51
|
Alzahrani F, Albatti TH, Alkuraya FS. A de novo ATXN2L variant in a child with developmental delay and macrocephaly. Am J Med Genet A 2020; 185:949-951. [PMID: 33283965 DOI: 10.1002/ajmg.a.62007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Fatema Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Turki H Albatti
- Abdullatif Al Fozan Center for Autism, Alkhobar, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
52
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
53
|
Cha IJ, Lee D, Park SS, Chung CG, Kim SY, Jo MG, Kim SY, Lee BH, Lee YS, Lee SB. Ataxin-2 Dysregulation Triggers a Compensatory Fragile X Mental Retardation Protein Decrease in Drosophila C4da Neurons. Mol Cells 2020; 43:870-879. [PMID: 33115979 PMCID: PMC7604024 DOI: 10.14348/molcells.2020.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Dendrites require precise and timely delivery of protein substrates to distal areas to ensure the correct morphology and function of neurons. Many of these protein substrates are supplied in the form of ribonucleoprotein (RNP) complex consisting of RNA-binding proteins (RBPs) and mRNAs, which are subsequently translated in distal dendritic areas. It remains elusive, however, whether key RBPs supply mRNA according to local demands individually or in a coordinated manner. In this study, we investigated how Drosophila sensory neurons respond to the dysregulation of a disease-associated RBP, Ataxin-2 (ATX2), which leads to dendritic defects. We found that ATX2 plays a crucial role in spacing dendritic branches for the optimal dendritic receptive fields in Drosophila class IV dendritic arborization (C4da) neurons, where both expression level and subcellular location of ATX2 contribute significantly to this effect. We showed that translational upregulation through the expression of eukaryotic translation initiation factor 4E (eIF4E) further enhanced the ATX2-induced dendritic phenotypes. Additionally, we found that the expression level of another disease-associated RBP, fragile X mental retardation protein (FMRP), decreased in both cell bodies and dendrites when neurons were faced with aberrant upregulation of ATX2. Finally, we revealed that the PAM2 motif of ATX2, which mediates its interaction with poly(A)-binding protein (PABP), is potentially necessary for the decrease of FMRP in certain neuronal stress conditions. Collectively, our data suggest that dysregulation of RBPs triggers a compensatory regulation of other functionally-overlapping RBPs to minimize RBP dysregulation-associated aberrations that hinder neuronal homeostasis in dendrites.
Collapse
Affiliation(s)
- In Jun Cha
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Davin Lee
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Sung Soon Park
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Seung Yeon Kim
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Min Gu Jo
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Seung Yeol Kim
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
| | - Byung-Hoon Lee
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Department of New Biology, DGIST, Daegu 42988, Korea
| | - Young-Sam Lee
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Department of New Biology, DGIST, Daegu 42988, Korea
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
- Protein Dynamics-Based Proteotoxicity Control Laboratory, Basic Research Lab, DGIST, Daegu 42988, Korea
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Korea
| |
Collapse
|
54
|
Neu CT, Gutschner T, Haemmerle M. Post-Transcriptional Expression Control in Platelet Biogenesis and Function. Int J Mol Sci 2020; 21:ijms21207614. [PMID: 33076269 PMCID: PMC7589263 DOI: 10.3390/ijms21207614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Platelets are highly abundant cell fragments of the peripheral blood that originate from megakaryocytes. Beside their well-known role in wound healing and hemostasis, they are emerging mediators of the immune response and implicated in a variety of pathophysiological conditions including cancer. Despite their anucleate nature, they harbor a diverse set of RNAs, which are subject to an active sorting mechanism from megakaryocytes into proplatelets and affect platelet biogenesis and function. However, sorting mechanisms are poorly understood, but RNA-binding proteins (RBPs) have been suggested to play a crucial role. Moreover, RBPs may regulate RNA translation and decay following platelet activation. In concert with other regulators, including microRNAs, long non-coding and circular RNAs, RBPs control multiple steps of the platelet life cycle. In this review, we will highlight the different RNA species within platelets and their impact on megakaryopoiesis, platelet biogenesis and platelet function. Additionally, we will focus on the currently known concepts of post-transcriptional control mechanisms important for RNA fate within platelets with a special emphasis on RBPs.
Collapse
Affiliation(s)
- Carolin T. Neu
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
- Correspondence: ; Tel.: +49-345-557-3964
| |
Collapse
|
55
|
Inagaki H, Hosoda N, Tsuiji H, Hoshino SI. Direct evidence that Ataxin-2 is a translational activator mediating cytoplasmic polyadenylation. J Biol Chem 2020; 295:15810-15825. [PMID: 32989052 DOI: 10.1074/jbc.ra120.013835] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/13/2020] [Indexed: 12/27/2022] Open
Abstract
The RNA-binding protein Ataxin-2 binds to and stabilizes a number of mRNA sequences, including that of the transactive response DNA-binding protein of 43 kDa (TDP-43). Ataxin-2 is additionally involved in several processes requiring translation, such as germline formation, long-term habituation, and circadian rhythm formation. However, it has yet to be unambiguously demonstrated that Ataxin-2 is actually involved in activating the translation of its target mRNAs. Here we provide direct evidence from a polysome profile analysis showing that Ataxin-2 enhances translation of target mRNAs. Our recently established method for transcriptional pulse-chase analysis under conditions of suppressing deadenylation revealed that Ataxin-2 promotes post-transcriptional polyadenylation of the target mRNAs. Furthermore, Ataxin-2 binds to a poly(A)-binding protein PABPC1 and a noncanonical poly(A) polymerase PAPD4 via its intrinsically disordered region (amino acids 906-1095) to recruit PAPD4 to the targets. Post-transcriptional polyadenylation by Ataxin-2 explains not only how it activates translation but also how it stabilizes target mRNAs, including TDP-43 mRNA. Ataxin-2 is known to be a potent modifier of TDP-43 proteinopathies and to play a causative role in the neurodegenerative disease spinocerebellar ataxia type 2, so these findings suggest that Ataxin-2-induced cytoplasmic polyadenylation and activation of translation might impact neurodegeneration (i.e. TDP-43 proteinopathies), and this process could be a therapeutic target for Ataxin-2-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hiroto Inagaki
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hitomi Tsuiji
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
56
|
Key J, Harter PN, Sen NE, Gradhand E, Auburger G, Gispert S. Mid-Gestation lethality of Atxn2l-Ablated Mice. Int J Mol Sci 2020; 21:E5124. [PMID: 32698485 PMCID: PMC7404131 DOI: 10.3390/ijms21145124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Depletion of yeast/fly Ataxin-2 rescues TDP-43 overexpression toxicity. In mouse models of Amyotrophic Lateral Sclerosis via TDP-43 overexpression, depletion of its ortholog ATXN2 mitigated motor neuron degeneration and extended lifespan from 25 days to >300 days. There is another ortholog in mammals, named ATXN2L (Ataxin-2-like), which is almost uncharacterized but also functions in RNA surveillance at stress granules. We generated mice with Crispr/Cas9-mediated deletion of Atxn2l exons 5-8, studying homozygotes prenatally and heterozygotes during aging. Our novel findings indicate that ATXN2L absence triggers mid-gestational embryonic lethality, affecting female animals more strongly. Weight and development stages of homozygous mutants were reduced. Placenta phenotypes were not apparent, but brain histology showed lamination defects and apoptosis. Aged heterozygotes showed no locomotor deficits or weight loss over 12 months. Null mutants in vivo displayed compensatory efforts to maximize Atxn2l expression, which were prevented upon nutrient abundance in vitro. Mouse embryonal fibroblast cells revealed more multinucleated giant cells upon ATXN2L deficiency. In addition, in human neural cells, transcript levels of ATXN2L were induced upon starvation and glucose and amino acids exposure, but this induction was partially prevented by serum or low cholesterol administration. Neither ATXN2L depletion triggered dysregulation of ATXN2, nor a converse effect was observed. Overall, this essential role of ATXN2L for embryogenesis raises questions about its role in neurodegenerative diseases and neuroprotective therapies.
Collapse
Affiliation(s)
- Jana Key
- Exp. Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (J.K.); (N.-E.S.)
- Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt am Main, Germany;
| | - Nesli-Ece Sen
- Exp. Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (J.K.); (N.-E.S.)
- Faculty of Biosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Elise Gradhand
- Dr. Senckenberg Institute for Pathology, University Hospital, Goethe University, Theodor-Stern-Kai-7, 60590 Frankfurt am Main, Germany;
| | - Georg Auburger
- Exp. Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (J.K.); (N.-E.S.)
| | - Suzana Gispert
- Exp. Neurology, Medical Faculty, Goethe University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (J.K.); (N.-E.S.)
| |
Collapse
|
57
|
Taglini F, Chapman E, van Nues R, Theron E, Bayne EH. Mkt1 is required for RNAi-mediated silencing and establishment of heterochromatin in fission yeast. Nucleic Acids Res 2020; 48:1239-1253. [PMID: 31822915 PMCID: PMC7026591 DOI: 10.1093/nar/gkz1157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 11/28/2019] [Indexed: 01/04/2023] Open
Abstract
Constitutive domains of repressive heterochromatin are maintained within the fission yeast genome through self-reinforcing mechanisms involving histone methylation and small RNAs. Non-coding RNAs generated from heterochromatic regions are processed into small RNAs by the RNA interference pathway, and are subject to silencing through both transcriptional and post-transcriptional mechanisms. While the pathways involved in maintenance of the repressive heterochromatin state are reasonably well understood, less is known about the requirements for its establishment. Here, we describe a novel role for the post-transcriptional regulatory factor Mkt1 in establishment of heterochromatin at pericentromeres in fission yeast. Loss of Mkt1 does not affect maintenance of existing heterochromatin, but does affect its recovery following depletion, as well as de novo establishment of heterochromatin on a mini-chromosome. Pathway dissection revealed that Mkt1 is required for RNAi-mediated post-transcriptional silencing, downstream of small RNA production. Mkt1 physically associates with pericentromeric transcripts, and is additionally required for maintenance of silencing and heterochromatin at centromeres when transcriptional silencing is impaired. Our findings provide new insight into the mechanism of RNAi-mediated post-transcriptional silencing in fission yeast, and unveil an important role for post-transcriptional silencing in establishment of heterochromatin that is dispensable when full transcriptional silencing is imposed.
Collapse
Affiliation(s)
- Francesca Taglini
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Elliott Chapman
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Rob van Nues
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Emmanuelle Theron
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth H Bayne
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
58
|
Chen KW, Chen JA. Functional Roles of Long Non-coding RNAs in Motor Neuron Development and Disease. J Biomed Sci 2020; 27:38. [PMID: 32093746 PMCID: PMC7041250 DOI: 10.1186/s12929-020-00628-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained increasing attention as they exhibit highly tissue- and cell-type specific expression patterns. LncRNAs are highly expressed in the central nervous system and their roles in the brain have been studied intensively in recent years, but their roles in the spinal motor neurons (MNs) are largely unexplored. Spinal MN development is controlled by precise expression of a gene regulatory network mediated spatiotemporally by transcription factors, representing an elegant paradigm for deciphering the roles of lncRNAs during development. Moreover, many MN-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are associated with RNA metabolism, yet the link between MN-related diseases and lncRNAs remains obscure. In this review, we summarize lncRNAs known to be involved in MN development and disease, and discuss their potential future therapeutic applications.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
59
|
Hansen M, Zeddies S, Meinders M, di Summa F, Rollmann E, van Alphen FP, Hoogendijk AJ, Moore KS, Halbach M, Gutiérrez L, van den Biggelaar M, Thijssen-Timmer DC, Auburger GW, van den Akker E, von Lindern M. The RNA-Binding Protein ATXN2 is Expressed during Megakaryopoiesis and May Control Timing of Gene Expression. Int J Mol Sci 2020; 21:ijms21030967. [PMID: 32024018 PMCID: PMC7037754 DOI: 10.3390/ijms21030967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Megakaryopoiesis is the process during which megakaryoblasts differentiate to polyploid megakaryocytes that can subsequently shed thousands of platelets in the circulation. Megakaryocytes accumulate mRNA during their maturation, which is required for the correct spatio-temporal production of cytoskeletal proteins, membranes and platelet-specific granules, and for the subsequent shedding of thousands of platelets per cell. Gene expression profiling identified the RNA binding protein ATAXIN2 (ATXN2) as a putative novel regulator of megakaryopoiesis. ATXN2 expression is high in CD34+/CD41+ megakaryoblasts and sharply decreases upon maturation to megakaryocytes. ATXN2 associates with DDX6 suggesting that it may mediate repression of mRNA translation during early megakaryopoiesis. Comparative transcriptome and proteome analysis on megakaryoid cells (MEG-01) with differential ATXN2 expression identified ATXN2 dependent gene expression of mRNA and protein involved in processes linked to hemostasis. Mice deficient for Atxn2 did not display differences in bleeding times, but the expression of key surface receptors on platelets, such as ITGB3 (carries the CD61 antigen) and CD31 (PECAM1), was deregulated and platelet aggregation upon specific triggers was reduced.
Collapse
Affiliation(s)
- Marten Hansen
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Sabrina Zeddies
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Marjolein Meinders
- Department Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam,1066CX Amsterdam, The Netherlands; (M.M.); (L.G.)
| | - Franca di Summa
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Ewa Rollmann
- Experimental Neurology, Goethe University Medical School, 60528 Frankfurt am Main, Germany; (E.R.); (M.H.)
| | - Floris P.J. van Alphen
- Department of Molecular and Cellular Hemostasis, Sanquin Research, 1066CX Amsterdam, The Netherlands (A.J.H.); (M.v.d.B.)
| | - Arjan J. Hoogendijk
- Department of Molecular and Cellular Hemostasis, Sanquin Research, 1066CX Amsterdam, The Netherlands (A.J.H.); (M.v.d.B.)
| | - Kat S. Moore
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Melanie Halbach
- Experimental Neurology, Goethe University Medical School, 60528 Frankfurt am Main, Germany; (E.R.); (M.H.)
| | - Laura Gutiérrez
- Department Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam,1066CX Amsterdam, The Netherlands; (M.M.); (L.G.)
| | - Maartje van den Biggelaar
- Department of Molecular and Cellular Hemostasis, Sanquin Research, 1066CX Amsterdam, The Netherlands (A.J.H.); (M.v.d.B.)
| | - Daphne C. Thijssen-Timmer
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Georg W.J. Auburger
- Experimental Neurology, Goethe University Medical School, 60528 Frankfurt am Main, Germany; (E.R.); (M.H.)
| | - Emile van den Akker
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
| | - Marieke von Lindern
- Department Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Centre, 1066CX Amsterdam, The Netherlands; (M.H.); (S.Z.); (F.d.S.); (K.S.M.); (D.C.T.-T.); (E.v.d.A.)
- Correspondence: ; Tel.: +31-6-1203-7801
| |
Collapse
|
60
|
Sen NE, Arsovic A, Meierhofer D, Brodesser S, Oberschmidt C, Canet-Pons J, Kaya ZE, Halbach MV, Gispert S, Sandhoff K, Auburger G. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. Int J Mol Sci 2019; 20:E5854. [PMID: 31766565 PMCID: PMC6928749 DOI: 10.3390/ijms20235854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany;
| | - Susanne Brodesser
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Carola Oberschmidt
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Zeynep-Ece Kaya
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Melanie-Vanessa Halbach
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Suzana Gispert
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Georg Auburger
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| |
Collapse
|
61
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
62
|
St Martin JL, Wang L, Kaprielian Z. Toxicity in ALS: TDP-43 modifiers and C9orf72. Neurosci Lett 2019; 716:134621. [PMID: 31726180 DOI: 10.1016/j.neulet.2019.134621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating and fatal neurodegenerative disease affecting approximately 30,000 individuals in the United States. The average age of onset is 55 years and progression of the disease is rapid with most patients dying of respiratory failure within 3-5 years. Currently available therapeutics have modest effects on patient survival, underscoring the immediate need for more effective medicines. Recent technological advances in next generation sequencing have led to a substantial uptick in the discovery of genes linked to ALS. Since 90 % of ALS cases are sporadic, risk genes identified in familial cases provide invaluable insights into the molecular pathogenesis of the disease. Most notably, TDP-43-expressing neuronal inclusions and C9orf72 mutations have emerged as the key pathological and genetic hallmarks, respectively, of ALS. In this review, we will discuss recent advances in modifiers of TDP-43 toxicity, with an emphasis on Ataxin-2, one of the most well-characterized TDP-43 modifiers. An understanding of Ataxin-2 function and related biological pathways could provide a framework for the discovery of other novel modifiers of TDP-43. We will also describe the pathogenic mechanisms underlying C9orf72 toxicity and how these impact the disease process. Finally, we will explore emerging therapeutic strategies for dampening TDP-43 and C9orf72 toxicity and, ultimately, slowing or halting the progression of ALS.
Collapse
Affiliation(s)
| | - Lina Wang
- Amgen, Neuroscience Discovery, Cambridge, MA, United States
| | - Zaven Kaprielian
- Dementia Discovery Foundation US Discovery, Boston, United States.
| |
Collapse
|
63
|
Xu F, Kula-Eversole E, Iwanaszko M, Lim C, Allada R. Ataxin2 functions via CrebA to mediate Huntingtin toxicity in circadian clock neurons. PLoS Genet 2019; 15:e1008356. [PMID: 31593562 PMCID: PMC6782096 DOI: 10.1371/journal.pgen.1008356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Disrupted circadian rhythms is a prominent and early feature of neurodegenerative diseases including Huntington’s disease (HD). In HD patients and animal models, striatal and hypothalamic neurons expressing molecular circadian clocks are targets of mutant Huntingtin (mHtt) pathogenicity. Yet how mHtt disrupts circadian rhythms remains unclear. In a genetic screen for modifiers of mHtt effects on circadian behavior in Drosophila, we discovered a role for the neurodegenerative disease gene Ataxin2 (Atx2). Genetic manipulations of Atx2 modify the impact of mHtt on circadian behavior as well as mHtt aggregation and demonstrate a role for Atx2 in promoting mHtt aggregation as well as mHtt-mediated neuronal dysfunction. RNAi knockdown of the Fragile X mental retardation gene, dfmr1, an Atx2 partner, also partially suppresses mHtt effects and Atx2 effects depend on dfmr1. Atx2 knockdown reduces the cAMP response binding protein A (CrebA) transcript at dawn. CrebA transcript level shows a prominent diurnal regulation in clock neurons. Loss of CrebA also partially suppresses mHtt effects on behavior and cell loss and restoration of CrebA can suppress Atx2 effects. Our results indicate a prominent role of Atx2 in mediating mHtt pathology, specifically via its regulation of CrebA, defining a novel molecular pathway in HD pathogenesis. Circadian clocks evolved to anticipate 24 h environmental rhythms driven by the earth’s daily rotation and regulate nearly all aspects of behavior, physiology and the genome. Disruptions of the circadian clock have been associated with a wide range of human diseases, including neurodegenerative diseases such as Huntington’s disease (HD). Using an HD animal model in which a mutant Huntingtin (mHtt) protein is expressed, we identify a role for the RNA binding protein and neurodegenerative disease gene Ataxin-2 (Atx2) in mediating mHtt effects on circadian behavioral rhythms. Using transcriptomics, we identify the transcription factor CrebA as a potential target of both Atx2 and the circadian clock. Finally, we demonstrate a role for CrebA in mediating mHtt effects on circadian behavior, defining a novel Atx2-CrebA pathway in a neurodegenerative disease model. These studies define the molecular mechanisms by which mHtt can disrupt circadian rhythms identifying potential novel therapeutic targets for this uniformly fatal disease.
Collapse
Affiliation(s)
- Fangke Xu
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Elzbieta Kula-Eversole
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Marta Iwanaszko
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chunghun Lim
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
64
|
Kawamura N, Nimura K, Saga K, Ishibashi A, Kitamura K, Nagano H, Yoshikawa Y, Ishida K, Nonomura N, Arisawa M, Luo J, Kaneda Y. SF3B2-Mediated RNA Splicing Drives Human Prostate Cancer Progression. Cancer Res 2019; 79:5204-5217. [PMID: 31431456 DOI: 10.1158/0008-5472.can-18-3965] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/24/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022]
Abstract
Androgen receptor splice variant-7 (AR-V7) is a constitutively active AR variant implicated in castration-resistant prostate cancers. Here, we show that the RNA splicing factor SF3B2, identified by in silico and CRISPR/Cas9 analyses, is a critical determinant of AR-V7 expression and is correlated with aggressive cancer phenotypes. Transcriptome and PAR-CLIP analyses revealed that SF3B2 controls the splicing of target genes, including AR, to drive aggressive phenotypes. SF3B2-mediated aggressive phenotypes in vivo were reversed by AR-V7 knockout. Pladienolide B, an inhibitor of a splicing modulator of the SF3b complex, suppressed the growth of tumors addicted to high SF3B2 expression. These findings support the idea that alteration of the splicing pattern by high SF3B2 expression is one mechanism underlying prostate cancer progression and therapeutic resistance. This study also provides evidence supporting SF3B2 as a candidate therapeutic target for treating patients with cancer. SIGNIFICANCE: RNA splicing factor SF3B2 is essential for the generation of an androgen receptor (AR) variant that renders prostate cancer cells resistant to AR-targeting therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5204/F1.large.jpg.
Collapse
Affiliation(s)
- Norihiko Kawamura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Kotaro Saga
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Airi Ishibashi
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koji Kitamura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromichi Nagano
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yusuke Yoshikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kyoso Ishida
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Jun Luo
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
65
|
Lin J, Zhang Y, Frankel WN, Ouyang Z. PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks. PLoS Comput Biol 2019; 15:e1007227. [PMID: 31425505 PMCID: PMC6716675 DOI: 10.1371/journal.pcbi.1007227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/30/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022] Open
Abstract
RNA-protein interaction plays important roles in post-transcriptional regulation. Recent advancements in cross-linking and immunoprecipitation followed by sequencing (CLIP-seq) technologies make it possible to detect the binding peaks of a given RNA binding protein (RBP) at transcriptome scale. However, it is still challenging to predict the functional consequences of RBP binding peaks. In this study, we propose the Protein-RNA Association Strength (PRAS), which integrates the intensities and positions of the binding peaks of RBPs for functional mRNA targets prediction. We illustrate the superiority of PRAS over existing approaches on predicting the functional targets of two related but divergent CELF (CUGBP, ELAV-like factor) RBPs in mouse brain and muscle. We also demonstrate the potential of PRAS for wide adoption by applying it to the enhanced CLIP-seq (eCLIP) datasets of 37 RNA decay related RBPs in two human cell lines. PRAS can be utilized to investigate any RBPs with available CLIP-seq peaks. PRAS is freely available at http://ouyanglab.jax.org/pras/.
Collapse
Affiliation(s)
- Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Yuping Zhang
- Department of Statistics, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- Center for Quantitative Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | - Wayne N. Frankel
- Department of Genetics and Development and Institute for Genomic Medicine, Columbia University Medical Center, New York City, New York, United States of America
| | - Zhengqing Ouyang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
66
|
Lastres-Becker I, Nonis D, Nowock J, Auburger G. New alternative splicing variants of the ATXN2 transcript. Neurol Res Pract 2019; 1:22. [PMID: 33324888 PMCID: PMC7650068 DOI: 10.1186/s42466-019-0025-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant disorder with progressive degeneration of cerebellar Purkinje cells and selective loss of neurons in the brainstem. This neurodegenerative disorder is caused by the expansion of a polyglutamine domain in ataxin-2. Ataxin-2 is composed of 1312 amino acids, has a predicted molecular weight of 150-kDa and is widely expressed in neuronal and non-neuronal tissues. To date, the putative functions of ataxin-2 on mRNA translation and endocytosis remain ill-defined. Differential splicing with a lack of exons 10 and 21 was described in humans, and additional splicing of exon 11 in mice. In this study, we observed that the molecular size of transfected full-length wild-type ataxin-2 (22 glutamines) is different from endogenous ataxin-2 and that this variation could not be explained by the previously published splice variants alone. Methods Quantitative immunoblots and qualitative reverse-transcriptase polymerase-chain-reaction (RT-PCR) were used to characterize isoform variants, before sequencing was employed for validation. Results We report the characterization of further splice variants of ataxin-2 in different human cell lines and in mouse and human brain. Using RT-PCR from cell lines HeLa, HEK293 and COS-7 throughout the open reading frame of ataxin-2 together with PCR-sequencing, we found novel splice variants lacking exon 12 and exon 24. These findings were corroborated in murine and human brain. The splice variants were also found in human skin fibroblasts from SCA2 patients and controls, indicating that the polyglutamine expansion does not abolish the splicing. Conclusions Given that Ataxin-2 interacts with crucial splice modulators such as TDP-43 and modulates the risk of Amyotrophic Lateral Sclerosis, its own splice isoforms may become relevant in brain tissue to monitor the RNA processing during disease progression and neuroprotective therapy.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.,Present address: Department of Biochemistry, Faculty of Medicine, Universidad Autonoma of Madrid, Madrid, Spain
| | - David Nonis
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Joachim Nowock
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
67
|
Gagliardi S, Pandini C, Garofalo M, Bordoni M, Pansarasa O, Cereda C. Long non coding RNAs and ALS: Still much to do. Noncoding RNA Res 2018; 3:226-231. [PMID: 30533570 PMCID: PMC6260474 DOI: 10.1016/j.ncrna.2018.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Alterations in RNA metabolism play an important role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. The literature has described, so far, a small number of long non coding RNAs (lncRNAs) associated to ALS demonstrating that how there is still much to do to identify and understand their role in ALS. This class of RNAs may offer numerous starting points for new investigations about pathogenic mechanism involved in ALS disease. In this review, we have collected all the presented data about lncRNAs and ALS to offer an overview about this class of non-coding RNAs and their possible role in ALS disease.
Collapse
Affiliation(s)
- Stella Gagliardi
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cecilia Pandini
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Maria Garofalo
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Matteo Bordoni
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
68
|
Charles Richard JL, Eichhorn PJA. Platforms for Investigating LncRNA Functions. SLAS Technol 2018; 23:493-506. [PMID: 29945466 PMCID: PMC6249642 DOI: 10.1177/2472630318780639] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 01/09/2023]
Abstract
Prior to the sequencing of the human genome, it was presumed that most of the DNA coded for proteins. However, with the advent of next-generation sequencing, it has now been recognized that most complex eukaryotic genomes are in fact transcribed into noncoding RNAs (ncRNAs), including a family of transcripts referred to as long noncoding RNAs (lncRNAs). LncRNAs have been implicated in many biological processes ranging from housekeeping functions such as transcription to more specialized functions such as dosage compensation or genomic imprinting, among others. Interestingly, lncRNAs are not limited to a defined set of functions but can regulate varied activities such as messenger RNA degradation, translation, and protein kinetics or function as RNA decoys or scaffolds. Although still in its infancy, research into the biology of lncRNAs has demonstrated the importance of lncRNAs in development and disease. However, the specific mechanisms through which these lncRNAs act remain poorly defined. Focused research into a small number of these lncRNAs has provided important clues into the heterogeneous nature of this family of ncRNAs. Due to the complex diversity of lncRNA function, in this review, we provide an update on the platforms available for investigators to aid in the identification of lncRNA function.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
| |
Collapse
|
69
|
Conserved Pbp1/Ataxin-2 regulates retrotransposon activity and connects polyglutamine expansion-driven protein aggregation to lifespan-controlling rDNA repeats. Commun Biol 2018; 1:187. [PMID: 30417124 PMCID: PMC6218562 DOI: 10.1038/s42003-018-0187-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
Ribosomal DNA (rDNA) repeat instability and protein aggregation are thought to be two major and independent drivers of cellular aging. Pbp1, the yeast ortholog of human ATXN2, maintains rDNA repeat stability and lifespan via suppression of RNA-DNA hybrids. ATXN2 polyglutamine expansion drives neurodegeneration causing spinocerebellar ataxia type 2 and promoting amyotrophic lateral sclerosis. Here, molecular characterization of Pbp1 revealed that its knockout or subjection to disease-modeling polyQ expansion represses Ty1 (Transposons of Yeast) retrotransposons by respectively promoting Trf4-depedendent RNA turnover and Ty1 Gag protein aggregation. This aggregation, but not its impact on retrotransposition, compromises rDNA repeat stability and shortens lifespan by hyper-activating Trf4-dependent turnover of intergenic ncRNA within the repeats. We uncover a function for the conserved Pbp1/ATXN2 proteins in the promotion of retrotransposition, create and describe powerful yeast genetic models of ATXN2-linked neurodegenerative diseases, and connect the major aging mechanisms of rDNA instability and protein aggregation.
Collapse
|
70
|
Nakahama T, Kato Y, Kim JI, Vongpipatana T, Suzuki Y, Walkley CR, Kawahara Y. ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. EMBO Rep 2018; 19:embr.201846303. [PMID: 30361393 DOI: 10.15252/embr.201846303] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
T cells play a crucial role in the adaptive immune system, and their maturation process is tightly regulated. Adenosine deaminase acting on RNA 1 (ADAR1) is the enzyme responsible for adenosine-to-inosine RNA editing in dsRNAs, and loss of ADAR1 activates the innate immune sensing response via melanoma differentiation-associated protein 5 (MDA5), which interprets unedited dsRNA as non-self. Although ADAR1 is highly expressed in the thymus, its role in the adaptive immune system, especially in T cells, remains elusive. Here, we demonstrate that T cell-specific deletion of Adar1 in mice causes abnormal thymic T cell maturation including impaired negative selection and autoimmunity such as spontaneous colitis. This is caused by excessive expression of interferon-stimulated genes, which reduces T cell receptor (TCR) signal transduction, due to a failure of RNA editing in ADAR1-deficient thymocytes. Intriguingly, concurrent deletion of MDA5 restores thymocyte maturation and prevents colitis. These findings suggest that prevention of MDA5 sensing of endogenous dsRNA by ADAR1-mediated RNA editing is required for preventing both innate immune responses and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tuangtong Vongpipatana
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Carl R Walkley
- St Vincent's Institute and Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic., Australia
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
71
|
Zhao M, Kim JR, van Bruggen R, Park J. RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Mol Cells 2018; 41:818-829. [PMID: 30157547 PMCID: PMC6182225 DOI: 10.14348/molcells.2018.0243] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying amyotrophic lateral sclerosis (ALS), which may in turn pinpoint potential therapeutic targets for treatment. The ALS research field has evolved with recent discoveries of numerous genetic mutations in ALS patients, many of which are in genes encoding RNA binding proteins (RBPs), including TDP-43, FUS, ATXN2, TAF15, EWSR1, hnRNPA1, hnRNPA2/B1, MATR3 and TIA1. Accumulating evidence from studies on these ALS-linked RBPs suggests that dysregulation of RNA metabolism, cytoplasmic mislocalization of RBPs, dysfunction in stress granule dynamics of RBPs and increased propensity of mutant RBPs to aggregate may lead to ALS pathogenesis. Here, we review current knowledge of the biological function of these RBPs and the contributions of ALS-linked mutations to disease pathogenesis.
Collapse
Affiliation(s)
- Melody Zhao
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| | - Jihye Rachel Kim
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| | - Rebekah van Bruggen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
Canada
- Department of Molecular Genetics, University of Toronto, Toronto,
Canada
| |
Collapse
|
72
|
Lee J, Kim M, Itoh TQ, Lim C. Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1488. [PMID: 29869836 DOI: 10.1002/wrna.1488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Minjong Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Taichi Q Itoh
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
73
|
Bakthavachalu B, Huelsmeier J, Sudhakaran IP, Hillebrand J, Singh A, Petrauskas A, Thiagarajan D, Sankaranarayanan M, Mizoue L, Anderson EN, Pandey UB, Ross E, VijayRaghavan K, Parker R, Ramaswami M. RNP-Granule Assembly via Ataxin-2 Disordered Domains Is Required for Long-Term Memory and Neurodegeneration. Neuron 2018; 98:754-766.e4. [PMID: 29772202 DOI: 10.1016/j.neuron.2018.04.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/07/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Human Ataxin-2 is implicated in the cause and progression of amyotrophic lateral sclerosis (ALS) and type 2 spinocerebellar ataxia (SCA-2). In Drosophila, a conserved atx2 gene is essential for animal survival as well as for normal RNP-granule assembly, translational control, and long-term habituation. Like its human homolog, Drosophila Ataxin-2 (Atx2) contains polyQ repeats and additional intrinsically disordered regions (IDRs). We demonstrate that Atx2 IDRs, which are capable of mediating liquid-liquid phase transitions in vitro, are essential for efficient formation of neuronal mRNP assemblies in vivo. Remarkably, ΔIDR mutants that lack neuronal RNP granules show normal animal development, survival, and fertility. However, they show defects in long-term memory formation/consolidation as well as in C9ORF72 dipeptide repeat or FUS-induced neurodegeneration. Together, our findings demonstrate (1) that higher-order mRNP assemblies contribute to long-term neuronal plasticity and memory, and (2) that a targeted reduction in RNP-granule formation efficiency can alleviate specific forms of neurodegeneration.
Collapse
Affiliation(s)
| | - Joern Huelsmeier
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | | | - Jens Hillebrand
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Amanjot Singh
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Arnas Petrauskas
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | | | | | - Laura Mizoue
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA; HHMI, University of Colorado, Boulder, CO 80309, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Eric Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - K VijayRaghavan
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Roy Parker
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA; HHMI, University of Colorado, Boulder, CO 80309, USA
| | - Mani Ramaswami
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India; Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland.
| |
Collapse
|
74
|
Zhou Y, Dong F, Mao Y. Control of CNS functions by RNA-binding proteins in neurological diseases. ACTA ACUST UNITED AC 2018; 4:301-313. [PMID: 30410853 DOI: 10.1007/s40495-018-0140-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review This review summarizes recent studies on the molecular mechanisms of RNA binding proteins (RBPs) that control neurological functions and pathogenesis in various neurodevelopmental and neurodegenerative diseases, including autism spectrum disorders, schizophrenia, Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and spinocerebellar ataxia. Recent Findings RBPs are critical players in gene expression that regulate every step of posttranscriptional modifications. Recent genome-wide approaches revealed that many proteins associate with RNA, but do not contain any known RNA binding motifs. Additionally, many causal and risk genes of neurodevelopmental and neurodegenerative diseases are RBPs. Development of high-throughput sequencing methods has mapped out the fingerprints of RBPs on transcripts and provides unprecedented potential to discover new mechanisms of neurological diseases. Insights into how RBPs modulate neural development are important for designing effective therapies for numerous neurodevelopmental and neurodegenerative diseases. Summary RBPs have diverse mechanisms for modulating RNA processing and, thereby, controlling neurogenesis. Understanding the role of disease-associated RBPs in neurogenesis is vital for developing novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
75
|
Jalali S, Gandhi S, Scaria V. Distinct and Modular Organization of Protein Interacting Sites in Long Non-coding RNAs. Front Mol Biosci 2018; 5:27. [PMID: 29670884 PMCID: PMC5893854 DOI: 10.3389/fmolb.2018.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs), are being reported to be extensively involved in diverse regulatory roles and have exhibited numerous disease associations. LncRNAs modulate their function through interaction with other biomolecules in the cell including DNA, RNA, and proteins. The availability of genome-scale experimental datasets of RNA binding proteins (RBP) motivated us to understand the role of lncRNAs in terms of its interactions with these proteins. In the current report, we demonstrate a comprehensive study of interactions between RBP and lncRNAs at a transcriptome scale through extensive analysis of the crosslinking and immunoprecipitation (CLIP) experimental datasets available for 70 RNA binding proteins. Results: Our analysis suggests that density of interaction sites for these proteins was significantly higher for specific sub-classes of lncRNAs when compared to protein-coding transcripts. We also observe a positional preference of these RBPs across lncRNA and protein coding transcripts in addition to a significant co-occurrence of RBPs having similar functions, suggesting a modular organization of these elements across lncRNAs. Conclusion: The significant enrichment of RBP sites across some lncRNA classes is suggestive that these interactions might be important in understanding the functional role of lncRNA. We observed a significant enrichment of RBPs which are involved in functional roles such as silencing, splicing, mRNA processing, and transport, indicating the potential participation of lncRNAs in such processes.
Collapse
Affiliation(s)
- Saakshi Jalali
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,CSIR Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| | - Shrey Gandhi
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,CSIR Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
76
|
Garzia A, Morozov P, Sajek M, Meyer C, Tuschl T. PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins. Methods Mol Biol 2018; 1720:55-75. [PMID: 29236251 DOI: 10.1007/978-1-4939-7540-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
RNA-binding proteins (RBPs) establish posttranscriptional gene regulation (PTGR) by coordinating the maturation, editing, transport, stability, and translation of cellular RNAs. A variety of experimental approaches have been developed to characterize the RNAs associated with RBPs in vitro as well as in vivo. Our laboratory developed Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP), which in combination with next-generation sequencing enables the identification of RNA targets of RBPs at a nucleotide-level resolution. Here we present an updated and condensed step-by-step PAR-CLIP protocol followed by the description of our RNA-seq data analysis pipeline.
Collapse
Affiliation(s)
- Aitor Garzia
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marcin Sajek
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
77
|
Shi S, Ueda HR. Ca 2+ -Dependent Hyperpolarization Pathways in Sleep Homeostasis and Mental Disorders. Bioessays 2017; 40. [PMID: 29205420 DOI: 10.1002/bies.201700105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/19/2017] [Indexed: 12/23/2022]
Abstract
Although we are beginning to understand the neuronal and biochemical nature of sleep regulation, questions remain about how sleep is homeostatically regulated. Beyond its importance in basic physiology, understanding sleep may also shed light on psychiatric and neurodevelopmental disorders. Recent genetic studies in mammals revealed several non-secretory proteins that determine sleep duration. Interestingly, genes identified in these studies are closely related to psychiatric and neurodevelopmental disorders, suggesting that the sleep-wake cycle shares some common mechanisms with these disorders. Here we review recent sleep studies, including reverse and forward genetic studies, from the perspectives of sleep duration and homeostasis. We then introduce a recent hypothesis for mammalian sleep in which the fast and slow Ca2+ -dependent hyperpolarization pathways are pivotal in generating the SWS firing pattern and regulating sleep homeostasis, respectively. Finally, we propose that these intracellular pathways are potential therapeutic targets for achieving depolarization/hyperpolarization (D/H) balance in psychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shoi Shi
- Dr. S. Shi, Prof. H. R. Ueda, Department of Systems Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki R Ueda
- Dr. S. Shi, Prof. H. R. Ueda, Department of Systems Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Prof. H. R. Ueda, Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka, 565-5241, Japan
| |
Collapse
|
78
|
Azizi H, Dumas C, Papadopoulou B. The Pumilio-domain protein PUF6 contributes to SIDER2 retroposon-mediated mRNA decay in Leishmania. RNA (NEW YORK, N.Y.) 2017; 23:1874-1885. [PMID: 28877997 PMCID: PMC5689007 DOI: 10.1261/rna.062950.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Leishmania and other trypanosomatid protozoa lack control at the level of transcription initiation and regulate gene expression exclusively post-transcriptionally. We have reported previously that Leishmania harbors a unique class of short interspersed degenerate retroposons (SIDERs) that are predominantly located within 3'UTRs and play a major role in post-transcriptional control. We have shown that members of the SIDER2 subfamily initiate mRNA decay through endonucleolytic cleavage within the second conserved 79-nt signature sequence of SIDER2 retroposons. Here, we have developed an optimized MS2 coat protein tethering system to capture trans-acting factor(s) regulating SIDER2-mediated mRNA decay. Tethering of the MS2 coat protein to a reporter RNA harboring two MS2 stem-loop aptamers and the cognate SIDER2-containing 3'UTR in combination with immunoprecipitation and mass spectrometry analysis led to the identification of RNA-binding proteins with known functions in mRNA decay. Among the candidate SIDER2-interacting proteins that were individually tethered to a SIDER2 reporter RNA, the Pumilio-domain protein PUF6 was shown to enhance degradation and reduce transcript half-life. Furthermore, we showed that PUF6 binds to SIDER2 sequences that include the regulatory 79-nt signature motif, hence contributing to the mRNA decay process. Consistent with a role of PUF6 in SIDER2-mediated decay, genetic inactivation of PUF6 resulted in increased accumulation and higher stability of endogenous SIDER2-bearing transcripts. Overall, these studies provide new insights into regulated mRNA decay pathways in Leishmania controlled by SIDER2 retroposons and propose a broader role for PUF proteins in mRNA decay within the eukaryotic kingdom.
Collapse
Affiliation(s)
- Hiva Azizi
- Research Center in Infectious Diseases, CHU de Quebec Research Center-Laval University, Quebec, QC, G1V 4G2 Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6 Canada
| | - Carole Dumas
- Research Center in Infectious Diseases, CHU de Quebec Research Center-Laval University, Quebec, QC, G1V 4G2 Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6 Canada
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center-Laval University, Quebec, QC, G1V 4G2 Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6 Canada
| |
Collapse
|
79
|
Keo A, Aziz NA, Dzyubachyk O, van der Grond J, van Roon-Mom WMC, Lelieveldt BPF, Reinders MJT, Mahfouz A. Co-expression Patterns between ATN1 and ATXN2 Coincide with Brain Regions Affected in Huntington's Disease. Front Mol Neurosci 2017; 10:399. [PMID: 29249939 PMCID: PMC5714896 DOI: 10.3389/fnmol.2017.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/15/2017] [Indexed: 02/04/2023] Open
Abstract
Cytosine-adenine-guanine (CAG) repeat expansions in the coding regions of nine polyglutamine (polyQ) genes (HTT, ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, ATN1, AR, and TBP) are the cause of several neurodegenerative diseases including Huntington’s disease (HD), six different spinocerebellar ataxias (SCAs), dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy. The expanded CAG repeat length in the causative gene is negatively related to the age-at-onset (AAO) of clinical symptoms. In addition to the expanded CAG repeat length in the causative gene, the normal CAG repeats in the other polyQ genes can affect the AAO, suggesting functional interactions between the polyQ genes. However, there is no detailed assessment of the relationships among polyQ genes in pathologically relevant brain regions. We used gene co-expression analysis to study the functional relationships among polyQ genes in different brain regions using the Allen Human Brain Atlas (AHBA), a spatial map of gene expression in the healthy brain. We constructed co-expression networks for seven anatomical brain structures, as well as a region showing a specific pattern of atrophy in HD patients detected by magnetic resonance imaging (MRI) of the brain. In this HD-associated region, we found that ATN1 and ATXN2 were co-expressed and shared co-expression partners which were enriched for DNA repair genes. We observed a similar co-expression pattern in the frontal lobe, parietal lobe, and striatum in which this relation was most pronounced. Given that the co-expression patterns for these anatomical structures were similar to those for the HD-associated region, our results suggest that their disruption is likely involved in HD pathology. Moreover, ATN1 and ATXN2 also shared many co-expressed genes with HTT, the causative gene of HD, across the brain. Although this triangular relationship among these three polyQ genes may also be dysregulated in other polyQ diseases, stronger co-expression patterns between ATN1 and ATXN2 observed in the HD-associated region, especially in the striatum, may be more specific to HD.
Collapse
Affiliation(s)
- Arlin Keo
- Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands.,Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands
| | - N Ahmad Aziz
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Boudewijn P F Lelieveldt
- Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands.,Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marcel J T Reinders
- Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands.,Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands
| | - Ahmed Mahfouz
- Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands.,Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
80
|
Rodrigues DC, Kim DS, Yang G, Zaslavsky K, Ha KCH, Mok RSF, Ross PJ, Zhao M, Piekna A, Wei W, Blencowe BJ, Morris Q, Ellis J. MECP2 Is Post-transcriptionally Regulated during Human Neurodevelopment by Combinatorial Action of RNA-Binding Proteins and miRNAs. Cell Rep 2017; 17:720-734. [PMID: 27732849 DOI: 10.1016/j.celrep.2016.09.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/05/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
A progressive increase in MECP2 protein levels is a crucial and precisely regulated event during neurodevelopment, but the underlying mechanism is unclear. We report that MECP2 is regulated post-transcriptionally during in vitro differentiation of human embryonic stem cells (hESCs) into cortical neurons. Using reporters to identify functional RNA sequences in the MECP2 3' UTR and genetic manipulations to explore the role of interacting factors on endogenous MECP2, we discover combinatorial mechanisms that regulate RNA stability and translation. The RNA-binding protein PUM1 and pluripotent-specific microRNAs destabilize the long MECP2 3' UTR in hESCs. Hence, the 3' UTR appears to lengthen during differentiation as the long isoform becomes stable in neurons. Meanwhile, translation of MECP2 is repressed by TIA1 in hESCs until HuC predominates in neurons, resulting in a switch to translational enhancement. Ultimately, 3' UTR-directed translational fine-tuning differentially modulates MECP2 protein in the two cell types to levels appropriate for normal neurodevelopment.
Collapse
Affiliation(s)
- Deivid C Rodrigues
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Dae-Sung Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Guang Yang
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Kirill Zaslavsky
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Rebecca S F Mok
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - P Joel Ross
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Melody Zhao
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Alina Piekna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Wei Wei
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
81
|
Abstract
Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens.
Collapse
Affiliation(s)
- Erin G Conlon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
82
|
Abstract
Through autophagy intracellular material is engulfed by double membrane vesicles and delivered to lysosomes for degradation. This process requires Rab GTPases, Rab GAPs and Rab GEFs for proper membrane trafficking, since they control vesicle budding, targeting and fusion. Deregulation of autophagy contributes to several human diseases including cancer, bacterial or viral infections and neurodegeneration. This review focuses on the complex roles of the newly identified protein SMCR8 and its interaction partners during formation and maturation of autophagosomes as well as regulation of lysosomal function and further discusses their implication in neurodegenerative diseases such as ALS and FTD.
Collapse
Affiliation(s)
- Jennifer Jung
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
83
|
Halbach MV, Gispert S, Stehning T, Damrath E, Walter M, Auburger G. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway. THE CEREBELLUM 2017; 16:68-81. [PMID: 26868665 PMCID: PMC5243904 DOI: 10.1007/s12311-016-0762-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disorder with preferential affection of Purkinje neurons, which are known as integrators of calcium currents. The expansion of a polyglutamine (polyQ) domain in the RNA-binding protein ataxin-2 (ATXN2) is responsible for this disease, but the causal roles of deficient ATXN2 functions versus aggregation toxicity are still under debate. Here, we studied mouse mutants with Atxn2 knockout (KO) regarding their cerebellar global transcriptome by microarray and RT-qPCR, in comparison with data from Atxn2-CAG42-knock-in (KIN) mouse cerebellum. Global expression downregulations involved lipid and growth signaling pathways in good agreement with previous data. As a novel effect, downregulations of key factors in calcium homeostasis pathways (the transcription factor Rora, transporters Itpr1 and Atp2a2, as well as regulator Inpp5a) were observed in the KO cerebellum, and some of them also occurred subtly early in KIN cerebellum. The ITPR1 protein levels were depleted from soluble fractions of cerebellum in both mutants, but accumulated in its membrane-associated form only in the SCA2 model. Coimmunoprecipitation demonstrated no association of ITPR1 with Q42-expanded or with wild-type ATXN2. These findings provide evidence that the physiological functions and protein interactions of ATXN2 are relevant for calcium-mediated excitation of Purkinje cells as well as for ATXN2-triggered neurotoxicity. These insights may help to understand pathogenesis and tissue specificity in SCA2 and other polyQ ataxias like SCA1, where inositol regulation of calcium flux and RORalpha play a role.
Collapse
Affiliation(s)
- Melanie Vanessa Halbach
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Tanja Stehning
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tuebingen, Germany
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
84
|
Velázquez-Pérez LC, Rodríguez-Labrada R, Fernandez-Ruiz J. Spinocerebellar Ataxia Type 2: Clinicogenetic Aspects, Mechanistic Insights, and Management Approaches. Front Neurol 2017; 8:472. [PMID: 28955296 PMCID: PMC5601978 DOI: 10.3389/fneur.2017.00472] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant cerebellar ataxia that occurs as a consequence of abnormal CAG expansions in the ATXN2 gene. Progressive clinical features result from the neurodegeneration of cerebellum and extra-cerebellar structures including the pons, the basal ganglia, and the cerebral cortex. Clinical, electrophysiological, and imaging approaches have been used to characterize the natural history of the disease, allowing its classification into four distinct stages, with special emphasis on the prodromal stage, which is characterized by a plethora of motor and non-motor features. Neuropathological investigations of brain tissue from SCA2 patients reveal a widespread involvement of multiple brain systems, mainly cerebellar and brainstem systems. Recent findings linking ataxin-2 intermediate expansions to other neurodegenerative diseases such as amyotrophic lateral sclerosis have provided insights into the ataxin-2-related toxicity mechanism in neurodegenerative diseases and have raised new ethical challenges to molecular predictive diagnosis of SCA2. No effective neuroprotective therapies are currently available for SCA2 patients, but some therapeutic options such as neurorehabilitation and some emerging neuroprotective drugs have shown palliative benefits.
Collapse
Affiliation(s)
- Luis C Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Medical University of Holguín "Mariana Grajales", Holguín, Cuba
| | - Roberto Rodríguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Physical Culture School, University of Holguin "Oscar Lucero", Holguín, Cuba
| | - Juan Fernandez-Ruiz
- Department of Physiology, Medicine School, UNAM, Cuernavaca, Mexico.,Psychology School, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
85
|
Lee J, Yoo E, Lee H, Park K, Hur JH, Lim C. LSM12 and ME31B/DDX6 Define Distinct Modes of Posttranscriptional Regulation by ATAXIN-2 Protein Complex in Drosophila Circadian Pacemaker Neurons. Mol Cell 2017; 66:129-140.e7. [PMID: 28388438 DOI: 10.1016/j.molcel.2017.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 01/04/2017] [Accepted: 03/03/2017] [Indexed: 01/12/2023]
Abstract
ATAXIN-2 (ATX2) has been implicated in human neurodegenerative diseases, yet it remains elusive how ATX2 assembles specific protein complexes to execute its physiological roles. Here we employ the posttranscriptional co-activator function of Drosophila ATX2 to demonstrate that LSM12 and ME31B/DDX6 are two ATX2-associating factors crucial for sustaining circadian rhythms. LSM12 acts as a molecular adaptor for the recruitment of TWENTY-FOUR (TYF) to ATX2. The ATX2-LSM12-TYF complex thereby stimulates TYF-dependent translation of the rate-limiting clock gene period (per) to maintain 24 hr periodicity in circadian behaviors. In contrast, ATX2 contributes to NOT1-mediated gene silencing and associates with NOT1 in a ME31B/DDX6-dependent manner. The ME31B/DDX6-NOT1 complex does not affect PER translation but supports high-amplitude behavioral rhythms along with ATX2, indicating a PER-independent clock function of ATX2. Taken together, these data suggest that the ATX2 complex may switch distinct modes of posttranscriptional regulation through its associating factors to control circadian clocks and ATX2-related physiology.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Keunhee Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Olympus Biomed Imaging Center, UNIST, Ulsan 44919, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
86
|
Auburger G, Sen NE, Meierhofer D, Başak AN, Gitler AD. Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2. Trends Neurosci 2017; 40:507-516. [DOI: 10.1016/j.tins.2017.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
|
87
|
The Proteome of BLOC-1 Genetic Defects Identifies the Arp2/3 Actin Polymerization Complex to Function Downstream of the Schizophrenia Susceptibility Factor Dysbindin at the Synapse. J Neurosci 2017; 36:12393-12411. [PMID: 27927957 DOI: 10.1523/jneurosci.1321-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/01/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Proteome modifications downstream of monogenic or polygenic disorders have the potential to uncover novel molecular mechanisms participating in pathogenesis and/or extragenic modification of phenotypic expression. We tested this idea by determining the proteome sensitive to genetic defects in a locus encoding dysbindin, a protein required for synapse biology and implicated in schizophrenia risk. We applied quantitative mass spectrometry to identify proteins expressed in neuronal cells the abundance of which was altered after downregulation of the schizophrenia susceptibility factor dysbindin (Bloc1s8) or two other dysbindin-interacting polypeptides, which assemble into the octameric biogenesis of lysosome-related organelles complex 1 (BLOC-1). We found 491 proteins sensitive to dysbindin and BLOC-1 loss of function. Gene ontology of these 491 proteins singled out the actin cytoskeleton and the actin polymerization factor, the Arp2/3 complex, as top statistical molecular pathways contained within the BLOC-1-sensitive proteome. Subunits of the Arp2/3 complex were downregulated by BLOC-1 loss of function, thus affecting actin dynamics in early endosomes of BLOC-1-deficient cells. Furthermore, we demonstrated that Arp2/3, dysbindin, and subunits of the BLOC-1 complex biochemically and genetically interact, modulating Drosophila melanogaster synapse morphology and homeostatic synaptic plasticity. Our results indicate that ontologically prioritized proteomics identifies novel pathways that modify synaptic phenotypes associated with neurodevelopmental disorder gene defects. SIGNIFICANCE STATEMENT The mechanisms associated with schizophrenia are mostly unknown despite the increasing number of genetic loci identified that increase disease risk. We present an experimental strategy that impartially and comprehensively interrogates the proteome of neurons to identify effects of genetic mutations in a schizophrenia risk factor, dysbindin. We find that the expression of the actin polymerization complex Arp2/3 is reduced in dysbindin-deficient cells, thus affecting actin-dependent phenotypes in two cellular compartments where dysbindin resides, endosomes and presynapses. Our studies indicate that a central cellular structure affected by schizophrenia susceptibility loci is the actin cytoskeleton, an organelle necessary for synaptic function in the presynaptic and postsynaptic compartment.
Collapse
|
88
|
Uemura Y, Oshima T, Yamamoto M, Reyes CJ, Costa Cruz PH, Shibuya T, Kawahara Y. Matrin3 binds directly to intronic pyrimidine-rich sequences and controls alternative splicing. Genes Cells 2017; 22:785-798. [PMID: 28695676 DOI: 10.1111/gtc.12512] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/11/2017] [Indexed: 12/13/2022]
Abstract
Matrin3 is an RNA-binding protein that is localized in the nuclear matrix. Although various roles in RNA metabolism have been reported for Matrin3, in vivo target RNAs to which Matrin3 binds directly have not been investigated comprehensively so far. Here, we show that Matrin3 binds predominantly to intronic regions of pre-mRNAs. Photoactivatable Ribonucleoside-Enhanced Cross-linking and Immunoprecipitation (PAR-CLIP) analysis using human neuronal cells showed that Matrin3 recognized pyrimidine-rich sequences as binding motifs, including the polypyrimidine tract, a splicing regulatory element. Splicing-sensitive microarray analysis showed that depletion of Matrin3 preferentially increased the inclusion of cassette exons that were adjacent to introns that contained Matrin3-binding sites. We further found that although most of the genes targeted by polypyrimidine tract binding protein 1 (PTBP1) were also bound by Matrin3, Matrin3 could control alternative splicing in a PTBP1-independent manner, at least in part. These findings suggest that Matrin3 is a splicing regulator that targets intronic pyrimidine-rich sequences.
Collapse
Affiliation(s)
- Yuri Uemura
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takuya Oshima
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Munetaka Yamamoto
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Charles Jourdan Reyes
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
89
|
Almaguer-Gotay D, Almaguer-Mederos LE, Aguilera-Rodríguez R, Rodríguez-Labrada R, Cuello-Almarales D, Estupiñán-Domínguez A, Velázquez-Pérez LC, González-Zaldívar Y, Vázquez-Mojena Y. Spinocerebellar Ataxia Type 2 Is Associated with the Extracellular Loss of Superoxide Dismutase but Not Catalase Activity. Front Neurol 2017; 8:276. [PMID: 28659860 PMCID: PMC5468381 DOI: 10.3389/fneur.2017.00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/29/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is an inherited and still incurable neurodegenerative disorder. Evidence suggests that pro-oxidant agents as well as factors involved in antioxidant cellular defenses are part of SCA2 physiopathology. AIM To assess the influence of superoxide dismutase (SOD3) and catalase (CAT) enzymatic activities on the SCA2 syndrome. METHOD Clinical, molecular, and electrophysiological variables, as well as SOD3 and CAT enzymatic activities were evaluated in 97 SCA2 patients and in 64 age- and sex-matched control individuals. RESULTS Spinocerebellar ataxia type 2 patients had significantly lower SOD3 enzymatic activity than the control group. However, there were no differences between patients and controls for CAT enzymatic activity. The effect size for the loss of patients' SOD3 enzymatic activity was 0.342, corresponding to a moderate effect. SOD3 and CAT enzymatic activities were not associated with the CAG repeat number at the ATXN2 gene. SOD3 and CAT enzymatic activities did not show significant associations with the age at onset, severity score, or the studied electrophysiological markers. CONCLUSION There is a reduced SOD3 enzymatic activity in SCA2 patients with no repercussion on the clinical phenotype.
Collapse
Affiliation(s)
- Dennis Almaguer-Gotay
- Center for the Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | | | | | - Dany Cuello-Almarales
- Center for the Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | | | | | | | - Yaimé Vázquez-Mojena
- Center for the Research and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| |
Collapse
|
90
|
Ataxin-2: From RNA Control to Human Health and Disease. Genes (Basel) 2017; 8:genes8060157. [PMID: 28587229 PMCID: PMC5485521 DOI: 10.3390/genes8060157] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins play fundamental roles in the regulation of molecular processes critical to cellular and organismal homeostasis. Recent studies have identified the RNA-binding protein Ataxin-2 as a genetic determinant or risk factor for various diseases including spinocerebellar ataxia type II (SCA2) and amyotrophic lateral sclerosis (ALS), amongst others. Here, we first discuss the increasingly wide-ranging molecular functions of Ataxin-2, from the regulation of RNA stability and translation to the repression of deleterious accumulation of the RNA-DNA hybrid-harbouring R-loop structures. We also highlight the broader physiological roles of Ataxin-2 such as in the regulation of cellular metabolism and circadian rhythms. Finally, we discuss insight from clinically focused studies to shed light on the impact of molecular and physiological roles of Ataxin-2 in various human diseases. We anticipate that deciphering the fundamental functions of Ataxin-2 will uncover unique approaches to help cure or control debilitating and lethal human diseases.
Collapse
|
91
|
Li PP, Sun X, Xia G, Arbez N, Paul S, Zhu S, Peng HB, Ross CA, Koeppen AH, Margolis RL, Pulst SM, Ashizawa T, Rudnicki DD. ATXN2-AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann Neurol 2017; 80:600-15. [PMID: 27531668 DOI: 10.1002/ana.24761] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by a CAG repeat expansion in the gene ataxin-2 (ATXN2). ATXN2 intermediate-length CAG expansions were identified as a risk factor for amyotrophic lateral sclerosis (ALS). The ATXN2 CAG repeat is translated into polyglutamine, and SCA2 pathogenesis has been thought to derive from ATXN2 protein containing an expanded polyglutamine tract. However, recent evidence of bidirectional transcription at multiple CAG/CTG disease loci has led us to test whether additional mechanisms of pathogenesis may contribute to SCA2. METHODS In this work, using human postmortem tissue, various cell models, and animal models, we provide the first evidence that an antisense transcript at the SCA2 locus contributes to SCA2 pathogenesis. RESULTS We demonstrate the expression of a transcript, containing the repeat as a CUG tract, derived from a gene (ATXN2-AS) directly antisense to ATXN2. ATXN2-AS transcripts with normal and expanded CUG repeats are expressed in human postmortem SCA2 brains, human SCA2 fibroblasts, induced SCA2 pluripotent stem cells, SCA2 neural stem cells, and lymphoblastoid lines containing an expanded ATXN2 allele associated with ALS. ATXN2-AS transcripts with a CUG repeat expansion are toxic in an SCA2 cell model and form RNA foci in SCA2 cerebellar Purkinje cells. Finally, we detected missplicing of amyloid beta precursor protein and N-methyl-D-aspartate receptor 1 in SCA2 brains, consistent with findings in other diseases characterized by RNA-mediated pathogenesis. INTERPRETATION These results suggest that ATXN2-AS has a role in SCA2 and possibly ALS pathogenesis, and may therefore provide a novel therapeutic target for these diseases. Ann Neurol 2016;80:600-615.
Collapse
Affiliation(s)
- Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xin Sun
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Research and Neurology Services, Veterans Affairs Medical Center, Albany, NY
| | - Guangbin Xia
- Department of Neurology, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Shanshan Zhu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - H Benjamin Peng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Arnulf H Koeppen
- Research and Neurology Services, Veterans Affairs Medical Center, Albany, NY.,Department of Neurology and Pathology, Albany Medical College, Albany, NY
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Tetsuo Ashizawa
- Department of Neurology, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD. .,Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
92
|
Nkiliza A, Chartier-Harlin MC. ATXN2 a culprit with multiple facets. Oncotarget 2017; 8:34028-34029. [PMID: 28423350 PMCID: PMC5470947 DOI: 10.18632/oncotarget.17112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Aurore Nkiliza
- Université de Lille, Inserm, CHU Lille, UMR-S1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, and Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", Lille, France
| | - Marie-Christine Chartier-Harlin
- Université de Lille, Inserm, CHU Lille, UMR-S1172, JPArc, Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, and Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", Lille, France
| |
Collapse
|
93
|
Kanemitsu Y, Fujitani M, Fujita Y, Zhang S, Su YQ, Kawahara Y, Yamashita T. The RNA-binding protein MARF1 promotes cortical neurogenesis through its RNase activity domain. Sci Rep 2017; 7:1155. [PMID: 28442784 PMCID: PMC5430739 DOI: 10.1038/s41598-017-01317-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/27/2017] [Indexed: 01/14/2023] Open
Abstract
Cortical neurogenesis is a fundamental process of brain development that is spatiotemporally regulated by both intrinsic and extrinsic cues. Although recent evidence has highlighted the significance of transcription factors in cortical neurogenesis, little is known regarding the role of RNA-binding proteins (RBPs) in the post-transcriptional regulation of cortical neurogenesis. Here, we report that meiosis arrest female 1 (MARF1) is an RBP that is expressed during neuronal differentiation. Cortical neurons expressed the somatic form of MARF1 (sMARF1) but not the oocyte form (oMARF1). sMARF1 was enriched in embryonic brains, and its expression level decreased as brain development progressed. Overexpression of sMARF1 in E12.5 neuronal progenitor cells promoted neuronal differentiation, whereas sMARF1 knockdown decreased neuronal progenitor differentiation in vitro. We also examined the function of sMARF1 in vivo using an in utero electroporation technique. Overexpression of sMARF1 increased neuronal differentiation, whereas knockdown of sMARF1 inhibited differentiation in vivo. Moreover, using an RNase domain deletion mutant of sMARF1, we showed that the RNase domain is required for the effects of sMARF1 on cortical neurogenesis in vitro. Our results further elucidate the mechanisms of post-transcriptional regulation of cortical neurogenesis by RBPs.
Collapse
Affiliation(s)
- Yoshitaka Kanemitsu
- Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Interdisciplinary Program for Biomedical Sciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0872, Japan. .,Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Suxiang Zhang
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - You-Qiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
94
|
Fernández-Moya SM, Ehses J, Kiebler MA. The alternative life of RNA-sequencing meets single molecule approaches. FEBS Lett 2017; 591:1455-1470. [PMID: 28369835 DOI: 10.1002/1873-3468.12639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022]
Abstract
The central dogma of RNA processing has started to totter. Single genes produce a variety of mRNA isoforms by mRNA modification, alternative polyadenylation (APA), and splicing. Different isoforms, even those that code for the identical protein, may differ in function or spatiotemporal expression. One option of how this can be achieved is by the selective recruitment of trans-acting factors to the 3'-untranslated region of a given isoform. Recent innovations in high-throughput RNA-sequencing methods allow deep insight into global RNA regulation, whereas novel imaging-based technologies enable researchers to explore single RNA molecules during different stages of development, in different tissues and different compartments of the cell. Resolving the dynamic function of ribonucleoprotein particles in splicing, APA, or RNA modification will enable us to understand their contribution to pathological conditions.
Collapse
Affiliation(s)
| | - Janina Ehses
- BioMedical Center, Ludwig Maximilians University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- BioMedical Center, Ludwig Maximilians University, Planegg-Martinsried, Germany
| |
Collapse
|
95
|
Carmo-Silva S, Nobrega C, Pereira de Almeida L, Cavadas C. Unraveling the Role of Ataxin-2 in Metabolism. Trends Endocrinol Metab 2017; 28:309-318. [PMID: 28117213 DOI: 10.1016/j.tem.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
Ataxin-2 is a polyglutamine protein implicated in several biological processes such as RNA metabolism and cytoskeleton reorganization. Ataxin-2 is highly expressed in various tissues including the hypothalamus, a brain region that controls food intake and energy balance. Ataxin-2 expression is influenced by nutritional status. Emerging studies discussed here now show that ataxin-2 deficiency correlates with insulin resistance and dyslipidemia, an action mediated via the mTOR pathway, suggesting that ataxin-2 might play key roles in metabolic homeostasis including body weight regulation, insulin sensitivity, and cellular stress responses. In this review we also discuss the relevance of ataxin-2 in the hypothalamic regulation of energy balance, and its potential as a therapeutic target in metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Sara Carmo-Silva
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clevio Nobrega
- Department of Biomedical Sciences and Medicine, Center for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Cavadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
96
|
Duy DL, Suda Y, Irie K. Cytoplasmic deadenylase Ccr4 is required for translational repression of LRG1 mRNA in the stationary phase. PLoS One 2017; 12:e0172476. [PMID: 28231297 PMCID: PMC5322899 DOI: 10.1371/journal.pone.0172476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 02/06/2023] Open
Abstract
Ccr4 is a major cytoplasmic deadenylase involved in mRNA poly(A) tail shortening in Saccharomyces cerevisiae. We have previously shown that Ccr4 negatively regulates expression of LRG1 mRNA encoding a GTPase-activating protein for the small GTPase Rho1, a component of cell wall integrity pathway, and deletion of LRG1 suppresses the temperature-sensitive growth defect of the ccr4Δ mutant. We have also shown that the slow growth of the ccr4Δ mutant is suppressed by deletion of another gene, PBP1, encoding a poly(A)-binding protein (Pab1)-binding protein 1; however, the underlying mechanism still remains unknown. In this study, we investigated how ccr4Δ and pbp1Δ mutations influence on the length of poly(A) tail and LRG1 mRNA and protein levels during long-term cultivation. In the log-phase ccr4Δ mutant cells, LRG1 poly(A) tail was longer and LRG1 mRNA level was higher than those in the log-phase wild-type (WT) cells. Unexpectedly, Lrg1 protein level in the ccr4Δ mutant cells was comparable with that in WT. In the stationary-phase ccr4Δ mutant cells, LRG1 poly(A) tail length was still longer and LRG1 mRNA level was still higher than those in WT cells. In contrast to the log phase, Lrg1 protein level in the stationary-phase ccr4Δ mutant cells was maintained much higher than that in the stationary-phase WT cells. Consistently, active translating ribosomes still remained abundant in the stationary-phase ccr4Δ mutant cells, whereas they were strongly decreased in the stationary-phase WT cells. Loss of PBP1 reduced the LRG1 poly(A) tail length as well as LRG1 mRNA and protein levels in the stationary-phase ccr4Δ mutant cells. Our results suggest that Ccr4 regulates not only LRG1 mRNA level through poly(A) shortening but also the translation of LRG1 mRNA, and that Pbp1 is involved in the Ccr4-mediated regulation of mRNA stability and translation.
Collapse
Affiliation(s)
- Duong Long Duy
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
97
|
Alves-Cruzeiro JMDC, Mendonça L, Pereira de Almeida L, Nóbrega C. Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review. Front Neurosci 2016; 10:572. [PMID: 28018166 PMCID: PMC5156697 DOI: 10.3389/fnins.2016.00572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant ataxia caused by an expansion of CAG repeats in the exon 1 of the gene ATXN2, conferring a gain of toxic function that triggers the appearance of the disease phenotype. SCA2 is characterized by several symptoms including progressive gait ataxia and dysarthria, slow saccadic eye movements, sleep disturbances, cognitive impairments, and psychological dysfunctions such as insomnia and depression, among others. The available treatments rely on palliative care, which mitigate some of the major symptoms but ultimately fail to block the disease progression. This persistent lack of effective therapies led to the development of several models in yeast, C. elegans, D. melanogaster, and mice to serve as platforms for testing new therapeutic strategies and to accelerate the research on the complex disease mechanisms. In this work, we review 4 transgenic and 1 knock-in mouse that exhibit a SCA2-related phenotype and discuss their usefulness in addressing different scientific problems. The knock-in mice are extremely faithful to the human disease, with late onset of symptoms and physiological levels of mutant ataxin-2, while the other transgenic possess robust and well-characterized motor impairments and neuropathological features. Furthermore, a new BAC model of SCA2 shows promise to study the recently explored role of non-coding RNAs as a major pathogenic mechanism in this devastating disorder. Focusing on specific aspects of the behavior and neuropathology, as well as technical aspects, we provide a highly practical description and comparison of all the models with the purpose of creating a useful resource for SCA2 researchers worldwide.
Collapse
Affiliation(s)
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Clévio Nóbrega
- Department of Biomedical Sciences and Medicine and Center for Biomedical Research, University of Algarve Faro, Portugal
| |
Collapse
|
98
|
Vianna MCB, Poleto DC, Gomes PF, Valente V, Paçó‐Larson ML. Drosophila ataxin-2 gene encodes two differentially expressed isoforms and its function in larval fat body is crucial for development of peripheral tissues. FEBS Open Bio 2016; 6:1040-1053. [PMID: 27833845 PMCID: PMC5095142 DOI: 10.1002/2211-5463.12124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 01/28/2023] Open
Abstract
Different isoforms of ataxin‐2 are predicted in Drosophila and may underlie different cellular processes. Here, we validated the isoforms B and C of Drosophila ataxin‐2 locus (dAtx2), which we found to be expressed in various tissues and at different levels during development. dAtx2‐B mRNA was detected at low amounts during all developmental stages, whereas dAtx2‐C mRNA levels increase by eightfold from L3 to pupal–adult stages. Higher amounts of dAtx2‐B protein were detected in embryos, while dAtx2‐C protein was also expressed in higher levels in pupal–adult stages, indicating post‐transcriptional control for isoform B and transcription induction for isoform C, respectively. Moreover, in the fat body of L3 larvae dAtx2‐C, but not dAtx2‐B, accumulates in cytoplasmic foci that colocalize with sec23, a marker of endoplasmic reticulum exit sites (ERES). Interestingly, animals subjected to selective knockdown of dAtx2 in the larval fat body do not complete metamorphosis and die at the third larval stage or early puparium. Additionally, larvae knocked down for dAtx2, grown at 29 °C, are significantly smaller than control animals due to reduction in DNA replication and cell growth, which are consistent with the decreased levels of phosphorylated‐AKT observed in the fat body. Based on the localization of ataxin‐2 (dAtx2‐C) in ERESs, and on the phenotypes observed by dAtx2 knockdown in the larval fat body, we speculate a possible role for this protein in processes that regulate ERES formation. These data provide new insights into the biological function of ataxin‐2 with potential relevance to neurodegenerative diseases.
Collapse
Affiliation(s)
- Murilo Carlos Bizam Vianna
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
- Present address: Center of Biological SciencesState University of LondrinaCampus Universitário, LondrinaPR 86057‐97Brazil
| | - Deise Cristina Poleto
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
| | - Paula Fernanda Gomes
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
| | - Valéria Valente
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
- Present address: Department of Clinical AnalysisFaculty of Pharmaceutical Sciences of AraraquaraUniversity of São Paulo State (UNESP)R. Expedicionários do Brasil, 1628, AraraquaraSP 14801‐902Brazil
| | - Maria Luisa Paçó‐Larson
- Department of Cellular and Molecular BiologyRibeirão Preto School of MedicineUniversity of São PauloRibeirão PretoSPBrazil
| |
Collapse
|
99
|
Nkiliza A, Mutez E, Simonin C, Leprêtre F, Duflot A, Figeac M, Villenet C, Semaille P, Comptdaer T, Genet A, Sablonnière B, Devos D, Defebvre L, Destée A, Chartier-Harlin MC. RNA-binding disturbances as a continuum from spinocerebellar ataxia type 2 to Parkinson disease. Neurobiol Dis 2016; 96:312-322. [PMID: 27663142 DOI: 10.1016/j.nbd.2016.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 12/13/2022] Open
Abstract
CAG triplet expansions in Ataxin-2 gene (ATXN2) cause spinocerebellar ataxia type 2 and have a role that remains to be clarified in Parkinson's disease (PD). To study the molecular events associated with these expansions, we sequenced them and analyzed the transcriptome from blood cells of controls and three patient groups diagnosed with spinocerebellar ataxia type 2 (herein referred to as SCA2c) or PD with or without ATXN2 triplet expansions (named SCA2p). The transcriptome profiles of these 40 patients revealed three main observations: i) a specific pattern of pathways related to cellular contacts, proliferation and differentiation associated with SCA2p group, ii) similarities between the SCA2p and sporadic PD groups in genes and pathways known to be altered in PD such as Wnt, Ephrin and Leukocyte extravasation signaling iii) RNA metabolism disturbances with "RNA-binding" and "poly(A) RNA-binding" as a common feature in all groups. Remarkably, disturbances of ALS signaling were shared between SCA2p and sporadic PD suggesting common molecular dysfunctions in PD and ALS including CACNA1, hnRNP, DDX and PABPC gene family perturbations. Interestingly, the transcriptome profiles of patients with parkinsonian phenotypes were prevalently associated with alterations of translation while SCA2c and PD patients presented perturbations of splicing. While ATXN2 RNA expression was not perturbed, its protein expression in immortalized lymphoblastoid cells was significantly decreased in SCA2c and SCA2p versus control groups assuming post-transcriptional biological perturbations. In conclusion, the transcriptome data do not exclude the role of ATXN2 mutated alleles in PD but its decrease protein expression in both SCA2c and SCA2p patients suggest a potential involvement of this gene in PD. The perturbations of "RNA-binding" and "poly(A) RNA-binding" molecular functions in the three patient groups as well as gene deregulations of factors not yet described in PD but known to be deleterious in other neurological conditions, suggest the existence of RNA-binding disturbances as a continuum between spinocerebellar ataxia type 2 and Parkinson's disease.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Eugénie Mutez
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Frédéric Leprêtre
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Aurélie Duflot
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Martin Figeac
- Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Céline Villenet
- Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Pierre Semaille
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Thomas Comptdaer
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Alexandre Genet
- CHU Lille, Centre de Biologie Pathologie, Unité de Neurobiologie, F-59000 Lille, France
| | - Bernard Sablonnière
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; CHU Lille, Centre de Biologie Pathologie, Unité de Neurobiologie, F-59000 Lille, France
| | - David Devos
- CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Luc Defebvre
- CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Alain Destée
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France.
| |
Collapse
|
100
|
Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, Hamzeiy H, Akdal G, Güllüoğlu H, Başak AN, Auburger G. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis 2016; 96:115-126. [PMID: 27597528 DOI: 10.1016/j.nbd.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD). In view of the established role of ATXN2 for RNA processing in periods of cell stress and the expression of ATXN2 in blood cells such as platelets, we investigated whether global deep RNA sequencing of whole blood from SCA2 patients identifies a molecular profile which might serve as diagnostic biomarker. The bioinformatic analysis of SCA2 blood global transcriptomics revealed various significant effects on RNA processing pathways, as well as the pathways of Huntington's disease and PD where mitochondrial dysfunction is crucial. Notably, an induction of PINK1 and PARK7 expression was observed. Conversely, expression of Pink1 was severely decreased upon global transcriptome profiling of Atxn2-knockout mouse cerebellum and liver, in parallel to strong effects on Opa1 and Ghitm, which encode known mitochondrial dynamics regulators. These results were validated by quantitative PCR and immunoblots. Starvation stress of human SH-SY5Y neuroblastoma cells led to a transcriptional phasic induction of ATXN2 in parallel to PINK1, and the knockdown of one enhanced the expression of the other during stress response. These findings suggest that ATXN2 may modify the known PINK1 roles for mitochondrial quality control and autophagy during cell stress. Given that PINK1 is responsible for autosomal recessive juvenile PD, this genetic interaction provides a concept how the degeneration of nigrostriatal dopaminergic neurons and the Parkinson phenotype may be triggered by ATXN2 mutations.
Collapse
Affiliation(s)
- Nesli Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany; Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Jessica Drost
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Michael Klinkenberg
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Gülden Akdal
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Güllüoğlu
- Department of Neurology, Faculty of Medicine, Izmir University, Izmir, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey.
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany.
| |
Collapse
|