a base-flipping mechanism to access 5mC. The DNA is contacted from the minor groove and bent towards the major groove. The flipped 5mC is positioned in the active site pocket with planar stacking contacts, Watson–Crick polar hydrogen bonds and van der Waals interactions specific for 5mC. The sequence conservation between NgTet1 and mammalian Tet1, including residues involved in structural integrity and functional significance, suggests structural conservation across phyla.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Departments of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - June E Pais
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA
| | - Xing Zhang
- Departments of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Lana Saleh
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA
| | - Zheng-Qing Fu
- 1] Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, USA [2] Sector 22, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Nan Dai
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA
| | - Yu Zheng
- New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938, USA
| | - Xiaodong Cheng
- Departments of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| |
Collapse
|
74
|
Abstract
Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge.
Collapse
Affiliation(s)
- Christopher J. Millard
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
- Correspondence to:
| |
Collapse
|
75
|
Bando SY, Silva FN, Costa LDF, Silva AV, Pimentel-Silva LR, Castro LHM, Wen HT, Amaro E, Moreira-Filho CA. Complex network analysis of CA3 transcriptome reveals pathogenic and compensatory pathways in refractory temporal lobe epilepsy. PLoS One 2013; 8:e79913. [PMID: 24278214 PMCID: PMC3836787 DOI: 10.1371/journal.pone.0079913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022] Open
Abstract
We previously described - studying transcriptional signatures of hippocampal CA3 explants - that febrile (FS) and afebrile (NFS) forms of refractory mesial temporal lobe epilepsy constitute two distinct genomic phenotypes. That network analysis was based on a limited number (hundreds) of differentially expressed genes (DE networks) among a large set of valid transcripts (close to two tens of thousands). Here we developed a methodology for complex network visualization (3D) and analysis that allows the categorization of network nodes according to distinct hierarchical levels of gene-gene connections (node degree) and of interconnection between node neighbors (concentric node degree). Hubs are highly connected nodes, VIPs have low node degree but connect only with hubs, and high-hubs have VIP status and high overall number of connections. Studying the whole set of CA3 valid transcripts we: i) obtained complete transcriptional networks (CO) for FS and NFS phenotypic groups; ii) examined how CO and DE networks are related; iii) characterized genomic and molecular mechanisms underlying FS and NFS phenotypes, identifying potential novel targets for therapeutic interventions. We found that: i) DE hubs and VIPs are evenly distributed inside the CO networks; ii) most DE hubs and VIPs are related to synaptic transmission and neuronal excitability whereas most CO hubs, VIPs and high hubs are related to neuronal differentiation, homeostasis and neuroprotection, indicating compensatory mechanisms. Complex network visualization and analysis is a useful tool for systems biology approaches to multifactorial diseases. Network centrality observed for hubs, VIPs and high hubs of CO networks, is consistent with the network disease model, where a group of nodes whose perturbation leads to a disease phenotype occupies a central position in the network. Conceivably, the chance for exerting therapeutic effects through the modulation of particular genes will be higher if these genes are highly interconnected in transcriptional networks.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | | | | | - Alexandre V. Silva
- Department of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | - Luiz HM. Castro
- Clinical Neurology Division, Hospital das Clínicas da FMUSP, São Paulo, São Paulo, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas da FMUSP, São Paulo, São Paulo, Brazil
| | - Edson Amaro
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| |
Collapse
|
76
|
Abstract
It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes.
Collapse
|
77
|
Chen F, Yang H, Dong Z, Fang J, Wang P, Zhu T, Gong W, Fang R, Shi YG, Li Z, Xu Y. Structural insight into substrate recognition by histone demethylase LSD2/KDM1b. Cell Res 2013; 23:306-9. [PMID: 23357850 PMCID: PMC3567815 DOI: 10.1038/cr.2013.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fei Chen
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Dong
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian Fang
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ping Wang
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Tingting Zhu
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wei Gong
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Rui Fang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yujiang Geno Shi
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ze Li
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|