51
|
Frigola J, He J, Kinkelin K, Pye VE, Renault L, Douglas ME, Remus D, Cherepanov P, Costa A, Diffley JFX. Cdt1 stabilizes an open MCM ring for helicase loading. Nat Commun 2017; 8:15720. [PMID: 28643783 PMCID: PMC5490006 DOI: 10.1038/ncomms15720] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/24/2017] [Indexed: 11/09/2022] Open
Abstract
ORC, Cdc6 and Cdt1 act together to load hexameric MCM, the motor of the eukaryotic replicative helicase, into double hexamers at replication origins. Here we show that Cdt1 interacts with MCM subunits Mcm2, 4 and 6, which both destabilizes the Mcm2-5 interface and inhibits MCM ATPase activity. Using X-ray crystallography, we show that Cdt1 contains two winged-helix domains in the C-terminal half of the protein and a catalytically inactive dioxygenase-related N-terminal domain, which is important for MCM loading, but not for subsequent replication. We used these structures together with single-particle electron microscopy to generate three-dimensional models of MCM complexes. These show that Cdt1 stabilizes MCM in a left-handed spiral open at the Mcm2-5 gate. We propose that Cdt1 acts as a brace, holding MCM open for DNA entry and bound to ATP until ORC-Cdc6 triggers ATP hydrolysis by MCM, promoting both Cdt1 ejection and MCM ring closure.
Collapse
Affiliation(s)
- Jordi Frigola
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Jun He
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Kerstin Kinkelin
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Ludovic Renault
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Max E. Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
10065, USA
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| | - John F. X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London
NW1 1AT, UK
| |
Collapse
|
52
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
53
|
Hizume K, Kominami H, Kobayashi K, Yamada H, Araki H. Flexible DNA Path in the MCM Double Hexamer Loaded on DNA. Biochemistry 2017; 56:2435-2445. [DOI: 10.1021/acs.biochem.6b00922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kohji Hizume
- Division
of Microbial Genetics, National Institute of Genetics, Mishima 411-8540, Japan
- Department
of Genetics, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Hiroaki Kominami
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kei Kobayashi
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hirofumi Yamada
- Department
of Electronic Science and Engineering, Kyoto University, Kyoto University
Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hiroyuki Araki
- Division
of Microbial Genetics, National Institute of Genetics, Mishima 411-8540, Japan
- Department
of Genetics, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| |
Collapse
|
54
|
Cottineau J, Kottemann MC, Lach FP, Kang YH, Vély F, Deenick EK, Lazarov T, Gineau L, Wang Y, Farina A, Chansel M, Lorenzo L, Piperoglou C, Ma CS, Nitschke P, Belkadi A, Itan Y, Boisson B, Jabot-Hanin F, Picard C, Bustamante J, Eidenschenk C, Boucherit S, Aladjidi N, Lacombe D, Barat P, Qasim W, Hurst JA, Pollard AJ, Uhlig HH, Fieschi C, Michon J, Bermudez VP, Abel L, de Villartay JP, Geissmann F, Tangye SG, Hurwitz J, Vivier E, Casanova JL, Smogorzewska A, Jouanguy E. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest 2017; 127:1991-2006. [PMID: 28414293 DOI: 10.1172/jci90727] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022] Open
Abstract
Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component-encoding genes are embryonic lethal in mice. The patients' fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients' cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.
Collapse
|
55
|
Fukushima K, Wang M, Naito Y, Uchihashi T, Kato Y, Mukai S, Yabuta N, Nojima H. GAK is phosphorylated by c-Src and translocated from the centrosome to chromatin at the end of telophase. Cell Cycle 2017; 16:415-427. [PMID: 28135906 DOI: 10.1080/15384101.2016.1241916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Cyclin G-associated kinase (GAK) harbors a consensus phosphorylation motif (Y412) for c-Src; however, its physiological significance remains elusive. Here, we show that GAK is phosphorylated by c-Src not only at Y412 but also at Y1149. An anti-GAK-pY412 antibody recognized the shifted band of GAK during M phase. Immunofluorescence (IF) showed that GAK-pY412/pY1149 signals were present in the nucleus during interphase, translocated to chromosomes at prophase and prometaphase, moved to centrosomes at metaphase, and finally translocated to chromosomes at the end of telophase, when nuclear membrane formation was almost complete. These subcellular movements of GAK resemble those of DNA licensing factors. Indeed, mass spectrometry identified mini-chromosome maintenance (MCM) 3, an essential component of the DNA licensing system, as one of the association partners of GAK; immunoprecipitation-mediated Western blotting confirmed their association in vivo. These results suggest that the c-Src_GAK_MCM axis plays an important role in cell cycle progression through control of the DNA replication licensing system.
Collapse
Affiliation(s)
- Kohshiro Fukushima
- a Department of Molecular Genetics , Research Institute for Microbial Diseases, Osaka University , Yamadaoka, Suita, Osaka , Japan
| | - Mian Wang
- a Department of Molecular Genetics , Research Institute for Microbial Diseases, Osaka University , Yamadaoka, Suita, Osaka , Japan
| | - Yoko Naito
- a Department of Molecular Genetics , Research Institute for Microbial Diseases, Osaka University , Yamadaoka, Suita, Osaka , Japan
| | - Toshihiro Uchihashi
- b First Department of Oral and Maxillofacial Surgery , Graduate School of Dentistry, Osaka University , Yamadaoka, Suita, Osaka , Japan
| | - Yorika Kato
- a Department of Molecular Genetics , Research Institute for Microbial Diseases, Osaka University , Yamadaoka, Suita, Osaka , Japan
| | - Satomi Mukai
- a Department of Molecular Genetics , Research Institute for Microbial Diseases, Osaka University , Yamadaoka, Suita, Osaka , Japan
| | - Norikazu Yabuta
- a Department of Molecular Genetics , Research Institute for Microbial Diseases, Osaka University , Yamadaoka, Suita, Osaka , Japan
| | - Hiroshi Nojima
- a Department of Molecular Genetics , Research Institute for Microbial Diseases, Osaka University , Yamadaoka, Suita, Osaka , Japan
| |
Collapse
|
56
|
Ticau S, Friedman LJ, Champasa K, Corrêa IR, Gelles J, Bell SP. Mechanism and timing of Mcm2-7 ring closure during DNA replication origin licensing. Nat Struct Mol Biol 2017; 24:309-315. [PMID: 28191892 PMCID: PMC5336523 DOI: 10.1038/nsmb.3375] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022]
Abstract
The opening and closing of two ring-shaped Mcm2-7 DNA helicases is necessary to license eukaryotic origins of replication, although the mechanisms controlling these events are unclear. The origin-recognition complex (ORC), Cdc6 and Cdt1 facilitate this process by establishing a topological link between each Mcm2-7 hexamer and origin DNA. Using colocalization single-molecule spectroscopy and single-molecule Förster resonance energy transfer (FRET), we monitored ring opening and closing of Saccharomyces cerevisiae Mcm2-7 during origin licensing. The two Mcm2-7 rings were open during initial DNA association and closed sequentially, concomitant with the release of their associated Cdt1. We observed that ATP hydrolysis by Mcm2-7 was coupled to ring closure and Cdt1 release, and failure to load the first Mcm2-7 prevented recruitment of the second Mcm2-7. Our findings identify key mechanisms controlling the Mcm2-7 DNA-entry gate during origin licensing, and reveal that the two Mcm2-7 complexes are loaded via a coordinated series of events with implications for bidirectional replication initiation and quality control.
Collapse
Affiliation(s)
- Simina Ticau
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Kanokwan Champasa
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
57
|
Yuan Z, Riera A, Bai L, Sun J, Nandi S, Spanos C, Chen ZA, Barbon M, Rappsilber J, Stillman B, Speck C, Li H. Structural basis of Mcm2-7 replicative helicase loading by ORC-Cdc6 and Cdt1. Nat Struct Mol Biol 2017; 24:316-324. [PMID: 28191893 PMCID: PMC5503505 DOI: 10.1038/nsmb.3372] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
To start DNA replication, the Origin Recognition Complex (ORC) and Cdc6 load a Mcm2-7 double hexamer onto DNA. Without ATP hydrolysis, ORC-Cdc6 recruits one Cdt1-bound Mcm2-7 hexamer, forming an ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) helicase loading intermediate. Here we report a 3.9Å structure of the OCCM on DNA. Flexible Mcm2-7 winged-helix domains (WHD) engage ORC-Cdc6. A three-domain Cdt1 configuration embraces Mcm2, Mcm4, and Mcm6, nearly half of the hexamer. The Cdt1 C-terminal domain extends to the Mcm6 WHD, which binds Orc4 WHD. DNA passes through the ORC-Cdc6 and Mcm2-7 rings. Origin DNA interaction is mediated by an α-helix in Orc4 and positively charged loops in Orc2 and Cdc6. The Mcm2-7 C-tier AAA+ ring is topologically closed by a Mcm5 loop that embraces Mcm2, but the N-tier ring Mcm2-Mcm5 interface remains open. This structure suggests loading mechanics of the first Cdt1-bound Mcm2-7 hexamer by ORC-Cdc6.
Collapse
Affiliation(s)
- Zuanning Yuan
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Alberto Riera
- MRC London Institute of Medical Sciences (LMS), London, UK.,DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Zhuo Angel Chen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Marta Barbon
- MRC London Institute of Medical Sciences (LMS), London, UK.,DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Christian Speck
- MRC London Institute of Medical Sciences (LMS), London, UK.,DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
58
|
Zhai Y, Cheng E, Wu H, Li N, Yung PYK, Gao N, Tye BK. Open-ringed structure of the Cdt1-Mcm2-7 complex as a precursor of the MCM double hexamer. Nat Struct Mol Biol 2017; 24:300-308. [PMID: 28191894 DOI: 10.1038/nsmb.3374] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance complex (MCM) hexameric complex (Mcm2-7) forms the core of the eukaryotic replicative helicase. During G1 phase, two Cdt1-Mcm2-7 heptamers are loaded onto each replication origin by the origin-recognition complex (ORC) and Cdc6 to form an inactive MCM double hexamer (DH), but the detailed loading mechanism remains unclear. Here we examine the structures of the yeast MCM hexamer and Cdt1-MCM heptamer from Saccharomyces cerevisiae. Both complexes form left-handed coil structures with a 10-15-Å gap between Mcm5 and Mcm2, and a central channel that is occluded by the C-terminal domain winged-helix motif of Mcm5. Cdt1 wraps around the N-terminal regions of Mcm2, Mcm6 and Mcm4 to stabilize the whole complex. The intrinsic coiled structures of the precursors provide insights into the DH formation, and suggest a spring-action model for the MCM during the initial origin melting and the subsequent DNA unwinding.
Collapse
Affiliation(s)
- Yuanliang Zhai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Erchao Cheng
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Wu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ningning Li
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Philip Yuk Kwong Yung
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ning Gao
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bik-Kwoon Tye
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
59
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
60
|
New insights into the GINS complex explain the controversy between existing structural models. Sci Rep 2017; 7:40188. [PMID: 28071757 PMCID: PMC5223209 DOI: 10.1038/srep40188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/01/2016] [Indexed: 11/24/2022] Open
Abstract
GINS is a key component of eukaryotic replicative forks and is composed of four subunits (Sld5, Psf1, Psf2, Psf3). To explain the discrepancy between structural data from crystallography and electron microscopy (EM), we show that GINS is a compact tetramer in solution as observed in crystal structures, but also forms a double-tetrameric population, detectable by EM. This may represent an intermediate step towards the assembly of two replicative helicase complexes at origins, moving in opposite directions within the replication bubble. Reconstruction of the double-tetrameric form, combined with small-angle X-ray scattering data, allows the localisation of the B domain of the Psf1 subunit in the free GINS complex, which was not visible in previous studies and is essential for the formation of a functional replication fork.
Collapse
|
61
|
Wei L, Zhao X. Roles of SUMO in Replication Initiation, Progression, and Termination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:371-393. [PMID: 29357067 PMCID: PMC6643980 DOI: 10.1007/978-981-10-6955-0_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accurate genome duplication during cell division is essential for life. This process is accomplished by the close collaboration between replication factors and many additional proteins that provide assistant roles. Replication factors establish the replication machineries capable of copying billions of nucleotides, while regulatory proteins help to achieve accuracy and efficiency of replication. Among regulatory proteins, protein modification enzymes can bestow fast and reversible changes to many targets, leading to coordinated effects on replication. Recent studies have begun to elucidate how one type of protein modification, sumoylation, can modify replication proteins and regulate genome duplication through multiple mechanisms. This chapter summarizes these new findings, and how they can integrate with the known regulatory circuitries of replication. As this area of research is still at its infancy, many outstanding questions remain to be explored, and we discuss these issues in light of the new advances.
Collapse
Affiliation(s)
- Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
62
|
Pozo PN, Cook JG. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes (Basel) 2016; 8:genes8010002. [PMID: 28025526 PMCID: PMC5294997 DOI: 10.3390/genes8010002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore–microtubule attachment, and we describe the current understanding of human Cdt1 regulation.
Collapse
Affiliation(s)
- Pedro N Pozo
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
63
|
Peng YP, Zhu Y, Yin LD, Zhang JJ, Guo S, Fu Y, Miao Y, Wei JS. The Expression and Prognostic Roles of MCMs in Pancreatic Cancer. PLoS One 2016; 11:e0164150. [PMID: 27695057 PMCID: PMC5047525 DOI: 10.1371/journal.pone.0164150] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Minichromosome maintenance (MCM) proteins play important roles in DNA replication by interacting with other factors which participate in the regulation of DNA synthesis. Abnormal over-expression of MCMs was observed in numerous malignancies, such as colorectal cancer. However, the expression of MCMs in pancreatic cancer (PC) was less investigated so far. This study was designed to analyze the expression and prognostic roles of MCM1-10 in PC based on the data provided by The Cancer Genome Atlas (TCGA). METHODS Pearson χ2 test was applied to evaluate the association of MCMs expression with clinicopathologic indicators, and biomarkers for tumor biological behaviors. Kaplan-Meier plots and log-rank tests were used to assess survival analysis, and univariate and multivariate Cox proportional hazard regression models were used to recognize independent prognostic factors. RESULTS MCM1-10 were generally expressed in PC samples. The levels of some molecules were markedly correlated with that of biomarkers for S phase, proliferation, gemcitabine resistance. And part of these molecules over-expression was significantly associated with indicators of disease progression, such as depth of tumor invasion and lymph node metastasis. Furthermore, MCM2, 4, 6, 8, and 10 over-expression was remarkably associated with shorter disease free survival time, and MCM2, 4,8, and 10 over-expression was associated with shorter overall survival time. Further multivariate analysis suggested that MCM8 was an independent prognostic factor for PC. CONCLUSION MCMs abnormal over-expression was significantly associated with PC progression and prognosis. These molecules could be regarded as prognostic and therapeutic biomarkers for PC. The roles of MCMs may be vitally important and the underlying mechanisms need to be furtherinvestigated.
Collapse
Affiliation(s)
- Yun-Peng Peng
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yi Zhu
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Ling-Di Yin
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jing-Jing Zhang
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Song Guo
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yue Fu
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yi Miao
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- * E-mail: (MY); (WJ-S)
| | - Ji-Shu Wei
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- * E-mail: (MY); (WJ-S)
| |
Collapse
|
64
|
Búa S, Sotiropoulou P, Sgarlata C, Borlado LR, Eguren M, Domínguez O, Ortega S, Malumbres M, Blanpain C, Méndez J. Deregulated expression of Cdc6 in the skin facilitates papilloma formation and affects the hair growth cycle. Cell Cycle 2016; 14:3897-907. [PMID: 26697840 DOI: 10.1080/15384101.2015.1120919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cdc6 encodes a key protein for DNA replication, responsible for the recruitment of the MCM helicase to replication origins during the G1 phase of the cell division cycle. The oncogenic potential of deregulated Cdc6 expression has been inferred from cellular studies, but no mouse models have been described to study its effects in mammalian tissues. Here we report the generation of K5-Cdc6, a transgenic mouse strain in which Cdc6 expression is deregulated in tissues with stratified epithelia. Higher levels of CDC6 protein enhanced the loading of MCM complexes to DNA in epidermal keratinocytes, without affecting their proliferation rate or inducing DNA damage. While Cdc6 overexpression did not promote skin tumors, it facilitated the formation of papillomas in cooperation with mutagenic agents such as DMBA. In addition, the elevated levels of CDC6 protein in the skin extended the resting stage of the hair growth cycle, leading to better fur preservation in older mice.
Collapse
Affiliation(s)
- Sabela Búa
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| | - Peggy Sotiropoulou
- b Interdisciplinary Research Institute; Université Libre de Bruxelles ; Bruxelles , Belgium
| | - Cecilia Sgarlata
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| | - Luis R Borlado
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| | - Manuel Eguren
- c Cell Division and Cancer Group; Molecular Oncology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Orlando Domínguez
- d Genomics Unit, Biotechnology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Sagrario Ortega
- e Transgenic Mice Unit; Biotechnology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Marcos Malumbres
- c Cell Division and Cancer Group; Molecular Oncology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Cedric Blanpain
- b Interdisciplinary Research Institute; Université Libre de Bruxelles ; Bruxelles , Belgium
| | - Juan Méndez
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| |
Collapse
|
65
|
The Histone Variant H3.3 Is Enriched at Drosophila Amplicon Origins but Does Not Mark Them for Activation. G3-GENES GENOMES GENETICS 2016; 6:1661-71. [PMID: 27172191 PMCID: PMC4889662 DOI: 10.1534/g3.116.028068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Eukaryotic DNA replication begins from multiple origins. The origin recognition complex (ORC) binds origin DNA and scaffolds assembly of a prereplicative complex (pre-RC), which is subsequently activated to initiate DNA replication. In multicellular eukaryotes, origins do not share a strict DNA consensus sequence, and their activity changes in concert with chromatin status during development, but mechanisms are ill-defined. Previous genome-wide analyses in Drosophila and other organisms have revealed a correlation between ORC binding sites and the histone variant H3.3. This correlation suggests that H3.3 may designate origin sites, but this idea has remained untested. To address this question, we examined the enrichment and function of H3.3 at the origins responsible for developmental gene amplification in the somatic follicle cells of the Drosophila ovary. We found that H3.3 is abundant at these amplicon origins. H3.3 levels remained high when replication initiation was blocked, indicating that H3.3 is abundant at the origins before activation of the pre-RC. H3.3 was also enriched at the origins during early oogenesis, raising the possibility that H3.3 bookmarks sites for later amplification. However, flies null mutant for both of the H3.3 genes in Drosophila did not have overt defects in developmental gene amplification or genomic replication, suggesting that H3.3 is not essential for the assembly or activation of the pre-RC at origins. Instead, our results imply that the correlation between H3.3 and ORC sites reflects other chromatin attributes that are important for origin function.
Collapse
|
66
|
Deegan TD, Diffley JFX. MCM: one ring to rule them all. Curr Opin Struct Biol 2016; 37:145-51. [PMID: 26866665 DOI: 10.1016/j.sbi.2016.01.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
Abstract
Precise replication of the eukaryotic genome is achieved primarily through strict regulation of the enzyme responsible for DNA unwinding, the replicative helicase. The motor of this helicase is a hexameric AAA+ ATPase called MCM. The loading of MCM onto DNA and its subsequent activation and disassembly are each restricted to separate cell cycle phases; this ensures that a functional replisome is only built once at any replication origin. In recent years, biochemical and structural studies have shown that distinct conformational changes in MCM, each requiring post-translational modifications and/or the activity of other replication proteins, define the various stages of the chromosome replication cycle. Here, we review recent progress in this area.
Collapse
Affiliation(s)
- Tom D Deegan
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom
| | - John F X Diffley
- The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6 3LD, United Kingdom.
| |
Collapse
|
67
|
Douglas ME, Diffley JFX. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex. J Biol Chem 2016; 291:5879-5888. [PMID: 26719337 PMCID: PMC4786722 DOI: 10.1074/jbc.m115.707802] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/28/2015] [Indexed: 01/11/2023] Open
Abstract
Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly ("G1-like") and high affinity recruitment when CMG assembly takes place ("S-phase-like"). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus.
Collapse
Affiliation(s)
- Max E Douglas
- From The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - John F X Diffley
- From The Francis Crick Institute, Clare Hall Laboratory, South Mimms, Hertfordshire EN6 3LD, United Kingdom.
| |
Collapse
|
68
|
Kalfalah FM, Berg E, Christensen MO, Linka RM, Dirks WG, Boege F, Mielke C. Spatio-temporal regulation of the human licensing factor Cdc6 in replication and mitosis. Cell Cycle 2016; 14:1704-15. [PMID: 25875233 PMCID: PMC4614858 DOI: 10.1080/15384101.2014.1000182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To maintain genome stability, the thousands of replication origins of mammalian genomes must only initiate replication once per cell cycle. This is achieved by a strict temporal separation of ongoing replication in S phase, and the formation of pre-replicative complexes in the preceding G1 phase, which "licenses" each origin competent for replication. The contribution of the loading factor Cdc6 to the timing of the licensing process remained however elusive due to seemingly contradictory findings concerning stabilization, degradation and nuclear export of Cdc6. Using fluorescently tagged Cdc6 (Cdc6-YFP) expressed in living cycling cells, we demonstrate here that Cdc6-YFP is stable and chromatin-associated during mitosis and G1 phase. It undergoes rapid proteasomal degradation during S phase initiation followed by active export to the cytosol during S and G2 phases. Biochemical fractionation abolishes this nuclear exclusion, causing aberrant chromatin association of Cdc6-YFP and, likely, endogenous Cdc6, too. In addition, we demonstrate association of Cdc6 with centrosomes in late G2 and during mitosis. These results show that multiple Cdc6-regulatory mechanisms coexist but are tightly controlled in a cell cycle-specific manner.
Collapse
Affiliation(s)
- Faiza M Kalfalah
- a Institute of Clinical Chemistry and Laboratory Diagnostics; University Düsseldorf; Medical Faculty , Düsseldorf , Germany
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Hexameric helicases control both the initiation and the elongation phase of DNA replication. The toroidal structure of these enzymes provides an inherent challenge in the opening and loading onto DNA at origins, as well as the conformational changes required to exclude one strand from the central channel and activate DNA unwinding. Recently, high-resolution structures have not only revealed the architecture of various hexameric helicases but also detailed the interactions of DNA within the central channel, as well as conformational changes that occur during loading. This structural information coupled with advanced biochemical reconstitutions and biophysical methods have transformed our understanding of the dynamics of both the helicase structure and the DNA interactions required for efficient unwinding at the replisome.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
70
|
Archaeal DNA Replication Origins and Recruitment of the MCM Replicative Helicase. DNA REPLICATION ACROSS TAXA 2016; 39:169-90. [DOI: 10.1016/bs.enz.2016.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
71
|
Bruck I, Perez-Arnaiz P, Colbert MK, Kaplan DL. Insights into the Initiation of Eukaryotic DNA Replication. Nucleus 2015; 6:449-54. [PMID: 26710261 DOI: 10.1080/19491034.2015.1115938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.
Collapse
Affiliation(s)
- Irina Bruck
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Patricia Perez-Arnaiz
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Max K Colbert
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Daniel L Kaplan
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| |
Collapse
|
72
|
Fenyk S, Dixon CH, Gittens WH, Townsend PD, Sharples GJ, Pålsson LO, Takken FLW, Cann MJ. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange. J Biol Chem 2015; 291:1137-47. [PMID: 26601946 PMCID: PMC4714197 DOI: 10.1074/jbc.m115.698589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA.
Collapse
Affiliation(s)
- Stepan Fenyk
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - Christopher H Dixon
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - William H Gittens
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - Philip D Townsend
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - Gary J Sharples
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - Lars-Olof Pålsson
- the Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom and
| | - Frank L W Takken
- the Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Martin J Cann
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| |
Collapse
|
73
|
Sun B, Wang MD. Single-molecule perspectives on helicase mechanisms and functions. Crit Rev Biochem Mol Biol 2015; 51:15-25. [DOI: 10.3109/10409238.2015.1102195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
74
|
Luo Y, Schimenti JC. MCM9 deficiency delays primordial germ cell proliferation independent of the ATM pathway. Genesis 2015; 53:678-84. [DOI: 10.1002/dvg.22901] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Yunhai Luo
- Department of Biomedical Sciences; Cornell University; Ithaca New York
| | - John C. Schimenti
- Department of Biomedical Sciences; Cornell University; Ithaca New York
| |
Collapse
|
75
|
Fenyk S, Townsend PD, Dixon CH, Spies GB, de San Eustaquio Campillo A, Slootweg EJ, Westerhof LB, Gawehns FKK, Knight MR, Sharples GJ, Goverse A, Pålsson LO, Takken FLW, Cann MJ. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein. J Biol Chem 2015; 290:24945-60. [PMID: 26306038 PMCID: PMC4599002 DOI: 10.1074/jbc.m115.672121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Indexed: 11/06/2022] Open
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR.
Collapse
Affiliation(s)
- Stepan Fenyk
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Philip D Townsend
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Christopher H Dixon
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Gerhard B Spies
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | | | - Erik J Slootweg
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands, and
| | - Lotte B Westerhof
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands, and
| | - Fleur K K Gawehns
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marc R Knight
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Gary J Sharples
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Aska Goverse
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands, and
| | - Lars-Olof Pålsson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Martin J Cann
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute,
| |
Collapse
|
76
|
Affiliation(s)
- Alberto Riera
- a DNA Replication Group; Institute of Clinical Science; Imperial College ; London , UK
| | | |
Collapse
|
77
|
Herrera MC, Tognetti S, Riera A, Zech J, Clarke P, Fernández-Cid A, Speck C. A reconstituted system reveals how activating and inhibitory interactions control DDK dependent assembly of the eukaryotic replicative helicase. Nucleic Acids Res 2015; 43:10238-50. [PMID: 26338774 PMCID: PMC4666391 DOI: 10.1093/nar/gkv881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/22/2015] [Indexed: 11/17/2022] Open
Abstract
During G1-phase of the cell-cycle the replicative MCM2–7 helicase becomes loaded onto DNA into pre-replicative complexes (pre-RCs), resulting in MCM2–7 double-hexamers on DNA. In S-phase, Dbf4-dependent kinase (DDK) and cyclin-dependent-kinase (CDK) direct with the help of a large number of helicase-activation factors the assembly of a Cdc45–MCM2–7–GINS (CMG) complex. However, in the absence of S-phase kinases complex assembly is inhibited, which is unexpected, as the MCM2–7 double-hexamer represents a very large interaction surface. Currently it is unclear what mechanisms restricts complex assembly and how DDK can overcome this inhibition to promote CMG-assembly. We developed an advanced reconstituted-system to study helicase activation in-solution and discovered that individual factors like Sld3 and Sld2 can bind directly to the pre-RC, while Cdc45 cannot. When Sld3 and Sld2 were incubated together with the pre-RC, we observed that competitive interactions restrict complex assembly. DDK stabilizes the Sld3/Sld2–pre-RC complex, but the complex is only short-lived, indicating an anti-cooperative mechanism. Yet, a Sld3/Cdc45–pre-RC can form in the presence of DDK and the addition of Sld2 enhances complex stability. Our results indicate that helicase activation is regulated by competitive and cooperative interactions, which restrict illegitimate complex formation and direct limiting helicase-activation factors into pre-initiation complexes.
Collapse
Affiliation(s)
- M Carmen Herrera
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Silvia Tognetti
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Juergen Zech
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Pippa Clarke
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alejandra Fernández-Cid
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
78
|
Chang F, Riera A, Evrin C, Sun J, Li H, Speck C, Weinreich M. Cdc6 ATPase activity disengages Cdc6 from the pre-replicative complex to promote DNA replication. eLife 2015; 4. [PMID: 26305410 PMCID: PMC4547096 DOI: 10.7554/elife.05795] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/22/2015] [Indexed: 12/21/2022] Open
Abstract
To initiate DNA replication, cells first load an MCM helicase double hexamer at origins in a reaction requiring ORC, Cdc6, and Cdt1, also called pre-replicative complex (pre-RC) assembly. The essential mechanistic role of Cdc6 ATP hydrolysis in this reaction is still incompletely understood. Here, we show that although Cdc6 ATP hydrolysis is essential to initiate DNA replication, it is not essential for MCM loading. Using purified proteins, an ATPase-defective Cdc6 mutant ‘Cdc6-E224Q’ promoted MCM loading on DNA. Cdc6-E224Q also promoted MCM binding at origins in vivo but cells remained blocked in G1-phase. If after loading MCM, Cdc6-E224Q was degraded, cells entered an apparently normal S-phase and replicated DNA, a phenotype seen with two additional Cdc6 ATPase-defective mutants. Cdc6 ATP hydrolysis is therefore required for Cdc6 disengagement from the pre-RC after helicase loading to advance subsequent steps in helicase activation in vivo. DOI:http://dx.doi.org/10.7554/eLife.05795.001 Before a cell divides, it first creates copies of its DNA so that the two daughter cells both receive a complete copy of its genetic blueprint. The DNA is arranged in a double helix that is made of two single DNA strands that twist together. The process of copying the DNA requires a group or ‘complex’ of proteins called the MCM helicase complex that binds to this double-stranded DNA molecule. MCM then separates the two DNA strands to allow the production of new DNA strands in a process that uses the original strands as templates. After copying, the two resulting DNA double helices each have one of the original strands and one new strand. An enzyme called Cdc6 works together with several other proteins to help MCM bind to double-stranded DNA. Cdc6 uses energy to promote DNA copying, but it is not clear how this works. Here, Chang et al. studied the activity of yeast Cdc6. A mutant form of Cdc6 that lacked its enzyme activity still promoted MCM binding to DNA. However, yeast cells with this mutant enzyme were unable to copy their DNA and did not divide. Next, Chang et al. used a technique called ‘single particle electron microscopy’ to investigate how the MCM complex, DNA and Cdc6 interact with each other. These experiments show that normal Cdc6 enzymes detach from the MCM complex after the energy is used to allow DNA copying and cell division to proceed. However, the mutant Cdc6 enzymes remain stuck to the complex, which blocks DNA copying. In cells, if the mutant Cdc6 enzymes are deliberately destroyed after the MCM complex binds to DNA, DNA copying proceeds normally. This implies that Cdc6 inhibits MCM activity as long it remains bound to the complex. A similar sequence of steps occurs when helicases bind to DNA in bacteria, which suggests that this important process has been maintained during billions of years of evolution. The next steps will be to understand how Cdc6 is able to inhibit the MCM complex, and how Cdc6's enzyme activity enables it to detach from the complex later on. DOI:http://dx.doi.org/10.7554/eLife.05795.002
Collapse
Affiliation(s)
- FuJung Chang
- Van Andel Research Institute, Grand Rapids, United States
| | - Alberto Riera
- Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Cecile Evrin
- Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, New York, United States
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, New York, United States
| | - Christian Speck
- Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | | |
Collapse
|
79
|
Chistol G, Walter JC. Single-Molecule Visualization of MCM2-7 DNA Loading: Seeing Is Believing. Cell 2015; 161:429-430. [PMID: 25910200 DOI: 10.1016/j.cell.2015.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The first event in the initiation of eukaryotic DNA replication is the recruitment of the MCM2-7 ATPase, the core of the replicative DNA helicase, to origins. Ticau et al. use single-molecule imaging to reveal how ORC, Cdc6, and Cdt1 cooperate to load MCM2-7 onto DNA, enabling bidirectional replication.
Collapse
Affiliation(s)
- Gheorghe Chistol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
80
|
New insights in pre-replication complex formation with single-molecule visualization. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0815-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
81
|
Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol Cell 2015; 58:483-94. [PMID: 25921072 DOI: 10.1016/j.molcel.2015.03.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/20/2015] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
Eukaryotic replication initiation is highly regulated and dynamic. It begins with the origin recognition complex (ORC) binding DNA sites called origins of replication. ORC, together with Cdc6 and Cdt1, mediate pre-replicative complex (pre-RC) assembly by loading a double hexamer of Mcm2-7: the core of the replicative helicase. Here, we use single-molecule imaging to directly visualize Saccharomyces cerevisiae pre-RC assembly and replisome firing in real time. We show that ORC can locate and stably bind origins within large tracts of non-origin DNA and that Cdc6 drives ordered pre-RC assembly. We further show that the dynamics of the ORC-Cdc6 interaction dictate Mcm2-7 loading specificity and that Mcm2-7 double hexamers form preferentially at a native origin sequence. Finally, we demonstrate that single Mcm2-7 hexamers propagate bidirectionally, monotonically, and processively as constituents of active replisomes.
Collapse
Affiliation(s)
- Daniel Duzdevich
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Megan D Warner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Simina Ticau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nikola A Ivica
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen P Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, and the Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
82
|
Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 2015; 161:513-525. [PMID: 25892223 DOI: 10.1016/j.cell.2015.03.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2015] [Accepted: 03/02/2015] [Indexed: 01/31/2023]
Abstract
Loading of the ring-shaped Mcm2-7 replicative helicase around DNA licenses eukaryotic origins of replication. During loading, Cdc6, Cdt1, and the origin-recognition complex (ORC) assemble two heterohexameric Mcm2-7 complexes into a head-to-head double hexamer that facilitates bidirectional replication initiation. Using multi-wavelength single-molecule fluorescence to monitor the events of helicase loading, we demonstrate that double-hexamer formation is the result of sequential loading of individual Mcm2-7 complexes. Loading of each Mcm2-7 molecule involves the ordered association and dissociation of distinct Cdc6 and Cdt1 proteins. In contrast, one ORC molecule directs loading of both helicases in each double hexamer. Based on single-molecule FRET, arrival of the second Mcm2-7 results in rapid double-hexamer formation that anticipates Cdc6 and Cdt1 release, suggesting that Mcm-Mcm interactions recruit the second helicase. Our findings reveal the complex protein dynamics that coordinate helicase loading and indicate that distinct mechanisms load the oppositely oriented helicases that are central to bidirectional replication initiation.
Collapse
Affiliation(s)
- Simina Ticau
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Nikola A Ivica
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
83
|
Belsky JA, MacAlpine HK, Lubelsky Y, Hartemink AJ, MacAlpine DM. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes Dev 2015; 29:212-24. [PMID: 25593310 PMCID: PMC4298139 DOI: 10.1101/gad.247924.114] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2–7 helicase loading to form the prereplicative complex (pre-RC). Belsky et al. “footprinted” nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. This revealed a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1. The local chromatin environment restricts the loading of the Mcm2–7 double hexamer either upstream of or downstream from the ACS. Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2–7 helicase loading to form the prereplicative complex (pre-RC). Although pre-RC assembly is well characterized in vitro, the process is poorly understood within the local chromatin environment surrounding replication origins. To reveal how the chromatin architecture modulates origin selection and activation, we “footprinted” nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. Our nucleotide-resolution protein occupancy profiles resolved a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1, suggesting that stable ORC chromatin association in G2 is a determinant of origin efficiency. G1 nucleosome remodeling concomitant with pre-RC assembly expanded the origin nucleosome-free region and enhanced activation efficiency. Finally, the local chromatin environment restricts the loading of the Mcm2–7 double hexamer either upstream of or downstream from the ARS consensus sequence (ACS).
Collapse
Affiliation(s)
- Jason A Belsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| | - Yoav Lubelsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alexander J Hartemink
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA; Department of Computer Science, Duke University, Durham, North Carolina 27708, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
84
|
Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma 2015; 124:309-21. [PMID: 25575982 DOI: 10.1007/s00412-014-0500-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
A fundamental requirement for all organisms is the faithful duplication and transmission of the genetic material. Failure to accurately copy and segregate the genome during cell division leads to loss of genetic information and chromosomal abnormalities. Such genome instability is the hallmark of the earliest stages of tumour formation. Cyclin-dependent kinase (CDK) plays a vital role in regulating the duplication of the genome within the eukaryotic cell cycle. Importantly, this kinase is deregulated in many cancer types and is an emerging target of chemotherapeutics. In this review, I will consider recent advances concerning the role of CDK in replication initiation across eukaryotes. The implications for strict CDK-dependent regulation of genome duplication in the context of the cell cycle will be discussed.
Collapse
Affiliation(s)
- Philip Zegerman
- Department of Biochemistry, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, The Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, CB2 1QN, UK,
| |
Collapse
|
85
|
Lee PH, Meng X, Kapler GM. Developmental regulation of the Tetrahymena thermophila origin recognition complex. PLoS Genet 2015; 11:e1004875. [PMID: 25569357 PMCID: PMC4287346 DOI: 10.1371/journal.pgen.1004875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/05/2014] [Indexed: 01/06/2023] Open
Abstract
The Tetrahymena thermophila DNA replication machinery faces unique demands due to the compartmentalization of two functionally distinct nuclei within a single cytoplasm, and complex developmental program. Here we present evidence for programmed changes in ORC and MCM abundance that are not consistent with conventional models for DNA replication. As a starting point, we show that ORC dosage is critical during the vegetative cell cycle and development. A moderate reduction in Orc1p induces genome instability in the diploid micronucleus, aberrant division of the polyploid macronucleus, and failure to generate a robust intra-S phase checkpoint response. In contrast to yeast ORC2 mutants, replication initiation is unaffected; instead, replication forks elongation is perturbed, as Mcm6p levels decline in parallel with Orc1p. Experimentally induced down-regulation of ORC and MCMs also impairs endoreplication and gene amplification, consistent with essential roles during development. Unexpectedly Orc1p and Mcm6p levels fluctuate dramatically in developing wild type conjugants, increasing for early cycles of conventional micronuclear DNA replication and macronuclear anlagen replication (endoreplication phase I, rDNA gene amplification). This increase does not reflect the DNA replication load, as much less DNA is synthesized during this developmental window compared to vegetative S phase. Furthermore, although Orc1p levels transiently increase prior to endoreplication phase II, Orc1p and Mcm6p levels decline when the replication load increases and unconventional DNA replication intermediates are produced. We propose that replication initiation is re-programmed to meet different requirements or challenges during the successive stages of Tetrahymena development. The Origin Recognition Complex is required for site-specific replication initiation in eukaryotic chromosomes. Null mutations are lethal in yeast and metazoa, and hypomorphs induce genome instability, a hallmark of cancer. We exploited the unique biology of Tetrahymena to explore ORC's role in conventional and alternative replication programs. Modest experimental down-regulation of ORC1 induces genome instability in vegetative growing Tetrahymena, and diminishes the capacity to support developmentally regulated endoreplication and gene amplification, consistent with essential roles in all of these processes. ORC mutants fail to activate the ATR checkpoint response, and are compromised in their ability to elongate existing replication forks. Remarkably, ORC and MCM levels fluctuate in unexpected ways during wild type development. Most notably, programmed changes in ORC abundance do not reflect the impending DNA replication load. Relative to the vegetative cell cycle, ORC and MCM levels increase dramatically and are highest early in development, when the replication load is lowest. Conversely, ORC levels are lowest during genome-wide macronuclear endoreplication, when the replication load increases. Endocycling cells generate unconventional replication intermediates that distinguish them from vegetative ORC1 knockdown mutants. The collective data suggest that the dependence on ORC may be relaxed during late stages of macronuclear development.
Collapse
Affiliation(s)
- Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
86
|
Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 2014; 28:2291-303. [PMID: 25319829 PMCID: PMC4201289 DOI: 10.1101/gad.242313.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex (pre-RC) that contains a Mcm2–7 double hexamer. In this study, Sun et al. examined the helicase loading reaction in the presence of ATP, revealing the basic architecture of a number of pre-RC assembly reaction intermediates, including a newly identified ORC–Cdc6–Mcm2–7–Mcm2–7 complex. The detailed architecture of the Mcm2–7 double hexamer was also established. Eukaryotic cells license each DNA replication origin during G1 phase by assembling a prereplication complex that contains a Mcm2–7 (minichromosome maintenance proteins 2–7) double hexamer. During S phase, each Mcm2–7 hexamer forms the core of a replicative DNA helicase. However, the mechanisms of origin licensing and helicase activation are poorly understood. The helicase loaders ORC–Cdc6 function to recruit a single Cdt1–Mcm2–7 heptamer to replication origins prior to Cdt1 release and ORC–Cdc6–Mcm2–7 complex formation, but how the second Mcm2–7 hexamer is recruited to promote double-hexamer formation is not well understood. Here, structural evidence for intermediates consisting of an ORC–Cdc6–Mcm2–7 complex and an ORC–Cdc6–Mcm2–7–Mcm2–7 complex are reported, which together provide new insights into DNA licensing. Detailed structural analysis of the loaded Mcm2–7 double-hexamer complex demonstrates that the two hexamers are interlocked and misaligned along the DNA axis and lack ATP hydrolysis activity that is essential for DNA helicase activity. Moreover, we show that the head-to-head juxtaposition of the Mcm2–7 double hexamer generates a new protein interaction surface that creates a multisubunit-binding site for an S-phase protein kinase that is known to activate DNA replication. The data suggest how the double hexamer is assembled and how helicase activity is regulated during DNA licensing, with implications for cell cycle control of DNA replication and genome stability.
Collapse
Affiliation(s)
- Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alejandra Fernandez-Cid
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Alberto Riera
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Zuanning Yuan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christian Speck
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom;
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
87
|
Kim GS, Kang J, Bang SW, Hwang DS. Cdc6 localizes to S- and G2-phase centrosomes in a cell cycle-dependent manner. Biochem Biophys Res Commun 2014; 456:763-7. [PMID: 25498505 DOI: 10.1016/j.bbrc.2014.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/24/2022]
Abstract
The Cdc6 protein has been primarily investigated as a component of the pre-replicative complex for the initiation of chromosome replication, which contributes to maintenance of chromosomal integrity. Here, we show that Cdc6 localized to the centrosomes during S and G2 phases of the cell cycle. The centrosomal localization was mediated by Cdc6 amino acid residues 311-366, which are conserved within other Cdc6 homologues and contains a putative nuclear export signal. Deletions or substitutions of the amino acid residues did not allow the proteins to localize to centrosomes. In contrast, DsRed tag fused to the amino acid residues localized to centrosomes. These results indicated that a centrosome localization signal is contained within amino acid residues 311-366. The cell cycle-dependent centrosomal localization of Cdc6 in S and G2 phases suggest a novel function of Cdc6 in centrosomes.
Collapse
Affiliation(s)
- Gwang Su Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jeeheon Kang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung Woong Bang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deog Su Hwang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
88
|
Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2014; 124:13-26. [PMID: 25308420 DOI: 10.1007/s00412-014-0489-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022]
Abstract
A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
Collapse
Affiliation(s)
- Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
89
|
Hao J, Chen S, Tu L, Hu H, Zhang X. GhH2A12, a replication-dependent histone H2A gene from Gossypium hirsutum, is negatively involved in the development of cotton fiber cells. PLANT CELL REPORTS 2014; 33:1711-1721. [PMID: 25001001 DOI: 10.1007/s00299-014-1649-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
GhH2A12 was preferentially expressed at the initiation and early elongation stage of cotton fiber development, and overexpression of GhH2A12 caused retardation of fiber initiation and produced shorter fibers. Histone H2A is a component of eukaryotic chromatin whose function has not been studied in cotton. We have isolated an H2A gene encoding 156 amino acids, named GhH2A12. Like other plant histone H2As, GhH2A12 contains a typical SPKK motif in the carboxy-terminal and a plant-unique peptide-binding A/T-rich DNA region, and it was localized to the nucleus. GhH2A12 was preferentially expressed at the initiation and early elongation stage of cotton fiber, from 0 to 5 days post anthesis and the transcript level declined rapidly when the fiber entered the fast elongation stage, suggesting that GhH2A12 was involved in fiber differentiation. Therefore, GhH2A12 overexpression and RNAi transgenic cotton lines were developed via Agrobacterium tumefaciens-mediated transformation. Overexpression of GhH2A12 caused retardation of fiber initiation and produced shorter fibers and lower lint percentages. Moreover, the overexpressors showed negative effects on seedling growth, and the leaf emergence was delayed compared to wild type. However, no significant change in the GhH2A12 suppression line was observed. Coupled with retardation of fiber initiation, upregulation of GhH2A12 downregulated the expression of genes involved in cell-cycle performance. These results suggest that GhH2A12 might regulate fiber differentiation via regulating the cell cycle-related genes.
Collapse
Affiliation(s)
- Juan Hao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | | | | | | | | |
Collapse
|
90
|
Gao Y, Yao J, Poudel S, Romer E, Abu-Niaaj L, Leffak M. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation. J Biol Chem 2014; 289:35987-6000. [PMID: 25258324 DOI: 10.1074/jbc.m114.589119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2-7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2-7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.
Collapse
Affiliation(s)
- Yanzhe Gao
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Jianhong Yao
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Sumeet Poudel
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Eric Romer
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Lubna Abu-Niaaj
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Michael Leffak
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
91
|
Coster G, Frigola J, Beuron F, Morris EP, Diffley JFX. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol Cell 2014; 55:666-77. [PMID: 25087873 PMCID: PMC4157578 DOI: 10.1016/j.molcel.2014.06.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/11/2014] [Accepted: 06/26/2014] [Indexed: 01/24/2023]
Abstract
Loading of the six related Minichromosome Maintenance (MCM) proteins as head-to-head double hexamers during DNA replication origin licensing is crucial for ensuring once-per-cell-cycle DNA replication in eukaryotic cells. Assembly of these prereplicative complexes (pre-RCs) requires the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ORC, Cdc6, and MCM are members of the AAA+ family of ATPases, and pre-RC assembly requires ATP hydrolysis. Here we show that ORC and Cdc6 mutants defective in ATP hydrolysis are competent for origin licensing. However, ATP hydrolysis by Cdc6 is required to release nonproductive licensing intermediates. We show that ATP binding stabilizes the wild-type MCM hexamer. Moreover, by analyzing MCM containing mutant subunits, we show that ATP binding and hydrolysis by MCM are required for Cdt1 release and double hexamer formation. This work alters our view of how ATP is used by licensing factors to assemble pre-RCs.
Collapse
Affiliation(s)
- Gideon Coster
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts. EN6 3LD, UK
| | - Jordi Frigola
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts. EN6 3LD, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts. EN6 3LD, UK.
| |
Collapse
|
92
|
Samel SA, Fernández-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, Li H, Speck C. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev 2014; 28:1653-66. [PMID: 25085418 PMCID: PMC4117941 DOI: 10.1101/gad.242404.114] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/25/2014] [Indexed: 01/24/2023]
Abstract
The regulated loading of the replicative helicase minichromosome maintenance proteins 2-7 (MCM2-7) onto replication origins is a prerequisite for replication fork establishment and genomic stability. Origin recognition complex (ORC), Cdc6, and Cdt1 assemble two MCM2-7 hexamers into one double hexamer around dsDNA. Although the MCM2-7 hexamer can adopt a ring shape with a gap between Mcm2 and Mcm5, it is unknown which Mcm interface functions as the DNA entry gate during regulated helicase loading. Here, we establish that the Saccharomyces cerevisiae MCM2-7 hexamer assumes a closed ring structure, suggesting that helicase loading requires active ring opening. Using a chemical biology approach, we show that ORC-Cdc6-Cdt1-dependent helicase loading occurs through a unique DNA entry gate comprised of the Mcm2 and Mcm5 subunits. Controlled inhibition of DNA insertion triggers ATPase-driven complex disassembly in vitro, while in vivo analysis establishes that Mcm2/Mcm5 gate opening is essential for both helicase loading onto chromatin and cell cycle progression. Importantly, we demonstrate that the MCM2-7 helicase becomes loaded onto DNA as a single hexamer during ORC/Cdc6/Cdt1/MCM2-7 complex formation prior to MCM2-7 double hexamer formation. Our study establishes the existence of a unique DNA entry gate for regulated helicase loading, revealing key mechanisms in helicase loading, which has important implications for helicase activation.
Collapse
Affiliation(s)
- Stefan A Samel
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Alejandra Fernández-Cid
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alberto Riera
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - M Carmen Herrera
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Science, Imperial College, London W12 0NN, United Kingdom;
| |
Collapse
|
93
|
Kang S, Warner MD, Bell SP. Multiple functions for Mcm2-7 ATPase motifs during replication initiation. Mol Cell 2014; 55:655-65. [PMID: 25087876 DOI: 10.1016/j.molcel.2014.06.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/29/2014] [Accepted: 06/26/2014] [Indexed: 11/26/2022]
Abstract
The Mcm2-7 replicative helicase is central to all steps of eukaryotic DNA replication. The hexameric ring of Mcm subunits forms six essential ATPases whose contributions to replication initiation remain unclear. Mcm2-7 complexes containing ATPase-motif mutations showed Mcm2-7 ATP binding and hydrolysis are required for helicase loading. Loading-defective Mcm2-7 mutant complexes were defective in initial Mcm2-7 recruitment or Cdt1 release. Comparison with Cdc6 ATPase mutants showed that Cdc6 ATP hydrolysis is not required for helicase loading but instead drives removal of Mcm2-7 complexes that cannot complete loading. A subset of Mcm2-7 ATPase-site mutants completed helicase loading but could not initiate replication. Individual mutants were defective in distinct events during helicase activation, including maintenance of DNA association, recruitment of the GINS helicase activator, and DNA unwinding. Consistent with its heterohexameric structure, our findings show that the six Mcm2-7 ATPase active sites are specialized for different functions during helicase loading and activation.
Collapse
Affiliation(s)
- Sukhyun Kang
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Megan D Warner
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
94
|
Alver RC, Chadha GS, Blow JJ. The contribution of dormant origins to genome stability: from cell biology to human genetics. DNA Repair (Amst) 2014; 19:182-9. [PMID: 24767947 PMCID: PMC4065331 DOI: 10.1016/j.dnarep.2014.03.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of a eukaryotic cell to precisely and accurately replicate its DNA is crucial to maintain genome stability. Here we describe our current understanding of the process by which origins are licensed for DNA replication and review recent work suggesting that fork stalling has exerted a strong selective pressure on the positioning of licensed origins. In light of this, we discuss the complex and disparate phenotypes observed in mouse models and humans patients that arise due to defects in replication licensing proteins.
Collapse
Affiliation(s)
- Robert C Alver
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - J Julian Blow
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
95
|
Riera A, Tognetti S, Speck C. Helicase loading: how to build a MCM2-7 double-hexamer. Semin Cell Dev Biol 2014; 30:104-9. [PMID: 24637008 DOI: 10.1016/j.semcdb.2014.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022]
Abstract
A central step in eukaryotic initiation of DNA replication is the loading of the helicase at replication origins, misregulation of this reaction leads to DNA damage and genome instability. Here we discuss how the helicase becomes recruited to origins and loaded into a double-hexamer around double-stranded DNA. We specifically describe the individual steps in complex assembly and explain how this process is regulated to maintain genome stability. Structural analysis of the helicase loader and the helicase has provided key insights into the process of double-hexamer formation. A structural comparison of the bacterial and eukaryotic system suggests a mechanism of helicase loading.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Faculty of Medicine, Institute of Clinical Sciences, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Silvia Tognetti
- DNA Replication Group, Faculty of Medicine, Institute of Clinical Sciences, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Christian Speck
- DNA Replication Group, Faculty of Medicine, Institute of Clinical Sciences, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
96
|
Deschênes-Simard X, Lessard F, Gaumont-Leclerc MF, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 2014; 13:1840-58. [PMID: 24866342 DOI: 10.4161/cc.29335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | | | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School; Boston, MA USA
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
97
|
Molecular mechanisms of DNA replication checkpoint activation. Genes (Basel) 2014; 5:147-75. [PMID: 24705291 PMCID: PMC3978517 DOI: 10.3390/genes5010147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/27/2023] Open
Abstract
The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress) results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.
Collapse
|
98
|
Yardimci H, Walter JC. Prereplication-complex formation: a molecular double take? Nat Struct Mol Biol 2014; 21:20-5. [PMID: 24389553 DOI: 10.1038/nsmb.2738] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/15/2013] [Indexed: 12/16/2022]
Abstract
In G1, two copies of the MCM2-7 helicase are recruited to each origin of replication. Whereas recruitment of the first MCM2-7 is likely to be analogous to the loading of sliding clamps around DNA, how the second MCM2-7 complex is recruited is highly contentious. Here, we argue that MCM2-7 loading involves specific modifications to the clamp-loading reaction and propose that the first and second MCM2-7 molecules are loaded via similar mechanisms.
Collapse
Affiliation(s)
- Hasan Yardimci
- 1] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. [2] Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
99
|
Lam SKW, Ma X, Sing TL, Shilton BH, Brandl CJ, Davey MJ. The PS1 hairpin of Mcm3 is essential for viability and for DNA unwinding in vitro. PLoS One 2013; 8:e82177. [PMID: 24349215 PMCID: PMC3859580 DOI: 10.1371/journal.pone.0082177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The pre-sensor 1 (PS1) hairpin is found in ring-shaped helicases of the AAA+ family (ATPases associated with a variety of cellular activities) of proteins and is implicated in DNA translocation during DNA unwinding of archaeal mini-chromosome maintenance (MCM) and superfamily 3 viral replicative helicases. To determine whether the PS1 hairpin is required for the function of the eukaryotic replicative helicase, Mcm2-7 (also comprised of AAA+ proteins), we mutated the conserved lysine residue in the putative PS1 hairpin motif in each of the Saccharomyces cerevisiae Mcm2-7 subunits to alanine. Interestingly, only the PS1 hairpin of Mcm3 was essential for viability. While mutation of the PS1 hairpin in the remaining MCM subunits resulted in minimal phenotypes, with the exception of Mcm7 which showed slow growth under all conditions examined, the viable alleles were synthetic lethal with each other. Reconstituted Mcm2-7 containing Mcm3 with the PS1 mutation (Mcm3(K499A)) had severely decreased helicase activity. The lack of helicase activity provides a probable explanation for the inviability of the mcm3(K499A) strain. The ATPase activity of Mcm2-7(3K499A) was similar to the wild type complex, but its interaction with single-stranded DNA in an electrophoretic mobility shift assay and its associations in cells were subtly altered. Together, these findings indicate that the PS1 hairpins in the Mcm2-7 subunits have important and distinct functions, most evident by the essential nature of the Mcm3 PS1 hairpin in DNA unwinding.
Collapse
Affiliation(s)
- Simon K. W. Lam
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Xiaoli Ma
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tina L. Sing
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian H. Shilton
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Megan J. Davey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
100
|
Bruck I, Kaplan DL. The replication initiation protein Sld2 regulates helicase assembly. J Biol Chem 2013; 289:1948-59. [PMID: 24307213 DOI: 10.1074/jbc.m113.532085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Assembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type cells. These data suggest that Sld2 binding to Mcm2-7 is essential to block the inappropriate formation of a CMG helicase complex in G1. We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase.
Collapse
Affiliation(s)
- Irina Bruck
- From the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32312
| | | |
Collapse
|