51
|
Nagao A, Nakanishi Y, Yamaguchi Y, Mishina Y, Karoji M, Toya T, Fujita T, Iwasaki S, Miyauchi K, Sakaguchi Y, Suzuki T. Quality control of protein synthesis in the early elongation stage. Nat Commun 2023; 14:2704. [PMID: 37198183 PMCID: PMC10192219 DOI: 10.1038/s41467-023-38077-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
In the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pthts strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E. coli ORFs. Detailed analysis of individual pep-tRNAs and reporter assay revealed that most of the substitutions take place at the C-terminal drop-off site and that the miscoded pep-tRNAs rarely participate in the next round of elongation but dissociate from the ribosome. These findings suggest that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.
Collapse
Affiliation(s)
- Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yui Nakanishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshifumi Mishina
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minami Karoji
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takafumi Toya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
52
|
Ayers TN, Nicotra ML, Lee MT. Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540083. [PMID: 37214839 PMCID: PMC10197650 DOI: 10.1101/2023.05.09.540083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus . Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities analogous to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far unique to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.
Collapse
Affiliation(s)
- Taylor N. Ayers
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261 U.S.A
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| |
Collapse
|
53
|
Jung J, Ohk J, Kim H, Holt CE, Park HJ, Jung H. mRNA transport, translation, and decay in adult mammalian central nervous system axons. Neuron 2023; 111:650-668.e4. [PMID: 36584679 DOI: 10.1016/j.neuron.2022.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/30/2022]
Abstract
Localized mRNA translation regulates synapse function and axon maintenance, but how compartment-specific mRNA repertoires are regulated is largely unknown. We developed an axonal transcriptome capture method that allows deep sequencing of metabolically labeled mRNAs from retinal ganglion cell axon terminals in mouse. Comparing axonal-to-somal transcriptomes and axonal translatome-to-transcriptome enables genome-wide visualization of mRNA transport and translation and unveils potential regulators tuned to each process. FMRP and TDP-43 stand out as key regulators of transport, and experiments in Fmr1 knockout mice validate FMRP's role in the axonal transportation of synapse-related mRNAs. Pulse-and-chase experiments enable genome-wide assessment of mRNA stability in axons and reveal a strong coupling between mRNA translation and decay. Measuring the absolute mRNA abundance per axon terminal shows that the adult axonal transcriptome is stably maintained by persistent transport. Our datasets provide a rich resource for unique insights into RNA-based mechanisms in maintaining presynaptic structure and function in vivo.
Collapse
Affiliation(s)
- Jane Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiyeon Ohk
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hyun Jung Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
54
|
Picard MAL, Leblay F, Cassan C, Willemsen A, Daron J, Bauffe F, Decourcelle M, Demange A, Bravo IG. Transcriptomic, proteomic, and functional consequences of codon usage bias in human cells during heterologous gene expression. Protein Sci 2023; 32:e4576. [PMID: 36692287 PMCID: PMC9926478 DOI: 10.1002/pro.4576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
Differences in codon frequency between genomes, genes, or positions along a gene, modulate transcription and translation efficiency, leading to phenotypic and functional differences. Here, we present a multiscale analysis of the effects of synonymous codon recoding during heterologous gene expression in human cells, quantifying the phenotypic consequences of codon usage bias at different molecular and cellular levels, with an emphasis on translation elongation. Six synonymous versions of an antibiotic resistance gene were generated, fused to a fluorescent reporter, and independently expressed in HEK293 cells. Multiscale phenotype was analyzed by means of quantitative transcriptome and proteome assessment, as proxies for gene expression; cellular fluorescence, as a proxy for single-cell level expression; and real-time cell proliferation in absence or presence of antibiotic, as a proxy for the cell fitness. We show that differences in codon usage bias strongly impact the molecular and cellular phenotype: (i) they result in large differences in mRNA levels and protein levels, leading to differences of over 15 times in translation efficiency; (ii) they introduce unpredicted splicing events; (iii) they lead to reproducible phenotypic heterogeneity; and (iv) they lead to a trade-off between the benefit of antibiotic resistance and the burden of heterologous expression. In human cells in culture, codon usage bias modulates gene expression by modifying mRNA availability and suitability for translation, leading to differences in protein levels and eventually eliciting functional phenotypic changes.
Collapse
Affiliation(s)
- Marion A. L. Picard
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Fiona Leblay
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Cécile Cassan
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Anouk Willemsen
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Josquin Daron
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Frédérique Bauffe
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Mathilde Decourcelle
- BioCampus Montpellier (University of Montpellier, CNRS, INSERM)MontpellierFrance
| | - Antonin Demange
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| | - Ignacio G. Bravo
- French National Center for Scientific ResearchLaboratory MIVEGEC (CNRS, IRD, University of Montpellier)MontpellierFrance
| |
Collapse
|
55
|
Bhat P, Cabrera-Quio LE, Herzog VA, Fasching N, Pauli A, Ameres SL. SLAMseq resolves the kinetics of maternal and zygotic gene expression during early zebrafish embryogenesis. Cell Rep 2023; 42:112070. [PMID: 36757845 DOI: 10.1016/j.celrep.2023.112070] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/27/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The maternal-to-zygotic transition (MZT) is a key developmental process in metazoan embryos that involves the activation of zygotic transcription (ZGA) and degradation of maternal transcripts. We employed metabolic mRNA sequencing (SLAMseq) to deconvolute the compound embryonic transcriptome in zebrafish. While mitochondrial zygotic transcripts prevail prior to MZT, we uncover the spurious transcription of hundreds of short and intron-poor genes as early as the 2-cell stage. Upon ZGA, most zygotic transcripts originate from thousands of maternal-zygotic (MZ) genes that are transcribed at rates comparable to those of hundreds of purely zygotic genes and replenish maternal mRNAs at distinct timescales. Rapid replacement of MZ transcripts involves transcript decay features unrelated to major maternal degradation pathways and promotes de novo synthesis of the core gene expression machinery by increasing poly(A)-tail length and translation efficiency. SLAMseq hence provides insights into the timescales, molecular features, and regulation of MZT during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Pooja Bhat
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Luis E Cabrera-Quio
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Veronika A Herzog
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Nina Fasching
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Stefan L Ameres
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
56
|
Xiao Y, Chen J, Yang S, Sun H, Xie L, Li J, Jing N, Zhu X. Maternal mRNA deadenylation and allocation via Rbm14 condensates facilitate vertebrate blastula development. EMBO J 2023; 42:e111364. [PMID: 36477743 PMCID: PMC9890236 DOI: 10.15252/embj.2022111364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Early embryonic development depends on proper utilization and clearance of maternal transcriptomes. How these processes are spatiotemporally regulated remains unclear. Here we show that nuclear RNA-binding protein Rbm14 and maternal mRNAs co-phase separate into cytoplasmic condensates to facilitate vertebrate blastula-to-gastrula development. In zebrafish, Rbm14 condensates were highly abundant in blastomeres and markedly reduced after prominent activation of zygotic transcription. They concentrated at spindle poles by associating with centrosomal γ-tubulin puncta and displayed mainly asymmetric divisions with a global symmetry across embryonic midline in 8- and 16-cell embryos. Their formation was dose-dependently stimulated by m6 A, but repressed by m5 C modification of the maternal mRNA. Furthermore, deadenylase Parn co-phase separated with these condensates, and this was required for deadenylation of the mRNAs in early blastomeres. Depletion of Rbm14 impaired embryonic cell differentiations and full activations of the zygotic genome in both zebrafish and mouse and resulted in developmental arrest at the blastula stage. Our results suggest that cytoplasmic Rbm14 condensate formation regulates early embryogenesis by facilitating deadenylation, protection, and mitotic allocation of m6 A-modified maternal mRNAs, and by releasing the poly(A)-less transcripts upon regulated disassembly to allow their re-polyadenylation and translation or clearance.
Collapse
Affiliation(s)
- Yue Xiao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jiehui Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Lele Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Xueliang Zhu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
57
|
Leca I, Phillips AW, Ushakova L, Cushion TD, Keays DA. Codon modification of Tuba1a alters mRNA levels and causes a severe neurodevelopmental phenotype in mice. Sci Rep 2023; 13:1215. [PMID: 36681692 PMCID: PMC9867703 DOI: 10.1038/s41598-023-27782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
The tubulinopathies are an umbrella of rare diseases that result from mutations in tubulin genes and are frequently characterised by severe brain malformations. The characteristics of a given disease reflect the expression pattern of the transcript, the function of a given tubulin gene, and the role microtubules play in a particular cell type. Mouse models have proved to be valuable tools that have provided insight into the molecular and cellular mechanisms that underlie the disease state. In this manuscript we compare two Tuba1a mouse models, both of which express wild-type TUBA1A protein but employ different codon usage. We show that modification of the Tuba1a mRNA sequence results in homozygous lethality and a severe neurodevelopmental phenotype. This is associated with a decrease in the number of post-mitotic neurons, PAX6 positive progenitors, and an increase in the number of apoptotic cells. We attribute this to a decrease in the stability of the modified Tuba1a transcript, and the absence of compensation by the other neurogenic tubulins. Our findings highlight the importance of maintaining the wild-type coding sequence when engineering mouse lines and the impact of synonymous genetic variation.
Collapse
Affiliation(s)
- Ines Leca
- Vienna Biocenter (VBC), Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Alexander William Phillips
- Vienna Biocenter (VBC), Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
- Department of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Lyubov Ushakova
- Vienna Biocenter (VBC), Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Thomas David Cushion
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - David Anthony Keays
- Vienna Biocenter (VBC), Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
- Department of Biology, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
58
|
The role of post-transcriptional modifications during development. Biol Futur 2022:10.1007/s42977-022-00142-3. [PMID: 36481986 DOI: 10.1007/s42977-022-00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
AbstractWhile the existence of post-transcriptional modifications of RNA nucleotides has been known for decades, in most RNA species the exact positions of these modifications and their physiological function have been elusive until recently. Technological advances, such as high-throughput next-generation sequencing (NGS) methods and nanopore-based mapping technologies, have made it possible to map the position of these modifications with single nucleotide accuracy, and genetic screens have uncovered the “writer”, “reader” and “eraser” proteins that help to install, interpret and remove such modifications, respectively. These discoveries led to intensive research programmes with the aim of uncovering the roles of these modifications during diverse biological processes. In this review, we assess novel discoveries related to the role of post-transcriptional modifications during animal development, highlighting how these discoveries can affect multiple aspects of development from fertilization to differentiation in many species.
Collapse
|
59
|
Burke PC, Park H, Subramaniam AR. A nascent peptide code for translational control of mRNA stability in human cells. Nat Commun 2022; 13:6829. [PMID: 36369503 PMCID: PMC9652226 DOI: 10.1038/s41467-022-34664-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.
Collapse
Affiliation(s)
- Phillip C Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
60
|
Rashad S, Byrne SR, Saigusa D, Xiang J, Zhou Y, Zhang L, Begley TJ, Tominaga T, Niizuma K. Codon Usage and mRNA Stability are Translational Determinants of Cellular Response to Canonical Ferroptosis Inducers. Neuroscience 2022; 501:103-130. [PMID: 35987429 PMCID: PMC10023133 DOI: 10.1016/j.neuroscience.2022.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a non-apoptotic cell death mechanism characterized by the generation of lipid peroxides. While many effectors in the ferroptosis pathway have been mapped, its epitranscriptional regulation is not yet fully understood. Ferroptosis can be induced via system xCT inhibition (Class I) or GPX4 inhibition (Class II). Previous works have revealed important differences in cellular response to different ferroptosis inducers. Importantly, blocking mRNA transcription or translation appears to protect cells against Class I ferroptosis inducing agents but not Class II. In this work, we examined the impact of blocking transcription (via Actinomycin D) or translation (via Cycloheximide) on Erastin (Class I) or RSL3 (Class II) induced ferroptosis. Blocking transcription or translation protected cells against Erastin but was detrimental against RSL3. Cycloheximide led to increased levels of GSH alone or when co-treated with Erastin via the activation of the reverse transsulfuration pathway. RNA sequencing analysis revealed early activation of a strong alternative splice program before observed changes in transcription. mRNA stability analysis revealed divergent mRNA stability changes in cellular response to Erastin or RSL3. Importantly, codon optimality biases were drastically different in either condition. Our data also implicated translation repression and rate as an important determinant of the cellular response to ferroptosis inducers. Given that mRNA stability and codon usage can be influenced via the tRNA epitranscriptome, we evaluated the role of a tRNA modifying enzyme in ferroptosis stress response. Alkbh1, a tRNA demethylase, led to translation repression and increased the resistance to Erastin but made cells more sensitive to RSL3.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Shane R Byrne
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan; Department of Integrative Genomics, Tohoku University Medical Megabank Organization, Sendai, Japan
| | - Jingdong Xiang
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Liyin Zhang
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thomas J Begley
- The RNA Institute, University at Albany, Albany, NY, USA; Department of Biological Sciences, University at Albany, Albany, NY, USA; RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan; Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
61
|
Zou Z, Zhang C, Wang Q, Hou Z, Xiong Z, Kong F, Wang Q, Song J, Liu B, Liu B, Wang L, Lai F, Fan Q, Tao W, Zhao S, Ma X, Li M, Wu K, Zhao H, Chen ZJ, Xie W. Translatome and transcriptome co-profiling reveals a role of TPRXs in human zygotic genome activation. Science 2022; 378:abo7923. [PMID: 36074823 DOI: 10.1126/science.abo7923] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Translational regulation plays a critical role during the oocyte-to-embryo transition (OET) and zygotic genome activation (ZGA). Here, we integrated ultra-low-input Ribo-seq with mRNA-seq to co-profile the translatome and transcriptome in human oocytes and early embryos. Comparison with mouse counterparts identified widespread differentially translated genes functioning in epigenetic reprogramming, transposon defense, and small RNA biogenesis, in part driven by species-specific regulatory elements in 3' untranslated regions. Moreover, PRD-like homeobox transcription factors, including TPRXL, TPRX1, and TPRX2, are highly translated around ZGA. TPRX1/2/L knockdown leads to defective ZGA and preimplantation development. Ectopically expressed TPRXs bind and activate key ZGA genes in human embryonic stem cells. These data reveal the conservation and divergence of translation landscapes during OET and identify critical regulators of human ZGA.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenzhen Hou
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Zhuqing Xiong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinzhu Song
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Boyang Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lijuan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenrong Tao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Xiaonan Ma
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Miao Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Keliang Wu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
62
|
Durmaz YT, Shatadal A, Friend K. Geneticin reduces mRNA stability. PLoS One 2022; 17:e0272058. [PMID: 35901009 PMCID: PMC9333311 DOI: 10.1371/journal.pone.0272058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Messenger RNA (mRNA) translation can lead to higher rates of mRNA decay, suggesting the ribosome plays a role in mRNA destruction. Furthermore, mRNA features, such as codon identities, which are directly probed by the ribosome, correlate with mRNA decay rates. Many amino acids are encoded by synonymous codons, some of which are decoded by more abundant tRNAs leading to more optimal translation and increased mRNA stability. Variable translation rates for synonymous codons can lead to ribosomal collisions as ribosomes transit regions with suboptimal codons, and ribosomal collisions can promote mRNA decay. In addition to different translation rates, the presence of certain codons can also lead to higher or lower rates of amino acid misincorporation which could potentially lead to protein misfolding if a substituted amino acid fails to make critical contacts in a structure. Here, we test whether Geneticin—G418, an aminoglycoside antibiotic known to promote amino acid misincorporation—affects mRNA stability. We observe that G418 decreases firefly luciferase mRNA stability in an in vitro translation system and also reduces mRNA stability in mouse embryonic stem cells (mESCs). G418-sensitive mRNAs are enriched for certain optimal codons that contain G or C in the wobble position, arguing that G418 blunts the stabilizing effects of codon optimality.
Collapse
Affiliation(s)
- Yavuz T. Durmaz
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Alankrit Shatadal
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
| | - Kyle Friend
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, Virginia, United States of America
- * E-mail:
| |
Collapse
|
63
|
Veltri AJ, D'Orazio KN, Lessen LN, Loll-Krippleber R, Brown GW, Green R. Distinct elongation stalls during translation are linked with distinct pathways for mRNA degradation. eLife 2022; 11:e76038. [PMID: 35894211 PMCID: PMC9352352 DOI: 10.7554/elife.76038] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Key protein adapters couple translation to mRNA decay on specific classes of problematic mRNAs in eukaryotes. Slow decoding on non-optimal codons leads to codon-optimality-mediated decay (COMD) and prolonged arrest at stall sites leads to no-go decay (NGD). The identities of the decay factors underlying these processes and the mechanisms by which they respond to translational distress remain open areas of investigation. We use carefully designed reporter mRNAs to perform genetic screens and functional assays in Saccharomyces cerevisiae. We characterize the roles of Hel2, Syh1, and Smy2 in coordinating translational repression and mRNA decay on NGD reporter mRNAs, finding that Syh1 and, to a lesser extent its paralog Smy2, act in a distinct pathway from Hel2. This Syh1/Smy2-mediated pathway acts as a redundant, compensatory pathway to elicit NGD when Hel2-dependent NGD is impaired. Importantly, we observe that these NGD factors are not involved in the degradation of mRNAs enriched in non-optimal codons. Further, we establish that a key factor previously implicated in COMD, Not5, contributes modestly to the degradation of an NGD-targeted mRNA. Finally, we use ribosome profiling to reveal distinct ribosomal states associated with each reporter mRNA that readily rationalize the contributions of NGD and COMD factors to degradation of these reporters. Taken together, these results provide new insight into the role of Syh1 and Smy2 in NGD and into the ribosomal states that correlate with the activation of distinct pathways targeting mRNAs for degradation in yeast.
Collapse
Affiliation(s)
- Anthony J Veltri
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Karole N D'Orazio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Laura N Lessen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, Canada
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
64
|
Diez M, Medina-Muñoz SG, Castellano LA, da Silva Pescador G, Wu Q, Bazzini AA. iCodon customizes gene expression based on the codon composition. Sci Rep 2022; 12:12126. [PMID: 35840631 PMCID: PMC9287306 DOI: 10.1038/s41598-022-15526-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
Messenger RNA (mRNA) stability substantially impacts steady-state gene expression levels in a cell. mRNA stability is strongly affected by codon composition in a translation-dependent manner across species, through a mechanism termed codon optimality. We have developed iCodon (www.iCodon.org), an algorithm for customizing mRNA expression through the introduction of synonymous codon substitutions into the coding sequence. iCodon is optimized for four vertebrate transcriptomes: mouse, human, frog, and fish. Users can predict the mRNA stability of any coding sequence based on its codon composition and subsequently generate more stable (optimized) or unstable (deoptimized) variants encoding for the same protein. Further, we show that codon optimality predictions correlate with both mRNA stability using a massive reporter library and expression levels using fluorescent reporters and analysis of endogenous gene expression in zebrafish embryos and/or human cells. Therefore, iCodon will benefit basic biological research, as well as a wide range of applications for biotechnology and biomedicine.
Collapse
Affiliation(s)
- Michay Diez
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - Santiago Gerardo Medina-Muñoz
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.,National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, 36824, Irapuato, Mexico
| | | | | | - Qiushuang Wu
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA. .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
65
|
Huang N, Gao Y, Zhang M, Guo L, Qin L, Liao S, Wang H. METTL3-Mediated m6A RNA Methylation of ZBTB4 Interferes With Trophoblast Invasion and Maybe Involved in RSA. Front Cell Dev Biol 2022; 10:894810. [PMID: 35774226 PMCID: PMC9237410 DOI: 10.3389/fcell.2022.894810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
N6-methyladenosine (m6A) was the most abundant modification of mRNA and lncRNA in mammalian cells and played an important role in many biological processes. However, whether m6A modification was associated with recurrent spontaneous abortion (RSA) and its roles were still unclear. Methods: Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) was used to study the global m6A modification pattern in RSAs and controls. RNA sequencing (RNA-Seq) was used to study the level of global mRNA in two groups. Real-time quantitative PCR (RT-qPCR) was used to verify the level of mRNA of METTL3 and ZBTB4. MeRIP–qPCR was conducted to test the level of ZBTB4 m6A modification in two groups. In order to further explore whether ZBTB4 was the substrate of METTL3, the HTR-8/SVneo (HTR-8) cell line was selected for the knockdown and overexpression of METTL3. To study whether METTL3 regulated the ZBTB4 expression by recognizing ZBTB4 mRNA m6A motifs in coding sequences (CDS), dual-luciferase reporter assay was conducted. RNA stability assays using actinomycin D were conducted to study the RNA stability of the HTR-8 cell line with METTL3 overexpression and knockdown. To illustrate the role of METTL3 in the invasion of trophoblast, matrigel invasion assays and transwell migration assays were conducted using the HTR-8 cell line with METTL3 overexpression and knockdown. Results: A total of 65 genes were found with significant differences both in m6A modification and mRNA expression. We found m6A methyltransferase METTL3 was significantly down-regulated in the RSA group. Through gene function analysis, RT-qPCR, MeRIP–qPCR validation experiment, knockdown, and overexpression of METTL3 in the HTR-8 cell line, ZBTB4 was selected as one target of METTL3. Furthermore, we clarified that METTL3 regulated the expression of ZBTB4 by recognizing ZBTB4 mRNA m6A motifs in the CDS using the dual-luciferase reporter assay and METTL3 regulated the invasion of trophoblast by altering the stability and expression of ZBTB4 by RNA stability, matrigel invasion, and transwell migration assays. Conclusion: Our study revealed the mechanism by which METTL3 regulated the stability and expression of ZBTB4 and the trophoblast migration ability of RSA. A new perspective was provided for exploring the mechanism of embryonic development in RSA patients.
Collapse
Affiliation(s)
- Nana Huang
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Yue Gao
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Mengting Zhang
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Liangjie Guo
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Litao Qin
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Shixiu Liao
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
- *Correspondence: Shixiu Liao, ; Hongdan Wang,
| | - Hongdan Wang
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
- *Correspondence: Shixiu Liao, ; Hongdan Wang,
| |
Collapse
|
66
|
Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish. Cell Res 2022; 32:715-728. [PMID: 35661831 PMCID: PMC9343644 DOI: 10.1038/s41422-022-00655-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Vertebrate embryogenesis involves a conserved and fundamental process, called the maternal-to-zygotic transition (MZT), which marks the switch from a maternal factors-dominated state to a zygotic factors-driven state. Yet the precise mechanism underlying MZT remains largely unknown. Here we report that the RNA helicase Ddx3xb in zebrafish undergoes liquid-liquid phase separation (LLPS) via its N-terminal intrinsically disordered region (IDR), and an increase in ATP content promotes the condensation of Ddx3xb during MZT. Mutant form of Ddx3xb losing LLPS ability fails to rescue the developmental defect of Ddx3xb-deficient embryos. Interestingly, the IDR of either FUS or hnRNPA1 can functionally replace the N-terminal IDR in Ddx3xb. Phase separation of Ddx3xb facilitates the unwinding of 5' UTR structures of maternal mRNAs to enhance their translation. Our study reveals an unprecedent mechanism whereby the Ddx3xb phase separation regulates MZT by promoting maternal mRNA translation.
Collapse
|
67
|
Codon optimality-mediated mRNA degradation: Linking translational elongation to mRNA stability. Mol Cell 2022; 82:1467-1476. [PMID: 35452615 PMCID: PMC10111967 DOI: 10.1016/j.molcel.2022.03.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/21/2023]
Abstract
Messenger RNA (mRNA) translation by the ribosome represents the final step of a complicated molecular dance from DNA to protein. Although classically considered a decipherer that translates a 64-word genetic code into a proteome of astonishing complexity, the ribosome can also shape the transcriptome by controlling mRNA stability. Recent work has discovered that the ribosome is an arbiter of the general mRNA degradation pathway, wherein the ribosome transit rate serves as a major determinant of transcript half-lives. Specifically, members of the degradation complex sense ribosome translocation rates as a function of ribosome elongation rates. Central to this notion is the concept of codon optimality: although all codons impact translation rates, some are deciphered quickly, whereas others cause ribosome hesitation as a consequence of relative cognate tRNA concentration. These transient pauses induce a unique ribosome conformational state that is probed by the deadenylase complex, thereby inducing an orchestrated set of events that enhance both poly(A) shortening and cap removal. Together, these data imply that the coding region of an mRNA not only encodes for protein content but also impacts protein levels through determining the transcript's fate.
Collapse
|
68
|
O'Grady T, Njock MS, Lion M, Bruyr J, Mariavelle E, Galvan B, Boeckx A, Struman I, Dequiedt F. Sorting and packaging of RNA into extracellular vesicles shape intracellular transcript levels. BMC Biol 2022; 20:72. [PMID: 35331218 PMCID: PMC8944098 DOI: 10.1186/s12915-022-01277-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are released by nearly every cell type and have attracted much attention for their ability to transfer protein and diverse RNA species from donor to recipient cells. Much attention has been given so far to the features of EV short RNAs such as miRNAs. However, while the presence of mRNA and long noncoding RNA (lncRNA) transcripts in EVs has also been reported by multiple different groups, the properties and function of these longer transcripts have been less thoroughly explored than EV miRNA. Additionally, the impact of EV export on the transcriptome of exporting cells has remained almost completely unexamined. Here, we globally investigate mRNA and lncRNA transcripts in endothelial EVs in multiple different conditions. RESULTS In basal conditions, long RNA transcripts enriched in EVs have longer than average half-lives and distinctive stability-related sequence and structure characteristics including shorter transcript length, higher exon density, and fewer 3' UTR A/U-rich elements. EV-enriched long RNA transcripts are also enriched in HNRNPA2B1 binding motifs and are impacted by HNRNPA2B1 depletion, implicating this RNA-binding protein in the sorting of long RNA to EVs. After signaling-dependent modification of the cellular transcriptome, we observed that, unexpectedly, the rate of EV enrichment relative to cells was altered for many mRNA and lncRNA transcripts. This change in EV enrichment was negatively correlated with intracellular abundance, with transcripts whose export to EVs increased showing decreased abundance in cells and vice versa. Correspondingly, after treatment with inhibitors of EV secretion, levels of mRNA and lncRNA transcripts that are normally highly exported to EVs increased in cells, indicating a measurable impact of EV export on the long RNA transcriptome of the exporting cells. Compounds with different mechanisms of inhibition of EV secretion affected the cellular transcriptome differently, suggesting the existence of multiple EV subtypes with different long RNA profiles. CONCLUSIONS We present evidence for an impact of EV physiology on the characteristics of EV-producing cell transcriptomes. Our work suggests a new paradigm in which the sorting and packaging of transcripts into EVs participate, together with transcription and RNA decay, in controlling RNA homeostasis and shape the cellular long RNA abundance profile.
Collapse
Affiliation(s)
- Tina O'Grady
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Makon-Sébastien Njock
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Michelle Lion
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Jonathan Bruyr
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Emeline Mariavelle
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Bartimée Galvan
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Amandine Boeckx
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA-Cancer, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium
| | - Franck Dequiedt
- Laboratory of Gene Expression and Cancer, GIGA-MBD, University of Liège, B34, Avenue de l'Hôpital 11, 4000, Liège, Belgium.
| |
Collapse
|
69
|
Li JR, Tang M, Li Y, Amos CI, Cheng C. Genetic variants associated mRNA stability in lung. BMC Genomics 2022; 23:196. [PMID: 35272635 PMCID: PMC8915503 DOI: 10.1186/s12864-022-08405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Background Expression quantitative trait loci (eQTLs) analyses have been widely used to identify genetic variants associated with gene expression levels to understand what molecular mechanisms underlie genetic traits. The resultant eQTLs might affect the expression of associated genes through transcriptional or post-transcriptional regulation. In this study, we attempt to distinguish these two types of regulation by identifying genetic variants associated with mRNA stability of genes (stQTLs). Results Here, we presented a computational framework that takes advantage of recently developed methods to infer the mRNA stability of genes based on RNA-seq data and performed association analysis to identify stQTLs. Using the Genotype-Tissue Expression (GTEx) lung RNA-Seq data, we identified a total of 142,801 stQTLs for 3942 genes and 186,132 eQTLs for 4751 genes from 15,122,700 genetic variants for 13,476 genes on the autosomes, respectively. Interestingly, our results indicated that stQTLs were enriched in the CDS and 3’UTR regions, while eQTLs are enriched in the CDS, 3’UTR, 5’UTR, and upstream regions. We also found that stQTLs are more likely than eQTLs to overlap with RNA binding protein (RBP) and microRNA (miRNA) binding sites. Our analyses demonstrate that simultaneous identification of stQTLs and eQTLs can provide more mechanistic insight on the association between genetic variants and gene expression levels. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08405-y.
Collapse
Affiliation(s)
- Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Mabel Tang
- Department of BioSciences, Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Yafang Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA. .,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
70
|
Mishima Y, Han P, Ishibashi K, Kimura S, Iwasaki S. Ribosome slowdown triggers codon-mediated mRNA decay independently of ribosome quality control. EMBO J 2022; 41:e109256. [PMID: 35040509 PMCID: PMC8886528 DOI: 10.15252/embj.2021109256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The control of mRNA stability plays a central role in regulating gene expression patterns. Recent studies have revealed that codon composition in the open reading frame determines mRNA stability in multiple organisms. Based on genome-wide correlation approaches, this previously unrecognized role for the genetic code is attributable to the kinetics of the codon-decoding process by the ribosome. However, complementary experimental analyses are required to clarify the codon effects on mRNA stability and the related cotranslational mRNA decay pathways, for example, those triggered by aberrant ribosome stalling. In the current study, we performed a set of reporter-based analyses to define codon-mediated mRNA decay and ribosome stall-dependent mRNA decay in zebrafish embryos. Our analysis showed that the effect of codons on mRNA stability stems from the decoding process, independent of the ribosome quality control factor Znf598 and stalling-dependent mRNA decay. We propose that codon-mediated mRNA decay is rather triggered by transiently slowed ribosomes engaging in a productive translation cycle in zebrafish embryos.
Collapse
Affiliation(s)
- Yuichiro Mishima
- Department of Frontier Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan,RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Peixun Han
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan,Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Kota Ishibashi
- Department of Frontier Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| | - Seisuke Kimura
- Department of Industrial Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan,Center for Plant SciencesKyoto Sangyo UniversityKyotoJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan,Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoChibaJapan
| |
Collapse
|
71
|
Yue J, Wei Y, Zhao M. The Reversible Methylation of m6A Is Involved in Plant Virus Infection. BIOLOGY 2022; 11:biology11020271. [PMID: 35205137 PMCID: PMC8869485 DOI: 10.3390/biology11020271] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary N6-methyladenosine (m6A) is the most prevalent modification in the mRNAs of many eukaryotic species. The abundance and effects of m6A are determined by dynamic interactions between its methyltransferases (“writers”), demethylases (“erasers”), and binding proteins (“readers”). It has been indicated that there is a strong correlation between m6A and virus infection in mammals. In the case of plant virus infection, it appears that m6A plays a dual role. On the one hand, m6A acts as a plant immune response induced by virus infection, inhibiting viral replication or translation through methylation of viral genome RNAs. On the other hand, m6A acts as part of an infection strategy employed by plant viruses to overcome the host immune system by interacting with m6A-related proteins. We proposed that antagonists of m6A-related proteins might be used to design new strategies for plant virus control in the future. Abstract In recent years, m6A RNA methylation has attracted broad interest and is becoming a hot research topic. It has been demonstrated that there is a strong association between m6A and viral infection in the human system. The life cycles of plant RNA viruses are often coordinated with the mechanisms of their RNA modification. Here, we reviewed recent advances in m6A methylation in plant viruses. It appears that m6A methylation plays a dual role during viral infection in plants. On the one hand, m6A methylation acts as an antiviral immune response induced by virus infection, which inhibits viral replication or translation through the methylation of viral genome RNAs. On the other hand, plant viruses could disrupt the m6A methylation through interacting with the key proteins of the m6A pathway to avoid modification. Those plant viruses containing ALKB domain are discussed as well. Based on this mechanism, we propose that new strategies for plant virus control could be designed with competitive antagonists of m6A-associated proteins.
Collapse
|
72
|
Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol 2022; 23:93-106. [PMID: 34594027 PMCID: PMC7614307 DOI: 10.1038/s41580-021-00417-y] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
In eukaryotes, poly(A) tails are present on almost every mRNA. Early experiments led to the hypothesis that poly(A) tails and the cytoplasmic polyadenylate-binding protein (PABPC) promote translation and prevent mRNA degradation, but the details remained unclear. More recent data suggest that the role of poly(A) tails is much more complex: poly(A)-binding protein can stimulate poly(A) tail removal (deadenylation) and the poly(A) tails of stable, highly translated mRNAs at steady state are much shorter than expected. Furthermore, the rate of translation elongation affects deadenylation. Consequently, the interplay between poly(A) tails, PABPC, translation and mRNA decay has a major role in gene regulation. In this Review, we discuss recent work that is revolutionizing our understanding of the roles of poly(A) tails in the cytoplasm. Specifically, we discuss the roles of poly(A) tails in translation and control of mRNA stability and how poly(A) tails are removed by exonucleases (deadenylases), including CCR4-NOT and PAN2-PAN3. We also discuss how deadenylation rate is determined, the integration of deadenylation with other cellular processes and the function of PABPC. We conclude with an outlook for the future of research in this field.
Collapse
|
73
|
Yaish O, Orenstein Y. Computational modeling of mRNA degradation dynamics using deep neural networks. Bioinformatics 2022; 38:1087-1101. [PMID: 34849591 DOI: 10.1093/bioinformatics/btab800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION messenger RNA (mRNA) degradation plays critical roles in post-transcriptional gene regulation. A major component of mRNA degradation is determined by 3'-UTR elements. Hence, researchers are interested in studying mRNA dynamics as a function of 3'-UTR elements. A recent study measured the mRNA degradation dynamics of tens of thousands of 3'-UTR sequences using a massively parallel reporter assay. However, the computational approach used to model mRNA degradation was based on a simplifying assumption of a linear degradation rate. Consequently, the underlying mechanism of 3'-UTR elements is still not fully understood. RESULTS Here, we developed deep neural networks to predict mRNA degradation dynamics and interpreted the networks to identify regulatory elements in the 3'-UTR and their positional effect. Given an input of a 110 nt-long 3'-UTR sequence and an initial mRNA level, the model predicts mRNA levels of eight consecutive time points. Our deep neural networks significantly improved prediction performance of mRNA degradation dynamics compared with extant methods for the task. Moreover, we demonstrated that models predicting the dynamics of two identical 3'-UTR sequences, differing by their poly(A) tail, performed better than single-task models. On the interpretability front, by using Integrated Gradients, our convolutional neural networks (CNNs) models identified known and novel cis-regulatory sequence elements of mRNA degradation. By applying a novel systematic evaluation of model interpretability, we demonstrated that the recurrent neural network models are inferior to the CNN models in terms of interpretability and that random initialization ensemble improves both prediction and interoperability performance. Moreover, using a mutagenesis analysis, we newly discovered the positional effect of various 3'-UTR elements. AVAILABILITY AND IMPLEMENTATION All the code developed through this study is available at github.com/OrensteinLab/DeepUTR/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ofir Yaish
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yaron Orenstein
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
74
|
Jaquet V, Wallerich S, Voegeli S, Túrós D, Viloria EC, Becskei A. Determinants of the temperature adaptation of mRNA degradation. Nucleic Acids Res 2022; 50:1092-1110. [PMID: 35018460 PMCID: PMC8789057 DOI: 10.1093/nar/gkab1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
The rate of chemical reactions increases proportionally with temperature, but the interplay of biochemical reactions permits deviations from this relation and adaptation. The degradation of individual mRNAs in yeast increased to varying degrees with temperature. We examined how these variations are influenced by the translation and codon composition of mRNAs. We developed a method that revealed the existence of a neutral half-life above which mRNAs are stabilized by translation but below which they are destabilized. The proportion of these two mRNA subpopulations remained relatively constant under different conditions, even with slow cell growth due to nutrient limitation, but heat shock reduced the proportion of translationally stabilized mRNAs. At the same time, the degradation of these mRNAs was partially temperature-compensated through Upf1, the mediator of nonsense-mediated decay. Compensation was also promoted by some asparagine and serine codons, whereas tyrosine codons promote temperature sensitization. These codons play an important role in the degradation of mRNAs encoding key cell membrane and cell wall proteins, which promote cell integrity.
Collapse
Affiliation(s)
- Vincent Jaquet
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sandrine Wallerich
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sylvia Voegeli
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Demeter Túrós
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Eduardo C Viloria
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
75
|
Morris C, Cluet D, Ricci EP. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1658. [PMID: 33949788 PMCID: PMC8519046 DOI: 10.1002/wrna.1658] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022]
Abstract
Eukaryotic gene expression is closely regulated by translation and turnover of mRNAs. Recent advances highlight the importance of translation in the control of mRNA degradation, both for aberrant and apparently normal mRNAs. During translation, the information contained in mRNAs is decoded by ribosomes, one codon at a time, and tRNAs, by specifically recognizing codons, translate the nucleotide code into amino acids. Such a decoding step does not process regularly, with various obstacles that can hinder ribosome progression, then leading to ribosome stalling or collisions. The progression of ribosomes is constantly monitored by the cell which has evolved several translation-dependent mRNA surveillance pathways, including nonsense-mediated decay (NMD), no-go decay (NGD), and non-stop decay (NSD), to degrade certain problematic mRNAs and the incomplete protein products. Recent progress in sequencing and ribosome profiling has made it possible to discover new mechanisms controlling ribosome dynamics, with numerous crosstalks between translation and mRNA decay. We discuss here various translation features critical for mRNA decay, with particular focus on current insights from the complexity of the genetic code and also the emerging role for the ribosome as a regulatory hub orchestrating mRNA decay, quality control, and stress signaling. Even if the interplay between mRNA translation and degradation is no longer to be demonstrated, a better understanding of their precise coordination is worthy of further investigation. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Christelle Morris
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - David Cluet
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - Emiliano P. Ricci
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| |
Collapse
|
76
|
Gillen SL, Waldron JA, Bushell M. Codon optimality in cancer. Oncogene 2021; 40:6309-6320. [PMID: 34584217 PMCID: PMC8585667 DOI: 10.1038/s41388-021-02022-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
A key characteristic of cancer cells is their increased proliferative capacity, which requires elevated levels of protein synthesis. The process of protein synthesis involves the translation of codons within the mRNA coding sequence into a string of amino acids to form a polypeptide chain. As most amino acids are encoded by multiple codons, the nucleotide sequence of a coding region can vary dramatically without altering the polypeptide sequence of the encoded protein. Although mutations that do not alter the final amino acid sequence are often thought of as silent/synonymous, these can still have dramatic effects on protein output. Because each codon has a distinct translation elongation rate and can differentially impact mRNA stability, each codon has a different degree of 'optimality' for protein synthesis. Recent data demonstrates that the codon preference of a transcriptome matches the abundance of tRNAs within the cell and that this supply and demand between tRNAs and mRNAs varies between different cell types. The largest observed distinction is between mRNAs encoding proteins associated with proliferation or differentiation. Nevertheless, precisely how codon optimality and tRNA expression levels regulate cell fate decisions and their role in malignancy is not fully understood. This review describes the current mechanistic understanding on codon optimality, its role in malignancy and discusses the potential to target codon optimality therapeutically in the context of cancer.
Collapse
Affiliation(s)
- Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Joseph A Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G61 1QH.
| |
Collapse
|
77
|
Gillen SL, Giacomelli C, Hodge K, Zanivan S, Bushell M, Wilczynska A. Differential regulation of mRNA fate by the human Ccr4-Not complex is driven by coding sequence composition and mRNA localization. Genome Biol 2021; 22:284. [PMID: 34615539 PMCID: PMC8496106 DOI: 10.1186/s13059-021-02494-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Regulation of protein output at the level of translation allows for a rapid adaptation to dynamic changes to the cell's requirements. This precise control of gene expression is achieved by complex and interlinked biochemical processes that modulate both the protein synthesis rate and stability of each individual mRNA. A major factor coordinating this regulation is the Ccr4-Not complex. Despite playing a role in most stages of the mRNA life cycle, no attempt has been made to take a global integrated view of how the Ccr4-Not complex affects gene expression. RESULTS This study has taken a comprehensive approach to investigate post-transcriptional regulation mediated by the Ccr4-Not complex assessing steady-state mRNA levels, ribosome position, mRNA stability, and protein production transcriptome-wide. Depletion of the scaffold protein CNOT1 results in a global upregulation of mRNA stability and the preferential stabilization of mRNAs enriched for G/C-ending codons. We also uncover that mRNAs targeted to the ER for their translation have reduced translational efficiency when CNOT1 is depleted, specifically downstream of the signal sequence cleavage site. In contrast, translationally upregulated mRNAs are normally localized in p-bodies, contain disorder-promoting amino acids, and encode nuclear localized proteins. Finally, we identify ribosome pause sites that are resolved or induced by the depletion of CNOT1. CONCLUSIONS We define the key mRNA features that determine how the human Ccr4-Not complex differentially regulates mRNA fate and protein synthesis through a mechanism linked to codon composition, amino acid usage, and mRNA localization.
Collapse
Affiliation(s)
- Sarah L Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- MRC Toxicology Unit, Lancaster Road, Leicester, LE1 9HN, UK
| | - Chiara Giacomelli
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kelly Hodge
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Ania Wilczynska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
78
|
He X, Zhang S, Zhang Y, Lei Z, Jiang T, Zeng J. Characterizing RNA Pseudouridylation by Convolutional Neural Networks. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:815-833. [PMID: 33631424 PMCID: PMC9170758 DOI: 10.1016/j.gpb.2019.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/15/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
Pseudouridine (Ψ) is the most prevalent post-transcriptional RNA modification and is widespread in small cellular RNAs and mRNAs. However, the functions, mechanisms, and precise distribution of Ψs (especially in mRNAs) still remain largely unclear. The landscape of Ψs across the transcriptome has not yet been fully delineated. Here, we present a highly effective model based on a convolutional neural network (CNN), called PseudoUridyLation Site Estimator (PULSE), to analyze large-scale profiling data of Ψ sites and characterize the contextual sequence features of pseudouridylation. PULSE, consisting of two alternatively-stacked convolution and pooling layers followed by a fully-connected neural network, can automatically learn the hidden patterns of pseudouridylation from the local sequence information. Extensive validation tests demonstrated that PULSE can outperform other state-of-the-art prediction methods and achieve high prediction accuracy, thus enabling us to further characterize the transcriptome-wide landscape of Ψ sites. We further showed that the prediction results derived from PULSE can provide novel insights into understanding the functional roles of pseudouridylation, such as the regulations of RNA secondary structure, codon usage, translation, and RNA stability, and the connection to single nucleotide variants. The source code and final model for PULSE are available at https://github.com/mlcb-thu/PULSE.
Collapse
Affiliation(s)
- Xuan He
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Sai Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Yanqing Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Zhixin Lei
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA; MOE Key Lab of Bioinformatics and Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
79
|
Komar AA. A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell. BIOCHEMISTRY (MOSCOW) 2021; 86:976-991. [PMID: 34488574 DOI: 10.1134/s0006297921080083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic code sets the correspondence between the sequence of a given nucleotide triplet in an mRNA molecule, called a codon, and the amino acid that is added to the growing polypeptide chain during protein synthesis. With four bases (A, G, U, and C), there are 64 possible triplet codons: 61 sense codons (encoding amino acids) and 3 nonsense codons (so-called, stop codons that define termination of translation). In most organisms, there are 20 common/standard amino acids used in protein synthesis; thus, the genetic code is redundant with most amino acids (with the exception of Met and Trp) are being encoded by more than one (synonymous) codon. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in mRNA suggested that the specific codon choice might have functional implications beyond coding for amino acid. Observation of nonequivalent use of codons in mRNAs implied a possibility of the existence of auxiliary information in the genetic code. Indeed, it has been found that genetic code contains several layers of such additional information and that synonymous codons are strategically placed within mRNAs to ensure a particular translation kinetics facilitating and fine-tuning co-translational protein folding in the cell via step-wise/sequential structuring of distinct regions of the polypeptide chain emerging from the ribosome at different points in time. This review summarizes key findings in the field that have identified the role of synonymous codons and their usage in protein folding in the cell.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA. .,Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,DAPCEL, Inc., Cleveland, OH 44106, USA
| |
Collapse
|
80
|
Han P, Shichino Y, Schneider-Poetsch T, Mito M, Hashimoto S, Udagawa T, Kohno K, Yoshida M, Mishima Y, Inada T, Iwasaki S. Genome-wide Survey of Ribosome Collision. Cell Rep 2021; 31:107610. [PMID: 32375038 DOI: 10.1016/j.celrep.2020.107610] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 12/31/2022] Open
Abstract
Ribosome movement is not always smooth and is rather often impeded. For ribosome pauses, fundamental issues remain to be addressed, including where ribosomes pause on mRNAs, what kind of RNA/amino acid sequence causes this pause, and the physiological significance of this attenuation of protein synthesis. Here, we survey the positions of ribosome collisions caused by ribosome pauses in humans and zebrafish using modified ribosome profiling. Collided ribosomes, i.e., disomes, emerge at various sites: Pro-Pro/Gly/Asp motifs; Arg-X-Lys motifs; stop codons; and 3' untranslated regions. The electrostatic interaction between the charged nascent chain and the ribosome exit tunnel determines the eIF5A-mediated disome rescue at the Pro-Pro sites. In particular, XBP1u, a precursor of endoplasmic reticulum (ER)-stress-responsive transcription factor, shows striking queues of collided ribosomes and thus acts as a degradation substrate by ribosome-associated quality control. Our results provide insight into the causes and consequences of ribosome pause by dissecting collided ribosomes.
Collapse
Affiliation(s)
- Peixun Han
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Tsuyoshi Udagawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuichiro Mishima
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
81
|
Tuazon FB, Wang X, Andrade JL, Umulis D, Mullins MC. Proteolytic Restriction of Chordin Range Underlies BMP Gradient Formation. Cell Rep 2021; 32:108039. [PMID: 32814043 PMCID: PMC7731995 DOI: 10.1016/j.celrep.2020.108039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in developmental biology is how morphogens, such as bone morphogenetic protein (BMP), form precise signaling gradients to impart positional and functional identity to the cells of the early embryo. We combine rigorous mutant analyses with quantitative immunofluorescence to determine that the proteases Bmp1a and Tolloid spatially restrict the BMP antagonist Chordin in dorsoventral (DV) axial patterning of the early zebrafish gastrula. We show that maternally deposited Bmp1a plays an unexpected and non-redundant role in establishing the BMP signaling gradient, while the Bmp1a/Tolloid antagonist Sizzled is surprisingly dispensable. Combining computational modeling and in vivo analyses with an immobile Chordin construct, we demonstrate that long-range Chordin diffusion is not necessary for BMP gradient formation and DV patterning. Our data do not support a counter-gradient of Chordin and instead favor a Chordin sink, established by Bmp1a and Tolloid, as the primary mechanism that drives BMP gradient formation. The BMP morphogen generates a precise signaling gradient during axial patterning. In the zebrafish embryo, Tuazon et al. find that proteases Bmp1a/Tolloid are key to this process, preventing the long-range diffusion of the BMP antagonist, Chordin. By regionally restricting Chordin, Bmp1a/Tolloid establish the signaling sink that drives BMP gradient formation.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xu Wang
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Lee Andrade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Umulis
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
82
|
Sexually dimorphic expression and regulatory sequence of dnali1 in the olive flounder Paralichthys olivaceus. Mol Biol Rep 2021; 48:3529-3540. [PMID: 33877529 DOI: 10.1007/s11033-021-06342-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Dynein axonemal light intermediate chain 1 (dnali1) is an important part of axonemal dyneins and plays an important role in the growth and development of animals. However, there is little information about dnali1 in fish. Herein, we cloned dnali1 gene from the genome of olive flounder (Paralichthys olivaceus), a commercially important maricultured fish in China, Japan, and Korea, and analyzed its expression patterns in different gender fish. The flounder dnali1 DNA sequence contained a 771 bp open reading frame (ORF), two different sizes of 5' untranslated region (5'UTR), and a 1499 bp 3' untranslated region (3'UTR). Two duplicated 922 nt fragments were found in dnali1 mRNA. The first fragment contained the downstream coding region and the front portion of 3'UTR, and the second fragment was entirely located in 3'UTR. Multiple alignments indicated that the flounder Dnali1 protein contained the putative conserved coiled-coil domain. Its expression showed sexually dimorphic with predominant expression in the flounder testis, and lower expression in other tissues. The gene with the longer 5'UTR was specifically expressed in the testis. The highest expression level in the testis was detected at stages IV and V. Transient expression analysis showed that the 922 bp repeated sequence 3'UTR of dnali1 down-regulated the expression of GFP at the early stage in zebrafish. The flounder dnali1 might play an important role in the testis, especially in the period of spermatogenesis, and the 5'UTR and the repetitive sequences in 3'UTR might contain some regulatory elements for the cilia.
Collapse
|
83
|
Enwerem III, Elrod ND, Chang CT, Lin A, Ji P, Bohn JA, Levdansky Y, Wagner EJ, Valkov E, Goldstrohm AC. Human Pumilio proteins directly bind the CCR4-NOT deadenylase complex to regulate the transcriptome. RNA (NEW YORK, N.Y.) 2021; 27:445-464. [PMID: 33397688 PMCID: PMC7962487 DOI: 10.1261/rna.078436.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 05/13/2023]
Abstract
Pumilio paralogs, PUM1 and PUM2, are sequence-specific RNA-binding proteins that are essential for vertebrate development and neurological functions. PUM1&2 negatively regulate gene expression by accelerating degradation of specific mRNAs. Here, we determined the repression mechanism and impact of human PUM1&2 on the transcriptome. We identified subunits of the CCR4-NOT (CNOT) deadenylase complex required for stable interaction with PUM1&2 and to elicit CNOT-dependent repression. Isoform-level RNA sequencing revealed broad coregulation of target mRNAs through the PUM-CNOT repression mechanism. Functional dissection of the domains of PUM1&2 identified a conserved amino-terminal region that confers the predominant repressive activity via direct interaction with CNOT. In addition, we show that the mRNA decapping enzyme, DCP2, has an important role in repression by PUM1&2 amino-terminal regions. Our results support a molecular model of repression by human PUM1&2 via direct recruitment of CNOT deadenylation machinery in a decapping-dependent mRNA decay pathway.
Collapse
Affiliation(s)
- Isioma I I Enwerem
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ai Lin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
84
|
D'Orazio KN, Green R. Ribosome states signal RNA quality control. Mol Cell 2021; 81:1372-1383. [PMID: 33713598 PMCID: PMC8041214 DOI: 10.1016/j.molcel.2021.02.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells integrate multiple quality control (QC) responses during protein synthesis in the cytoplasm. These QC responses are signaled by slow or stalled elongating ribosomes. Depending on the nature of the delay, the signal may lead to translational repression, messenger RNA decay, ribosome rescue, and/or nascent protein degradation. Here, we discuss how the structure and composition of an elongating ribosome in a troubled state determine the downstream quality control pathway(s) that ensue. We highlight the intersecting pathways involved in RNA decay and the crosstalk that occurs between RNA decay and ribosome rescue.
Collapse
Affiliation(s)
- Karole N D'Orazio
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
85
|
Marchione AD, Thompson Z, Kathrein KL. DNA methylation and histone modifications are essential for regulation of stem cell formation and differentiation in zebrafish development. Brief Funct Genomics 2021:elab022. [PMID: 33782688 DOI: 10.1093/bfgp/elab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023] Open
Abstract
The complex processes necessary for embryogenesis require a gene regulatory network that is complex and systematic. Gene expression regulates development and organogenesis, but this process is altered and fine-tuned by epigenetic regulators that facilitate changes in the chromatin landscape. Epigenetic regulation of embryogenesis adjusts the chromatin structure by modifying both DNA through methylation and nucleosomes through posttranslational modifications of histone tails. The zebrafish is a well-characterized model organism that is a quintessential tool for studying developmental biology. With external fertilization, low cost and high fecundity, the zebrafish are an efficient tool for studying early developmental stages. Genetic manipulation can be performed in vivo resulting in quick identification of gene function. Large-scale genome analyses including RNA sequencing, chromatin immunoprecipitation and chromatin structure all are feasible in the zebrafish. In this review, we highlight the key events in zebrafish development where epigenetic regulation plays a critical role from the early stem cell stages through differentiation and organogenesis.
Collapse
|
86
|
Nagai A, Mori K, Shiomi Y, Yoshihisa T. OTTER, a new method quantifying absolute amounts of tRNAs. RNA (NEW YORK, N.Y.) 2021; 27:rna.076489.120. [PMID: 33674420 PMCID: PMC8051270 DOI: 10.1261/rna.076489.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/27/2021] [Indexed: 05/03/2023]
Abstract
To maintain optimal proteome, both codon choice of each mRNA and supply of aminoacyl-tRNAs are two principal factors in translation. Recent reports have revealed that the amounts of tRNAs in cells are more dynamic than we had expected. High-throughput methods such as RNA-Seq and microarrays are versatile for comprehensive detection of changes in individual tRNA amounts, but they suffer from inability to assess signal production efficiencies of individual tRNA species. Thus, they are not the perfect choice to measure absolute amounts of tRNAs. Here, we introduce a novel method for this purpose, termed Oligonucleotide-directed Three-prime Terminal Extension of RNA (OTTER), which employs fluorescence-labeling at the 3'-terminus of a tRNA by optimized reverse primer extension and an assessment step of each labeling efficiency by northern blotting. Using this method, we quantified the absolute amounts of the 34 individual and 4 pairs of isoacceptor tRNAs out of the total 42 nuclear-encoded isoacceptors in the yeast Saccharomyces cerevisiae. We found that the amounts of tRNAs in log phase yeast cells grown in a rich glucose medium range from 0.030 to 0.73 pmol/µg RNA. The tRNA amounts seem to be altered at the isoacceptor level by a few folds in response to physiological growing conditions. The data obtained by OTTER are poorly correlated with those by simple RNA-Seq, marginally with those by microarrays and by microscale thermophoresis. However, the OTTER data showed good agreement with the data obtained by 2D-gel analysis of in vivo radiolabeled RNAs. Thus, OTTER is a suitable method for quantifying absolute amounts of tRNAs at the level of isoacceptor resolution.
Collapse
Affiliation(s)
- Akihisa Nagai
- Graduate School of Life Science, University of Hyogo
| | - Kohei Mori
- Graduate School of Life Science, University of Hyogo
| | - Yuma Shiomi
- Graduate School of Life Science, University of Hyogo
| | | |
Collapse
|
87
|
Quarato P, Singh M, Cornes E, Li B, Bourdon L, Mueller F, Didier C, Cecere G. Germline inherited small RNAs facilitate the clearance of untranslated maternal mRNAs in C. elegans embryos. Nat Commun 2021; 12:1441. [PMID: 33664268 PMCID: PMC7933186 DOI: 10.1038/s41467-021-21691-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/05/2021] [Indexed: 01/16/2023] Open
Abstract
Inheritance and clearance of maternal mRNAs are two of the most critical events required for animal early embryonic development. However, the mechanisms regulating this process are still largely unknown. Here, we show that together with maternal mRNAs, C. elegans embryos inherit a complementary pool of small non-coding RNAs that facilitate the cleavage and removal of hundreds of maternal mRNAs. These antisense small RNAs are loaded into the maternal catalytically-active Argonaute CSR-1 and cleave complementary mRNAs no longer engaged in translation in somatic blastomeres. Induced depletion of CSR-1 specifically during embryonic development leads to embryonic lethality in a slicer-dependent manner and impairs the degradation of CSR-1 embryonic mRNA targets. Given the conservation of Argonaute catalytic activity, we propose that a similar mechanism operates to clear maternal mRNAs during the maternal-to-zygotic transition across species.
Collapse
Affiliation(s)
- Piergiuseppe Quarato
- Institut Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Meetali Singh
- Institut Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Paris, France
| | - Eric Cornes
- Institut Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Paris, France
| | - Blaise Li
- Institut Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Paris, France
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, 75724, Paris, France
| | - Loan Bourdon
- Institut Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Paris, France
| | - Florian Mueller
- Institut Pasteur, Imaging and Modeling Unit, UMR 3691 CNRS, C3BI USR 3756 IP CNRS, 75724, Paris, France
| | - Celine Didier
- Institut Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Paris, France
| | - Germano Cecere
- Institut Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Paris, France.
| |
Collapse
|
88
|
Wang Z, Yang L, Wu D, Zhang N, Hua J. Polymorphisms in cis-elements confer SAUR26 gene expression difference for thermo-response natural variation in Arabidopsis. THE NEW PHYTOLOGIST 2021; 229:2751-2764. [PMID: 33185314 DOI: 10.1111/nph.17078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 05/22/2023]
Abstract
The SAUR26 subfamily genes play an important role in conferring variations of thermo-responsiveness of growth architecture among natural accessions of Arabidopsis thaliana. The expression variations are critical for their activity variations, but how expression variations are generated is unknown. We identified genetic loci for gene expression variations through expression genome-wide association study (eGWAS) and investigated their mechanisms through molecular analyses. We found that cis elements are the major determinants for expression variations of SAUR26, SAUR27, and SAUR28. Polymorphisms in the promoter region likely impact PIF4 regulation while those at the 3'UTR affect mRNA stability to generate variations in SAUR26 expression levels. These polymorphisms also differentially affect the mRNA stability of SAUR26 at two temperatures. This study reveals two mechanisms involving cis elements in generating gene expression diversity, which is likely important for local adaptations in Arabidopsis natural accessions.
Collapse
Affiliation(s)
- Zhixue Wang
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Leiyun Yang
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Ning Zhang
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
89
|
Hia F, Takeuchi O. The effects of codon bias and optimality on mRNA and protein regulation. Cell Mol Life Sci 2021; 78:1909-1928. [PMID: 33128106 PMCID: PMC11072601 DOI: 10.1007/s00018-020-03685-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022]
Abstract
The central dogma of molecular biology entails that genetic information is transferred from nucleic acid to proteins. Notwithstanding retro-transcribing genetic elements, DNA is transcribed to RNA which in turn is translated into proteins. Recent advancements have shown that each stage is regulated to control protein abundances for a variety of essential physiological processes. In this regard, mRNA regulation is essential in fine-tuning or calibrating protein abundances. In this review, we would like to discuss one of several mRNA-intrinsic features of mRNA regulation that has been gaining traction of recent-codon bias and optimality. Specifically, we address the effects of codon bias with regard to codon optimality in several biological processes centred on translation, such as mRNA stability and protein folding among others. Finally, we examine how different organisms or cell types, through this system, are able to coordinate physiological pathways to respond to a variety of stress or growth conditions.
Collapse
Affiliation(s)
- Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
90
|
Zhang H, Wang Y, Tang X, Dou S, Sun Y, Zhang Q, Lu J. Combinatorial regulation of gene expression by uORFs and microRNAs in Drosophila. Sci Bull (Beijing) 2021; 66:225-228. [PMID: 36654327 DOI: 10.1016/j.scib.2020.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China; Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuanqiang Sun
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Qi Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
91
|
Cabrera-Quio LE, Schleiffer A, Mechtler K, Pauli A. Zebrafish Ski7 tunes RNA levels during the oocyte-to-embryo transition. PLoS Genet 2021; 17:e1009390. [PMID: 33600438 PMCID: PMC7924785 DOI: 10.1371/journal.pgen.1009390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/02/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional regulation of gene expression is crucial during the oocyte-to-embryo transition, a highly dynamic process characterized by the absence of nuclear transcription. Thus, changes to the RNA content are solely dependent on RNA degradation. Although several mechanisms that promote RNA decay during embryogenesis have been identified, it remains unclear which machineries contribute to remodeling the maternal transcriptome. Here, we focused on the degradation factor Ski7 in zebrafish. Homozygous ski7 mutant fish had higher proportions of both poor quality eggs and eggs that were unable to develop beyond the one-cell stage. Consistent with the idea that Ski7 participates in remodeling the maternal RNA content, transcriptome profiling identified hundreds of misregulated mRNAs in the absence of Ski7. Furthermore, upregulated genes were generally lowly expressed in wild type, suggesting that Ski7 maintains low transcript levels for this subset of genes. Finally, GO enrichment and proteomic analyses of misregulated factors implicated Ski7 in the regulation of redox processes. This was confirmed experimentally by an increased resistance of ski7 mutant embryos to reductive stress. Our results provide first insights into the physiological role of vertebrate Ski7 as a post-transcriptional regulator during the oocyte-to-embryo transition.
Collapse
Affiliation(s)
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Biotechnology, IMBA, Campus Vienna-Biocenter (VBC), Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
92
|
Liu Y, Yang Q, Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021; 90:375-401. [PMID: 33441035 DOI: 10.1146/annurev-biochem-071320-112701] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| |
Collapse
|
93
|
Medina-Muñoz SG, Kushawah G, Castellano LA, Diez M, DeVore ML, Salazar MJB, Bazzini AA. Crosstalk between codon optimality and cis-regulatory elements dictates mRNA stability. Genome Biol 2021; 22:14. [PMID: 33402205 PMCID: PMC7783504 DOI: 10.1186/s13059-020-02251-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The regulation of messenger RNA (mRNA) stability has a profound impact on gene expression dynamics during embryogenesis. For example, in animals, maternally deposited mRNAs are degraded after fertilization to enable new developmental trajectories. Regulatory sequences in 3' untranslated regions (3'UTRs) have long been considered the central determinants of mRNA stability. However, recent work indicates that the coding sequence also possesses regulatory information. Specifically, translation in cis impacts mRNA stability in a codon-dependent manner. However, the strength of this mechanism during embryogenesis, as well as its relationship with other known regulatory elements, such as microRNA, remains unclear. RESULTS Here, we show that codon composition is a major predictor of mRNA stability in the early embryo. We show that this mechanism works in combination with other cis-regulatory elements to dictate mRNA stability in zebrafish and Xenopus embryos as well as in mouse and human cells. Furthermore, we show that microRNA targeting efficacy can be affected by substantial enrichment of optimal (stabilizing) or non-optimal (destabilizing) codons. Lastly, we find that one microRNA, miR-430, antagonizes the stabilizing effect of optimal codons during early embryogenesis in zebrafish. CONCLUSIONS By integrating the contributions of different regulatory mechanisms, our work provides a framework for understanding how combinatorial control of mRNA stability shapes the gene expression landscape.
Collapse
Affiliation(s)
- Santiago Gerardo Medina-Muñoz
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
- Present Address: National Laboratory of Genomics for Biodiversity (LANGEBIO), Unit of Advanced Genomics, 36824, Irapuato, Mexico
| | - Gopal Kushawah
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | | | - Michay Diez
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - Michelle Lynn DeVore
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - María José Blanco Salazar
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
- Present Address: Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
94
|
Mishima Y, Inoue K. Tethered Function Assay to Study RNA-Regulatory Proteins in Zebrafish Embryos. Methods Mol Biol 2021; 2218:347-354. [PMID: 33606244 DOI: 10.1007/978-1-0716-0970-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many proteins are assumed to mediate post-transcriptional regulation of mRNAs. However, the lack of information about their target mRNAs and functional domains hampers the detailed analysis of their molecular function. Here we describe a method to analyze the post-transcriptional effects of proteins of interest by artificially tethering the protein to a reporter mRNA in zebrafish embryos.
Collapse
Affiliation(s)
- Yuichiro Mishima
- Department of Frontier Life Sciences, Faculty of Lifesciences, Kyoto Sangyo University, Kyoto, Japan.
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
95
|
Abstract
The stability of RNA transcripts is regulated by signals within their sequences, but the identity of those signals still remain elusive in many biological systems. Recently introduced massively parallel tools for the analysis of regulatory RNA sequences provide the ability to detect functional cis-regulatory sequences of post-transcriptional RNA regulation at a much larger scale and resolution than before. Their application formulates the underlying sequence-based rules and predicts the impact of genetic variations. Here, we describe the application of UTR-Seq, as a strategy to uncover cis-regulatory signals of RNA stability during early zebrafish embryogenesis. The method combines massively parallel reporter assays (MPRA) with computational regression models. It surveys the effect of tens of thousands of regulatory sequences on RNA stability and analyzes the results via regression models to identify sequence signals that impact RNA stability and to predict the in vivo effect of sequence variations.
Collapse
|
96
|
Ma N, Xu N, Yin D, Zheng P, Liu W, Wang G, Hui Y, Zhang J, Han G, Yang C, Chen Y, Cheng X, Cheng M. Circulating microRNA-194 levels in Chinese patients with diabetic kidney disease: a case-control study. Ther Adv Endocrinol Metab 2021; 12:20420188211049615. [PMID: 34676065 PMCID: PMC8524709 DOI: 10.1177/20420188211049615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) regulate gene expression and are involved in diabetic kidney disease (DKD) pathogenesis. We investigated circulating miRNA-194 levels as a biomarker of DKD prevalence and incidence, and the relationship between miRNA-194 and CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP). METHODS We recruited 136 type-2 diabetes mellitus (T2DM) patients at the First People's Hospital of Lianyungang and 127 healthy individuals. Circulating miRNA-194 and CHOP levels were measured using quantitative reverse transcription qRT-PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Anthropometric and biochemistry measurements were also made. RESULTS T2DM patients showed higher circulating miRNA-194 (p = 0.029) and lower circulating CHOP (p < 0.001) levels than controls. Circulating miRNA-194 levels were significantly higher in T2DM patients with a microalbumin/creatinine ratio (UmALB/Cr) ⩾ 300 mg/g (p < 0.001). In addition, there were significant intergroup differences in the circulating CHOP concentrations (p = 0.005). Bivariate analysis revealed that circulating miR-194 levels were negatively correlated with alpha-fetoprotein and CHOP levels (r = -0.222, -0.301; p = 0.018, 0.001, respectively), but positively correlated with fasting glucose, UmALB/Cr, Cr, Cystatin C, quantitative insulin check index (QUICKI) (r = 0.193, 0.446, 0.260, 0.339, and 0.250, respectively; p = 0.036, <0.001, 0.005, <0.001, and 0.006, respectively), particularly UmALB/Cr and Cystatin C (p < 0.001). Logistic regression analysis after adjusting for covariates associated with UmALB/Cr identified duration of T2DM, systolic blood pressure, Cr, estimated glomerular filtration rate, and waist circumference as independent factors associated with T2DM patients with UmALB/Cr > 300 (p = 0.030, 0.013, <0.001, <0.001, and 0.031, respectively). CONCLUSION Circulating miRNA-194 levels could be a novel biomarker for DKD.
Collapse
Affiliation(s)
- Ning Ma
- Department of Endocrinology and Metabolism, The
First People’s Hospital of Lianyungang, Lianyungang, China
- Department of Endocrinology and Metabolism, The
First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ning Xu
- Department of Endocrinology and Metabolism, The
First People’s Hospital of Lianyungang, Lianyungang, China
| | - Dong Yin
- Department of Endocrinology and Metabolism, The
First People’s Hospital of Lianyungang, Lianyungang, China
| | - Ping Zheng
- Department of Endocrinology and Metabolism, The
First People’s Hospital of Lianyungang, Lianyungang, China
| | - Weiwei Liu
- Department of Endocrinology and Metabolism, The
First People’s Hospital of Lianyungang, Lianyungang, China
| | - Guofeng Wang
- Department of Endocrinology and Metabolism, The
First People’s Hospital of Lianyungang, Lianyungang, China
| | - Yuan Hui
- Department of Endocrinology and Metabolism, The
First People’s Hospital of Lianyungang, Lianyungang, China
| | - Jiping Zhang
- Department of Endocrinology and Metabolism, The
First People’s Hospital of Lianyungang, Lianyungang, China
| | - Guanjun Han
- Department of Endocrinology and Metabolism,
The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Chuanhui Yang
- Department of Endocrinology and Metabolism,
The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Yiting Chen
- Department of Endocrinology and Metabolism,
The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Ming Cheng
- School of Rail Transportation, Soochow
University, 1 Shizi Road, Suzhou 215006, Jiangsu, China
| |
Collapse
|
97
|
Kontur C, Jeong M, Cifuentes D, Giraldez AJ. Ythdf m 6A Readers Function Redundantly during Zebrafish Development. Cell Rep 2020; 33:108598. [PMID: 33378672 PMCID: PMC11407899 DOI: 10.1016/j.celrep.2020.108598] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
During the maternal-to-zygotic transition (MZT), multiple mechanisms precisely control massive decay of maternal mRNAs. N6-methyladenosine (m6A) is known to regulate mRNA decay, yet how this modification promotes maternal transcript degradation remains unclear. Here, we find that m6A promotes maternal mRNA deadenylation. Yet, genetic loss of m6A readers Ythdf2 and Ythdf3 did not impact global maternal mRNA clearance, zygotic genome activation, or the onset of gastrulation, challenging the view that Ythdf2 alone is critical to developmental timing. We reveal that Ythdf proteins function redundantly during zebrafish oogenesis and development, as double Ythdf2 and Ythdf3 deletion prevented female gonad formation and triple Ythdf mutants were lethal. Finally, we show that the microRNA miR-430 functions additively with methylation to promote degradation of common transcript targets. Together these findings reveal that m6A facilitates maternal mRNA deadenylation and that multiple pathways and readers act in concert to mediate these effects of methylation on RNA stability.
Collapse
Affiliation(s)
- Cassandra Kontur
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Minsun Jeong
- Chey Institute for Advanced Studies, Seoul 06141, Republic of Korea
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
98
|
Expression of transgenes enriched in rare codons is enhanced by the MAPK pathway. Sci Rep 2020; 10:22166. [PMID: 33335127 PMCID: PMC7746698 DOI: 10.1038/s41598-020-78453-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
The ability to translate three nucleotide sequences, or codons, into amino acids to form proteins is conserved across all organisms. All but two amino acids have multiple codons, and the frequency that such synonymous codons occur in genomes ranges from rare to common. Transcripts enriched in rare codons are typically associated with poor translation, but in certain settings can be robustly expressed, suggestive of codon-dependent regulation. Given this, we screened a gain-of-function library for human genes that increase the expression of a GFPrare reporter encoded by rare codons. This screen identified multiple components of the mitogen activated protein kinase (MAPK) pathway enhancing GFPrare expression. This effect was reversed with inhibitors of this pathway and confirmed to be both codon-dependent and occur with ectopic transcripts naturally coded with rare codons. Finally, this effect was associated, at least in part, with enhanced translation. We thus identify a potential regulatory module that takes advantage of the redundancy in the genetic code to modulate protein expression.
Collapse
|
99
|
Sawyer JK, Kabiri Z, Montague RA, Allen SR, Stewart R, Paramore SV, Cohen E, Zaribafzadeh H, Counter CM, Fox DT. Exploiting codon usage identifies intensity-specific modifiers of Ras/MAPK signaling in vivo. PLoS Genet 2020; 16:e1009228. [PMID: 33296356 PMCID: PMC7752094 DOI: 10.1371/journal.pgen.1009228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/21/2020] [Accepted: 10/27/2020] [Indexed: 01/05/2023] Open
Abstract
Signal transduction pathways are intricately fine-tuned to accomplish diverse biological processes. An example is the conserved Ras/mitogen-activated-protein-kinase (MAPK) pathway, which exhibits context-dependent signaling output dynamics and regulation. Here, by altering codon usage as a novel platform to control signaling output, we screened the Drosophila genome for modifiers specific to either weak or strong Ras-driven eye phenotypes. Our screen enriched for regions of the genome not previously connected with Ras phenotypic modification. We mapped the underlying gene from one modifier to the ribosomal gene RpS21. In multiple contexts, we show that RpS21 preferentially influences weak Ras/MAPK signaling outputs. These data show that codon usage manipulation can identify new, output-specific signaling regulators, and identify RpS21 as an in vivo Ras/MAPK phenotypic regulator. Cellular communication is critical in controlling the growth of organs and must be carefully regulated to prevent disease. The Ras signaling pathway is frequently used for cellular communication of tissue growth regulation but can operate at different signaling strengths. Here, we used a novel strategy to identify genes that specifically tune weak or strong Ras signaling states. We find that the gene RpS21 preferentially tunes weak Ras signaling states.
Collapse
Affiliation(s)
- Jessica K. Sawyer
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Zahra Kabiri
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruth A. Montague
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Scott R. Allen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rebeccah Stewart
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarah V. Paramore
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Erez Cohen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hamed Zaribafzadeh
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Christopher M. Counter
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (CMC); (DTF)
| | - Donald T. Fox
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (CMC); (DTF)
| |
Collapse
|
100
|
Ramachandran S, Krogh N, Jørgensen TE, Johansen SD, Nielsen H, Babiak I. The shift from early to late types of ribosomes in zebrafish development involves changes at a subset of rRNA 2'- O-Me sites. RNA (NEW YORK, N.Y.) 2020; 26:1919-1934. [PMID: 32912962 PMCID: PMC7668251 DOI: 10.1261/rna.076760.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
During zebrafish development, an early type of rRNA is gradually replaced by a late type that is substantially different in sequence. We applied RiboMeth-seq to rRNA from developmental stages for profiling of 2'-O-Me, to learn if changes in methylation pattern were a component of the shift. We compiled a catalog of 2'-O-Me sites and cognate box C/D guide RNAs comprising 98 high-confidence sites, including 10 sites that were not known from other vertebrates, one of which was specific to late-type rRNA. We identified a subset of sites that changed in methylation status during development and found that some of these could be explained by availability of their cognate SNORDs. Sites that changed during development were enriched in the novel sites revealed in zebrafish. We propose that the early type of rRNA is a specialized form and that its structure and ribose methylation pattern may be an adaptation to features of development, including translation of specific maternal mRNAs.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Tor Erik Jørgensen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Steinar Daae Johansen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Henrik Nielsen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Igor Babiak
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| |
Collapse
|