51
|
Shapiro-Kulnane L, Bautista O, Salz HK. An RNA-interference screen in Drosophila to identify ZAD-containing C2H2 zinc finger genes that function in female germ cells. G3-GENES GENOMES GENETICS 2021; 11:6025177. [PMID: 33561227 PMCID: PMC8022714 DOI: 10.1093/g3journal/jkaa016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/14/2020] [Indexed: 11/24/2022]
Abstract
The zinc finger-associated domain (ZAD) is present in over 90 C2H2 zinc finger (ZNF) proteins. Despite their abundance, only a few ZAD-ZNF genes have been characterized to date. Here, we systematically analyze the function of 68 ZAD-ZNF genes in Drosophila female germ cells by performing an in vivo RNA-interference screen. We identified eight ZAD-ZNF genes required for oogenesis, and based on further characterization of the knockdown phenotypes, we uncovered defects broadly consistent with functions in germ cell specification and/or survival, early differentiation, and egg chamber maturation. These results provide a candidate pool for future studies aimed at functionalization of this large but poorly characterized gene family.
Collapse
Affiliation(s)
- Laura Shapiro-Kulnane
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| | - Oscar Bautista
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| | - Helen K Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| |
Collapse
|
52
|
Joosten J, Taşköprü E, Jansen PWTC, Pennings B, Vermeulen M, Van Rij RP. PIWI proteomics identifies Atari and Pasilla as piRNA biogenesis factors in Aedes mosquitoes. Cell Rep 2021; 35:109073. [PMID: 33951430 DOI: 10.1016/j.celrep.2021.109073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 01/29/2023] Open
Abstract
As in most arthropods, the PIWI-interacting RNA (piRNA) pathway in the vector mosquito Aedes aegypti is active in diverse biological processes in both soma and germline. To gain insights into piRNA biogenesis and effector complexes, we mapped the interactomes of the somatic PIWI proteins Ago3, Piwi4, Piwi5, and Piwi6 and identify numerous specific interactors as well as cofactors associated with multiple PIWI proteins. We describe the Piwi5 interactor AAEL014965, the direct ortholog of the Drosophila splicing factor pasilla. We find that Ae. aegypti Pasilla encodes a nuclear isoform and a cytoplasmic isoform, the latter of which is required for efficient piRNA production. In addition, we characterize a splice variant of the Tudor protein AAEL008101/Atari that associates with Ago3 and forms a scaffold for PIWI proteins and target RNAs to promote ping-pong amplification of piRNAs. Our study provides a useful resource for follow-up studies of somatic piRNA biogenesis, mechanism, and function in Aedes mosquitoes.
Collapse
Affiliation(s)
- Joep Joosten
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Ezgi Taşköprü
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Bas Pennings
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Ronald P Van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
53
|
Munafò M, Lawless VR, Passera A, MacMillan S, Bornelöv S, Haussmann IU, Soller M, Hannon GJ, Czech B. Channel nuclear pore complex subunits are required for transposon silencing in Drosophila. eLife 2021; 10:e66321. [PMID: 33856346 PMCID: PMC8133776 DOI: 10.7554/elife.66321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
The nuclear pore complex (NPC) is the principal gateway between nucleus and cytoplasm that enables exchange of macromolecular cargo. Composed of multiple copies of ~30 different nucleoporins (Nups), the NPC acts as a selective portal, interacting with factors which individually license passage of specific cargo classes. Here we show that two Nups of the inner channel, Nup54 and Nup58, are essential for transposon silencing via the PIWI-interacting RNA (piRNA) pathway in the Drosophila ovary. In ovarian follicle cells, loss of Nup54 and Nup58 results in compromised piRNA biogenesis exclusively from the flamenco locus, whereas knockdowns of other NPC subunits have widespread consequences. This provides evidence that some Nups can acquire specialised roles in tissue-specific contexts. Our findings consolidate the idea that the NPC has functions beyond simply constituting a barrier to nuclear/cytoplasmic exchange as genomic loci subjected to strong selective pressure can exploit NPC subunits to facilitate their expression.
Collapse
Affiliation(s)
- Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Victoria R Lawless
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Alessandro Passera
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Serena MacMillan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Irmgard U Haussmann
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City UniversityBirminghamUnited Kingdom
- School of Biosciences, College of Life and Environmental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of BirminghamBirminghamUnited Kingdom
- Birmingham Center for Genome Biology, University of BirminghamBirminghamUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
54
|
Schwarz F, Wierzbicki F, Senti KA, Kofler R. Tirant Stealthily Invaded Natural Drosophila melanogaster Populations during the Last Century. Mol Biol Evol 2021; 38:1482-1497. [PMID: 33247725 PMCID: PMC8042734 DOI: 10.1093/molbev/msaa308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It was long thought that solely three different transposable elements (TEs)-the I-element, the P-element, and hobo-invaded natural Drosophila melanogaster populations within the last century. By sequencing the "living fossils" of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.
Collapse
Affiliation(s)
- Florian Schwarz
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
55
|
HSP70/DNAJ Family of Genes in the Brown Planthopper, Nilaparvata lugens: Diversity and Function. Genes (Basel) 2021; 12:genes12030394. [PMID: 33801945 PMCID: PMC7999391 DOI: 10.3390/genes12030394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock 70kDa proteins (HSP70s) and their cochaperones DNAJs are ubiquitous molecular chaperones, which function as the “HSP70/DNAJ machinery” in a myriad of biological processes. At present, a number of HSP70s have been classified in many species, but studies on DNAJs, especially in insects, are lacking. Here, we first systematically identified and characterized the HSP70 and DNAJ family members in the brown planthopper (BPH), Nilaparvata lugens, a destructive rice pest in Asia. A total of nine HSP70 and 31 DNAJ genes were identified in the BPH genome. Sequence and phylogenetic analyses revealed the high diversity of the NlDNAJ family. Additionally, spatio-temporal expression analysis showed that most NlHSP70 and NlDNAJ genes were highly expressed in the adult stage and gonads. Furthermore, RNA interference (RNAi) revealed that seven NlHSP70s and 10 NlDNAJs play indispensable roles in the nymphal development, oogenesis, and female fertility of N. lugens under physiological growth conditions; in addition, one HSP70 (NlHSP68) was found to be important in the thermal tolerance of eggs. Together, our results in this study shed more light on the biological roles of HSP70/DNAJ in regulating life cycle, coping with environmental stresses, and mediating the interactions within, or between, the two gene families in insects.
Collapse
|
56
|
Ipsaro JJ, O'Brien PA, Bhattacharya S, Palmer AG, Joshua-Tor L. Asterix/Gtsf1 links tRNAs and piRNA silencing of retrotransposons. Cell Rep 2021; 34:108914. [PMID: 33789107 DOI: 10.1016/j.celrep.2021.108914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 02/05/2023] Open
Abstract
The Piwi-interacting RNA (piRNA) pathway safeguards genomic integrity by silencing transposable elements (transposons) in the germline. While Piwi is the central piRNA factor, others including Asterix/Gtsf1 have also been demonstrated to be critical for effective silencing. Here, using enhanced crosslinking and immunoprecipitation (eCLIP) with a custom informatic pipeline, we show that Asterix/Gtsf1 specifically binds tRNAs in cellular contexts. We determined the structure of mouse Gtsf1 by NMR spectroscopy and identified the RNA-binding interface on the protein's first zinc finger, which was corroborated by biochemical analysis as well as cryo-EM structures of Gtsf1 in complex with co-purifying tRNA. Consistent with the known dependence of long terminal repeat (LTR) retrotransposons on tRNA primers, we demonstrate that LTR retrotransposons are, in fact, preferentially de-repressed in Asterix mutants. Together, these findings link Asterix/Gtsf1, tRNAs, and LTR retrotransposon silencing and suggest that Asterix exploits tRNA dependence to identify transposon transcripts and promote piRNA silencing.
Collapse
Affiliation(s)
- Jonathan J Ipsaro
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Paul A O'Brien
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 650 West 168th Street, New York, NY 10032, USA
| | | | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 650 West 168th Street, New York, NY 10032, USA
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
57
|
Beltran T, Pahita E, Ghosh S, Lenhard B, Sarkies P. Integrator is recruited to promoter-proximally paused RNA Pol II to generate Caenorhabditis elegans piRNA precursors. EMBO J 2021; 40:e105564. [PMID: 33340372 PMCID: PMC7917550 DOI: 10.15252/embj.2020105564] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) play key roles in germline development and genome defence in metazoans. In C. elegans, piRNAs are transcribed from > 15,000 discrete genomic loci by RNA polymerase II (Pol II), resulting in 28 nt short-capped piRNA precursors. Here, we investigate transcription termination at piRNA loci. We show that the Integrator complex, which terminates snRNA transcription, is recruited to piRNA loci. Moreover, we demonstrate that the catalytic activity of Integrator cleaves nascent capped piRNA precursors associated with promoter-proximal Pol II, resulting in termination of transcription. Loss of Integrator activity, however, does not result in transcriptional readthrough at the majority of piRNA loci. Taken together, our results draw new parallels between snRNA and piRNA biogenesis in nematodes and provide evidence of a role for the Integrator complex as a terminator of promoter-proximal RNA polymerase II during piRNA biogenesis.
Collapse
Affiliation(s)
- Toni Beltran
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
- Present address:
Centre for Genomic RegulationBarcelonaSpain
| | - Elena Pahita
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Subhanita Ghosh
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Boris Lenhard
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Peter Sarkies
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| |
Collapse
|
58
|
Eastwood EL, Jara KA, Bornelöv S, Munafò M, Frantzis V, Kneuss E, Barbar EJ, Czech B, Hannon GJ. Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila. eLife 2021; 10:e65557. [PMID: 33538693 PMCID: PMC7861614 DOI: 10.7554/elife.65557] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In animal gonads, the PIWI-interacting RNA (piRNA) pathway guards genome integrity in part through the co-transcriptional gene silencing of transposon insertions. In Drosophila ovaries, piRNA-loaded Piwi detects nascent transposon transcripts and instructs heterochromatin formation through the Panoramix-induced co-transcriptional silencing (PICTS) complex, containing Panoramix, Nxf2 and Nxt1. Here, we report that the highly conserved dynein light chain LC8/Cut-up (Ctp) is an essential component of the PICTS complex. Loss of Ctp results in transposon de-repression and a reduction in repressive chromatin marks specifically at transposon loci. In turn, Ctp can enforce transcriptional silencing when artificially recruited to RNA and DNA reporters. We show that Ctp drives dimerisation of the PICTS complex through its interaction with conserved motifs within Panoramix. Artificial dimerisation of Panoramix bypasses the necessity for its interaction with Ctp, demonstrating that conscription of a protein from a ubiquitous cellular machinery has fulfilled a fundamental requirement for a transposon silencing complex.
Collapse
Affiliation(s)
- Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Vasileios Frantzis
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
59
|
Tsai SY, Huang F. Acetyltransferase Enok regulates transposon silencing and piRNA cluster transcription. PLoS Genet 2021; 17:e1009349. [PMID: 33524038 PMCID: PMC7877743 DOI: 10.1371/journal.pgen.1009349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2021] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
The piRNA pathway is a highly conserved mechanism to repress transposon activation in the germline in Drosophila and mammals. This pathway starts from transcribing piRNA clusters to generate long piRNA precursors. The majority of piRNA clusters lack conventional promoters, and utilize heterochromatin- and HP1D/Rhino-dependent noncanonical mechanisms for transcription. However, information regarding the transcriptional regulation of piRNA clusters is limited. Here, we report that the Drosophila acetyltransferase Enok, which can activate transcription by acetylating H3K23, is critical for piRNA production from 54% of piRNA clusters including 42AB, the major piRNA source. Surprisingly, we found that Enok not only promotes rhino expression by acetylating H3K23, but also directly enhances transcription of piRNA clusters by facilitating Rhino recruitment. Taken together, our study provides novel insights into the regulation of noncanonical transcription at piRNA clusters and transposon silencing. Roughly half of our genome is composed of transposons. Activation of those transposons in the germline will result in severe DNA damages and infertility. The PIWI-interacting RNA (piRNA) pathway, which is highly conserved between mammals and flies, is a key mechanism to suppress transposon activation in the germline. Here, we identified the fly acetyltransferase Enok as a novel regulator functioning in the early steps of this pathway. We found that Enok can promote the expression of three genes involved in piRNA production by acetylating histone H3 lysine 23 (H3K23). We also demonstrated that Enok regulates the recruitment of Rhi, a factor critical for transcription initiation at piRNA-generating loci, to a subset of those loci, and therefore enhances their transcription. Our findings reveal an upstream regulator in the piRNA pathway and advance our understanding regarding the molecular mechanism of transposon silencing.
Collapse
Affiliation(s)
- Shih-Ying Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
60
|
Saint-Leandre B, Christopher C, Levine MT. Adaptive evolution of an essential telomere protein restricts telomeric retrotransposons. eLife 2020; 9:e60987. [PMID: 33350936 PMCID: PMC7755394 DOI: 10.7554/elife.60987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Essential, conserved cellular processes depend not only on essential, strictly conserved proteins but also on essential proteins that evolve rapidly. To probe this poorly understood paradox, we exploited the rapidly evolving Drosophila telomere-binding protein, cav/HOAP, which protects chromosomes from lethal end-to-end fusions. We replaced the D. melanogaster HOAP with a highly diverged version from its close relative, D. yakuba. The D. yakuba HOAP ('HOAP[yak]') localizes to D. melanogaster telomeres and protects D. melanogaster chromosomes from fusions. However, HOAP[yak] fails to rescue a previously uncharacterized HOAP function: silencing of the specialized telomeric retrotransposons that, instead of telomerase, maintain chromosome length in Drosophila. Whole genome sequencing and cytogenetics of experimentally evolved populations revealed that HOAP[yak] triggers telomeric retrotransposon proliferation, resulting in aberrantly long telomeres. This evolution-generated, separation-of-function allele resolves the paradoxical observation that a fast-evolving essential gene directs an essential, strictly conserved function: telomeric retrotransposon containment, not end-protection, requires evolutionary innovation at HOAP.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Courtney Christopher
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
61
|
Ellison CE, Kagda MS, Cao W. Telomeric TART elements target the piRNA machinery in Drosophila. PLoS Biol 2020; 18:e3000689. [PMID: 33347429 PMCID: PMC7785250 DOI: 10.1371/journal.pbio.3000689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 01/05/2021] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
Coevolution between transposable elements (TEs) and their hosts can be antagonistic, where TEs evolve to avoid silencing and the host responds by reestablishing TE suppression, or mutualistic, where TEs are co-opted to benefit their host. The TART-A TE functions as an important component of Drosophila telomeres but has also reportedly inserted into the Drosophila melanogaster nuclear export factor gene nxf2. We find that, rather than inserting into nxf2, TART-A has actually captured a portion of nxf2 sequence. We show that TART-A produces abundant Piwi-interacting small RNAs (piRNAs), some of which are antisense to the nxf2 transcript, and that the TART-like region of nxf2 is evolving rapidly. Furthermore, in D. melanogaster, TART-A is present at higher copy numbers, and nxf2 shows reduced expression, compared to the closely related species Drosophila simulans. We propose that capturing nxf2 sequence allowed TART-A to target the nxf2 gene for piRNA-mediated repression and that these 2 elements are engaged in antagonistic coevolution despite the fact that TART-A is serving a critical role for its host genome. Co-evolution between transposable elements (TEs) and their hosts can be antagonistic, where TEs evolve to avoid silencing and the host responds by re-establishing TE suppression, or mutualistic, where TEs are co-opted to benefit their host. This study shows that a specialized Drosophila retrotransposon that functions as a telomere has captured a portion of a host piRNA gene which may allow it to evade silencing.
Collapse
Affiliation(s)
- Christopher E. Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| | - Meenakshi S. Kagda
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
62
|
Kasinathan B, Colmenares SU, McConnell H, Young JM, Karpen GH, Malik HS. Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. eLife 2020; 9:e63368. [PMID: 33169670 PMCID: PMC7655104 DOI: 10.7554/elife.63368] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Contrary to dogma, evolutionarily young and dynamic genes can encode essential functions. We find that evolutionarily dynamic ZAD-ZNF genes, which encode the most abundant class of insect transcription factors, are more likely to encode essential functions in Drosophila melanogaster than ancient, conserved ZAD-ZNF genes. We focus on the Nicknack ZAD-ZNF gene, which is evolutionarily young, poorly retained in Drosophila species, and evolves under strong positive selection. Yet we find that it is necessary for larval development in D. melanogaster. We show that Nicknack encodes a heterochromatin-localizing protein like its paralog Oddjob, also an evolutionarily dynamic yet essential ZAD-ZNF gene. We find that the divergent D. simulans Nicknack protein can still localize to D. melanogaster heterochromatin and rescue viability of female but not male Nicknack-null D. melanogaster. Our findings suggest that innovation for rapidly changing heterochromatin functions might generally explain the essentiality of many evolutionarily dynamic ZAD-ZNF genes in insects.
Collapse
Affiliation(s)
- Bhavatharini Kasinathan
- Medical Scientist Training Program, University of Washington School of MedicineSeattleUnited States
- Molecular and Cellular Biology Graduate program, University of Washington School of MedicineSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Serafin U Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
63
|
Gamez S, Srivastav S, Akbari OS, Lau NC. Diverse Defenses: A Perspective Comparing Dipteran Piwi-piRNA Pathways. Cells 2020; 9:E2180. [PMID: 32992598 PMCID: PMC7601171 DOI: 10.3390/cells9102180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Animals face the dual threat of virus infections hijacking cellular function and transposons proliferating in germline genomes. For insects, the deeply conserved RNA interference (RNAi) pathways and other chromatin regulators provide an important line of defense against both viruses and transposons. For example, this innate immune system displays adaptiveness to new invasions by generating cognate small RNAs for targeting gene silencing measures against the viral and genomic intruders. However, within the Dipteran clade of insects, Drosophilid fruit flies and Culicids mosquitoes have evolved several unique mechanistic aspects of their RNAi defenses to combat invading transposons and viruses, with the Piwi-piRNA arm of the RNAi pathways showing the greatest degree of novel evolution. Whereas central features of Piwi-piRNA pathways are conserved between Drosophilids and Culicids, multiple lineage-specific innovations have arisen that may reflect distinct genome composition differences and specific ecological and physiological features dividing these two branches of Dipterans. This perspective review focuses on the most recent findings illuminating the Piwi/piRNA pathway distinctions between fruit flies and mosquitoes, and raises open questions that need to be addressed in order to ameliorate human diseases caused by pathogenic viruses that mosquitoes transmit as vectors.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Satyam Srivastav
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA;
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA 92093, USA; (S.G.); (O.S.A.)
| | - Nelson C. Lau
- Department of Biochemistry and Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
64
|
Affiliation(s)
- Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA, USA.
| |
Collapse
|
65
|
Jing Z, Xi Y, Yin J, Shuwen H. Biological roles of piRNAs in colorectal cancer. Gene 2020; 769:145063. [PMID: 32827685 DOI: 10.1016/j.gene.2020.145063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and a major cause of cancer-related deaths. Numerous studies have suggested that piwi-interacting RNAs (piRNAs), a new type of non-coding RNA (ncRNA), are closely related to the occurrence and development of cancer. piRNAs have been shown to regulate the occurrence of CRC by modulating multiple molecular signaling pathways. Here, the roles of piRNAs in CRC were reviewed to provide evidence for their potential as molecular targets for CRC.
Collapse
Affiliation(s)
- Zhuang Jing
- Graduate School of Nursing, Huzhou University, Zhejiang, No. 1 Bachelor Road, Huzhou, Zhejiang Province 313000, PR China
| | - Yang Xi
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang 313000, PR China
| | - Jin Yin
- Department of Laboratory Medicine, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang 313000, PR China
| | - Han Shuwen
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang 313000, PR China.
| |
Collapse
|
66
|
Mugat B, Nicot S, Varela-Chavez C, Jourdan C, Sato K, Basyuk E, Juge F, Siomi MC, Pélisson A, Chambeyron S. The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nat Commun 2020; 11:2818. [PMID: 32499524 PMCID: PMC7272611 DOI: 10.1038/s41467-020-16635-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, trimethylation of lysine 9 on histone H3 (H3K9) is associated with transcriptional silencing of transposable elements (TEs). In drosophila ovaries, this heterochromatic repressive mark is thought to be deposited by SetDB1 on TE genomic loci after the initial recognition of nascent transcripts by PIWI-interacting RNAs (piRNAs) loaded on the Piwi protein. Here, we show that the nucleosome remodeler Mi-2, in complex with its partner MEP-1, forms a subunit that is transiently associated, in a MEP-1 C-terminus-dependent manner, with known Piwi interactors, including a recently reported SUMO ligase, Su(var)2-10. Together with the histone deacetylase Rpd3, this module is involved in the piRNA-dependent TE silencing, correlated with H3K9 deacetylation and trimethylation. Therefore, drosophila piRNA-mediated transcriptional silencing involves three epigenetic effectors, a remodeler, Mi-2, an eraser, Rpd3 and a writer, SetDB1, in addition to the Su(var)2-10 SUMO ligase.
Collapse
Affiliation(s)
- Bruno Mugat
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - Simon Nicot
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | | | - Christophe Jourdan
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Eugenia Basyuk
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - François Juge
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Alain Pélisson
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - Séverine Chambeyron
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France.
| |
Collapse
|
67
|
Kukushkina IV, Makhnovskii PA, Nefedova LN, Milyaeva PA, Kuzmin IV, Lavrenov AR, Kim AI. Analysis of Transcriptome of Drosophila melanogaster Strains with Disrupted Control of gypsy Retrotransposon Transposition. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
68
|
Kofler R. piRNA Clusters Need a Minimum Size to Control Transposable Element Invasions. Genome Biol Evol 2020; 12:736-749. [PMID: 32219390 PMCID: PMC7259680 DOI: 10.1093/gbe/evaa064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
piRNA clusters are thought to repress transposable element (TE) activity in mammals and invertebrates. Here, we show that a simple population genetics model reveals a constraint on the size of piRNA clusters: The total size of the piRNA clusters of an organism must exceed 0.2% of a genome to repress TE invasions. Moreover, larger piRNA clusters accounting for up to 3% of the genome may be necessary when populations are small, transposition rates are high, and TE insertions are recessive. If piRNA clusters are too small, the load of deleterious TE insertions that accumulate during a TE invasion may drive populations extinct before an effective piRNA-based defense against the TE can be established. Our findings are solely based on three well-supported assumptions: 1) TEs multiply within genomes, 2) TEs are mostly deleterious, and 3) piRNA clusters act as transposon traps, where a single insertion in a cluster silences all TE copies in trans. Interestingly, the piRNA clusters of some species meet our observed minimum size requirements, whereas the clusters of other species do not. Species with small piRNA clusters, such as humans and mice, may experience severe fitness reductions during invasions of novel TEs, which is possibly even threatening the persistence of some populations. This work also raises the important question of how piRNA clusters evolve. We propose that the size of piRNA clusters may be at an equilibrium between evolutionary forces that act to expand and contract piRNA clusters.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
69
|
Kukushkina IV, Makhnovskii PA, Nefedova LN, Balakireva EA, Romanova NI, Kuzmin IV, Lavrenov AR, Kim AI. A Study of the Fertility of a Drosophila melanogaster MS Strain with Impaired Transposition Control of the gypsy Mobile Element. Mol Biol 2020. [DOI: 10.1134/s0026893320030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
70
|
Abstract
Transposons are major genome constituents that can mobilize and trigger mutations, DNA breaks and chromosome rearrangements. Transposon silencing is particularly important in the germline, which is dedicated to transmission of the inherited genome. Piwi-interacting RNAs (piRNAs) guide a host defence system that transcriptionally and post-transcriptionally silences transposons during germline development. While germline control of transposons by the piRNA pathway is conserved, many piRNA pathway genes are evolving rapidly under positive selection, and the piRNA biogenesis machinery shows remarkable phylogenetic diversity. Conservation of core function combined with rapid gene evolution is characteristic of a host–pathogen arms race, suggesting that transposons and the piRNA pathway are engaged in an evolutionary tug of war that is driving divergence of the biogenesis machinery. Recent studies suggest that this process may produce biochemical incompatibilities that contribute to reproductive isolation and species divergence.
Collapse
Affiliation(s)
- Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School , 373 Plantation Street, Worcester, MA 01605 , USA
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School , 373 Plantation Street, Worcester, MA 01605 , USA
| |
Collapse
|
71
|
Drosophila P75 safeguards oogenesis by preventing H3K9me2 spreading. J Genet Genomics 2020; 47:187-199. [PMID: 32499180 DOI: 10.1016/j.jgg.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
Serving as a host factor for human immunodeficiency virus (HIV) integration, LEDGF/p75 has been under extensive study as a potential target for therapy. However, as a highly conserved protein, its physiological function remains to be thoroughly elucidated. Here, we characterize the molecular function of dP75, the Drosophila homolog of LEDGF/p75, during oogenesis. dP75 binds to transcriptionally active chromatin with its PWWP domain. The C-terminus integrase-binding domain-containing region of dP75 physically interacts with the histone kinase Jil-1 and stabilizes it in vivo. Together with Jil-1, dP75 prevents the spreading of the heterochromatin mark-H3K9me2-onto genes required for oogenesis and piRNA production. Without dP75, ectopical silencing of these genes disrupts oogenesis, activates transposons, and causes animal sterility. We propose that dP75, the homolog of an HIV host factor in Drosophila, partners with and stabilizes Jil-1 to ensure gene expression during oogenesis by preventing ectopic heterochromatin spreading.
Collapse
|
72
|
Lepesant JMJ, Iampietro C, Galeota E, Augé B, Aguirrenbengoa M, Mercé C, Chaubet C, Rocher V, Haenlin M, Waltzer L, Pelizzola M, Di Stefano L. A dual role of dLsd1 in oogenesis: regulating developmental genes and repressing transposons. Nucleic Acids Res 2020; 48:1206-1224. [PMID: 31799607 PMCID: PMC7026653 DOI: 10.1093/nar/gkz1142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/14/2022] Open
Abstract
The histone demethylase LSD1 is a key chromatin regulator that is often deregulated in cancer. Its ortholog, dLsd1 plays a crucial role in Drosophila oogenesis; however, our knowledge of dLsd1 function is insufficient to explain its role in the ovary. Here, we have performed genome-wide analysis of dLsd1 binding in the ovary, and we document that dLsd1 is preferentially associated to the transcription start site of developmental genes. We uncovered an unanticipated interplay between dLsd1 and the GATA transcription factor Serpent and we report an unexpected role for Serpent in oogenesis. Besides, our transcriptomic data show that reducing dLsd1 levels results in ectopic transposable elements (TE) expression correlated with changes in H3K4me2 and H3K9me2 at TE loci. In addition, our results suggest that dLsd1 is required for Piwi dependent TE silencing. Hence, we propose that dLsd1 plays crucial roles in establishing specific gene expression programs and in repressing transposons during oogenesis.
Collapse
Affiliation(s)
- Julie M J Lepesant
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Carole Iampietro
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Eugenia Galeota
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Benoit Augé
- CBD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Marion Aguirrenbengoa
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Clemèntine Mercé
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France.,School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Camille Chaubet
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Vincent Rocher
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Marc Haenlin
- CBD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Lucas Waltzer
- CBD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand F-63000, France
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan 20139, Italy
| | - Luisa Di Stefano
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
73
|
Yamaguchi S, Oe A, Nishida KM, Yamashita K, Kajiya A, Hirano S, Matsumoto N, Dohmae N, Ishitani R, Saito K, Siomi H, Nishimasu H, Siomi MC, Nureki O. Crystal structure of Drosophila Piwi. Nat Commun 2020; 11:858. [PMID: 32051406 PMCID: PMC7015924 DOI: 10.1038/s41467-020-14687-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
PIWI-clade Argonaute proteins associate with PIWI-interacting RNAs (piRNAs), and silence transposons in animal gonads. Here, we report the crystal structure of the Drosophila PIWI-clade Argonaute Piwi in complex with endogenous piRNAs, at 2.9 Å resolution. A structural comparison of Piwi with other Argonautes highlights the PIWI-specific structural features, such as the overall domain arrangement and metal-dependent piRNA recognition. Our structural and biochemical data reveal that, unlike other Argonautes including silkworm Siwi, Piwi has a non-canonical DVDK tetrad and lacks the RNA-guided RNA cleaving slicer activity. Furthermore, we find that the Piwi mutant with the canonical DEDH catalytic tetrad exhibits the slicer activity and readily dissociates from less complementary RNA targets after the slicer-mediated cleavage, suggesting that the slicer activity could compromise the Piwi-mediated co-transcriptional silencing. We thus propose that Piwi lost the slicer activity during evolution to serve as an RNA-guided RNA-binding platform, thereby ensuring faithful co-transcriptional silencing of transposons.
Collapse
Affiliation(s)
- Sonomi Yamaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Oe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asako Kajiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoki Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kuniaki Saito
- Invertebrate Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Haruhiko Siomi
- Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
74
|
Stolyarenko AD. Nuclear Argonaute Piwi Gene Mutation Affects rRNA by Inducing rRNA Fragment Accumulation, Antisense Expression, and Defective Processing in Drosophila Ovaries. Int J Mol Sci 2020; 21:ijms21031119. [PMID: 32046213 PMCID: PMC7037970 DOI: 10.3390/ijms21031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3′-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophilamelanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.
Collapse
Affiliation(s)
- Anastasia D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia
| |
Collapse
|
75
|
Yamashiro H, Negishi M, Kinoshita T, Ishizu H, Ohtani H, Siomi MC. Armitage determines Piwi-piRISC processing from precursor formation and quality control to inter-organelle translocation. EMBO Rep 2020; 21:e48769. [PMID: 31833223 PMCID: PMC7001504 DOI: 10.15252/embr.201948769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
Piwi and piRNA form the piRNA-induced silencing complex (piRISC) to repress transposons. In the current model, Armitage (Armi) brings the Piwi-piRISC precursor (pre-piRISC) to mitochondria, where Zucchini-dependent piRISC maturation occurs. Here, we show that Armi is necessary for Piwi-pre-piRISC formation at Yb bodies and that Armi triggers the exit of Piwi-pre-piRISC from Yb bodies and the translocation to mitochondria. Piwi-pre-piRISC resist leaving Yb bodies until Armi binds Piwi-pre-piRISC through the piRNA precursors. The lack of the Armi N-terminus also blocks the Piwi-pre-piRISC exit from Yb bodies. Thus, Armi determines Piwi-piRISC processing, in a multilayered manner, from precursor formation and quality control to inter-organelle translocation for maturation.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Mayu Negishi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Tatsuki Kinoshita
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Hirotsugu Ishizu
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Hitoshi Ohtani
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
- Present address:
Van Andel Research InstituteGrand RapidsMIUSA
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
76
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
77
|
Yu Y, Andreu-Agullo C, Liu BF, Barboza L, Toth M, Lai EC. Regulation of embryonic and adult neurogenesis by Ars2. Development 2020; 147:147/2/dev180018. [PMID: 31969356 DOI: 10.1242/dev.180018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022]
Abstract
Neural development is controlled at multiple levels to orchestrate appropriate choices of cell fate and differentiation. Although more attention has been paid to the roles of neural-restricted factors, broadly expressed factors can have compelling impacts on tissue-specific development. Here, we describe in vivo conditional knockout analyses of murine Ars2, which has mostly been studied as a general RNA-processing factor in yeast and cultured cells. Ars2 protein expression is regulated during neural lineage progression, and is required for embryonic neural stem cell (NSC) proliferation. In addition, Ars2 null NSCs can still transition into post-mitotic neurons, but fail to undergo terminal differentiation. Similarly, adult-specific deletion of Ars2 compromises hippocampal neurogenesis and results in specific behavioral defects. To broaden evidence for Ars2 as a chromatin regulator in neural development, we generated Ars2 ChIP-seq data. Notably, Ars2 preferentially occupies DNA enhancers in NSCs, where it colocalizes broadly with NSC regulator SOX2. Ars2 association with chromatin is markedly reduced following NSC differentiation. Altogether, Ars2 is an essential neural regulator that interacts dynamically with DNA and controls neural lineage development.
Collapse
Affiliation(s)
- Yang Yu
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Celia Andreu-Agullo
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Bing Fang Liu
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Luendreo Barboza
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | - Eric C Lai
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|
78
|
SATO K, SIOMI MC. The piRNA pathway in Drosophila ovarian germ and somatic cells. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:32-42. [PMID: 31932527 PMCID: PMC6974405 DOI: 10.2183/pjab.96.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/28/2019] [Indexed: 05/30/2023]
Abstract
RNA silencing refers to gene silencing pathways mediated by small non-coding RNAs, including microRNAs. Piwi-interacting RNAs (piRNAs) constitute the largest class of small non-coding RNAs in animal gonads, which repress transposons to protect the germline genome from the selfish invasion of transposons. Deterioration of the system causes DNA damage, leading to severe defects in gametogenesis and infertility. Studies using Drosophila ovaries show that piRNAs originate from specific genomic loci, termed piRNA clusters, and that in piRNA biogenesis, cluster transcripts are processed into mature piRNAs via three distinct pathways: initiator or responder for ping-pong piRNAs and trailing for phased piRNAs. piRNAs then assemble with PIWI members of the Argonaute family of proteins to form piRNA-induced RNA silencing complexes (piRISCs), the core engine of the piRNA-mediated silencing pathway. Upon piRISC assembly, the PIWI member, Piwi, is translocated to the nucleus and represses transposons co-transcriptionally by inducing local heterochromatin formation at target transposon loci.
Collapse
Affiliation(s)
- Kaoru SATO
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C. SIOMI
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
79
|
Benner L, Castro EA, Whitworth C, Venken KJT, Yang H, Fang J, Oliver B, Cook KR, Lerit DA. Drosophila Heterochromatin Stabilization Requires the Zinc-Finger Protein Small Ovary. Genetics 2019; 213:877-895. [PMID: 31558581 PMCID: PMC6827387 DOI: 10.1534/genetics.119.302590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/21/2019] [Indexed: 02/04/2023] Open
Abstract
Heterochromatin-mediated repression is essential for controlling the expression of transposons and for coordinated cell type-specific gene regulation. The small ovary (sov) locus was identified in a screen for female-sterile mutations in Drosophila melanogaster, and mutants show dramatic ovarian morphogenesis defects. We show that the null sov phenotype is lethal and map the locus to the uncharacterized gene CG14438, which encodes a nuclear zinc-finger protein that colocalizes with the essential Heterochromatin Protein 1 (HP1a). We demonstrate Sov functions to repress inappropriate gene expression in the ovary, silence transposons, and suppress position-effect variegation in the eye, suggesting a central role in heterochromatin stabilization.
Collapse
Affiliation(s)
- Leif Benner
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Elias A Castro
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Cale Whitworth
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology
- McNair Medical Institute at the Robert and Janice McNair Foundation
- Dan L. Duncan Cancer Center, Center for Drug Discovery
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Haiwang Yang
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kevin R Cook
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
80
|
Zhao K, Cheng S, Miao N, Xu P, Lu X, Zhang Y, Wang M, Ouyang X, Yuan X, Liu W, Lu X, Zhou P, Gu J, Zhang Y, Qiu D, Jin Z, Su C, Peng C, Wang JH, Dong MQ, Wan Y, Ma J, Cheng H, Huang Y, Yu Y. A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nat Cell Biol 2019; 21:1261-1272. [PMID: 31570835 DOI: 10.1038/s41556-019-0396-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022]
Abstract
The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila, Panoramix enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occurs remain elusive. Here, we show that Panoramix functions together with a germline-specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15), to suppress transposon expression. The transposon RNA-binding protein dNxf2 is required for animal fertility and Panoramix-mediated silencing. Transient tethering of dNxf2 to nascent transcripts leads to their nuclear retention. The NTF2 domain of dNxf2 competes dNxf1 (TAP) off nucleoporins, a process required for proper RNA export. Thus, dNxf2 functions in a Panoramix-dNxf2-dependent TAP/p15 silencing (Pandas) complex that counteracts the canonical RNA exporting machinery and restricts transposons to the nuclear peripheries. Our findings may have broader implications for understanding how RNA metabolism modulates heterochromatin formation.
Collapse
Affiliation(s)
- Kang Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sha Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Na Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaohua Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuan Ouyang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Yuan
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Gu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiqun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ding Qiu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Jin
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Sciences of Medical Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Youzhong Wan
- National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
81
|
Murano K, Iwasaki YW, Ishizu H, Mashiko A, Shibuya A, Kondo S, Adachi S, Suzuki S, Saito K, Natsume T, Siomi MC, Siomi H. Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J 2019; 38:e102870. [PMID: 31368590 PMCID: PMC6717896 DOI: 10.15252/embj.2019102870] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway preserves genomic integrity by repressing transposable elements (TEs) in animal germ cells. Among PIWI-clade proteins in Drosophila, Piwi transcriptionally silences its targets through interactions with cofactors, including Panoramix (Panx) and forms heterochromatin characterized by H3K9me3 and H1. Here, we identified Nxf2, a nuclear RNA export factor (NXF) variant, as a protein that forms complexes with Piwi, Panx, and p15. Panx-Nxf2-P15 complex formation is necessary in the silencing by stabilizing protein levels of Nxf2 and Panx. Notably, ectopic targeting of Nxf2 initiates co-transcriptional repression of the target reporter in a manner independent of H3K9me3 marks or H1. However, continuous silencing requires HP1a and H1. In addition, Nxf2 directly interacts with target TE transcripts in a Piwi-dependent manner. These findings suggest a model in which the Panx-Nxf2-P15 complex enforces the association of Piwi with target transcripts to trigger co-transcriptional repression, prior to heterochromatin formation in the nuclear piRNA pathway. Our results provide an unexpected connection between an NXF variant and small RNA-mediated co-transcriptional silencing.
Collapse
Affiliation(s)
- Kensaku Murano
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Yuka W Iwasaki
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Hirotsugu Ishizu
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Akane Mashiko
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
- Graduate School of EngineeringYokohama National UniversityYokohamaJapan
| | - Aoi Shibuya
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Shu Kondo
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Saori Suzuki
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Kuniaki Saito
- Invertebrate Genetics LaboratoryNational Institute of GeneticsMishimaShizuokaJapan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug DiscoveryNational Institute of Advanced Industrial Science and TechnologyTokyoJapan
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Haruhiko Siomi
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
82
|
Abstract
RNA export is tightly coupled to splicing in metazoans. In the Drosophila germline, precursors for the majority of Piwi-interacting RNAs (piRNAs) are unspliced. In this issue of Genes & Development, Kneuss and colleagues (pp. 1208-1220) identify Nxf3 as a novel germline-specific export adapter for such unspliced transcripts. Their findings reveal the sequence of events leading from its role at the site of transcription to delivery of the cargo to cytoplasmic piRNA biogenesis sites.
Collapse
Affiliation(s)
- Mateusz Mendel
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
83
|
Kneuss E, Munafò M, Eastwood EL, Deumer US, Preall JB, Hannon GJ, Czech B. Specialization of the Drosophila nuclear export family protein Nxf3 for piRNA precursor export. Genes Dev 2019; 33:1208-1220. [PMID: 31416967 PMCID: PMC6719614 DOI: 10.1101/gad.328690.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a conserved small RNA-based immune system that protects animal germ cell genomes from the harmful effects of transposon mobilization. In Drosophila ovaries, most piRNAs originate from dual-strand clusters, which generate piRNAs from both genomic strands. Dual-strand clusters use noncanonical transcription mechanisms. Although transcribed by RNA polymerase II, cluster transcripts lack splicing signatures and poly(A) tails. mRNA processing is important for general mRNA export mediated by nuclear export factor 1 (Nxf1). Although UAP56, a component of the transcription and export complex, has been implicated in piRNA precursor export, it remains unknown how dual-strand cluster transcripts are specifically targeted for piRNA biogenesis by export from the nucleus to cytoplasmic processing centers. Here we report that dual-strand cluster transcript export requires CG13741/Bootlegger and the Drosophila nuclear export factor family protein Nxf3. Bootlegger is specifically recruited to piRNA clusters and in turn brings Nxf3. We found that Nxf3 specifically binds to piRNA precursors and is essential for their export to piRNA biogenesis sites, a process that is critical for germline transposon silencing. Our data shed light on how dual-strand clusters compensate for a lack of canonical features of mature mRNAs to be specifically exported via Nxf3, ensuring proper piRNA production.
Collapse
Affiliation(s)
- Emma Kneuss
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Undine-Sophie Deumer
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Jonathan B Preall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
84
|
Homolka D, Pillai RS. An RNA exporter that enforces a no-export policy. Nat Struct Mol Biol 2019; 26:758-759. [DOI: 10.1038/s41594-019-0294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
85
|
ElMaghraby MF, Andersen PR, Pühringer F, Hohmann U, Meixner K, Lendl T, Tirian L, Brennecke J. A Heterochromatin-Specific RNA Export Pathway Facilitates piRNA Production. Cell 2019; 178:964-979.e20. [PMID: 31398345 DOI: 10.1016/j.cell.2019.07.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 01/22/2023]
Abstract
PIWI-interacting RNAs (piRNAs) guide transposon silencing in animals. The 22-30 nt piRNAs are processed in the cytoplasm from long non-coding RNAs that often lack RNA processing hallmarks of export-competent transcripts. By studying how these transcripts achieve nuclear export, we uncover an RNA export pathway specific for piRNA precursors in the Drosophila germline. This pathway requires Nxf3-Nxt1, a variant of the hetero-dimeric mRNA export receptor Nxf1-Nxt1. Nxf3 interacts with UAP56, a nuclear RNA helicase essential for mRNA export, and CG13741/Bootlegger, which recruits Nxf3-Nxt1 and UAP56 to heterochromatic piRNA source loci. Upon RNA cargo binding, Nxf3 achieves nuclear export via the exportin Crm1 and accumulates together with Bootlegger in peri-nuclear nuage, suggesting that after export, Nxf3-Bootlegger delivers precursor transcripts to the piRNA processing sites. These findings indicate that the piRNA pathway bypasses nuclear RNA surveillance systems to export unprocessed transcripts to the cytoplasm, a strategy also exploited by retroviruses.
Collapse
Affiliation(s)
- Mostafa F ElMaghraby
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Peter Refsing Andersen
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.
| | - Florian Pühringer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Ulrich Hohmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria; Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Katharina Meixner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Thomas Lendl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria; Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Laszlo Tirian
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohrgasse 3, 1030 Vienna, Austria.
| |
Collapse
|
86
|
Batki J, Schnabl J, Wang J, Handler D, Andreev VI, Stieger CE, Novatchkova M, Lampersberger L, Kauneckaite K, Xie W, Mechtler K, Patel DJ, Brennecke J. The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation. Nat Struct Mol Biol 2019; 26:720-731. [PMID: 31384064 PMCID: PMC6828549 DOI: 10.1038/s41594-019-0270-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway protects genome integrity in part through establishing repressive heterochromatin at transposon loci. Silencing requires piRNA-guided targeting of nuclear PIWI proteins to nascent transposon transcripts, yet the subsequent molecular events are not understood. Here, we identify SFiNX (silencing factor interacting nuclear export variant), an interdependent protein complex required for Piwi-mediated cotranscriptional silencing in Drosophila. SFiNX consists of Nxf2-Nxt1, a gonad-specific variant of the heterodimeric messenger RNA export receptor Nxf1-Nxt1 and the Piwi-associated protein Panoramix. SFiNX mutant flies are sterile and exhibit transposon derepression because piRNA-loaded Piwi is unable to establish heterochromatin. Within SFiNX, Panoramix recruits heterochromatin effectors, while the RNA binding protein Nxf2 licenses cotranscriptional silencing. Our data reveal how Nxf2 might have evolved from an RNA transport receptor into a cotranscriptional silencing factor. Thus, NXF variants, which are abundant in metazoans, can have diverse molecular functions and might have been coopted for host genome defense more broadly.
Collapse
Affiliation(s)
- Julia Batki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Jakob Schnabl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Juncheng Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Veselin I Andreev
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Christian E Stieger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Lisa Lampersberger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Kotryna Kauneckaite
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Wei Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl Mechtler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
87
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019; 20:89-108. [PMID: 30446728 DOI: 10.1038/s41576-018-0073-3] [Citation(s) in RCA: 733] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
Collapse
Affiliation(s)
- Deniz M Ozata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ansgar Zoch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
88
|
Munafò M, Manelli V, Falconio FA, Sawle A, Kneuss E, Eastwood EL, Seah JWE, Czech B, Hannon GJ. Daedalus and Gasz recruit Armitage to mitochondria, bringing piRNA precursors to the biogenesis machinery. Genes Dev 2019; 33:844-856. [PMID: 31123065 PMCID: PMC6601507 DOI: 10.1101/gad.325662.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
The Piwi-interacting RNA (piRNA) pathway is a small RNA-based immune system that silences mobile genetic elements in animal germlines. piRNA biogenesis requires a specialized machinery that converts long single-stranded precursors into small RNAs of ∼25-nucleotides in length. This process involves factors that operate in two different subcellular compartments: the nuage/Yb body and mitochondria. How these two sites communicate to achieve accurate substrate selection and efficient processing remains unclear. Here, we investigate a previously uncharacterized piRNA biogenesis factor, Daedalus (Daed), that is located on the outer mitochondrial membrane. Daed is essential for Zucchini-mediated piRNA production and the correct localization of the indispensable piRNA biogenesis factor Armitage (Armi). We found that Gasz and Daed interact with each other and likely provide a mitochondrial "anchoring platform" to ensure that Armi is held in place, proximal to Zucchini, during piRNA processing. Our data suggest that Armi initially identifies piRNA precursors in nuage/Yb bodies in a manner that depends on Piwi and then moves to mitochondria to present precursors to the mitochondrial biogenesis machinery. These results represent a significant step in understanding a critical aspect of transposon silencing; namely, how RNAs are chosen to instruct the piRNA machinery in the nature of its silencing targets.
Collapse
Affiliation(s)
- Marzia Munafò
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Vera Manelli
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Federica A Falconio
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Jun Wen Eugene Seah
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
89
|
Théron E, Maupetit-Mehouas S, Pouchin P, Baudet L, Brasset E, Vaury C. The interplay between the Argonaute proteins Piwi and Aub within Drosophila germarium is critical for oogenesis, piRNA biogenesis and TE silencing. Nucleic Acids Res 2019; 46:10052-10065. [PMID: 30113668 PMCID: PMC6212714 DOI: 10.1093/nar/gky695] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/20/2018] [Indexed: 11/28/2022] Open
Abstract
Transposable elements (TEs) have invaded most genomes and constitute up to 50% of the human genome. Machinery based on small non-coding piRNAs has evolved to inhibit their expression at the transcriptional and post-transcriptional levels. Surprisingly, this machinery is weakened during specific windows of time in mice, flies or plants, allowing the expression of TEs in germline cells. The function of this de-repression remains unknown. In Drosophila, we have previously shown that this developmental window is characterized by a reduction of Piwi expression in dividing germ cells. Here, we show that the unique knock-down of Aub in these cells leads to female sterility. It correlates with defects in piRNA amplification, an increased Piwi expression and an increased silencing of transcriptionally silenced TEs. These defects are similar to those observed when Aub is depleted in the whole germline which underlies the crucial role of this developmental window for both oogenesis and TE silencing. We further show that, with age, some fertility is recovered which is concomitant to a decrease of Piwi and TE silencing. These data pinpoint the Pilp as a tremendously important step for female fertility and genome stability. They further show that such a restricted developmental niche of germ cells may sense environmental changes, such as aging, to protect the germline all along the life.
Collapse
Affiliation(s)
- Emmanuelle Théron
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Stéphanie Maupetit-Mehouas
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Pierre Pouchin
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Laura Baudet
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Emilie Brasset
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| | - Chantal Vaury
- GReD laboratory, Université Clermont Auvergne, CNRS, Inserm, Faculté de Médecine, CRBC, F-63000 Clermont-Ferrand, France
| |
Collapse
|
90
|
Fabry MH, Ciabrelli F, Munafò M, Eastwood EL, Kneuss E, Falciatori I, Falconio FA, Hannon GJ, Czech B. piRNA-guided co-transcriptional silencing coopts nuclear export factors. eLife 2019; 8:e47999. [PMID: 31219034 PMCID: PMC6677536 DOI: 10.7554/elife.47999] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway is a small RNA-based immune system that controls the expression of transposons and maintains genome integrity in animal gonads. In Drosophila, piRNA-guided silencing is achieved, in part, via co-transcriptional repression of transposons by Piwi. This depends on Panoramix (Panx); however, precisely how an RNA binding event silences transcription remains to be determined. Here we show that Nuclear Export Factor 2 (Nxf2) and its co-factor, Nxt1, form a complex with Panx and are required for co-transcriptional silencing of transposons in somatic and germline cells of the ovary. Tethering of Nxf2 or Nxt1 to RNA results in silencing of target loci and the concomitant accumulation of repressive chromatin marks. Nxf2 and Panx proteins are mutually required for proper localization and stability. We mapped the protein domains crucial for the Nxf2/Panx complex formation and show that the amino-terminal portion of Panx is sufficient to induce transcriptional silencing.
Collapse
Affiliation(s)
- Martin H Fabry
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Marzia Munafò
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Emma Kneuss
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Ilaria Falciatori
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Federica A Falconio
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
91
|
Ge DT, Wang W, Tipping C, Gainetdinov I, Weng Z, Zamore PD. The RNA-Binding ATPase, Armitage, Couples piRNA Amplification in Nuage to Phased piRNA Production on Mitochondria. Mol Cell 2019; 74:982-995.e6. [PMID: 31076285 PMCID: PMC6636356 DOI: 10.1016/j.molcel.2019.04.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
PIWI-interacting RNAs (piRNAs) silence transposons in Drosophila ovaries, ensuring female fertility. Two coupled pathways generate germline piRNAs: the ping-pong cycle, in which the PIWI proteins Aubergine and Ago3 increase the abundance of pre-existing piRNAs, and the phased piRNA pathway, which generates strings of tail-to-head piRNAs, one after another. Proteins acting in the ping-pong cycle localize to nuage, whereas phased piRNA production requires Zucchini, an endonuclease on the mitochondrial surface. Here, we report that Armitage (Armi), an RNA-binding ATPase localized to both nuage and mitochondria, links the ping-pong cycle to the phased piRNA pathway. Mutations that block phased piRNA production deplete Armi from nuage. Armi ATPase mutants cannot support phased piRNA production and inappropriately bind mRNA instead of piRNA precursors. We propose that Armi shuttles between nuage and mitochondria, feeding precursor piRNAs generated by Ago3 cleavage into the Zucchini-dependent production of Aubergine- and Piwi-bound piRNAs on the mitochondrial surface.
Collapse
Affiliation(s)
- Daniel Tianfang Ge
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Wei Wang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cindy Tipping
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
92
|
Cusumano P, Damulewicz M, Carbognin E, Caccin L, Puricella A, Specchia V, Bozzetti MP, Costa R, Mazzotta GM. The RNA Helicase BELLE Is Involved in Circadian Rhythmicity and in Transposons Regulation in Drosophila melanogaster. Front Physiol 2019; 10:133. [PMID: 30842743 PMCID: PMC6392097 DOI: 10.3389/fphys.2019.00133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Circadian clocks control and synchronize biological rhythms of several behavioral and physiological phenomena in most, if not all, organisms. Rhythm generation relies on molecular auto-regulatory oscillations of interlocked transcriptional-translational feedback loops. Rhythmic clock-gene expression is at the base of rhythmic protein accumulation, though post-transcriptional and post-translational mechanisms have evolved to adjust and consolidate the proper pace of the clock. In Drosophila, BELLE, a conserved DEAD-box RNA helicase playing important roles in reproductive capacity, is involved in the small RNA-mediated regulation associated to the piRNA pathway. Here, we report that BELLE is implicated in the circadian rhythmicity and in the regulation of endogenous transposable elements (TEs) in both nervous system and gonads. We suggest that BELLE acts as important element in the piRNA-mediated regulation of the TEs and raise the hypothesis that this specific regulation could represent another level of post-transcriptional control adopted by the clock to ensure the proper rhythmicity.
Collapse
Affiliation(s)
- Paola Cusumano
- Department of Biology, University of Padua, Padua, Italy
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | | - Laura Caccin
- Department of Biology, University of Padua, Padua, Italy
| | - Antonietta Puricella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | | |
Collapse
|
93
|
Chang TH, Mattei E, Gainetdinov I, Colpan C, Weng Z, Zamore PD. Maelstrom Represses Canonical Polymerase II Transcription within Bi-directional piRNA Clusters in Drosophila melanogaster. Mol Cell 2019; 73:291-303.e6. [PMID: 30527661 PMCID: PMC6551610 DOI: 10.1016/j.molcel.2018.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022]
Abstract
In Drosophila, 23-30 nt long PIWI-interacting RNAs (piRNAs) direct the protein Piwi to silence germline transposon transcription. Most germline piRNAs derive from dual-strand piRNA clusters, heterochromatic transposon graveyards that are transcribed from both genomic strands. These piRNA sources are marked by the heterochromatin protein 1 homolog Rhino (Rhi), which facilitates their promoter-independent transcription, suppresses splicing, and inhibits transcriptional termination. Here, we report that the protein Maelstrom (Mael) represses canonical, promoter-dependent transcription in dual-strand clusters, allowing Rhi to initiate piRNA precursor transcription. Mael also represses promoter-dependent transcription at sites outside clusters. At some loci, Mael repression requires the piRNA pathway, while at others, piRNAs play no role. We propose that by repressing canonical transcription of individual transposon mRNAs, Mael helps Rhi drive non-canonical transcription of piRNA precursors without generating mRNAs encoding transposon proteins.
Collapse
MESH Headings
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Binding Sites
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Transposable Elements
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Gene Expression Regulation
- Promoter Regions, Genetic
- Protein Binding
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/genetics
- Transcription, Genetic
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Timothy H Chang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Eugenio Mattei
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA.
| |
Collapse
|
94
|
Yang F, Quan Z, Huang H, He M, Liu X, Cai T, Xi R. Ovaries absent links dLsd1 to HP1a for local H3K4 demethylation required for heterochromatic gene silencing. eLife 2019; 8:40806. [PMID: 30648969 PMCID: PMC6335052 DOI: 10.7554/elife.40806] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Heterochromatin Protein 1 (HP1) is a conserved chromosomal protein in eukaryotic cells that has a major role in directing heterochromatin formation, a process that requires co-transcriptional gene silencing mediated by small RNAs and their associated argonaute proteins. Heterochromatin formation requires erasing the active epigenetic mark, such as H3K4me2, but the molecular link between HP1 and H3K4 demethylation remains unclear. In a fertility screen in female Drosophila, we identified ovaries absent (ova), which functions in the stem cell niche, downstream of Piwi, to support germline stem cell differentiation. Moreover, ova acts as a suppressor of position effect variegation, and is required for silencing telomeric transposons in the germline. Biochemically, Ova acts to link the H3K4 demethylase dLsd1 to HP1a for local histone modifications. Therefore, our study provides a molecular connection between HP1a and local H3K4 demethylation during HP1a-mediated gene silencing that is required for ovary development, transposon silencing, and heterochromatin formation. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). The complete set of genetic material within a cell is known as a genome. The genomes of human and other animal cells have regions of active genes interspersed with ‘dark’ regions known as heterochromatin, which contain genes and other types of genetic material that have been inactivated. Heterochromatin commonly contains sections of genetic material known as transposons. When a transposon is active it is able to move around the genome, therefore, inactivating (or ‘silencing’) transposons helps to maintain the integrity of the genetic material in a cell. It is particularly important to silence transposons in the stem cells that produce sperm and egg cells – known as germline stem cells – to ensure genetic information is faithfully passed on to the next generation. A protein called HP1a plays a major role in directing where heterochromatin forms in the genome. This process requires an enzyme called dLsd1 to remove a small tag from the genetic material but it is not clear how HP1a regulates the activity of dLsd1. To address this question, Yang et al. studied how egg cells form in fruit flies, which are often used as models of animal biology in experiments. The team screened a population of fruit flies that carried mutations in many different genes to identify genes that affect the fertility of female flies. This revealed a gene named as ovaries absent (or ova for short) is required for egg cells to form. In germline stem cells ova silences transposons and in the surrounding tissue it represses a specific signal that usually maintains stem cells to allow the stem cells to divide to make egg cells. Further experiments using biochemical techniques found that the protein encoded by ova acts as a bridge to bring HP1a and dLsd1 together to silence genes in heterochromatin. The next step would be to identify the functional counterpart of the ova gene in mammals, including humans, which may help to discover causes of infertility and develop new fertility treatment.
Collapse
Affiliation(s)
- Fu Yang
- National Institute of Biological Sciences, Beijing, China
| | - Zhenghui Quan
- National Institute of Biological Sciences, Beijing, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Minghui He
- National Institute of Biological Sciences, Beijing, China
| | - Xicheng Liu
- National Institute of Biological Sciences, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
95
|
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet 2018; 52:131-157. [PMID: 30476449 PMCID: PMC10784713 DOI: 10.1146/annurev-genet-120417-031441] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Martin H Fabry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| |
Collapse
|
96
|
Kelleher ES, Jaweria J, Akoma U, Ortega L, Tang W. QTL mapping of natural variation reveals that the developmental regulator bruno reduces tolerance to P-element transposition in the Drosophila female germline. PLoS Biol 2018; 16:e2006040. [PMID: 30376574 PMCID: PMC6207299 DOI: 10.1371/journal.pbio.2006040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Transposable elements (TEs) are obligate genetic parasites that propagate in host genomes by replicating in germline nuclei, thereby ensuring transmission to offspring. This selfish replication not only produces deleterious mutations—in extreme cases, TE mobilization induces genotoxic stress that prohibits the production of viable gametes. Host genomes could reduce these fitness effects in two ways: resistance and tolerance. Resistance to TE propagation is enacted by germline-specific small-RNA-mediated silencing pathways, such as the Piwi-interacting RNA (piRNA) pathway, and is studied extensively. However, it remains entirely unknown whether host genomes may also evolve tolerance by desensitizing gametogenesis to the harmful effects of TEs. In part, the absence of research on tolerance reflects a lack of opportunity, as small-RNA-mediated silencing evolves rapidly after a new TE invades, thereby masking existing variation in tolerance. We have exploited the recent historical invasion of the Drosophila melanogaster genome by P-element DNA transposons in order to study tolerance of TE activity. In the absence of piRNA-mediated silencing, the genotoxic stress imposed by P-elements disrupts oogenesis and, in extreme cases, leads to atrophied ovaries that completely lack germline cells. By performing quantitative trait locus (QTL) mapping on a panel of recombinant inbred lines (RILs) that lack piRNA-mediated silencing of P-elements, we uncovered multiple QTL that are associated with differences in tolerance of oogenesis to P-element transposition. We localized the most significant QTL to a small 230-kb euchromatic region, with the logarithm of the odds (LOD) peak occurring in the bruno locus, which codes for a critical and well-studied developmental regulator of oogenesis. Genetic, cytological, and expression analyses suggest that bruno dosage modulates germline stem cell (GSC) loss in the presence of P-element activity. Our observations reveal segregating variation in TE tolerance for the first time, and implicate gametogenic regulators as a source of tolerant variants in natural populations. Transposable elements (TEs), or “jumping genes,” are mobile fragments of selfish DNA that leave deleterious mutations and DNA damage in their wake as they spread through host genomes. Their harmful effects are known to select for resistance by the host, in which the propagation of TEs is regulated and reduced. Here, we study for the first time whether host cells might also exhibit tolerance to TEs, by reducing their harmful effects without directly controlling their movement. By taking advantage of a panel of wild-type Drosophila melanogaster that lack resistance to P-element DNA transposons, we identified a small region of the genome that influences tolerance of P-element activity. We further demonstrate that a gene within that region, bruno, strongly influences the negative effects of P-element mobilization on the fly. When bruno dosage is reduced, the fertility of females carrying mobile P-elements is enhanced. The bruno locus encodes a protein with no known role in TE regulation but multiple well-characterized functions in oogenesis. We propose that bruno function reduces tolerance of the developing oocyte to DNA damage that is caused by P-elements.
Collapse
Affiliation(s)
- Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
- * E-mail:
| | - Jaweria Jaweria
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| | - Uchechukwu Akoma
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lily Ortega
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| | - Wenpei Tang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| |
Collapse
|
97
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
98
|
Durdevic Z, Pillai RS, Ephrussi A. Transposon silencing in the Drosophila female germline is essential for genome stability in progeny embryos. Life Sci Alliance 2018; 1:e201800179. [PMID: 30456388 PMCID: PMC6238532 DOI: 10.26508/lsa.201800179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
The Piwi-interacting RNA pathway functions in transposon control in the germline of metazoans. The conserved RNA helicase Vasa is an essential Piwi-interacting RNA pathway component, but has additional important developmental functions. Here, we address the importance of Vasa-dependent transposon control in the Drosophila female germline and early embryos. We find that transient loss of vasa expression during early oogenesis leads to transposon up-regulation in supporting nurse cells of the fly egg-chamber. We show that elevated transposon levels have dramatic consequences, as de-repressed transposons accumulate in the oocyte where they cause DNA damage. We find that suppression of Chk2-mediated DNA damage signaling in vasa mutant females restores oogenesis and egg production. Damaged DNA and up-regulated transposons are transmitted from the mother to the embryos, which sustain severe nuclear defects and arrest development. Our findings reveal that the Vasa-dependent protection against selfish genetic elements in the nuage of nurse cell is essential to prevent DNA damage-induced arrest of embryonic development.
Collapse
Affiliation(s)
- Zeljko Durdevic
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ramesh S Pillai
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
99
|
Rojas-Ríos P, Simonelig M. piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 2018; 145:145/17/dev161786. [PMID: 30194260 DOI: 10.1242/dev.161786] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PIWI proteins and Piwi-interacting RNAs (piRNAs) have established and conserved roles in repressing transposable elements (TEs) in the germline of animals. However, in several biological contexts, a large proportion of piRNAs are not related to TE sequences and, accordingly, functions for piRNAs and PIWI proteins that are independent of TE regulation have been identified. This aspect of piRNA biology is expanding rapidly. Indeed, recent reports have revealed the role of piRNAs in the regulation of endogenous gene expression programs in germ cells, as well as in somatic tissues, challenging dogma in the piRNA field. In this Review, we focus on recent data addressing the biological and developmental functions of piRNAs, highlighting their roles in embryonic patterning, germ cell specification, stem cell biology, neuronal activity and metabolism.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- mRNA Regulation and Development, IGH, Univ. Montpellier, CNRS, Montpellier 34396, France
| | - Martine Simonelig
- mRNA Regulation and Development, IGH, Univ. Montpellier, CNRS, Montpellier 34396, France
| |
Collapse
|
100
|
Radion E, Morgunova V, Ryazansky S, Akulenko N, Lavrov S, Abramov Y, Komarov PA, Glukhov SI, Olovnikov I, Kalmykova A. Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline. Epigenetics Chromatin 2018; 11:40. [PMID: 30001204 PMCID: PMC6043984 DOI: 10.1186/s13072-018-0210-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. RESULTS To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. The small RNA-seq data from strains carrying telomeric transgenes demonstrated that all transgenes belong to a class of dual-strand piRNA clusters; however, their capacity to produce piRNAs varies significantly. Rhino, a paralog of heterochromatic protein 1 (HP1) expressed exclusively in the germline, is associated with all telomeric transgenes, but its enrichment correlates with the abundance of transgenic piRNAs. It is likely that this heterogeneity is determined by the sequence peculiarities of telomeric retrotransposons. In contrast to the heterochromatic non-telomeric germline piRNA clusters, piRNA loss leads to a dramatic decrease in HP1, Rhino, and trimethylated histone H3 lysine 9 in telomeric regions. Therefore, the presence of piRNAs is required for the maintenance of telomere chromatin in the germline. Moreover, piRNA loss causes telomere translocation from the nuclear periphery toward the nuclear interior but does not affect telomere end capping. Analysis of the telomere-associated sequences (TASs) chromatin revealed strong tissue specificity. In the germline, TASs are enriched with HP1 and Rhino, in contrast to somatic tissues, where they are repressed by Polycomb group proteins. CONCLUSIONS piRNAs play an essential role in the assembly of telomeric chromatin, as well as in nuclear telomere positioning in the germline. Telomeric arrays and TASs belong to a unique type of Rhino-dependent piRNA clusters with transcripts that serve simultaneously as piRNA precursors and as their only targets. Telomeric chromatin is highly sensitive to piRNA loss, implying the existence of a novel developmental checkpoint that depends on telomere integrity in the germline.
Collapse
Affiliation(s)
- Elizaveta Radion
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Sergey Lavrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Yuri Abramov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Pavel A Komarov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.,Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Sergey I Glukhov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow, Russia, 123182.
| |
Collapse
|