51
|
You Y, Tsai CF, Patel R, Sarkar S, Clair G, Zhou M, Liu T, Metz TO, Das C, Nakayasu ES. Analysis of a macrophage carbamylated proteome reveals a function in post-translational modification crosstalk. RESEARCH SQUARE 2023:rs.3.rs-3044777. [PMID: 37398265 PMCID: PMC10312928 DOI: 10.21203/rs.3.rs-3044777/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background. Lysine carbamylation is a biomarker of rheumatoid arthritis and kidney diseases. However, its cellular function is understudied due to the lack of tools for systematic analysis of this post-translational modification (PTM). Methods. We adapted a method to analyze carbamylated peptides by co-affinity purification with acetylated peptides based on the cross-reactivity of anti-acetyllysine antibodies. We integrated this method into a mass spectrometry-based multi-PTM pipeline to simultaneously analyze carbamylated and acetylated peptides in addition to phosphopeptides were enriched by sequential immobilized-metal affinity chromatography. Results. By testing the pipeline with RAW 264.7 macrophages treated with bacterial lipopolysaccharide, 7,299, 8,923 and 47,637 acetylated, carbamylated, and phosphorylated peptides were identified, respectively. Our analysis showed that carbamylation occurs on proteins from a variety of functions on sites with similar as well as distinct motifs compared to acetylation. To investigate possible PTM crosstalk, we integrated the carbamylation data with acetylation and phosphorylation data, leading to the identification 1,183 proteins that were modified by all 3 PTMs. Among these proteins, 54 had all 3 PTMs regulated by lipopolysaccharide and were enriched in immune signaling pathways, and in particular, the ubiquitin-proteasome pathway. We found that carbamylation of linear diubiquitin blocks the activity of the anti-inflammatory deubiquitinase OTULIN. Conclusions Overall, our data show that anti-acetyllysine antibodies can be used for effective enrichment of carbamylated peptides. Moreover, carbamylation may play a role in PTM crosstalk with acetylation and phosphorylation, and that it is involved in regulating ubiquitination in vitro .
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Liu
- Pacific Northwest National Laboratory
| | | | | | | |
Collapse
|
52
|
Fatema N, Fan C. Studying lysine acetylation of citric acid cycle enzymes by genetic code expansion. Mol Microbiol 2023; 119:551-559. [PMID: 36890576 PMCID: PMC10636775 DOI: 10.1111/mmi.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Lysine acetylation is one of the most abundant post-translational modifications in nature, affecting many key biological pathways in both prokaryotes and eukaryotes. It has not been long since technological advances led to understanding of the roles of acetylation in biological processes. Most of those studies were based on proteomic analyses, which have identified thousands of acetylation sites in a wide range of proteins. However, the specific role of individual acetylation event remains largely unclear, mostly due to the existence of multiple acetylation and dynamic changes of acetylation levels. To solve these problems, the genetic code expansion technique has been applied in protein acetylation studies, facilitating the incorporation of acetyllysine into a specific lysine position to generate a site-specifically acetylated protein. By this method, the effects of acetylation at a specific lysine residue can be characterized with minimal interferences. Here, we summarized the development of the genetic code expansion technique for lysine acetylation and recent studies on lysine acetylation of citrate acid cycle enzymes in bacteria by this approach, providing a practical application of the genetic code expansion technique in protein acetylation studies.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
53
|
Capone V, Della Torre L, Carannante D, Babaei M, Altucci L, Benedetti R, Carafa V. HAT1: Landscape of Biological Function and Role in Cancer. Cells 2023; 12:cells12071075. [PMID: 37048148 PMCID: PMC10092946 DOI: 10.3390/cells12071075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Histone modifications, as key chromatin regulators, play a pivotal role in the pathogenesis of several diseases, such as cancer. Acetylation, and more specifically lysine acetylation, is a reversible epigenetic process with a fundamental role in cell life, able to target histone and non-histone proteins. This epigenetic modification regulates transcriptional processes and protein activity, stability, and localization. Several studies highlight a specific role for HAT1 in regulating molecular pathways, which are altered in several pathologies, among which is cancer. HAT1 is the first histone acetyltransferase discovered; however, to date, its biological characterization is still unclear. In this review, we summarize and update the current knowledge about the biological function of this acetyltransferase, highlighting recent advances of HAT1 in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Vincenza Capone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Laura Della Torre
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Daniela Carannante
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Mehrad Babaei
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- IEOS CNR, 80138 Napoli, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
54
|
McDowell JR, Bai G, Lasek-Nesselquist E, Eisele LE, Wu Y, Hurteau G, Johnson R, Bai Y, Chen Y, Chan J, McDonough KA. Mycobacterial phosphodiesterase Rv0805 is a virulence determinant and its cyclic nucleotide hydrolytic activity is required for propionate detoxification. Mol Microbiol 2023; 119:401-422. [PMID: 36760076 PMCID: PMC10315211 DOI: 10.1111/mmi.15030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
Cyclic AMP (cAMP) signaling is essential to Mycobacterium tuberculosis (Mtb) pathogenesis. However, the roles of phosphodiesterases (PDEs) Rv0805, and the recently identified Rv1339, in cAMP homeostasis and Mtb biology are unclear. We found that Rv0805 modulates Mtb growth within mice, macrophages and on host-associated carbon sources. Mycobacterium bovis BCG grown on a combination of propionate and glycerol as carbon sources showed high levels of cAMP and had a strict requirement for Rv0805 cNMP hydrolytic activity. Supplementation with vitamin B12 or spontaneous genetic mutations in the pta-ackA operon restored the growth of BCGΔRv0805 and eliminated propionate-associated cAMP increases. Surprisingly, reduction of total cAMP levels by ectopic expression of Rv1339 restored only 20% of growth, while Rv0805 complementation fully restored growth despite a smaller effect on total cAMP levels. Deletion of an Rv0805 localization domain also reduced BCG growth in the presence of propionate and glycerol. We propose that localized Rv0805 cAMP hydrolysis modulates activity of a specialized pathway associated with propionate metabolism, while Rv1339 has a broader role in cAMP homeostasis. Future studies will address the biological roles of Rv0805 and Rv1339, including their impacts on metabolism, cAMP signaling and Mtb pathogenesis.
Collapse
Affiliation(s)
- James R. McDowell
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Guangchun Bai
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Immunology and Microbial Disease, MC-151, Albany Medical College, Albany, NY 12208-3479
| | - Erica Lasek-Nesselquist
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Leslie E. Eisele
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Yan Wu
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Gregory Hurteau
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Richard Johnson
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Yinlan Bai
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| | - Yong Chen
- Albert Einstein College of Medicine, Bronx, NY
| | - John Chan
- Albert Einstein College of Medicine, Bronx, NY
| | - Kathleen A. McDonough
- Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany NY 12208
| |
Collapse
|
55
|
Carrico C, Cruz A, Walter M, Meyer J, Wehrfritz C, Shah S, Wei L, Schilling B, Verdin E. Coenzyme A binding sites induce proximal acylation across protein families. Sci Rep 2023; 13:5029. [PMID: 36977698 PMCID: PMC10050154 DOI: 10.1038/s41598-023-31900-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Lysine Nɛ-acylations, such as acetylation or succinylation, are post-translational modifications that regulate protein function. In mitochondria, lysine acylation is predominantly non-enzymatic, and only a specific subset of the proteome is acylated. Coenzyme A (CoA) can act as an acyl group carrier via a thioester bond, but what controls the acylation of mitochondrial lysines remains poorly understood. Using published datasets, here we found that proteins with a CoA-binding site are more likely to be acetylated, succinylated, and glutarylated. Using computational modeling, we show that lysine residues near the CoA-binding pocket are highly acylated compared to those farther away. We hypothesized that acyl-CoA binding enhances acylation of nearby lysine residues. To test this hypothesis, we co-incubated enoyl-CoA hydratase short chain 1 (ECHS1), a CoA-binding mitochondrial protein, with succinyl-CoA and CoA. Using mass spectrometry, we found that succinyl-CoA induced widespread lysine succinylation and that CoA competitively inhibited ECHS1 succinylation. CoA-induced inhibition at a particular lysine site correlated inversely with the distance between that lysine and the CoA-binding pocket. Our study indicated that CoA acts as a competitive inhibitor of ECHS1 succinylation by binding to the CoA-binding pocket. Together, this suggests that proximal acylation at CoA-binding sites is a primary mechanism for lysine acylation in the mitochondria.
Collapse
Affiliation(s)
- Chris Carrico
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Andrew Cruz
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Marius Walter
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Jesse Meyer
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Lei Wei
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| |
Collapse
|
56
|
Zhou JP, Tan YQ, Chen ZH, Zhao W, Liu T. Adenosine triphosphate can act as a determinant of lysine acetylation of non-native and native substrates. Microbiol Res 2023; 268:127296. [PMID: 36580869 DOI: 10.1016/j.micres.2022.127296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
The protein lysine acetylation includes acetyl-CoA (AcCoA) or acetyl phosphate (AcP)-mediated nonenzymatic acetylation, and enzymatic acetylation. It is widespread in the proteomes but the acetylation levels of most sites are very low. A thorough understanding of the determinants of low acetylation levels is highly important for elucidating the physiological relevance of lysine acetylation. In this study, we constructed a non-native substrate library containing 24 synthesized polypeptides, and we showed that ATP could inhibit the AcCoA-mediated nonenzymatic acetylation of these polypeptides through LC-MS/MS analysis. The acetyltransferase PatZ could acetylated these non-native substrates, and the PatZ-catalyzed acetylation of the polypeptides was also inhibited by ATP. Furthermore, the Western blot showed that ATP also inhibited the nonenzymatic (AcCoA or AcP-mediated) and enzymatic (PatZ-catalyzed) acetylation of acetyl-CoA synthetase Acs, which is a native substrate for acetylation. ATP can also inhibit the autoacetylation of acetyltransferase PatZ. Besides, both ADP and AMP could enhance the AcP-mediated acetylation of Acs, but ADP slightly inhibited the AcCoA-mediated acetylation of Acs. However, both ADP and AMP had no evident inhibition on the PatZ-catalyzed acetylation of Acs. Based on these results, we proposed that ATP can act as an inhibitor of acetylation, and it may regulate the function of PatZ by inhibiting its autoacetylation and compensate for the function of deacetylase CobB.
Collapse
Affiliation(s)
- Jia-Peng Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yu-Qing Tan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zi-Hao Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Wei Zhao
- Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Tong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China.
| |
Collapse
|
57
|
cKMT1 is a new lysine methyltransferase that methylates the ferredoxin-NADP(+) oxidoreductase (FNR) and regulates energy transfer in cyanobacteria. Mol Cell Proteomics 2023; 22:100521. [PMID: 36858286 PMCID: PMC10090440 DOI: 10.1016/j.mcpro.2023.100521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Lysine methylation is a conserved and dynamic regulatory post-translational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1), and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.
Collapse
|
58
|
Liu Y, Liu X, Dong X, Yin Z, Xie Z, Luo Y. Systematic Analysis of Lysine Acetylation Reveals Diverse Functions in Azorhizobium caulinodans Strain ORS571. Microbiol Spectr 2023; 11:e0353922. [PMID: 36475778 PMCID: PMC9927263 DOI: 10.1128/spectrum.03539-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation can quickly modify the physiology of bacteria to respond to changes in environmental or nutritional conditions, but little information on these modifications is available in rhizobia. In this study, we report the lysine acetylome of Azorhizobium caulinodans strain ORS571, a model rhizobium isolated from stem nodules of the tropical legume Sesbania rostrata that is capable of fixing nitrogen in the free-living state and during symbiosis. Antibody enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used to characterize the acetylome. There are 2,302 acetylation sites from 982 proteins, accounting for 20.8% of the total proteins. Analysis of the acetylated motifs showed the preferences for the amino acid residues around acetylated lysines. The response regulator CheY1, previously characterized to be involved in chemotaxis in strain ORS571, was identified as an acetylated protein, and a mutation of the acetylated site of CheY1 significantly impaired the strain's motility. In addition, a Zn+-dependent deacetylase (AZC_0414) was characterized, and the construction of a deletion mutant strain showed that it played a role in chemotaxis. Our study provides the first global analysis of lysine acetylation in ORS571, suggesting that acetylation plays a role in various physiological processes. In addition, we demonstrate its involvement in the chemotaxis process. The acetylome of ORS571 provides insights to investigate the regulation mechanism of rhizobial physiology. IMPORTANCE Acetylation is an important modification that regulates protein function and has been found to regulate physiological processes in various bacteria. The physiology of rhizobium A. caulinodans ORS571 is regulated by multiple mechanisms both when free living and in symbiosis with the host; however, the regulatory role of acetylation is not yet known. Here, we took an acetylome-wide approach to identify acetylated proteins in A. caulinodans ORS571 and performed clustering analyses. Acetylation of chemotaxis proteins was preliminarily investigated, and the upstream acetylation-regulating enzyme involved in chemotaxis was characterized. These findings provide new insights to explore the physiological mechanisms of rhizobia.
Collapse
Affiliation(s)
- Yanan Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
59
|
Acetylation of Cyclic AMP Receptor Protein by Acetyl Phosphate Modulates Mycobacterial Virulence. Microbiol Spectr 2023; 11:e0400222. [PMID: 36700638 PMCID: PMC9927398 DOI: 10.1128/spectrum.04002-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The success of Mycobacterium tuberculosis (Mtb) as a pathogen is partly attributed to its ability to sense and respond to dynamic host microenvironments. The cyclic AMP (cAMP) receptor protein (CRP) is closely related to the pathogenicity of Mtb and plays an important role in this process. However, the molecular mechanisms guiding the autoregulation and downstream target genes of CRP while Mtb responds to its environment are not fully understood. Here, it is demonstrated that the acetylation of conserved lysine 193 (K193) within the C-terminal DNA-binding domain of CRP reduces its DNA-binding ability and inhibits transcriptional activity. The reversible acetylation status of CRP K193 was shown to significantly affect mycobacterial growth phenotype, alter the stress response, and regulate the expression of biologically relevant genes using a CRP K193 site-specific mutation. Notably, the acetylation level of K193 decreases under CRP-activating conditions, including the presence of cAMP, low pH, high temperature, and oxidative stress, suggesting that microenvironmental signals can directly regulate CRP K193 acetylation. Both cell- and murine-based infection assays confirmed that CRP K193 is critical to the regulation of Mtb virulence. Furthermore, the acetylation of CRP K193 was shown to be dependent on the intracellular metabolic intermediate acetyl phosphate (AcP), and deacetylation was mediated by NAD+-dependent deacetylases. These findings indicate that AcP-mediated acetylation of CRP K193 decreases CRP activity and negatively regulates the pathogenicity of Mtb. We believe that the underlying mechanisms of cross talk between transcription, posttranslational modifications, and metabolites are a common regulatory mechanism for pathogenic bacteria. IMPORTANCE Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, and the ability of Mtb to survive harsh host conditions has been the subject of intensive research. As a result, we explored the molecular mechanisms guiding downstream target genes of CRP when Mtb responds to its environment. Our study makes a contribution to the literature because we describe the role of acetylated K193 in regulating its binding affinity to target DNA and influencing the virulence of mycobacteria. We discovered that mycobacteria can regulate their pathogenicity through the reversible acetylation of CRP K193 and that this reversible acetylation is mediated by AcP and a NAD+-dependent deacetylase. The regulation of CRPMtb by posttranslational modifications, at the transcriptional level, and by metabolic intermediates contribute to a better understanding of its role in the survival and pathogenicity of mycobacteria.
Collapse
|
60
|
Duan H, Zhang X, Figeys D. An emerging field: Post-translational modification in microbiome. Proteomics 2023; 23:e2100389. [PMID: 36239139 DOI: 10.1002/pmic.202100389] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Post-translational modifications (PTMs) play an essential role in most biological processes. PTMs on human proteins have been extensively studied. Studies on bacterial PTMs are emerging, which demonstrate that bacterial PTMs are different from human PTMs in their types, mechanisms and functions. Few PTM studies have been done on the microbiome. Here, we reviewed several studied PTMs in bacteria including phosphorylation, acetylation, succinylation, glycosylation, and proteases. We discussed the enzymes responsible for each PTM and their functions. We also summarized the current methods used to study microbiome PTMs and the observations demonstrating the roles of PTM in the microbe-microbe interactions within the microbiome and their interactions with the environment or host. Although new methods and tools for PTM studies are still needed, the existing technologies have made great progress enabling a deeper understanding of the functional regulation of the microbiome. Large-scale application of these microbiome-wide PTM studies will provide a better understanding of the microbiome and its roles in the development of human diseases.
Collapse
Affiliation(s)
- Haonan Duan
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xu Zhang
- Center for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
61
|
Schastnaya E, Doubleday PF, Maurer L, Sauer U. Non-enzymatic acetylation inhibits glycolytic enzymes in Escherichia coli. Cell Rep 2023; 42:111950. [PMID: 36640332 DOI: 10.1016/j.celrep.2022.111950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Advanced mass spectrometry methods have detected thousands of post-translational phosphorylation and acetylation sites in bacteria, but their functional role and the enzymes catalyzing these modifications remain largely unknown. In addition to enzymatic acetylation, lysine residues can also be chemically acetylated by the metabolite acetyl phosphate. In Escherichia coli, acetylation at over 3,000 sites has been linked to acetyl phosphate, but the functionality of this widespread non-enzymatic acetylation is even less clear than the enzyme-catalyzed one. Here, we investigate the role of acetyl-phosphate-mediated acetylation in E. coli central metabolism. Out of 19 enzymes investigated, only GapA and GpmA are acetylated at high stoichiometry, which inhibits their activity by interfering with substrate binding, effectively reducing glycolysis when flux to or from acetate is high. Extrapolating our results to the whole proteome, maximally 10% of the reported non-enzymatically acetylated proteins are expected to reach a stoichiometry that could inhibit their activity.
Collapse
Affiliation(s)
- Evgeniya Schastnaya
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology, 8093 Zurich, Switzerland
| | | | - Luca Maurer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
62
|
Zhang M, Liu T, Wang L, Huang Y, Fan R, Ma K, Kan Y, Tan M, Xu JY. Global landscape of lysine acylomes in Bacillus subtilis. J Proteomics 2023; 271:104767. [PMID: 36336260 DOI: 10.1016/j.jprot.2022.104767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Lysine acetylation is a common posttranslational modification that regulates numerous biochemical functions in both eukaryotic and prokaryotic species. In addition, several new non-acetyl acylations are structurally different from lysine acetylation and participate in diverse physiological functions. Here, a comprehensive analysis of several lysine acylomes was performed by combining the high-affinity antibody enrichment with high-resolution LC-MS/MS. In total, we identified 2536 lysine acetylated sites, 4723 propionylated sites, 2150 succinylated sites and 3001 malonylated sites in Bacillus subtilis, respectively. These acylated proteins account for 35.8% of total protein in this bacterium. The four lysine acylomes showed a motif preference for glutamate surrounding the modified lysine residues, and a functional preference for several metabolic pathways, such as carbon metabolism, fatty acid metabolism, and ribosome. In addition, more protein-protein interaction clusters were identified in the propionylated substrates than other three lysine acylomes. In summary, our study presents a global landscape of acylation in the Gram-positive model organism Bacillus and their potential functions in metabolism and physiology.
Collapse
Affiliation(s)
- Mingya Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - TianXian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Le Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rufeng Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ke Ma
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunbo Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Minjia Tan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China.
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
63
|
Lozano-Terol G, Gallego-Jara J, Sola-Martínez RA, Ortega Á, Martínez Vivancos A, Cánovas Díaz M, de Diego Puente T. Regulation of the pyrimidine biosynthetic pathway by lysine acetylation of E. coli OPRTase. FEBS J 2023; 290:442-464. [PMID: 35989594 PMCID: PMC10087573 DOI: 10.1111/febs.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023]
Abstract
The de novo pyrimidine biosynthesis pathway is an important route due to the relevance of its products, its implications in health and its conservation among organisms. Here, we investigated the regulation by lysine acetylation of this pathway. To this aim, intracellular and extracellular metabolites of the route were quantified, revealing a possible blockage of the pathway by acetylation of the OPRTase enzyme (orotate phosphoribosyltransferase). Chemical acetylation of OPRTase by acetyl-P involved a decrease in enzymatic activity. To test the effect of acetylation in this enzyme, K26 and K103 residues were selected to generate site-specific acetylated proteins. Several differences were observed in kinetic parameters, emphasizing that the kcat of these mutants showed a strong decrease of 300 and 150-fold for OPRTase-103AcK and 19 and 6.3-fold for OPRTase-26AcK, for forward and reverse reactions. In vivo studies suggested acetylation of this enzyme by a nonenzymatic acetyl-P-dependent mechanism and a reversion of this process by the CobB deacetylase. A complementation assay of a deficient strain in the pyrE gene with OPRTase-26AcK and OPRTase-103AcK was performed, and curli formation, stoichiometric parameters and orotate excretion were measured. Complementation with acetylated enzymes entailed a profile very similar to that of the ∆pyrE strain, especially in the case of complementation with OPRTase-103AcK. These results suggest regulation of the de novo pyrimidine biosynthesis pathway by lysine acetylation of OPRTase in Escherichia coli. This finding is of great relevance due to the essential role of this route and the OPRTase enzyme as a target for antimicrobial, antiviral and cancer treatments.
Collapse
Affiliation(s)
- Gema Lozano-Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Rosa Alba Sola-Martínez
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Adrián Martínez Vivancos
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Spain
| |
Collapse
|
64
|
Abstract
Antibiotic resistance is increasingly becoming a challenge to public health. The regulation of bacterial metabolism by post-translational modifications (PTMs) has been widely studied. However, the mechanism underlying the regulation of acetylation in bacterial resistance to antibiotics is still unknown. Here, we performed a quantitative analysis of the acetylated proteome of a wild-type (WT) Escherichia coli (E. coli) sensitive strain and ampicillin- (Re-Amp), kanamycin- (Re-Kan), and polymyxin B-resistant (Re-Pol) strains. Based on bioinformatics analysis combined with biochemical validations, we found a common regulatory mechanism between the different resistant strains. Our results showed that protein acetylation negatively regulates bacterial metabolism to regulate antibiotic resistance and positively regulates bacterial motility. Further analyses revealed that key enzymes in various metabolic pathways were differentially acetylated. In particular, pyruvate kinase (PykF), a glycolytic enzyme that regulates bacterial metabolism, and its acetylated form were highly expressed in the three resistant strains and were identified as reversibly acetylated by the deacetylase CobB and the acetyl-transferase PatZ (peptidyl-lysine N-acetyltransferase). Results showed that PykF also could be acetylated by nonenzymatic acetyl phosphatase (AcP) in vitro. Furthermore, the deacetylation of Lys413 in PykF increased PykF enzymatic activity by changing the conformation of its ATP binding site, resulting in an increase in energy production which, in turn, increased the sensitivity of drug-resistant strains to antibiotics. This study provides novel insights for understanding bacterial resistance and lays the foundation for future research on the regulation of acetylation in antibiotic-resistant strains. IMPORTANCE The misuse of antibiotics has resulted in the emergence of many antibiotic-resistant strains which seriously threaten human health. Protein post-translational modifications, especially acetylation, tightly control bacterial metabolism. However, the comprehensive mechanism underlying the regulation of acetylation in bacterial resistance remains unexplored. Here, acetylation was found to positively regulate bacterial motility and negatively regulate energy metabolism, which was common in all antibiotic-resistant strains. Moreover, the acetylation and deacetylation process of PykF was uncovered, and deacetylation of the Lys 413 in PykF was found to contribute to bacterial sensitivity to antibiotics. This study provides a new direction for research on the development of bacterial resistance through post-translational modifications and a theoretical basis for developing antibacterial drugs.
Collapse
|
65
|
Protocol for CAROM: A machine learning tool to predict post-translational regulation from metabolic signatures. STAR Protoc 2022; 3:101799. [PMID: 36340881 PMCID: PMC9630780 DOI: 10.1016/j.xpro.2022.101799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This protocol describes CAROM, a computational tool that combines genome-scale metabolic networks (GEMs) and machine learning to identify enzyme targets of post-translational modifications (PTMs). Condition-specific enzyme and reaction properties are used to predict targets of phosphorylation and acetylation in multiple organisms. CAROM is influenced by the accuracy of GEMs and associated flux-balance analysis (FBA), which generate the inputs of the model. We demonstrate the protocol using multi-omics data from E. coli. For complete details on the use and execution of this protocol, please refer to Smith et al. (2022).
Collapse
|
66
|
Zhao L, You D, Wang T, Zou ZP, Yin BC, Zhou Y, Ye BC. Acylation driven by intracellular metabolites in host cells inhibits Cas9 activity used for genome editing. PNAS NEXUS 2022; 1:pgac277. [PMID: 36712324 PMCID: PMC9802096 DOI: 10.1093/pnasnexus/pgac277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas, the immune system of bacteria and archaea, has been widely harnessed for genome editing, including gene knockouts and knockins, single-base editing, gene activation, and silencing. However, the molecular mechanisms underlying fluctuations in the genome editing efficiency of crispr in various cells under different conditions remain poorly understood. In this work, we found that Cas9 can be ac(et)ylated by acetyl-phosphate or acyl-CoA metabolites both in vitro and in vivo. Several modifications are associated with the DNA or sgRNA binding sites. Notably, ac(et)ylation of Cas9 driven by these metabolites in host cells potently inhibited its binding and cleavage activity with the target DNA, thereby decreasing Crispr genome editing efficiency. This study provides more insights into understanding the effect of the intracellular environment on genome editing application of crispr with varying efficiency in hosts.
Collapse
Affiliation(s)
| | | | - Ting Wang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Ping Zou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- To whom correspondence should be addressed:
| |
Collapse
|
67
|
Liu M, Huo M, Guo L, Fu Y, Xian M, Qi Q, Liu W, Zhao G. Lysine acetylation decreases enzyme activity and protein level of Escherichia coli lactate dehydrogenase. ENGINEERING MICROBIOLOGY 2022; 2:100045. [PMID: 39628700 PMCID: PMC11611030 DOI: 10.1016/j.engmic.2022.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 12/06/2024]
Abstract
Lactate is an important bulk chemical with widespread applications and a major byproduct of other chemicals bioprocess in microbial fermentation. Lactate dehydrogenase A (LdhA) catalyzes the synthesis of lactate from pyruvate. Lysine acetylation is an evolutionarily conserved post-translational modification; however, the mechanisms underlying the regulation of LdhA function by lysine acetylation in Escherichia coli remain poorly understood. Herein, we demonstrate acetylation of E. coli LdhA occurs via enzymatic and non-enzymatic mechanisms. Further, we show carbon source type and concentration affect the lysine acetylation status of LdhA via a non-enzymatic mechanism. Lysine acetylation significantly inhibits the enzymatic activity and protein level of LdhA. The results of the present study demonstrate lysine acetylation of E. coli LdhA is irreversible. Understanding of the effects of lysine acetylation on LdhA function may provide a new perspective for regulating lactate production in microbial synthesis.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Meitong Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yingxin Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wei Liu
- Institute of Corrosion Science and Technology, Guangzhou 510530, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
68
|
Dong H, Zhang J, Zhang H, Han Y, Lu C, Chen C, Tan X, Wang S, Bai X, Zhai G, Tian S, Zhang T, Cheng Z, Li E, Xu L, Zhang K. YiaC and CobB regulate lysine lactylation in Escherichia coli. Nat Commun 2022; 13:6628. [PMID: 36333310 PMCID: PMC9636275 DOI: 10.1038/s41467-022-34399-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Lysine lactylation (Kla) has recently been reported to participate in regulating transcription in human cells. However, the characterization, regulatory mechanism and functional consequence of Kla in prokaryotes remain unclear. Here, we report that YiaC functions as a lysine lactylase and that CobB serves as a lysine delactylase in the regulation of metabolism. We demonstrate that YiaC catalyzes the addition of Kla, while CobB erases this PTM both in vitro and intracellularly. Moreover, we show that YdiF can catalyze the formation of a lactyl-coenzyme A, which donates lactyl group for Kla. Quantitative proteomic analysis further reveals 446 endogenous Kla sites targeted by CobB and 79 candidates targeted by YiaC in Escherichia coli (E. coli). Furthermore, we present that Kla can influence the functions of metabolic enzymes. Interestingly, we demonstrate that CobB can specifically modulate the activity of PykF by regulating K382la, promoting glycolysis and bacterial growth. Our study identifies the regulatory enzymes and functional network of Kla and reveals a Kla-mediated molecular mechanism catalyzed by CobB for glycolysis regulation in E. coli.
Collapse
Affiliation(s)
- Hanyang Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Jianji Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Hui Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yue Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Congcong Lu
- College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Chen Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xiaoxia Tan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Siyu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Tao Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Zhongyi Cheng
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou, 310018, Zhejiang, China
| | - Enmin Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, Guangdong, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, 300070, Tianjin, China.
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Medical University General Hospital, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|
69
|
Lysine Acetylome Profiling Reveals Diverse Functions of Acetylation in Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0101621. [PMID: 35972276 PMCID: PMC9603093 DOI: 10.1128/spectrum.01016-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lysine acetylation is a highly conserved posttranslational modification that plays essential roles in multiple biological functions in a variety of organisms. Deinococcus radiodurans (D. radiodurans) is famous for its extreme resistance to radiation. However, few studies have focused on the lysine acetylation in D. radiodurans. In the present study, antibody enrichment technology and high-resolution liquid chromatography mass spectrometry are used to perform a global analysis of lysine acetylation of D. radiodurans. We create the largest acetylome data set in D. radiodurans to date, totally identifying 4,364 lysine acetylation sites on 1,410 acetylated proteins. Strikingly, of the 3,085 proteins annotated by the uniport database, 45.7% of proteins are acetylated in D. radiodurans. In particular, the glutamate (G) preferentially appears at the -1 and +1 positions of acetylated lysine residues by motif analysis. The acetylated proteins are involved in metabolic pathways, propanoate metabolism, carbon metabolism, fatty acid metabolism, and the tricarboxylic acid cycle. Protein-protein interaction networks demonstrate that four clusters are involved in DNA damage repair, including homologous recombination, mismatch repair, nucleotide excision repair, and base excision repair, which suggests that acetylation plays an indispensable role in the extraordinary capacity to survive high levels of ionizing radiation. Taken together, we report the most comprehensive lysine acetylation in D. radiodurans for the first time, which is of great significance to reveal its robust resistance to radiation. IMPORTANCE D. radiodurans is distinguished by the most radioresistant organism identified to date. Lysine acetylation is a highly conserved posttranslational modification that plays an essential role in the regulation of many cellular processes and may contribute to its extraordinary radioresistance. We integrate acetyl-lysine enrichment strategy, high-resolution mass spectrometry, and bioinformatics to profile the lysine acetylated proteins for the first time. It is striking that almost half of the total annotated proteins are identified as acetylated forms, which is the largest acetylome data set reported in D. radiodurans to date. The acetylated proteins are involved in metabolic pathways, propanoate metabolism, carbon metabolism, fatty acid metabolism, and the tricarboxylic acid cycle. The results of this study reinforce the notion that acetylation plays critical regulatory roles in diverse aspects of the cellular process, especially in DNA damage repair and metabolism. It provides insight into the roles of lysine acetylation in the robust resistance to radiation.
Collapse
|
70
|
Acetylation of NarL K188 and K192 is involved in regulating Escherichia coli anaerobic nitrate respiration. Appl Microbiol Biotechnol 2022; 106:7209-7221. [PMID: 36178515 DOI: 10.1007/s00253-022-12185-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
As a facultative anaerobe, Escherichia coli can activate various respiratory chains during anaerobic growth, among which the mode of anaerobic respiration with nitrate allows good energy conservation. NarL is one of the regulatory proteins in the Nar two-component system that regulates anaerobic respiration in E. coli. Previous studies have shown that NarL activates downstream gene regulation through phosphorylation. However, there are few studies on other protein translational modifications that influence the regulatory function of NarL. Herein, we demonstrate that acetylation modification exists on K188 and K192, the two lysine residues involved in contacting to DNA, and the degree of acetylation has significant effects on DNA-binding abilities, thus affecting the anaerobic growth of E. coli. In addition, NarL is mainly regulated by acetyl phosphate, but not by peptidyl-lysine N-acetyltransferase. These results indicate that non-enzymatic acetylation of NarL by AcP is one of the important mechanisms for the nitrate anaerobic respiratory pathway in response to environmental changes, which extends the idea of the mechanism underlying the response of intestinal flora to changes in the intestinal environment. KEY POINTS: • Acetylation was found in NarL, which was mainly mediated by AcP. • Non-enzymatic acetylation at K188 and K192 affects NarL binding ability. • Acetylation of NarL K188 and K192 regulates anaerobic nitrate growth of E. coli.
Collapse
|
71
|
Zhan Z, Tang H, Zhang Y, Huang X, Xu M. Potential of gut-derived short-chain fatty acids to control enteric pathogens. Front Microbiol 2022; 13:976406. [PMID: 36204607 PMCID: PMC9530198 DOI: 10.3389/fmicb.2022.976406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are a very important group of metabolites located in the gut that play a crucial role in the regulation of gut function and pathogen resistance. Since many enteric pathogens respond differently to various SCFAs, substantial efforts have been made to understand the regulatory effects of SCFA types on enteric pathogens. The application of protein post-translational modifications (PTMs) in bacterial research provides a new perspective for studying the regulation of enteric pathogens by different SCFAs. Existing evidence suggests that the SCFAs acetate, propionate, and butyrate influence bacterial processes by extensively promoting the acylation of key bacterial proteins. SCFAs can also prevent the invasion of pathogenic bacteria by regulating the barrier function and immune status of the host gut. In this review, we describe the mechanisms by which different SCFAs modulate the pathogenicity of enteric pathogens from multiple perspectives. We also explore some recent findings on how enteric pathogens counteract SCFA inhibition. Lastly, we discuss the prospects and limitations of applying SCFAs to control enteric pathogens.
Collapse
Affiliation(s)
- Ziyang Zhan
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Tang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Xinxiang Huang,
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
- Min Xu,
| |
Collapse
|
72
|
Selective recruitment of stress-responsive mRNAs to ribosomes for translation by acetylated protein S1 during nutrient stress in Escherichia coli. Commun Biol 2022; 5:892. [PMID: 36050442 PMCID: PMC9437053 DOI: 10.1038/s42003-022-03853-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
The chemical modification of ribosomes plays an important regulatory role in cellular translation adaptation in response to environmental stresses. Nevertheless, how the modified ribosome reprograms the translation machinery for the preferential expression of the specific mRNAs encoding stress-responsive proteins to stress remains poorly understood. Here, we find that AcP-induced acetylation of K411 and K464 in ribosomal protein S1 during carbon-nitrogen imbalance, which in turn impacts its binding with distinct mRNAs. S1 acetylation shows differential selectivity for recruiting subsets of mRNAs to ribosomes. Using the RNC-Seq method, we find that mimic acetylated S1 prefers transcripts related with the formation of flagella/biofilms, two-component systems, nitrogen assimilation, amino acid degradation, and lipopolysaccharide biosynthesis, whereas inhibits the translation of mRNAs involved in amino acid biosynthesis and most ribosomal proteins. Importantly, further characterization of S1-binding site (SBS) sequences of mRNAs with different translation efficiencies indicated that the presence of a conserved motif allows coordinated regulation of S1 acetylation-driven translation reprogramming for cell survival during nitrogen starvation. These findings expand the repertoire of ribosome heterogeneity to the acetylation level of S1 at specific sites and its role in the ribosome-mediated regulation of gene expression as a cellular response at the translational level to stress. RNA molecular chaperone S1 is acetylated and selectively recruits stress-responsive mRNAs to the ribosome during nitrogen starvation in E. coli, revealing a translation regulation mechanism for nutrient stress adaptation.
Collapse
|
73
|
Buey RM, Fernández‐Justel D, Jiménez A, Revuelta JL. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases. Protein Sci 2022; 31:e4399. [PMID: 36040265 PMCID: PMC9375230 DOI: 10.1002/pro.4399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.
Collapse
Affiliation(s)
- Rubén M. Buey
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - David Fernández‐Justel
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
74
|
Abstract
Lysine acetylation, a ubiquitous and dynamic regulatory posttranslational modification (PTM), affects hundreds of proteins across all domains of life. In bacteria, lysine acetylation can be found in many essential pathways, and it is also crucial for bacterial virulence. However, the biological significance of lysine acetylation events to bacterial virulence factors remains poorly characterized. In Streptococcus mutans, the acetylome profiles help identify several lysine acetylation sites of lactate dehydrogenase (LDH), which catalyzes the conversion of pyruvate to lactic acid, causing the deterioration of teeth. We investigated the regulatory mechanism of LDH acetylation and characterized the effect of LDH acetylation on its function. We overexpressed the 15 Gcn5 N-acetyltransferases (GNAT) family members in S. mutans and showed that the acetyltransferase ActA impaired its acidogenicity by acetylating LDH. Additionally, enzymatic acetyltransferase reactions demonstrated that purified ActA could acetylate LDH in vitro, and 10 potential lysine acetylation sites of LDH were identified by mass spectrometry, 70% of which were also detected in vivo. We further demonstrated that the lysine acetylation of LDH inhibited its enzymatic activity, and a subsequent rat caries model showed that ActA impaired the cariogenicity of S. mutans. Collectively, we demonstrated that ActA, the first identified and characterized acetyltransferase in S. mutans, acetylated the LDH enzymatically and inhibited its enzymatic activity, thereby providing a starting point for the further analysis of the biological significance of lysine acetylation in the virulence of S. mutans.
Collapse
|
75
|
Kalbas D, Meleshin M, Liebscher S, Zessin M, Melesina J, Schiene-Fischer C, Bülbül EF, Bordusa F, Sippl W, Schutkowski M. Small Changes Make the Difference for SIRT2: Two Different Binding Modes for 3-Arylmercapto-Acylated Lysine Derivatives. Biochemistry 2022; 61:1705-1722. [PMID: 35972884 DOI: 10.1021/acs.biochem.2c00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.
Collapse
Affiliation(s)
- Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Matthes Zessin
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Jelena Melesina
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Emre Fatih Bülbül
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Wolfgang Sippl
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| |
Collapse
|
76
|
Pat- and Pta-mediated protein acetylation is required for horizontally-acquired virulence gene expression in Salmonella Typhimurium. J Microbiol 2022; 60:823-831. [DOI: 10.1007/s12275-022-2095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
77
|
Xu Z, Wang L, Wang X, Wan M, Tang M, Ding Y. Characterizing the Effect of the Lysine Deacetylation Modification on Enzyme Activity of Pyruvate Kinase I and Pathogenicity of Vibrio alginolyticus. Front Vet Sci 2022; 9:877067. [PMID: 35795782 PMCID: PMC9252168 DOI: 10.3389/fvets.2022.877067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 01/22/2023] Open
Abstract
Pyruvate kinase I (PykF) is one of the key enzymes of glycolysis and plays a crucial role in bacterial metabolism. Several acetylation sites of Vibrio alginolyticus PykF were reported in previous studies and then 11 sites were first verified in this study, however, the specific roles of PykF acetylation remains unclear. Overlap-PCR and homologous recombination were implied to delete V. alginolyticus pykF gene and constructed complementary strains of site-directed mutagenesis for the further research focus on the deacetylation regulation on PykF. The results showed that the pyruvate kinase activity was sharply suppressed in the deacetylation status of K52, K68, and K317 of PykF, as well as the extracellular protease activity was significantly decreased in the deacetylation status of K52 and K68, but not induced with K317. Moreover, the growth rates of V. alginolyticus were not influenced with these three deacetylation sites. The ΔpykF mutant exhibited a 6-fold reduction in virulence to zebrafish. Site-directed mutations of K52R and K68R also showed reduced virulence while mutations of K317R didn't. The in vitro experiments showed that PykF was acetylated by acetyl phosphate (AcP), with the increase of incubation time by AcP, the acetylation level of PykF increased while the enzyme activity of PykF decreased correspondingly. Besides, PykF was deacetylated by CobB deacetylase and in result that the deacetylation was significantly down-regulated while the pyruvate kinase activity of PykF increased. Moreover, deletion of cobB gene had no significant difference in pyruvate kinase activity. These results confirm that CobB can regulate the acetylation level and pyruvate kinase activity of PykF. In summary, the results of this study provide a theoretical basis for further understanding of the deacetylation modification of PykF. It provides a new idea for the prevention and cure of vibriosis.
Collapse
Affiliation(s)
- Zhou Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Linjing Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Xudong Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Mingyue Wan
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Mei Tang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Yu Ding
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Yu Ding
| |
Collapse
|
78
|
Zhou L, Ng DSC, Yam JC, Chen LJ, Tham CC, Pang CP, Chu WK. Post-translational modifications on the retinoblastoma protein. J Biomed Sci 2022; 29:33. [PMID: 35650644 PMCID: PMC9161509 DOI: 10.1186/s12929-022-00818-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
The retinoblastoma protein (pRb) functions as a cell cycle regulator controlling G1 to S phase transition and plays critical roles in tumour suppression. It is frequently inactivated in various tumours. The functions of pRb are tightly regulated, where post-translational modifications (PTMs) play crucial roles, including phosphorylation, ubiquitination, SUMOylation, acetylation and methylation. Most PTMs on pRb are reversible and can be detected in non-cancerous cells, playing an important role in cell cycle regulation, cell survival and differentiation. Conversely, altered PTMs on pRb can give rise to anomalies in cell proliferation and tumourigenesis. In this review, we first summarize recent findings pertinent to how individual PTMs impinge on pRb functions. As many of these PTMs on pRb were published as individual articles, we also provide insights on the coordination, either collaborations and/or competitions, of the same or different types of PTMs on pRb. Having a better understanding of how pRb is post-translationally modulated should pave the way for developing novel and specific therapeutic strategies to treat various human diseases.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Danny Siu-Chun Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
79
|
Abstract
Numerous cellular processes are regulated in response to the metabolic state of the cell. One such regulatory mechanism involves lysine acetylation, a covalent modification involving the transfer of an acetyl group from central metabolite acetyl-coenzyme A or acetyl phosphate to a lysine residue in a protein.
Collapse
|
80
|
Zhang L, Yao Z, Tang H, Song Q, Song H, Yao J, Li Z, Xie X, Lin Y, Lin X. The lysine acetylation modification in the porin Aha1 of Aeromonas hydrophila regulates the uptake of multi-drug antibiotics. Mol Cell Proteomics 2022; 21:100248. [PMID: 35605723 PMCID: PMC9386498 DOI: 10.1016/j.mcpro.2022.100248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Protein lysine acetylation (Kac) modification plays important roles in diverse physiological functions. However, there is little evidence on the role of Kac modification in bacterial antibiotic resistance. Here, we compared the differential expressions of whole-cell proteins and Kac peptides in oxytetracycline sensitive and oxytetracycline resistance (OXYR) strains of Aeromonas hydrophila using quantitative proteomics technologies. We observed a porin family protein Aha1 downregulated in the OXYR strain, which may have an important role in the OXY resistance. Interestingly, seven of eight Kac peptides of Aha1 decreased abundance in OXYR as well. Microbiologic assays showed that the K57R, K187R, and K197R Aha1 mutants significantly increased antibiotic resistance to OXY and reduced the intracellular OXY accumulation in OXY stress. Moreover, these Aha1 mutants displayed multidrug resistance features to tetracyclines and β-lactam antibiotics. The 3D model prediction showed that the Kac states of K57, K187, and K197 sites located at the extracellular pore vestibule of Aha1 may be involved in the uptake of specific types of antibiotics. Overall, our results indicate a novel antibiotic resistance mechanism mediated by Kac modification, which may provide a clue for the development of antibiotic therapy strategies. Aha1 plays important role on oxytetracycline resistance. The deletion of aha1 reduces intracellular oxytetracycline accumulation. The Kac status on Aha1 affects oxytetracycline susceptibility. The Kac status on Aha1 involve in the regulation of multidrug antibiotics uptake.
Collapse
Affiliation(s)
- Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huamei Tang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingli Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jindong Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Zhangzhou Health Vocational College, Zhangzhou 363000, China
| | - Xiaofang Xie
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
81
|
Hsieh ML, Kiel N, Jenkins L, Ng WL, Knipling L, Waters C, Hinton D. The Vibrio cholerae master regulator for the activation of biofilm biogenesis genes, VpsR, senses both cyclic di-GMP and phosphate. Nucleic Acids Res 2022; 50:4484-4499. [PMID: 35438787 PMCID: PMC9071405 DOI: 10.1093/nar/gkac253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Vibrio cholerae biofilm formation/maintenance is controlled by myriad factors; chief among these are the regulator VpsR and cyclic di-guanosine monophosphate (c-di-GMP). VpsR has strong sequence similarity to enhancer binding proteins (EBPs) that activate RNA polymerase containing sigma factor σ54. However, we have previously shown that transcription from promoters within the biofilm biogenesis/maintenance pathways uses VpsR, c-di-GMP and RNA polymerase containing the primary sigma factor (σ70). Previous work suggested that phosphorylation of VpsR at a highly conserved aspartate, which is phosphorylated in other EBPs, might also contribute to activation. Using the biofilm biogenesis promoter PvpsL, we show that in the presence of c-di-GMP, either wild type or the phospho-mimic VpsR D59E activates PvpsL transcription, while the phospho-defective D59A variant does not. Furthermore, when c-di-GMP levels are low, acetyl phosphate (Ac∼P) is required for significant VpsR activity in vivo and in vitro. Although these findings argue that VpsR phosphorylation is needed for activation, we show that VpsR is not phosphorylated or acetylated by Ac∼P and either sodium phosphate or potassium phosphate, which are not phosphate donors, fully substitutes for Ac∼P. We conclude that VpsR is an unusual regulator that senses phosphate directly, rather than through phosphorylation, to aid in the decision to form/maintain biofilm.
Collapse
Affiliation(s)
- Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Niklas Kiel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Lisa M Miller Jenkins
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher M Waters
- Correspondence may also be addressed to Christopher M. Waters. Tel: +1 517 884 5360; Fax: +1 517 355 6463;
| | - Deborah M Hinton
- To whom correspondence should be addressed. Tel: +1 301 496 9885; Fax: +1 301 402 0053;
| |
Collapse
|
82
|
Repression of p53 function by SIRT5-mediated desuccinylation at Lysine 120 in response to DNA damage. Cell Death Differ 2022; 29:722-736. [PMID: 34642466 PMCID: PMC8989948 DOI: 10.1038/s41418-021-00886-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
p53 is a classic tumor suppressor that functions in maintaining genome stability by inducing either cell arrest for damage repair or cell apoptosis to eliminate damaged cells in response to different types of stress. Posttranslational modifications (PTMs) of p53 are thought to be the most effective way for modulating of p53 activation. Here, we show that SIRT5 interacts with p53 and suppresses its transcriptional activity. Using mass spectrometric analysis, we identify a previously unknown PTM of p53, namely, succinylation of p53 at Lysine 120 (K120). SIRT5 mediates desuccinylation of p53 at K120, resulting in the suppression of p53 activation. Moreover, using double knockout mice (p53-/-Sirt5-/-), we validate that the suppression of p53 target gene expression and cell apoptosis upon DNA damage is dependent on cellular p53. Our study identifies a novel PTM of p53 that regulates its activation as well as reveals a new target of SIRT5 acting as a desuccinylase.
Collapse
|
83
|
Araujo J, Ottinger S, Venkat S, Gan Q, Fan C. Studying Acetylation of Aconitase Isozymes by Genetic Code Expansion. Front Chem 2022; 10:862483. [PMID: 35402385 PMCID: PMC8987015 DOI: 10.3389/fchem.2022.862483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Aconitase catalyzes the second reaction of the tricarboxylic acid cycle, the reversible conversion of citrate and isocitrate. Escherichia coli has two isoforms of aconitase, AcnA and AcnB. Acetylomic studies have identified acetylation at multiple lysine sites of both E. coli aconitase isozymes, but the impacts of acetylation on aconitases are unknown. In this study, we applied the genetic code expansion approach to produce 14 site-specifically acetylated aconitase variants. Enzyme assays and kinetic analyses showed that acetylation of AcnA K684 decreased the enzyme activity, while acetylation of AcnB K567 increased the enzyme activity. Further in vitro acetylation and deacetylation assays were performed, which indicated that both aconitase isozymes could be acetylated by acetyl-phosphate chemically, and be deacetylated by the CobB deacetylase at most lysine sites. Through this study, we have demonstrated practical applications of genetic code expansion in acetylation studies.
Collapse
Affiliation(s)
- Jessica Araujo
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Sara Ottinger
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Sumana Venkat
- Children’s Research Institute, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Chenguang Fan,
| |
Collapse
|
84
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
85
|
Dong H, Zhao Y, Bi C, Han Y, Zhang J, Bai X, Zhai G, Zhang H, Tian S, Hu D, Xu L, Zhang K. TmcA functions as a lysine 2-hydroxyisobutyryltransferase to regulate transcription. Nat Chem Biol 2022; 18:142-151. [PMID: 34903851 DOI: 10.1038/s41589-021-00906-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Protein lysine 2-hydroxyisobutyrylation (Khib) has recently been shown to play a critical role in the regulation of cellular processes. However, the mechanism and functional consequence of Khib in prokaryotes remain unclear. Here we report that TmcA, an RNA acetyltransferase, functions as a lysine 2-hydroxyisobutyryltransferase in the regulation of transcription. We show that TmcA can effectively catalyze Khib both in vitro and intracellularly, and that R502 is a key site for the Khib catalytic activity of TmcA. Using quantitative proteomics, we identified 467 endogenous candidates targeted by TmcA for Khib in Escherichia coli. Interestingly, we demonstrate that TmcA can specifically modulate the DNA-binding activity of H-NS, a nucleoid-associated protein, by catalysis of Khib at K121. Furthermore, this TmcA-targeted Khib regulates transcription of acid-resistance genes and enhances E. coli survival under acid stress. Our study reveals transcription regulation mediated by TmcA-catalyzed Khib for bacterial acid resistance.
Collapse
Affiliation(s)
- Hanyang Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Yujie Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Changfen Bi
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yue Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Jianji Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Hui Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Deqing Hu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
86
|
Jew KM, Le VTB, Amaral K, Ta A, Nguyen May NM, Law M, Adelstein N, Kuhn ML. Investigation of the Importance of Protein 3D Structure for Assessing Conservation of Lysine Acetylation Sites in Protein Homologs. Front Microbiol 2022; 12:805181. [PMID: 35173693 PMCID: PMC8843374 DOI: 10.3389/fmicb.2021.805181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Acetylation is a protein post-translational modification (PTM) that can affect a variety of cellular processes. In bacteria, two PTM Nε-acetylation mechanisms have been identified: non-enzymatic/chemical acetylation via acetyl phosphate or acetyl coenzyme A and enzymatic acetylation via protein acetyltransferases. Prior studies have shown that extensive acetylation of Nε-lysine residues of numerous proteins from a variety of bacteria occurs via non-enzymatic acetylation. In Escherichia coli, new Nε-lysine acetyltransferases (KATs) that enzymatically acetylate other proteins have been identified, thus expanding the repertoire of protein substrates that are potentially regulated by acetylation. Therefore, we designed a study to leverage the wealth of structural data in the Protein Data Bank (PDB) to determine: (1) the 3D location of lysine residues on substrate proteins that are acetylated by E. coli KATs, and (2) investigate whether these residues are conserved on 3D structures of their homologs. Five E. coli KAT substrate proteins that were previously identified as being acetylated by YiaC and had 3D structures in the PDB were selected for further analysis: adenylate kinase (Adk), isocitrate dehydrogenase (Icd), catalase HPII (KatE), methionyl-tRNA formyltransferase (Fmt), and a peroxide stress resistance protein (YaaA). We methodically compared over 350 protein structures of these E. coli enzymes and their homologs; to accurately determine lysine residue conservation requires a strategy that incorporates both flexible structural alignments and visual inspection. Moreover, our results revealed discrepancies in conclusions about lysine residue conservation in homologs when examining linear amino acid sequences compared to 3D structures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
87
|
Smith K, Shen F, Lee HJ, Chandrasekaran S. Metabolic signatures of regulation by phosphorylation and acetylation. iScience 2022; 25:103730. [PMID: 35072016 PMCID: PMC8762462 DOI: 10.1016/j.isci.2021.103730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 10/31/2022] Open
Abstract
Acetylation and phosphorylation are highly conserved posttranslational modifications (PTMs) that regulate cellular metabolism, yet how metabolic control is shared between these PTMs is unknown. Here we analyze transcriptome, proteome, acetylome, and phosphoproteome datasets in E. coli, S. cerevisiae, and mammalian cells across diverse conditions using CAROM, a new approach that uses genome-scale metabolic networks and machine learning to classify targets of PTMs. We built a single machine learning model that predicted targets of each PTM in a condition across all three organisms based on reaction attributes (AUC>0.8). Our model predicted phosphorylated enzymes during a mammalian cell-cycle, which we validate using phosphoproteomics. Interpreting the machine learning model using game theory uncovered enzyme properties including network connectivity, essentiality, and condition-specific factors such as maximum flux that differentiate targets of phosphorylation from acetylation. The conserved and predictable partitioning of metabolic regulation identified here between these PTMs may enable rational rewiring of regulatory circuits.
Collapse
Affiliation(s)
- Kirk Smith
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fangzhou Shen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ho Joon Lee
- Department of Genetics, Yale University, New Haven, CT 06510, USA.,Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
88
|
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022; 23:329-349. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Citation(s) in RCA: 441] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.
Collapse
Affiliation(s)
- Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
89
|
Liu S, Xu JZ, Zhang WG. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. World J Microbiol Biotechnol 2022; 38:22. [PMID: 34989926 DOI: 10.1007/s11274-021-03212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
As an important raw material for pharmaceutical, food and feed industry, highly efficient production of L-tryptophan by Escherichia coli has attracted a considerable attention. However, there are complicated and multiple layers of regulation networks in L-tryptophan biosynthetic pathway and thus have difficulty to rewrite the biosynthetic pathway for producing L-tryptophan with high efficiency in E. coli. This review summarizes the biosynthetic pathway of L-tryptophan and highlights the main regulatory mechanisms in E. coli. In addition, we discussed the latest metabolic engineering strategies achieved in E. coli to reconstruct the L-tryptophan biosynthetic pathway. Moreover, we also review a few strategies that can be used in E. coli to improve robustness and streamline of L-tryptophan high-producing strains. Lastly, we also propose the potential strategies to further increase L-tryptophan production by systematic metabolic engineering and synthetic biology techniques.
Collapse
Affiliation(s)
- Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
90
|
Guo J, Chai X, Mei Y, Du J, Du H, Shi H, Zhu JK, Zhang H. Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. STRESS BIOLOGY 2022; 2:1. [PMID: 37676343 PMCID: PMC10442023 DOI: 10.1007/s44154-021-00024-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 09/08/2023]
Abstract
Lysine-ε-acetylation (Kac) is a post-translational modification (PTM) that is critical for metabolic regulation and cell signaling in mammals. However, its prevalence and importance in plants remain to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein lysine acetylation in five representative Arabidopsis organs with 2 ~ 3 biological replicates per organ. A total of 2887 Kac proteins and 5929 Kac sites were identified. This comprehensive catalog allows us to analyze proteome-wide features of lysine acetylation. We found that Kac proteins tend to be more uniformly expressed in different organs, and the acetylation status exhibits little correlation with the gene expression level, indicating that acetylation is unlikely caused by stochastic processes. Kac preferentially targets evolutionarily conserved proteins and lysine residues, but only a small percentage of Kac proteins are orthologous between rat and Arabidopsis. A large portion of Kac proteins overlap with proteins modified by other PTMs including ubiquitination, SUMOylation and phosphorylation. Although acetylation, ubiquitination and SUMOylation all modify lysine residues, our analyses show that they rarely target the same sites. In addition, we found that "reader" proteins for acetylation and phosphorylation, i.e., bromodomain-containing proteins and GRF (General Regulatory Factor)/14-3-3 proteins, are intensively modified by the two PTMs, suggesting that they are main crosstalk nodes between acetylation and phosphorylation signaling. Analyses of GRF6/14-3-3λ reveal that the Kac level of GRF6 is decreased under alkaline stress, suggesting that acetylation represses plant alkaline response. Indeed, K56ac of GRF6 inhibits its binding to and subsequent activation of the plasma membrane H+-ATPase AHA2, leading to hypersensitivity to alkaline stress. These results provide valuable resources for protein acetylation studies in plants and reveal that protein acetylation suppresses phosphorylation output by acetylating GRF/14-3-3 proteins.
Collapse
Affiliation(s)
- Jianfei Guo
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqiang Chai
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuchao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiamu Du
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Haining Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jian-Kang Zhu
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
91
|
Iannetta AA, Hicks LM. Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling. Methods Mol Biol 2022; 2499:1-41. [PMID: 35696073 DOI: 10.1007/978-1-0716-2317-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Post-translational modifications (PTMs) regulate complex biological processes through the modulation of protein activity, stability, and localization. Insights into the specific modification type and localization within a protein sequence can help ascertain functional significance. Computational models are increasingly demonstrated to offer a low-cost, high-throughput method for comprehensive PTM predictions. Algorithms are optimized using existing experimental PTM data, thus accurate prediction performance relies on the creation of robust datasets. Herein, advancements in mass spectrometry-based proteomics technologies to maximize PTM coverage are reviewed. Further, requisite experimental validation approaches for PTM predictions are explored to ensure that follow-up mechanistic studies are focused on accurate modification sites.
Collapse
Affiliation(s)
- Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
92
|
Gallego-Jara J, Ortega Á, Lozano Terol G, Sola Martínez RA, Cánovas Díaz M, de Diego Puente T. Bacterial Sirtuins Overview: An Open Niche to Explore. Front Microbiol 2021; 12:744416. [PMID: 34803965 PMCID: PMC8603916 DOI: 10.3389/fmicb.2021.744416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Sirtuins are deacetylase enzymes widely distributed in all domains of life. Although for decades they have been related only to histones deacetylation in eukaryotic organisms, today they are considered global regulators in both prokaryotes and eukaryotes. Despite the important role of sirtuins in humans, the knowledge about bacterial sirtuins is still limited. Several proteomics studies have shown that bacterial sirtuins deacetylate a large number of lysines in vivo, although the effect that this deacetylation causes in most of them remains unknown. To date, only the regulation of a few bacterial sirtuin substrates has been characterized, being their metabolic roles widely distributed: carbon and nitrogen metabolism, DNA transcription, protein translation, or virulence. One of the most current topics on acetylation and deacetylation focuses on studying stoichiometry using quantitative LC-MS/MS. The results suggest that prokaryotic sirtuins deacetylate at low stoichiometry sites, although more studies are needed to know if it is a common characteristic of bacterial sirtuins and its biological significance. Unlike eukaryotic organisms, bacteria usually have one or few sirtuins, which have been reported to have closer phylogenetic similarity with the human Sirt5 than with any other human sirtuin. In this work, in addition to carrying out an in-depth review of the role of bacterial sirtuins in their physiology, a phylogenetic study has been performed that reveals the evolutionary differences between sirtuins of different bacterial species and even between homologous sirtuins.
Collapse
Affiliation(s)
- Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus de Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus de Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Gema Lozano Terol
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus de Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Rosa A Sola Martínez
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus de Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus de Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus de Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
93
|
Graf LG, Vogt R, Blasl AT, Qin C, Schulze S, Zühlke D, Sievers S, Lammers M. Assays to Study Enzymatic and Non-Enzymatic Protein Lysine Acetylation In Vitro. Curr Protoc 2021; 1:e277. [PMID: 34748287 DOI: 10.1002/cpz1.277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteins can be lysine-acetylated both enzymatically, by lysine acetyltransferases (KATs), and non-enzymatically, by acetyl-CoA and/or acetyl-phosphate. Such modification can be reversed by lysine deacetylases classified as NAD+ -dependent sirtuins or by classical Zn2+ -dependent deacetylases (KDACs). The regulation of protein lysine acetylation events by KATs and sirtuins/KDACs, or by non-enzymatic processes, is often assessed only indirectly by mass spectrometry or by mutational studies in cells. Mutational approaches to study lysine acetylation are limited, as these often poorly mimic lysine acetylation. Here, we describe protocols to assess the direct regulation of protein lysine acetylation by both sirtuins/KDACs and KATs, as well as non-enzymatically. We first describe a protocol for the production of site-specific lysine-acetylated proteins using a synthetic biological approach, the genetic code expansion concept (GCEC). These natively folded, lysine-acetylated proteins can then be used as direct substrates for sirtuins and KDACs. This approach addresses various limitations encountered with other methods. First, results from sirtuin/KDAC-catalyzed deacetylation assays obtained using acetylated peptides as substrates can vary considerably compared to experiments using natively folded substrate proteins. In addition, producing lysine-acetylated proteins for deacetylation assays by using recombinantly expressed KATs is difficult, as these often do not yield proteins that are homogeneously and quantitatively lysine acetylated. Moreover, KATs are often huge multi-domain proteins, which are difficult to recombinantly express and purify in soluble form. We also describe protocols to study the direct regulation of protein lysine acetylation, both enzymatically, by sirtuins/KDACs and KATs, and non-enzymatically, by acetyl-CoA and/or acetyl-phosphate. The latter protocol also includes a section that explains how specific lysine acetylation sites can be detected by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The protocols described here can be useful for providing a more detailed understanding of the enzymatic and non-enzymatic regulation of lysine acetylation sites, an important aspect to judge their physiological significance. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of N-(ε)-lysine-acetylated proteins using the genetic code expansion concept (GCEC) Basic Protocol 2: In vitro sirtuin (SIRT)-catalyzed deacetylation of lysine-acetylated proteins prepared by the GCEC Basic Protocol 3: In vitro KDAC/HDAC-catalyzed deacetylation of lysine-acetylated proteins Basic Protocol 4: In vitro lysine acetylation of recombinantly expressed proteins by lysine acetyltransferases (KATs) Basic Protocol 5: In vitro non-enzymatic lysine acetylation of proteins by acetyl-CoA and/or acetyl-phosphate.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, University of Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, University of Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, University of Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, University of Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, University of Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Institute of Microbiology, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, University of Greifswald, Institute of Microbiology, Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, University of Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
94
|
Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021; 12:757179. [PMID: 34721364 PMCID: PMC8556138 DOI: 10.3389/fmicb.2021.757179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Collapse
Affiliation(s)
- Michael Lammers
- Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
95
|
Neumann-Staubitz P, Lammers M, Neumann H. Genetic Code Expansion Tools to Study Lysine Acylation. Adv Biol (Weinh) 2021; 5:e2100926. [PMID: 34713630 DOI: 10.1002/adbi.202100926] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Lysine acylation is a ubiquitous protein modification that controls various aspects of protein function, such as the activity, localization, and stability of enzymes. Mass spectrometric identification of lysine acylations has witnessed tremendous improvements in sensitivity over the last decade, facilitating the discovery of thousands of lysine acylation sites in proteins involved in all essential cellular functions across organisms of all domains of life. However, the vast majority of currently known acylation sites are of unknown function. Semi-synthetic methods for installing lysine derivatives are ideally suited for in vitro experiments, while genetic code expansion (GCE) allows the installation and study of such lysine modifications, especially their dynamic properties, in vivo. An overview of the current state of the art is provided, and its potential is illustrated with case studies from recent literature. These include the application of engineered enzymes and GCE to install lysine modifications or photoactivatable crosslinker amino acids. Their use in the context of central metabolism, bacterial and viral pathogenicity, the cytoskeleton and chromatin dynamics, is investigated.
Collapse
Affiliation(s)
- Petra Neumann-Staubitz
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| | - Michael Lammers
- Institute for Biochemistry, Department Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Heinz Neumann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| |
Collapse
|
96
|
Studenic P, Alunno A, Sieghart D, Bang H, Aletaha D, Blüml S, Haslacher H, Smolen JS, Gerli R, Steiner G. Presence of anti-acetylated peptide antibodies (AAPA) in inflammatory arthritis and other rheumatic diseases suggests discriminative diagnostic capacity towards early rheumatoid arthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X211022533. [PMID: 34539818 PMCID: PMC8445531 DOI: 10.1177/1759720x211022533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Aims: To determine the diagnostic value of anti-acetylated peptide antibodies (AAPA) in patients with rheumatoid arthritis (RA). Methods: Three acetylated peptides (ac-lysine, ac-lysine.inv and ac-ornithine) derived from vimentin were employed to measure AAPA by enzyme-linked immunosorbent assay (ELISA) in sera of 120 patients with early RA (eRA), 195 patients with established RA (est RA), 99 healthy controls (HC), and 216 patients with other inflammatory rheumatic diseases. A carbamylated and a citrullinated version of the vimentin peptide were used additionally. Receiver operating characteristics and logistic regression analyses were used to assess the discriminative capacity of AAPA. Results: AAPA were detected in 60% of eRA and 68.7% of estRA patients, 22.2% of HC, and 7.1– 30.6% of patients with other rheumatic diseases. Importantly, AAPA were also present in 40% of seronegative RA patients, while antibodies to the carbamylated peptide were detected less frequently. Diagnostic sensitivity of individual peptides for eRA was 28.3%, 35.8%, and 34% for ac-lysine, ac-ornithine, and ac-lysine.inv, respectively. Positive likelihood ratios (LR+) for eRA versus HC were 14.0, 7.1, and 2.1. While the presence of a single AAPA showed varying specificity (range: 84–98%), the presence of two AAPA increased specificity considerably since 26.7% of eRA, as compared with 6% of disease controls, were double positive. Thus, double positivity discriminated eRA from axial spondyloarthritis with a LR+ of 18.3. Remarkably, triple positivity was 100% specific for RA, being observed in 10% of eRA and 21.5% of estRA patients, even in the absence of RF and ACPA. Conclusion: AAPA are highly prevalent in early RA and occur also independently of RF and ACPA, thereby reducing the gap of seronegativity. Furthermore, multiple AAPA reactivity increased the specificity for RA, suggesting high diagnostic value of AAPA testing.
Collapse
Affiliation(s)
- Paul Studenic
- Division of Rheumatology, Department of Internal Medicine 3, Medical University of Vienna, Währinger Guertel 18-20, Vienna, 1090, Austria
| | - Alessia Alunno
- Rheumatology Unit, Department of Medicine & Surgery, University of Perugia, Perugia, Italy
| | - Daniela Sieghart
- Division of Rheumatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria & Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | | | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine 3, Medical University Vienna, Vienna, Austria
| | - Stephan Blüml
- Division of Rheumatology, Department of Internal Medicine 3, Medical University Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine 3, Medical University Vienna, Vienna, Austria
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine & Surgery, University of Perugia, Perugia, Italy
| | - Günter Steiner
- Division of Rheumatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria & Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
97
|
Yang Y, Zhang H, Guo Z, Zou S, Long F, Wu J, Li P, Zhao GP, Zhao W. Global Insights Into Lysine Acylomes Reveal Crosstalk Between Lysine Acetylation and Succinylation in Streptomyces coelicolor Metabolic Pathways. Mol Cell Proteomics 2021; 20:100148. [PMID: 34530157 PMCID: PMC8498004 DOI: 10.1016/j.mcpro.2021.100148] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 02/09/2023] Open
Abstract
Lysine acylations are reversible and ubiquitous post-translational modifications that play critical roles in regulating multiple cellular processes. In the current study, highly abundant and dynamic acetylation, besides succinylation, was uncovered in a soil bacterium, Streptomyces coelicolor. By affinity enrichment using anti–acetyl-lysine antibody and the following LC−MS/MS analysis, a total of 1298 acetylation sites among 601 proteins were identified. Bioinformatics analyses suggested that these acetylated proteins have diverse subcellular localization and were enriched in a wide range of biological functions. Specifically, a majority of the acetylated proteins were also succinylated in the tricarboxylic acid cycle and protein translation pathways, and the bimodification occurred at the same sites in some proteins. The acetylation and succinylation sites were quantified by knocking out either the deacetylase ScCobB1 or the desuccinylase ScCobB2, demonstrating a possible competitive relationship between the two acylations. Moreover, in vitro experiments using synthetically modified peptides confirmed the regulatory crosstalk between the two sirtuins, which may be involved in the collaborative regulation of cell physiology. Collectively, these results provided global insights into the S. coelicolor acylomes and laid a foundation for characterizing the regulatory roles of the crosstalk between lysine acetylation and succinylation in the future. A highly abundant and dynamic acetylation is discovered in Streptomyces coelicolor. Quantitative acetylome and succinylome analyses in Streptomyces coelicolor. The bimodification proteins are enriched in multiple metabolic pathways.
Collapse
Affiliation(s)
- Yujiao Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Siwei Zou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Long
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiacheng Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing, China.
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
98
|
Abstract
Nε-lysine acetylation is an important, dynamic regulatory posttranslational modification (PTM) that is common in bacteria. Protein acetylomes have been characterized for more than 30 different species, and it is known that acetylation plays important regulatory roles in many essential biological processes. The levels of acetylation are enzymatically controlled by the opposing actions of lysine acetyltransferases and deacetylases. In bacteria, a second mechanism of acetylation exists and occurs via an enzyme-independent manner using the secondary metabolite acetyl-phosphate. Nonenzymatic acetylation accounts for global low levels of acetylation. Recently, studies concerning the role of protein acetylation in bacterial virulence have begun. Acetylated virulence factors have been identified and further characterized. The roles of the enzymes that acetylate and deacetylate proteins in the establishment of infection and biofilm formation have also been investigated. In this review, we discuss the acetylomes of human bacterial pathogens. We highlight examples of known acetylated virulence proteins and examine how they affect survival in the host. Finally, we discuss how acetylation might influence host-pathogen interactions and look at the contribution of acetylation to antimicrobial resistance.
Collapse
|
99
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|
100
|
Wang J, Liu C, Chen Y, Zhao Y, Ma Z. Protein acetylation and deacetylation in plant-pathogen interactions. Environ Microbiol 2021; 23:4841-4855. [PMID: 34398483 DOI: 10.1111/1462-2920.15725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Protein acetylation and deacetylation catalysed by lysine acetyltransferases (KATs) and deacetylases (KDACs), respectively, are major mechanisms regulating various cellular processes. During the fight between microbial pathogens and host plants, both apply a set of measures, including acetylation interference, to strengthen themselves while suppressing the other. In this review, we first summarize KATs and KDACs in plants and their pathogens. Next, we introduce diverse acetylation and deacetylation mechanisms affecting protein functions, including the regulation of enzyme activity and specificity, protein-protein or protein-DNA interactions, subcellular localization and protein stability. We then focus on the current understanding of acetylation and deacetylation in plant-pathogen interactions. Additionally, we also discuss potential acetylation-related approaches for controlling plant diseases.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|