51
|
Liu J, Jiang Y, Chen L, Qian Z, Zhang Y. Associations between HIFs and tumor immune checkpoints: mechanism and therapy. Discov Oncol 2024; 15:2. [PMID: 38165484 PMCID: PMC10761656 DOI: 10.1007/s12672-023-00836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia, which activates a variety of signaling pathways to enhance tumor cell growth and metabolism, is among the primary features of tumor cells. Hypoxia-inducible factors (HIFs) have a substantial impact on a variety of facets of tumor biology, such as epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and improved radiation resistance. HIFs induce hypoxia-adaptive responses in tumor cells. Many academics have presented preclinical and clinical research targeting HIFs in tumor therapy, highlighting the potential applicability of targeted HIFs. In recent years, the discovery of numerous pharmacological drugs targeting the regulatory mechanisms of HIFs has garnered substantial attention. Additionally, HIF inhibitors have attained positive results when used in conjunction with traditional oncology radiation and/or chemotherapy, as well as with the very promising addition of tumor immunotherapy. Immune checkpoint inhibitors (CPIs), which are employed in a range of cancer treatments over the past decades, are essential in tumor immunotherapy. Nevertheless, the use of immunotherapy has been severely hampered by tumor resistance and treatment-related toxicity. According to research, HIF inhibitors paired with CPIs may be game changers for multiple malignancies, decreasing malignant cell plasticity and cancer therapy resistance, among other things, and opening up substantial new pathways for immunotherapy drug development. The structure, activation mechanisms, and pharmacological sites of action of the HIF family are briefly reviewed in this work. This review further explores the interactions between HIF inhibitors and other tumor immunotherapy components and covers the potential clinical use of HIF inhibitors in combination with CPIs.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China.
| |
Collapse
|
52
|
Wang R, Cai X, Li X, Li J, Liu X, Wang J, Xiao W. USP38 promotes deubiquitination of K11-linked polyubiquitination of HIF1α at Lys769 to enhance hypoxia signaling. J Biol Chem 2024; 300:105532. [PMID: 38072059 PMCID: PMC10805703 DOI: 10.1016/j.jbc.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 01/02/2024] Open
Abstract
HIF1α is one of the master regulators of the hypoxia signaling pathway and its activation is regulated by multiple post-translational modifications (PTMs). Deubiquitination mediated by deubiquitylating enzymes (DUBs) is an essential PTM that mainly modulates the stability of target proteins. USP38 belongs to the ubiquitin-specific proteases (USPs). However, whether USP38 can affect hypoxia signaling is still unknown. In this study, we used quantitative real-time PCR assays to identify USPs that can influence hypoxia-responsive gene expression. We found that overexpression of USP38 increased hypoxia-responsive gene expression, but knockout of USP38 suppressed hypoxia-responsive gene expression under hypoxia. Mechanistically, USP38 interacts with HIF1α to deubiquitinate K11-linked polyubiquitination of HIF1α at Lys769, resulting in stabilization and subsequent activation of HIF1α. In addition, we show that USP38 attenuates cellular ROS and suppresses cell apoptosis under hypoxia. Thus, we reveal a novel role for USP38 in the regulation of hypoxia signaling.
Collapse
Affiliation(s)
- Rui Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, P. R. China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
53
|
Michon M, Müller-Schiffmann A, Lingappa AF, Yu SF, Du L, Deiter F, Broce S, Mallesh S, Crabtree J, Lingappa UF, Macieik A, Müller L, Ostermann PN, Andrée M, Adams O, Schaal H, Hogan RJ, Tripp RA, Appaiah U, Anand SK, Campi TW, Ford MJ, Reed JC, Lin J, Akintunde O, Copeland K, Nichols C, Petrouski E, Moreira AR, Jiang IT, DeYarman N, Brown I, Lau S, Segal I, Goldsmith D, Hong S, Asundi V, Briggs EM, Phyo NS, Froehlich M, Onisko B, Matlack K, Dey D, Lingappa JR, Prasad MD, Kitaygorodskyy A, Solas D, Boushey H, Greenland J, Pillai S, Lo MK, Montgomery JM, Spiropoulou CF, Korth C, Selvarajah S, Paulvannan K, Lingappa VR. A Pan-Respiratory Antiviral Chemotype Targeting a Host Multi-Protein Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.01.17.426875. [PMID: 34931190 PMCID: PMC8687465 DOI: 10.1101/2021.01.17.426875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious virus in multiple cell culture models for all six families of viruses causing most respiratory disease in humans. In animals this chemotype has been demonstrated efficacious for Porcine Epidemic Diarrhea Virus (a coronavirus) and Respiratory Syncytial Virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral lifecycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.
Collapse
Affiliation(s)
- Maya Michon
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | - Li Du
- Vitalant Research Institute, San Francisco, CA, USA
| | - Fred Deiter
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sean Broce
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Jackelyn Crabtree
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | - Lisa Müller
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Marcel Andrée
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Robert J. Hogan
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | - Ralph A. Tripp
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | | | | | - Jonathan C. Reed
- Dept. of Global Health, University of Washington, Seattle, WA, USA
| | - Jim Lin
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Ian Brown
- Prosetta Biosciences, San Francisco, CA, USA
| | - Sharon Lau
- Prosetta Biosciences, San Francisco, CA, USA
| | - Ilana Segal
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Shi Hong
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - John Greenland
- Veterans Administration Medical Center, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Satish Pillai
- Vitalant Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Carsten Korth
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Vishwanath R. Lingappa
- Prosetta Biosciences, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| |
Collapse
|
54
|
Pinheiro‐de‐Sousa I, Fonseca‐Alaniz MH, Giudice G, Valadão IC, Modestia SM, Mattioli SV, Junior RR, Zalmas L, Fang Y, Petsalaki E, Krieger JE. Integrated systems biology approach identifies gene targets for endothelial dysfunction. Mol Syst Biol 2023; 19:e11462. [PMID: 38031960 PMCID: PMC10698507 DOI: 10.15252/msb.202211462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro- and anti-ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro-ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti-ED network was enriched in hypoxia, angiogenesis and cancer-related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease-specific candidate drug targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Iguaracy Pinheiro‐de‐Sousa
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Miriam Helena Fonseca‐Alaniz
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Girolamo Giudice
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Iuri Cordeiro Valadão
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Silvestre Massimo Modestia
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Sarah Viana Mattioli
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- Department of Biophysics and PharmacologyInstitute of Biosciences of Botucatu, Universidade Estadual PaulistaBotucatuBrazil
| | - Ricardo Rosa Junior
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Lykourgos‐Panagiotis Zalmas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusCambridgeUK
- Open Targets, Wellcome Genome CampusCambridgeUK
| | - Yun Fang
- Department of MedicineUniversity of ChicagoChicagoILUSA
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
55
|
Gao F, Hayashi Y, Saravanaperumal SA, Gajdos GB, Syed SA, Bhagwate AV, Ye Z, Zhong J, Zhang Y, Choi EL, Kvasha SM, Kaur J, Paradise BD, Cheng L, Simone BW, Wright AM, Kellogg TA, Kendrick ML, McKenzie TJ, Sun Z, Yan H, Yu C, Bharucha AE, Linden DR, Lee JH, Ordog T. Hypoxia-Inducible Factor 1α Stabilization Restores Epigenetic Control of Nitric Oxide Synthase 1 Expression and Reverses Gastroparesis in Female Diabetic Mice. Gastroenterology 2023; 165:1458-1474. [PMID: 37597632 PMCID: PMC10840755 DOI: 10.1053/j.gastro.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND & AIMS Although depletion of neuronal nitric oxide synthase (NOS1)-expressing neurons contributes to gastroparesis, stimulating nitrergic signaling is not an effective therapy. We investigated whether hypoxia-inducible factor 1α (HIF1A), which is activated by high O2 consumption in central neurons, is a Nos1 transcription factor in enteric neurons and whether stabilizing HIF1A reverses gastroparesis. METHODS Mice with streptozotocin-induced diabetes, human and mouse tissues, NOS1+ mouse neuroblastoma cells, and isolated nitrergic neurons were studied. Gastric emptying of solids and volumes were determined by breath test and single-photon emission computed tomography, respectively. Gene expression was analyzed by RNA-sequencing, microarrays, immunoblotting, and immunofluorescence. Epigenetic assays included chromatin immunoprecipitation sequencing (13 targets), chromosome conformation capture sequencing, and reporter assays. Mechanistic studies used Cre-mediated recombination, RNA interference, and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated epigenome editing. RESULTS HIF1A signaling from physiological intracellular hypoxia was active in mouse and human NOS1+ myenteric neurons but reduced in diabetes. Deleting Hif1a in Nos1-expressing neurons reduced NOS1 protein by 50% to 92% and delayed gastric emptying of solids in female but not male mice. Stabilizing HIF1A with roxadustat (FG-4592), which is approved for human use, restored NOS1 and reversed gastroparesis in female diabetic mice. In nitrergic neurons, HIF1A up-regulated Nos1 transcription by binding and activating proximal and distal cis-regulatory elements, including newly discovered super-enhancers, facilitating RNA polymerase loading and pause-release, and by recruiting cohesin to loop anchors to alter chromosome topology. CONCLUSIONS Pharmacologic HIF1A stabilization is a novel, translatable approach to restoring nitrergic signaling and treating diabetic gastroparesis. The newly recognized effects of HIF1A on chromosome topology may provide insights into physioxia- and ischemia-related organ function.
Collapse
Affiliation(s)
- Fei Gao
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yujiro Hayashi
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Siva Arumugam Saravanaperumal
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gabriella B Gajdos
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sabriya A Syed
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Aditya V Bhagwate
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Zhenqing Ye
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jian Zhong
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yuebo Zhang
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Egan L Choi
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sergiy M Kvasha
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jagneet Kaur
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Brooke D Paradise
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Liang Cheng
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Brandon W Simone
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Alec M Wright
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Todd A Kellogg
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | | | | | - Zhifu Sun
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Huihuang Yan
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Chuanhe Yu
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - David R Linden
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jeong-Heon Lee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota; Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Tamas Ordog
- Enteric NeuroScience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
56
|
Liao Q, Deng H, Wang Z, Yu G, Zhu C, Jia S, Liu W, Bai Y, Sun X, Chen X, Xiao W, Liu X. Deletion of prolyl hydroxylase domain-containing enzyme 3 (phd3) in zebrafish facilitates hypoxia tolerance. J Biol Chem 2023; 299:105420. [PMID: 37923141 PMCID: PMC10724695 DOI: 10.1016/j.jbc.2023.105420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Prolyl hydroxylase domain (PHD)-containing enzyme 3 (PHD3) belongs to the Caenorhabditis elegans gene egl-9 family of prolyl hydroxylases. PHD3 catalyzes proline hydroxylation of hypoxia-inducible factor α (HIF-α) and promotes HIF-α proteasomal degradation through coordination with the pVHL complex under normoxic conditions. However, the relationship between PHD3 and the hypoxic response is not well understood. In this study, we used quantitative real-time PCR assay and O-dianisidine staining to characterize the hypoxic response in zebrafish deficient in phd3. We found that the hypoxia-responsive genes are upregulated and the number of erythrocytes was increased in phd3-null zebrafish compared with their wild-type siblings. On the other hand, we show overexpression of phd3 suppresses HIF-transcriptional activation. In addition, we demonstrate phd3 promotes polyubiquitination of zebrafish hif-1/2α proteins, leading to their proteasomal degradation. Finally, we found that compared with wild-type zebrafish, phd3-null zebrafish are more resistant to hypoxia treatment. Therefore, we conclude phd3 has a role in hypoxia tolerance. These results highlight the importance of modulation of the hypoxia signaling pathway by phd3 in hypoxia adaptation.
Collapse
Affiliation(s)
- Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Hongyan Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; College of Life Science, Wuhan University, Wuhan, P. R.China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Wen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Yao Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R.China.
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R.China.
| |
Collapse
|
57
|
Sarah L, Fujimori DG. Recent developments in catalysis and inhibition of the Jumonji histone demethylases. Curr Opin Struct Biol 2023; 83:102707. [PMID: 37832177 PMCID: PMC10769511 DOI: 10.1016/j.sbi.2023.102707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/15/2023]
Abstract
Histone methylation, one of the most common histone modifications, has fundamental roles in regulating chromatin-based processes. Jumonji histone lysine demethylases (JMJC KDMs) influence regulation of gene transcription through both their demethylation and chromatin scaffolding functions. It has recently been demonstrated that dysregulation of JMJC KDMs contributes to pathogenesis and progression of several diseases, including cancer. These observations have led to an increased interest in modulation of enzymes that regulate lysine methylation. Here, we highlight recent progress in understanding catalysis of JMJC KDMs. Specifically, we focus on recent research advances on elucidation of JMJC KDM substrate recognition and interactomes. We also highlight recently reported JMJC KDM inhibitors and describe their therapeutic potentials and challenges. Finally, we discuss alternative strategies to target these enzymes, which rely on targeting JMJC KDMs accessory domains as well as utilization of the targeted protein degradation strategy.
Collapse
Affiliation(s)
- Letitia Sarah
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco; San Francisco, CA 94158, USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco; San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco; San Francisco, CA 94158, USA.
| |
Collapse
|
58
|
Chen Z, Chen C, Xiao L, Tu R, Yu M, Wang D, Kang W, Han M, Huang H, Liu H, Zhao B, Qing G. HILPS, a long noncoding RNA essential for global oxygen sensing in humans. SCIENCE ADVANCES 2023; 9:eadi1867. [PMID: 37992175 PMCID: PMC10664984 DOI: 10.1126/sciadv.adi1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Adaptation to low levels of oxygen (hypoxia) is a universal biological feature across metazoans. However, the unique mechanisms how different species sense oxygen deprivation remain unresolved. Here, we functionally characterize a novel long noncoding RNA (lncRNA), LOC105369301, which we termed hypoxia-induced lncRNA for polo-like kinase 1 (PLK1) stabilization (HILPS). HILPS exhibits appreciable basal expression exclusively in a wide variety of human normal and cancer cells and is robustly induced by hypoxia-inducible factor 1α (HIF1α). HILPS binds to PLK1 and sequesters it from proteasomal degradation. Stabilized PLK1 directly phosphorylates HIF1α and enhances its stability, constituting a positive feed-forward circuit that reinforces oxygen sensing by HIF1α. HILPS depletion triggers catastrophic adaptation defect during hypoxia in both normal and cancer cells. These findings introduce a mechanism that underlies the HIF1α identity deeply interconnected with PLK1 integrity and identify the HILPS-PLK1-HIF1α pathway as a unique oxygen-sensing axis in the regulation of human physiological and pathogenic processes.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chan Chen
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Lei Xiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Rongfu Tu
- Department of Cancer Precision Medicine, The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Miaomiao Yu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Donghai Wang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Wenqian Kang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Meng Han
- Protein Chemistry and Proteomics Facility, Tsinghua University Technology Center for Protein Research, Beijing 100084, China
| | - Hao Huang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Hudan Liu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guoliang Qing
- Department of Urology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
59
|
Wang L, Wang H. The putative role of ferroptosis in gastric cancer: a review. Eur J Cancer Prev 2023; 32:575-583. [PMID: 37318883 PMCID: PMC10538621 DOI: 10.1097/cej.0000000000000817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Ferroptosis is a unique cell death modality triggered by iron-dependent lipid peroxidation, with cysteine metabolism and glutathione-dependent antioxidant defence responses as the primary triggering mechanisms. Ferroptosis is an independent tumour suppression mechanism and has been implicated in various disorders. In tumourigenesis, ferroptosis plays a dual role in promoting and inhibiting tumours. P53, NFE2L2, BAP1, HIF, and other tumour suppressor genes regulate ferroptosis, releasing damage-associated molecular patterns or lipid metabolites to influence cellular immune responses. Ferroptosis is also involved in tumour suppression and metabolism. The combination of amino acid, lipid, and iron metabolism is involved in the initiation and execution of ferroptosis, and metabolic regulatory mechanisms also play roles in malignancies. Most investigations into ferroptosis in gastric cancer are concentrated on predictive models, not the underlying processes. This review investigates the underlying mechanisms of ferroptosis, tumour suppressor genes, and the tumour microenvironment.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency Medicine, Second Affiliated Hospital of School of Medicine and
| | - Haibin Wang
- Department of Radiology, Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
60
|
Luo H, Wang Q, Yang F, Liu R, Gao Q, Cheng B, Lin X, Huang L, Chen C, Xiang J, Wang K, Qin B, Tang N. Signaling metabolite succinylacetone activates HIF-1α and promotes angiogenesis in GSTZ1-deficient hepatocellular carcinoma. JCI Insight 2023; 8:e164968. [PMID: 37906252 PMCID: PMC10896004 DOI: 10.1172/jci.insight.164968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Aberrant angiogenesis in hepatocellular carcinoma (HCC) is associated with tumor growth, progression, and local or distant metastasis. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a major role in regulating angiogenesis during adaptation of tumor cells to nutrient-deprived microenvironments. Genetic defects in Krebs cycle enzymes, such as succinate dehydrogenase and fumarate hydratase, result in elevation of oncometabolites succinate and fumarate, thereby increasing HIF-1α stability and activating the HIF-1α signaling pathway. However, whether other metabolites regulate HIF-1α stability remains unclear. Here, we reported that deficiency of the enzyme in phenylalanine/tyrosine catabolism, glutathione S-transferase zeta 1 (GSTZ1), led to accumulation of succinylacetone, which was structurally similar to α-ketoglutarate. Succinylacetone competed with α-ketoglutarate for prolyl hydroxylase domain 2 (PHD2) binding and inhibited PHD2 activity, preventing hydroxylation of HIF-1α, thus resulting in its stabilization and consequent expression of vascular endothelial growth factor (VEGF). Our findings suggest that GSTZ1 may serve as an important tumor suppressor owing to its ability to inhibit the HIF-1α/VEGFA axis in HCC. Moreover, we explored the therapeutic potential of HIF-1α inhibitor combined with anti-programmed cell death ligand 1 therapy to effectively prevent HCC angiogenesis and tumorigenesis in Gstz1-knockout mice, suggesting a potentially actionable strategy for HCC treatment.
Collapse
Affiliation(s)
- Huating Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
- Department of Geriatrics, The First Affiliated Hospital
| | - Qiujie Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Fan Yang
- Department of Infectious Diseases, The First Affiliated Hospital
| | - Rui Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital; and
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Bin Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Xue Lin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| |
Collapse
|
61
|
Huang GX, Hallen NR, Lee M, Zheng K, Wang X, Mandanas MV, Djeddi S, Fernandez D, Hacker J, Ryan T, Bergmark RW, Bhattacharyya N, Lee S, Maxfield AZ, Roditi RE, Buchheit KM, Laidlaw TM, Gern JE, Hallstrand TS, Ray A, Wenzel SE, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Increased epithelial mTORC1 activity in chronic rhinosinusitis with nasal polyps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562288. [PMID: 37904989 PMCID: PMC10614789 DOI: 10.1101/2023.10.13.562288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells (EpCs) maintain inflammation are poorly understood. Objective We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation would allow us to define mechanisms by which EpCs perpetuate airway inflammation. Methods Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from eosinophilic and non-eosinophilic CRSwNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to validate our findings. Results Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mTORC1) as a potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing genes as potential sequelae. mTORC1 activity was upregulated in CRSwNP, and ex vivo inhibition demonstrated that mTOR is critical for EpC generation of CXCL8, IL-33, and CXCL2. Across patient samples, the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2 inflammation in severe asthma. Conclusions Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical to both chronic T2 and non-T2 inflammation in CRSwNP and asthma.
Collapse
Affiliation(s)
- George X. Huang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Nils R. Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Kelly Zheng
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | | | - Sarah Djeddi
- Division of Immunology, Boston Children’s Hospital; Boston, MA
| | | | - Jonathan Hacker
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Regan W. Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary; Boston, MA
| | - Stella Lee
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Alice Z. Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Rachel E. Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Kathleen M. Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tanya M. Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - James E. Gern
- Division of Allergy, Immunology, and Rheumatology, University of Wisconsin School of Medicine and Public Health; Madison, WI
| | - Teal S. Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington Medical Center; Seattle, WA
| | - Anuradha Ray
- Department of Immunology, University of Pittsburgh; Pittsburgh, PA
| | - Sally E. Wenzel
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center; Pittsburgh, PA
| | - Joshua A. Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital; Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, MA
| | - Nora A. Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| |
Collapse
|
62
|
Shirole NH, Kaelin WG. von-Hippel Lindau and Hypoxia-Inducible Factor at the Center of Renal Cell Carcinoma Biology. Hematol Oncol Clin North Am 2023; 37:809-825. [PMID: 37270382 PMCID: PMC11315268 DOI: 10.1016/j.hoc.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The most common form of kidney cancer is clear cell renal cell carcinoma (ccRCC). Biallelic VHL tumor suppressor gene inactivation is the usual initiating event in both hereditary (VHL Disease) and sporadic ccRCCs. The VHL protein, pVHL, earmarks the alpha subunits of the HIF transcription factor for destruction in an oxygen-dependent manner. Deregulation of HIF2 drives ccRCC pathogenesis. Drugs inhibiting the HIF2-responsive growth factor VEGF are now mainstays of ccRCC treatment. A first-in-class allosteric HIF2 inhibitor was recently approved for treating VHL Disease-associated neoplasms and appears active against sporadic ccRCC in early clinical trials.
Collapse
Affiliation(s)
- Nitin H Shirole
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - William G Kaelin
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Brigham and Women's Hospital, Harvard Medical School; Howard Hughes Medical Institute.
| |
Collapse
|
63
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
64
|
Kietzmann T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biol 2023; 63:102753. [PMID: 37263060 PMCID: PMC10245123 DOI: 10.1016/j.redox.2023.102753] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Vitamin C is unbeatable - at least when it comes to sales. Of all the vitamin preparations, those containing vitamin C sell best. This is surprising because vitamin C deficiency is extremely rare. Nevertheless, there is still controversy about whether the additional intake of vitamin C supplements is essential for our health. In this context, the possible additional benefit is in most cases merely reduced to the known effect as an antioxidant. However, new findings in recent years on the mechanisms of oxygen-sensing and epigenetic control underpin the multifaceted role of vitamin C in a biological context and have therefore renewed interest in it. In the present article, therefore, known facts are linked to these new key data. In addition, available clinical data on vitamin C use of cancer therapy are summarized.
Collapse
Affiliation(s)
- Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, P.O. Box 3000, 90014, Oulu, Finland.
| |
Collapse
|
65
|
Mikami Y, Grubb BR, Rogers TD, Dang H, Asakura T, Kota P, Gilmore RC, Okuda K, Morton LC, Sun L, Chen G, Wykoff JA, Ehre C, Vilar J, van Heusden C, Livraghi-Butrico A, Gentzsch M, Button B, Stutts MJ, Randell SH, O’Neal WK, Boucher RC. Chronic airway epithelial hypoxia exacerbates injury in muco-obstructive lung disease through mucus hyperconcentration. Sci Transl Med 2023; 15:eabo7728. [PMID: 37285404 PMCID: PMC10664029 DOI: 10.1126/scitranslmed.abo7728] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of β and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.
Collapse
Affiliation(s)
- Yu Mikami
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barbara R. Grubb
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Troy D. Rogers
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rodney C. Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisa C. Morton
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Sun
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason A. Wykoff
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juan Vilar
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Catharina van Heusden
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M. Jackson Stutts
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Scott H. Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
66
|
Horny K, Sproll C, Peiffer L, Furtmann F, Gerhardt P, Gravemeyer J, Stoecklein NH, Spassova I, Becker JC. Mesenchymal-epithelial transition in lymph node metastases of oral squamous cell carcinoma is accompanied by ZEB1 expression. J Transl Med 2023; 21:267. [PMID: 37076857 PMCID: PMC10114373 DOI: 10.1186/s12967-023-04102-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/01/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), an HPV-negative head and neck cancer, frequently metastasizes to the regional lymph nodes but only occasionally beyond. Initial phases of metastasis are associated with an epithelial-mesenchymal transition (EMT), while the consolidation phase is associated with mesenchymal-epithelial transition (MET). This dynamic is referred to as epithelial-mesenchymal plasticity (EMP). While it is known that EMP is essential for cancer cell invasion and metastatic spread, less is known about the heterogeneity of EMP states and even less about the heterogeneity between primary and metastatic lesions. METHODS To assess both the heterogeneity of EMP states in OSCC cells and their effects on stromal cells, we performed single-cell RNA sequencing (scRNAseq) of 5 primary tumors, 9 matching metastatic and 5 tumor-free lymph nodes and re-analyzed publicly available scRNAseq data of 9 additional primary tumors. For examining the cell type composition, we performed bulk transcriptome sequencing. Protein expression of selected genes were confirmed by immunohistochemistry. RESULTS From the 23 OSCC lesions, the single cell transcriptomes of a total of 7263 carcinoma cells were available for in-depth analyses. We initially focused on one lesion to avoid confounding inter-patient heterogeneity and identified OSCC cells expressing genes characteristic of different epithelial and partial EMT stages. RNA velocity and the increase in inferred copy number variations indicated a progressive trajectory towards epithelial differentiation in this metastatic lesion, i.e., cells likely underwent MET. Extension to all samples revealed a less stringent but essentially similar pattern. Interestingly, MET cells show increased activity of the EMT-activator ZEB1. Immunohistochemistry confirmed that ZEB1 was co-expressed with the epithelial marker cornifin B in individual tumor cells. The lack of E-cadherin mRNA expression suggests this is a partial MET. Within the tumor microenvironment we found immunomodulating fibroblasts that were maintained in primary and metastatic OSCC. CONCLUSIONS This study reveals that EMP enables different partial EMT and epithelial phenotypes of OSCC cells, which are endowed with capabilities essential for the different stages of the metastatic process, including maintenance of cellular integrity. During MET, ZEB1 appears to be functionally active, indicating a more complex role of ZEB1 than mere induction of EMT.
Collapse
Affiliation(s)
- Kai Horny
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Christoph Sproll
- Department of Oral- and Maxillofacial Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Lukas Peiffer
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Frauke Furtmann
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Dermatology, University Medicine Essen, 45141, Essen, Germany
| | - Patricia Gerhardt
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ivelina Spassova
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Dermatology, University Medicine Essen, 45141, Essen, Germany
| | - Jürgen C Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45141, Essen, Germany.
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Department of Dermatology, University Medicine Essen, 45141, Essen, Germany.
| |
Collapse
|
67
|
Okuda C, Ueda Y, Muroi M, Sanada E, Osada H, Shiono Y, Kimura KI, Takeda K, Kawaguchi K, Kataoka T. Allantopyrone A interferes with the degradation of hypoxia-inducible factor 1α protein by reducing proteasome activity in human fibrosarcoma HT-1080 cells. J Antibiot (Tokyo) 2023; 76:324-334. [PMID: 36997727 DOI: 10.1038/s41429-023-00610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Allantopyrone A is an α-pyrone metabolite that was originally isolated from the endophytic fungus Allantophomopsis lycopodina KS-97. We previously demonstrated that allantopyrone A exhibits anti-cancer, anti-inflammatory, and neuroprotective activities. In the present study, we showed that allantopyrone A up-regulated the protein expression of hypoxia-inducible factor (HIF)-1α in human fibrosarcoma HT-1080 cells. It also up-regulated the mRNA expression of BNIP3 and ENO1, but not other HIF target genes or HIF1A. Allantopyrone A did not inhibit the prolyl hydroxylation of HIF-1α, but enhanced the ubiquitination of cellular proteins. Consistent with this result, chymotrypsin-like and trypsin-like proteasome activities were reduced, but not completely inactivated by allantopyrone A. Allantopyrone A decreased the amount of proteasome catalytic subunits. Therefore, the present results showed that allantopyrone A interfered with the degradation of HIF-1α protein by reducing proteasome activity in human fibrosarcoma HT-1080 cells.
Collapse
|
68
|
De Vitis C, Battaglia AM, Pallocca M, Santamaria G, Mimmi MC, Sacco A, De Nicola F, Gaspari M, Salvati V, Ascenzi F, Bruschini S, Esposito A, Ricci G, Sperandio E, Massacci A, Prestagiacomo LE, Vecchione A, Ricci A, Sciacchitano S, Salerno G, French D, Aversa I, Cereda C, Fanciulli M, Chiaradonna F, Solito E, Cuda G, Costanzo F, Ciliberto G, Mancini R, Biamonte F. ALDOC- and ENO2- driven glucose metabolism sustains 3D tumor spheroids growth regardless of nutrient environmental conditions: a multi-omics analysis. J Exp Clin Cancer Res 2023; 42:69. [PMID: 36945054 PMCID: PMC10031988 DOI: 10.1186/s13046-023-02641-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Matteo Pallocca
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | | | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesca De Nicola
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania ''Luigi Vanvitelli'', Naples, Italy
| | - Eleonora Sperandio
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Alice Massacci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Licia Elvira Prestagiacomo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Alberto Ricci
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Deborah French
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | | | - Egle Solito
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Magna Graecia University of Catanzaro, Interdepartmental Centre of Services, Catanzaro, Italy
| | - Gennaro Ciliberto
- Scientific Director, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy.
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| |
Collapse
|
69
|
Joseph SK, Migliore NR, Olivieri A, Torroni A, Owings AC, DeGiorgio M, Ordóñez WG, Aguilú JO, González-Andrade F, Achilli A, Lindo J. Genomic evidence for adaptation to tuberculosis in the Andes before European contact. iScience 2023; 26:106034. [PMID: 36824277 PMCID: PMC9941198 DOI: 10.1016/j.isci.2023.106034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Most studies focusing on human high-altitude adaptation in the Andean highlands have thus far been focused on Peruvian populations. We present high-coverage whole genomes from Indigenous people living in the Ecuadorian highlands and perform multi-method scans to detect positive natural selection. We identified regions of the genome that show signals of strong selection to both cardiovascular and hypoxia pathways, which are distinct from those uncovered in Peruvian populations. However, the strongest signals of selection were related to regions of the genome that are involved in immune function related to tuberculosis. Given our estimated timing of this selection event, the Indigenous people of Ecuador may have adapted to Mycobacterium tuberculosis thousands of years before the arrival of Europeans. Furthermore, we detect a population collapse that coincides with the arrival of Europeans, which is more severe than other regions of the Andes, suggesting differing effects of contact across high-altitude populations.
Collapse
Affiliation(s)
- Sophie K. Joseph
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Amanda C. Owings
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | - Fabricio González-Andrade
- Translational Medicine Unit, Central University of Ecuador, Faculty of Medical Sciences, Iquique N14-121 y Sodiro-Itchimbia, Sector El Dorado, 170403 Quito, Ecuador
| | - Alessandro Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
70
|
Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F. Reactive Oxygen Species and NRF2 Signaling, Friends or Foes in Cancer? Biomolecules 2023; 13:biom13020353. [PMID: 36830722 PMCID: PMC9953152 DOI: 10.3390/biom13020353] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The imbalance between reactive oxygen species (ROS) production and clearance causes oxidative stress and ROS, which play a central role in regulating cell and tissue physiology and pathology. Contingent upon concentration, ROS influence cancer development in contradictory ways, either stimulating cancer survival and growth or causing cell death. Cells developed evolutionarily conserved programs to sense and adapt redox the fluctuations to regulate ROS as either signaling molecules or toxic insults. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2)-KEAP1 system is the master regulator of cellular redox and metabolic homeostasis. NRF2 has Janus-like roles in carcinogenesis and cancer development. Short-term NRF2 activation suppresses tissue injury, inflammation, and cancer initiation. However, cancer cells often exhibit constitutive NRF2 activation due to genetic mutations or oncogenic signaling, conferring advantages for cancer cells' survival and growth. Emerging evidence suggests that NRF2 hyperactivation, as an adaptive cancer phenotype under stressful tumor environments, regulates all hallmarks of cancer. In this review, we summarized the source of ROS, regulation of ROS signaling, and cellular sensors for ROS and oxygen (O2), we reviewed recent progress on the regulation of ROS generation and NRF2 signaling with a focus on the new functions of NRF2 in cancer development that reach beyond what we originally envisioned, including regulation of cancer metabolism, autophagy, macropinocytosis, unfolded protein response, proteostasis, and circadian rhythm, which, together with anti-oxidant and drug detoxification enzymes, contributes to cancer development, metastasis, and anticancer therapy resistance.
Collapse
Affiliation(s)
- Ruolei Wang
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lirong Liang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence: (A.U.); (F.H.); Tel.: +75-251-5332 (A.U.); +86-21-5132-2501 (F.H.)
| | - Feng He
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (A.U.); (F.H.); Tel.: +75-251-5332 (A.U.); +86-21-5132-2501 (F.H.)
| |
Collapse
|
71
|
Su X, Su Z, Xu W. ROS elevate HIF-1α phosphorylation for insect lifespan through the CK2-MKP3-p38 pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119389. [PMID: 36372111 DOI: 10.1016/j.bbamcr.2022.119389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Diapause in insects is akin to dauer in Caenorhabditis elegans and hibernation in vertebrates, characterized by metabolic depression and lifespan extension. Previous studies have shown that reactive oxygen species (ROS) and hypoxia-inducible factor-1α (HIF-1α) in brains of diapause-destined pupae are more abundant than those in nondiapause-destined pupae in Helicoverpa armigera, but the ROS regulating HIF-1α activity remain unknown. Here, we showed that high ROS levels in brains of diapause-destined pupae resulted in low casein kinase 2 (CK2) activity and that downregulation of CK2 caused low expression of mitogen-activated protein kinase phosphatase 3 (MKP3), which is an inhibitor of p-p38. Thus, high p-p38 levels accumulate to improve HIF-1α activity via activating HIF-1α phosphorylation at the S732 residue to regulate insect diapause. This is the first report showing that a new pathway, ROS-CK2-MKP3-p38, regulates HIF-1α activity for lifespan in insects.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhiren Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Weihua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
72
|
Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma. J Zhejiang Univ Sci B 2023; 24:32-49. [PMID: 36632749 PMCID: PMC9837376 DOI: 10.1631/jzus.b2200269] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypoxia, as an important hallmark of the tumor microenvironment, is a major cause of oxidative stress and plays a central role in various malignant tumors, including glioblastoma. Elevated reactive oxygen species (ROS) in a hypoxic microenvironment promote glioblastoma progression; however, the underlying mechanism has not been clarified. Herein, we found that hypoxia promoted ROS production, and the proliferation, migration, and invasion of glioblastoma cells, while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine (NAC) and diphenyleneiodonium chloride (DPI). Hypoxia-induced ROS activated hypoxia-inducible factor-1α (HIF-1α) signaling, which enhanced cell migration and invasion by epithelial-mesenchymal transition (EMT). Furthermore, the induction of serine protease inhibitor family E member 1 (SERPINE1) was ROS-dependent under hypoxia, and HIF-1α mediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region, thereby facilitating glioblastoma migration and invasion. Taken together, our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway, and that targeting ROS may be a promising therapeutic strategy for glioblastoma.
Collapse
|
73
|
Mesa-Ciller C, Turiel G, Guajardo-Grence A, Lopez-Rodriguez AB, Egea J, De Bock K, Aragonés J, Urrutia AA. Unique expression of the atypical mitochondrial subunit NDUFA4L2 in cerebral pericytes fine tunes HIF activity in response to hypoxia. J Cereb Blood Flow Metab 2023; 43:44-58. [PMID: 35929074 PMCID: PMC9875353 DOI: 10.1177/0271678x221118236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A central response to insufficient cerebral oxygen delivery is a profound reprograming of metabolism, which is mainly regulated by the Hypoxia Inducible Factor (HIF). Among other responses, HIF induces the expression of the atypical mitochondrial subunit NDUFA4L2. Surprisingly, NDUFA4L2 is constitutively expressed in the brain in non-hypoxic conditions. Analysis of publicly available single cell transcriptomic (scRNA-seq) data sets coupled with high-resolution multiplexed fluorescence RNA in situ hybridization (RNA F.I.S.H.) revealed that in the murine and human brain NDUFA4L2 is exclusively expressed in mural cells with the highest levels found in pericytes and declining along the arteriole-arterial smooth muscle cell axis. This pattern was mirrored by COX4I2, another atypical mitochondrial subunit. High NDUFA4L2 expression was also observed in human brain pericytes in vitro, decreasing when pericytes are muscularized and further induced by HIF stabilization in a PHD2/PHD3 dependent manner. In vivo, Vhl conditional inactivation in pericyte targeting Ng2-cre transgenic mice dramatically induced NDUFA4L2 expression. Finally NDUFA4L2 inactivation in pericytes increased oxygen consumption and therefore the degree of HIF pathway induction in hypoxia. In conclusion our work reveals that NDUFA4L2 together with COX4I2 is a key hypoxic-induced metabolic marker constitutively expressed in pericytes coupling mitochondrial oxygen consumption and cellular hypoxia response.
Collapse
Affiliation(s)
- Claudia Mesa-Ciller
- Unidad de Investigación, Hospital de Santa Cristina, Instituto de Investigación del Hospital Universitario La Princesa, Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Guillermo Turiel
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Andrea Guajardo-Grence
- Unidad de Investigación, Hospital de Santa Cristina, Instituto de Investigación del Hospital Universitario La Princesa, Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Belen Lopez-Rodriguez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Julián Aragonés
- Unidad de Investigación, Hospital de Santa Cristina, Instituto de Investigación del Hospital Universitario La Princesa, Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Andrés A Urrutia
- Unidad de Investigación, Hospital de Santa Cristina, Instituto de Investigación del Hospital Universitario La Princesa, Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
74
|
Yang SL, Tan HX, Lai ZZ, Peng HY, Yang HL, Fu Q, Wang HY, Li DJ, Li MQ. An active glutamine/α-ketoglutarate/HIF-1α axis prevents pregnancy loss by triggering decidual IGF1 +GDF15 +NK cell differentiation. Cell Mol Life Sci 2022; 79:611. [PMID: 36449080 PMCID: PMC11803016 DOI: 10.1007/s00018-022-04639-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Deficiency of decidual NK (dNK) cell number and function has been widely regarded as an important cause of spontaneous abortion. However, the metabolic mechanism underlying the crosstalk between dNK cells and embryonic trophoblasts during early pregnancy remains largely unknown. Here, we observed that enriched glutamine and activated glutaminolysis in dNK cells contribute to trophoblast invasion and embryo growth by insulin-like growth factor-1 (IGF-1) and growth differentiation factor-15 (GDF-15) secretion. Mechanistically, these processes are dependent on the downregulation of EGLN1-HIF-1α mediated by α-ketoglutarate (α-KG). Blocking glutaminolysis with the GLS inhibitor BPTES or the glutamate dehydrogenase inhibitor EGCG leads to early embryo implantation failure, spontaneous abortion and/or fetal growth restriction in pregnant mice with impaired trophoblast invasion. Additionally, α-KG supplementation significantly alleviated pregnancy loss mediated by defective glutaminolysis in vivo, suggesting that inactivated glutamine/α-ketoglutarate metabolism in dNK cells impaired trophoblast invasion and induced pregnancy loss.
Collapse
Affiliation(s)
- Shao-Liang Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hai-Xia Tan
- Department of Obstetrics and Gynecology, Zhangye People's Hospital of HeXi College, Zhangye, Gansu, China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hai-Yan Peng
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Qiang Fu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Hai-Yan Wang
- Department of Gynecology of Integrated Traditional Chinese and Western Medicine, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
- Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
- Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.
| |
Collapse
|
75
|
Li ZL, Wang B, Wen Y, Wu QL, Lv LL, Liu BC. Disturbance of Hypoxia Response and Its Implications in Kidney Diseases. Antioxid Redox Signal 2022; 37:936-955. [PMID: 35044244 DOI: 10.1089/ars.2021.0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The disturbance of the hypoxia response system is closely related to human diseases, because it is essential for the maintenance of homeostasis. Given the significant role of the hypoxia response system in human health, therapeutic applications targeting prolyl hydroxylase-hypoxia-inducible factor (HIF) signaling have been attempted. Thus, systemically reviewing the hypoxia response-based therapeutic strategies is of great significance. Recent Advances: Disturbance of the hypoxia response is a characteristic feature of various diseases. Targeting the hypoxia response system is, thus, a promising therapeutic strategy. Interestingly, several compounds and drugs are currently under clinical trials, and some have already been approved for use in the treatment of certain human diseases. Critical Issues: We summarize the molecular mechanisms of the hypoxia response system and address the potential therapeutic implications in kidney diseases. Given that the effects of hypoxia response in kidney diseases are likely to depend on the pathological context, specific cell types, and the differences in the activation pattern of HIF isoforms, the precise application is critical for the treatment of kidney diseases. Although HIF-PHIs (HIF-PHD inhibitors) have been proven to be effective and well tolerated in chronic kidney disease patients with anemia, the potential on-target consequence of HIF activation and some outstanding questions warrant further consideration. Future Direction: The mechanism of the hypoxia response system disturbance remains unclear. Elucidation of the molecular mechanism of hypoxia response and its precise effects on kidney diseases warrants clarification. Considering the complexity of the hypoxia response system and multiple biological processes controlled by HIF signaling, the development of more specific inhibitors is highly warranted. Antioxid. Redox Signal. 37, 936-955.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
76
|
Nathan JA. Chromatin oxygen sensing by histone H3 prolyl hydroxylation. Nat Genet 2022; 54:1585-1586. [PMID: 36347945 DOI: 10.1038/s41588-022-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
77
|
Methyltransferase SMYD3 impairs hypoxia tolerance by augmenting hypoxia signaling independent of its enzymatic activity. J Biol Chem 2022; 298:102633. [PMID: 36273580 PMCID: PMC9692045 DOI: 10.1016/j.jbc.2022.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-inducible factor (HIF)1α, a main transcriptional regulator of the cellular response to hypoxia, also plays important roles in oxygen homeostasis of aerobic organisms, which is regulated by multiple mechanisms. However, the full cellular response to hypoxia has not been elucidated. In this study, we found that expression of SMYD3, a methyltransferase, augments hypoxia signaling independent of its enzymatic activity. We demonstrated SMYD3 binds to and stabilizes HIF1α via co-immunoprecipitation and Western blot assays, leading to the enhancement of HIF1α transcriptional activity under hypoxia conditions. In addition, the stabilization of HIF1α by SMYD3 is independent of HIF1α hydroxylation by prolyl hydroxylases and the intactness of the von Hippel-Lindau ubiquitin ligase complex. Furthermore, we showed SMYD3 induces reactive oxygen species accumulation and promotes hypoxia-induced cell apoptosis. Consistent with these results, we found smyd3-null zebrafish exhibit higher hypoxia tolerance compared to their wildtype siblings. Together, these findings define a novel role of SMYD3 in affecting hypoxia signaling and demonstrate that SMYD3-mediated HIF1α stabilization augments hypoxia signaling, leading to the impairment of hypoxia tolerance.
Collapse
|
78
|
Song B, Modjewski LD, Kapust N, Mizrahi I, Martin WF. The origin and distribution of the main oxygen sensing mechanism across metazoans. Front Physiol 2022; 13:977391. [PMID: 36324306 PMCID: PMC9618697 DOI: 10.3389/fphys.2022.977391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen sensing mechanisms are essential for metazoans, their origin and evolution in the context of oxygen in Earth history are of interest. To trace the evolution of a main oxygen sensing mechanism among metazoans, the hypoxia induced factor, HIF, we investigated the phylogenetic distribution and phylogeny of 11 of its components across 566 eukaryote genomes. The HIF based oxygen sensing machinery in eukaryotes can be traced as far back as 800 million years (Ma) ago, likely to the last metazoan common ancestor (LMCA), and arose at a time when the atmospheric oxygen content corresponded roughly to the Pasteur point, or roughly 1% of present atmospheric level (PAL). By the time of the Cambrian explosion (541–485 Ma) as oxygen levels started to approach those of the modern atmosphere, the HIF system with its key components HIF1α, HIF1β, PHD1, PHD4, FIH and VHL was well established across metazoan lineages. HIF1α is more widely distributed and therefore may have evolved earlier than HIF2α and HIF3α, and HIF1β and is more widely distributed than HIF2β in invertebrates. PHD1, PHD4, FIH, and VHL appear in all 13 metazoan phyla. The O2 consuming enzymes of the pathway, PHDs and FIH, have a lower substrate affinity, Km, for O2 than terminal oxidases in the mitochondrial respiratory chain, in line with their function as an environmental signal to switch to anaerobic energy metabolic pathways. The ancient HIF system has been conserved and widespread during the period when metazoans evolved and diversified together with O2 during Earth history.
Collapse
Affiliation(s)
- Bing Song
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Luca David Modjewski
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nils Kapust
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be’er-Sheva, Israel
| | - William F. Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- *Correspondence: William F. Martin,
| |
Collapse
|
79
|
Imran Khan M. Exploration of metabolic responses towards hypoxia mimetic DMOG in cancer cells by using untargeted metabolomics. Saudi J Biol Sci 2022; 29:103426. [PMID: 36091722 PMCID: PMC9460158 DOI: 10.1016/j.sjbs.2022.103426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Hypoxia is considered as one of the most crucial elements of tumor microenvironment. The hypoxia inducible transcription factors (HIF-1/2) are used by the cancer cells to adapt hypoxic microenvironment through regulating the expression of various target genes, including metabolic enzymes. Dimethyloxalylglycine (DMOG), a hypoxic mimetic used for HIF stabilisation in cell and animal models, also demonstrates multiple metabolic effects. In past, it was shown that in cancer cells, DMOG treatment alters mitochondrial ATP production, glycolysis, respiration etc. However, a global landscape of metabolic level alteration in cancer cells during DMOG treatment is still not established. In the current work, the metabolic landscape of cancer cells during DMOG treatment is explored by using untargeted metabolomics approach. Results showed that DMOG treatment primarily alters the one carbon and lipid metabolism. The levels of one-carbon metabolism related metabolites like serine, ornithine, and homomethionine levels significantly altered during DMOG treatment. Further, DMOG treatment reduces the global fatty acyls like palmitic acids, stearic acids, and arachidonic acid levels in cancer cell lines. Additionally, we found an alteration in glycolytic metabolites known to be regulated by hypoxia in cancer cell lines. Collectively, the results provided novel insights into the metabolic impact of DMOG on cancer cells and showed that the use of DMOG to induce hypoxia yields similar metabolic features relative to physiological hypoxia.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
80
|
Gan P, Sun M, Wu H, Ke J, Dong X, Chen F. A novel mechanism for inhibiting proliferation of rheumatoid arthritis fibroblast-like synoviocytes: geniposide suppresses HIF-1α accumulation in the hypoxic microenvironment of synovium. Inflamm Res 2022; 71:1375-1388. [DOI: 10.1007/s00011-022-01636-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
|
81
|
Ren Z, Potenza DM, Ma Y, Ajalbert G, Hoogewijs D, Ming XF, Yang Z. Role of Arginase-II in Podocyte Injury under Hypoxic Conditions. Biomolecules 2022; 12:biom12091213. [PMID: 36139052 PMCID: PMC9496188 DOI: 10.3390/biom12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia plays a crucial role in acute and chronic renal injury, which is attributable to renal tubular and glomerular cell damage. Some studies provide evidence that hypoxia-dependent upregulation of the mitochondrial enzyme arginase type-II (Arg-II) in tubular cells promotes renal tubular injury. It is, however, not known whether Arg-II is also expressed in glomerular cells, particularly podocytes under hypoxic conditions, contributing to hypoxia-induced podocyte injury. The effects of hypoxia on human podocyte cells (AB8/13) in cultures and on isolated kidneys from wild-type (wt) and arg-ii gene-deficient (arg-ii−/−) mice ex vivo, as well as on mice of the two genotypes in vivo, were investigated, respectively. We found that the Arg-II levels were enhanced in cultured podocytes in a time-dependent manner over 48 h, which was dependent on the stabilization of hypoxia-inducible factor 1α (HIF1α). Moreover, a hypoxia-induced derangement of cellular actin cytoskeletal fibers, a decrease in podocin, and an increase in mitochondrial ROS (mtROS) generation—as measured by MitoSOX—were inhibited by adenoviral-mediated arg-ii gene silencing. These effects of hypoxia on podocyte injury were mimicked by the HIFα stabilizing drug DMOG, which inhibits prolyl hydroxylases (PHD), the enzymes involved in HIFα degradation. The silencing of arg-ii prevented the detrimental effects of DMOG on podocytes. Furthermore, the inhibition of mtROS generation by rotenone—the inhibitor of respiration chain complex-I—recapitulated the protective effects of arg-ii silencing on podocytes under hypoxic conditions. Moreover, the ex vivo experiments with isolated kidney tissues and the in vivo experiments with mice exposed to hypoxic conditions showed increased Arg-II levels in podocytes and decreased podocyte markers regarding synaptopodin in wt mice but not in arg-ii−/− mice. While age-associated albuminuria was reduced in the arg-ii−/− mice, the hypoxia-induced increase in albuminuria was, however, not significantly affected in the arg-ii−/−. Our study demonstrates that Arg-II in podocytes promotes cell injury. Arg-ii ablation seems insufficient to protect mice in vivo against a hypoxia-induced increase in albuminuria, but it does reduce albuminuria in aging.
Collapse
Affiliation(s)
- Zhilong Ren
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Duilio Michele Potenza
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yiqiong Ma
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guillaume Ajalbert
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - David Hoogewijs
- Integrative Oxygen Physiology, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| | - Zhihong Yang
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| |
Collapse
|
82
|
Gong Y, Behera G, Erber L, Luo A, Chen Y. HypDB: A functionally annotated web-based database of the proline hydroxylation proteome. PLoS Biol 2022; 20:e3001757. [PMID: 36026437 PMCID: PMC9455854 DOI: 10.1371/journal.pbio.3001757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/08/2022] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
Proline hydroxylation (Hyp) regulates protein structure, stability, and protein-protein interaction. It is widely involved in diverse metabolic and physiological pathways in cells and diseases. To reveal functional features of the Hyp proteome, we integrated various data sources for deep proteome profiling of the Hyp proteome in humans and developed HypDB (https://www.HypDB.site), an annotated database and web server for Hyp proteome. HypDB provides site-specific evidence of modification based on extensive LC-MS analysis and literature mining with 14,413 nonredundant Hyp sites on 5,165 human proteins including 3,383 Class I and 4,335 Class II sites. Annotation analysis revealed significant enrichment of Hyp on key functional domains and tissue-specific distribution of Hyp abundance across 26 types of human organs and fluids and 6 cell lines. The network connectivity analysis further revealed a critical role of Hyp in mediating protein-protein interactions. Moreover, the spectral library generated by HypDB enabled data-independent analysis (DIA) of clinical tissues and the identification of novel Hyp biomarkers in lung cancer and kidney cancer. Taken together, our integrated analysis of human proteome with publicly accessible HypDB revealed functional diversity of Hyp substrates and provides a quantitative data source to characterize Hyp in pathways and diseases.
Collapse
Affiliation(s)
- Yao Gong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
- Bioinformatics and Computational Biology Program, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Gaurav Behera
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
- Bioinformatics and Computational Biology Program, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
83
|
Tamukong PK, Kuhlmann P, You S, Su S, Wang Y, Yoon S, Gong J, Figlin RA, Janes JL, Freedland SJ, Halabi S, Small EJ, Rini BI, Kim HL. Hypoxia-inducible factor pathway genes predict survival in metastatic clear cell renal cell carcinoma. Urol Oncol 2022; 40:495.e1-495.e10. [DOI: 10.1016/j.urolonc.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022]
|
84
|
Invited Commentary: Prolyl Hydroxylase Inhibitors for Cardioprotection: A Cautiously Optimistic Outlook. J Am Coll Surg 2022; 235:254-256. [PMID: 35839399 DOI: 10.1097/xcs.0000000000000266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
85
|
Moon JS, Riopel M, Seo JB, Herrero-Aguayo V, Isaac R, Lee YS. HIF-2α Preserves Mitochondrial Activity and Glucose Sensing in Compensating β-Cells in Obesity. Diabetes 2022; 71:1508-1524. [PMID: 35472707 PMCID: PMC9233300 DOI: 10.2337/db21-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022]
Abstract
In obesity, increased mitochondrial metabolism with the accumulation of oxidative stress leads to mitochondrial damage and β-cell dysfunction. In particular, β-cells express antioxidant enzymes at relatively low levels and are highly vulnerable to oxidative stress. Early in the development of obesity, β-cells exhibit increased glucose-stimulated insulin secretion in order to compensate for insulin resistance. This increase in β-cell function under the condition of enhanced metabolic stress suggests that β-cells possess a defense mechanism against increased oxidative damage, which may become insufficient or decline at the onset of type 2 diabetes. Here, we show that metabolic stress induces β-cell hypoxia inducible factor 2α (HIF-2α), which stimulates antioxidant gene expression (e.g., Sod2 and Cat) and protects against mitochondrial reactive oxygen species (ROS) and subsequent mitochondrial damage. Knockdown of HIF-2α in Min6 cells exaggerated chronic high glucose-induced mitochondrial damage and β-cell dysfunction by increasing mitochondrial ROS levels. Moreover, inducible β-cell HIF-2α knockout mice developed more severe β-cell dysfunction and glucose intolerance on a high-fat diet, along with increased ROS levels and decreased islet mitochondrial mass. Our results provide a previously unknown mechanism through which β-cells defend against increased metabolic stress to promote β-cell compensation in obesity.
Collapse
Affiliation(s)
- Jae-Su Moon
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Matthew Riopel
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jong Bae Seo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Vicente Herrero-Aguayo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Maimonides Institute of Biomedical Research of Cordoba, Cordoba, Spain
| | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA
- Corresponding author: Yun Sok Lee,
| |
Collapse
|
86
|
Abstract
Cellular hypoxia occurs when the demand for sufficient molecular oxygen needed to produce the levels of ATP required to perform physiological functions exceeds the vascular supply, thereby leading to a state of oxygen depletion with the associated risk of bioenergetic crisis. To protect against the threat of hypoxia, eukaryotic cells have evolved the capacity to elicit oxygen-sensitive adaptive transcriptional responses driven primarily (although not exclusively) by the hypoxia-inducible factor (HIF) pathway. In addition to the canonical regulation of HIF by oxygen-dependent hydroxylases, multiple other input signals, including gasotransmitters, non-coding RNAs, histone modifiers and post-translational modifications, modulate the nature of the HIF response in discreet cell types and contexts. Activation of HIF induces various effector pathways that mitigate the effects of hypoxia, including metabolic reprogramming and the production of erythropoietin. Drugs that target the HIF pathway to induce erythropoietin production are now approved for the treatment of chronic kidney disease-related anaemia. However, HIF-dependent changes in cell metabolism also have profound implications for functional responses in innate and adaptive immune cells, and thereby heavily influence immunity and the inflammatory response. Preclinical studies indicate a potential use of HIF therapeutics to treat inflammatory diseases, such as inflammatory bowel disease. Understanding the links between HIF, cellular metabolism and immunity is key to unlocking the full therapeutic potential of drugs that target the HIF pathway. Hypoxia-dependent changes in cellular metabolism have important implications for the effective functioning of multiple immune cell subtypes. This Review describes the inputs that shape the hypoxic response in individual cell types and contexts, and the implications of this response for cellular metabolism and associated alterations in immune cell function. Hypoxia is a common feature of particular microenvironments and at sites of immunity and inflammation, resulting in increased activity of the hypoxia-inducible factor (HIF). In addition to hypoxia, multiple inputs modulate the activity of the HIF pathway, allowing nuanced downstream responses in discreet cell types and contexts. HIF-dependent changes in cellular metabolism mitigate the effects of hypoxia and ensure that energy needs are met under conditions in which oxidative phosphorylation is reduced. HIF-dependent changes in metabolism also profoundly affect the phenotype and function of immune cells. The immunometabolic effects of HIF have important implications for targeting the HIF pathway in inflammatory disease.
Collapse
Affiliation(s)
- Cormac T Taylor
- School of Medicine, The Conway Institute & Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
87
|
Comparative Transcriptome Analysis of Organ-Specific Adaptive Responses to Hypoxia Provides Insights to Human Diseases. Genes (Basel) 2022; 13:genes13061096. [PMID: 35741857 PMCID: PMC9222487 DOI: 10.3390/genes13061096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
The common carp is a hypoxia-tolerant fish, and the understanding of its ability to live in low-oxygen environments has been applied to human health issues such as cancer and neuron degeneration. Here, we investigated differential gene expression changes during hypoxia in five common carp organs including the brain, the gill, the head kidney, the liver, and the intestine. Based on RNA sequencing, gene expression changes under hypoxic conditions were detected in over 1800 genes in common carp. The analysis of these genes further revealed that all five organs had high expression-specific properties. According to the results of the GO and KEGG, the pathways involved in the adaptation to hypoxia provided information on responses specific to each organ in low oxygen, such as glucose metabolism and energy usage, cholesterol synthesis, cell cycle, circadian rhythm, and dopamine activation. DisGeNET analysis showed that some human diseases such as cancer, diabetes, epilepsy, metabolism diseases, and social ability disorders were related to hypoxia-regulated genes. Our results suggested that common carp undergo various gene regulations in different organs under hypoxic conditions, and integrative bioinformatics may provide some potential targets for advancing disease research.
Collapse
|
88
|
The multifaceted role of EGLN family prolyl hydroxylases in cancer: going beyond HIF regulation. Oncogene 2022; 41:3665-3679. [PMID: 35705735 DOI: 10.1038/s41388-022-02378-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
EGLN1, EGLN2 and EGLN3 are proline hydroxylase whose main function is the regulation of the HIF factors. They work as oxygen sensors and are the main responsible of HIFα subunits degradation in normoxia. Being their activity strictly oxygen-dependent, when oxygen tension lowers, their control on HIFα is released, leading to activation of systemic and cellular response to hypoxia. However, EGLN family members activity is not limited to HIF modulation, but it includes the regulation of essential mechanisms for cell survival, cell cycle metabolism, proliferation and transcription. This is due to their reported hydroxylase activity on a number of non-HIF targets and sometimes to hydroxylase-independent functions. For these reasons, EGLN enzymes appear fundamental for development and progression of different cancer types, playing either a tumor-suppressive or a tumor-promoting role, according to EGLN isoform and to tumor context. Notably, EGLN1, the most studied isoform, has been shown to have also a central role in tumor micro-environment modulation, mediating CAF activation and impairing HIF1α -related angiogenesis, thus covering an important function in cancer metastasis promotion. Considering the recent knowledge acquired on EGLNs, the possibility to target these enzymes for cancer treatment is emerging. However, due to their multifaceted and controversial roles in different cancer types, the use of EGLN inhibitors as anti-cancer drugs should be carefully evaluated in each context.
Collapse
|
89
|
McCabe EM, Lee S, Rasmussen TP. Belzutifan (Welireg™) for von Hippel Lindau disease. Trends Pharmacol Sci 2022; 43:882-883. [PMID: 35691787 DOI: 10.1016/j.tips.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Evan M McCabe
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - SooWan Lee
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Theodore P Rasmussen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
90
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
91
|
Bauer R, Meyer SP, Kloss KA, Guerrero Ruiz VM, Reuscher S, Zhou Y, Fuhrmann DC, Zarnack K, Schmid T, Brüne B. Functional RNA Dynamics Are Progressively Governed by RNA Destabilization during the Adaptation to Chronic Hypoxia. Int J Mol Sci 2022; 23:ijms23105824. [PMID: 35628634 PMCID: PMC9144826 DOI: 10.3390/ijms23105824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Previous studies towards reduced oxygen availability have mostly focused on changes in total mRNA expression, neglecting underlying transcriptional and post-transcriptional events. Therefore, we generated a comprehensive overview of hypoxia-induced changes in total mRNA expression, global de novo transcription, and mRNA stability in monocytic THP-1 cells. Since hypoxic episodes often persist for prolonged periods, we further compared the adaptation to acute and chronic hypoxia. While total mRNA changes correlated well with enhanced transcription during short-term hypoxia, mRNA destabilization gained importance under chronic conditions. Reduced mRNA stability not only added to a compensatory attenuation of immune responses, but also, most notably, to the reduction in nuclear-encoded mRNAs associated with various mitochondrial functions. These changes may prevent the futile production of new mitochondria under conditions where mitochondria cannot exert their full metabolic function and are indeed actively removed by mitophagy. The post-transcriptional mode of regulation might further allow for the rapid recovery of mitochondrial capacities upon reoxygenation. Our results provide a comprehensive resource of functional mRNA expression dynamics and underlying transcriptional and post-transcriptional regulatory principles during the adaptation to hypoxia. Furthermore, we uncover that RNA stability regulation controls mitochondrial functions in the context of hypoxia.
Collapse
Affiliation(s)
- Rebekka Bauer
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
| | - Sofie Patrizia Meyer
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
| | - Karolina Anna Kloss
- Faculty of Biological Sciences, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, 60438 Frankfurt, Germany; (K.A.K.); (S.R.); (Y.Z.)
| | - Vanesa Maria Guerrero Ruiz
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
| | - Samira Reuscher
- Faculty of Biological Sciences, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, 60438 Frankfurt, Germany; (K.A.K.); (S.R.); (Y.Z.)
| | - You Zhou
- Faculty of Biological Sciences, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, 60438 Frankfurt, Germany; (K.A.K.); (S.R.); (Y.Z.)
| | - Dominik Christian Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
| | - Kathi Zarnack
- Faculty of Biological Sciences, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, 60438 Frankfurt, Germany; (K.A.K.); (S.R.); (Y.Z.)
- Correspondence: (K.Z.); (T.S.)
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (K.Z.); (T.S.)
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| |
Collapse
|
92
|
Solecki DJ. Neuronal Polarity Pathways as Central Integrators of Cell-Extrinsic Information During Interactions of Neural Progenitors With Germinal Niches. Front Mol Neurosci 2022; 15:829666. [PMID: 35600073 PMCID: PMC9116468 DOI: 10.3389/fnmol.2022.829666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Germinal niche interactions and their effect on developing neurons have become the subject of intense investigation. Dissecting the complex interplay of cell-extrinsic and cell-intrinsic factors at the heart of these interactions reveals the critical basic mechanisms of neural development and how it goes awry in pediatric neurologic disorders. A full accounting of how developing neurons navigate their niches to mature and integrate into a developing neural circuit requires a combination of genetic characterization of and physical access to neurons and their supporting cell types plus transformative imaging to determine the cell biological and gene-regulatory responses to niche cues. The mouse cerebellar cortex is a prototypical experimental system meeting all of these criteria. The lessons learned therein have been scaled to other model systems and brain regions to stimulate discoveries of how developing neurons make many developmental decisions. This review focuses on how mouse cerebellar granule neuron progenitors interact with signals in their germinal niche and how that affects the neuronal differentiation and cell polarization programs that underpin lamination of the developing cerebellum. We show how modeling of these mechanisms in other systems has added to the growing evidence of how defective neuronal polarity contributes to developmental disease.
Collapse
|
93
|
Farhat E, Talarico GGM, Grégoire M, Weber JM, Mennigen JA. Epigenetic and post-transcriptional repression support metabolic suppression in chronically hypoxic goldfish. Sci Rep 2022; 12:5576. [PMID: 35368037 PMCID: PMC8976842 DOI: 10.1038/s41598-022-09374-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Goldfish enter a hypometabolic state to survive chronic hypoxia. We recently described tissue-specific contributions of membrane lipid composition remodeling and mitochondrial function to metabolic suppression across different goldfish tissues. However, the molecular and especially epigenetic foundations of hypoxia tolerance in goldfish under metabolic suppression are not well understood. Here we show that components of the molecular oxygen-sensing machinery are robustly activated across tissues irrespective of hypoxia duration. Induction of gene expression of enzymes involved in DNA methylation turnover and microRNA biogenesis suggest a role for epigenetic transcriptional and post-transcriptional suppression of gene expression in the hypoxia-acclimated brain. Conversely, mechanistic target of rapamycin-dependent translational machinery activity is not reduced in liver and white muscle, suggesting this pathway does not contribute to lowering cellular energy expenditure. Finally, molecular evidence supports previously reported chronic hypoxia-dependent changes in membrane cholesterol, lipid metabolism and mitochondrial function via changes in transcripts involved in cholesterol biosynthesis, β-oxidation, and mitochondrial fusion in multiple tissues. Overall, this study shows that chronic hypoxia robustly induces expression of oxygen-sensing machinery across tissues, induces repressive transcriptional and post-transcriptional epigenetic marks especially in the chronic hypoxia-acclimated brain and supports a role for membrane remodeling and mitochondrial function and dynamics in promoting metabolic suppression.
Collapse
Affiliation(s)
- Elie Farhat
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Giancarlo G M Talarico
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Mélissa Grégoire
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
94
|
Mennerich D, Kubaichuk K, Raza GS, Fuhrmann DC, Herzig KH, Brüne B, Kietzmann T. ER-stress promotes VHL-independent degradation of hypoxia-inducible factors via FBXW1A/βTrCP. Redox Biol 2022; 50:102243. [PMID: 35074541 PMCID: PMC8792260 DOI: 10.1016/j.redox.2022.102243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic adaptation and signal integration in response to hypoxic conditions is mainly regulated by hypoxia-inducible factors (HIFs). At the same time, hypoxia induces ROS formation and activates the unfolded protein response (UPR), indicative of endoplasmic reticulum (ER) stress. However, whether ER stress would affect the hypoxia response remains ill-defined. Here we report that feeding mice a high fat diet causes ER stress and attenuates the response to hypoxia. Mechanistically, ER stress promotes HIF-1α and HIF-2α degradation independent of ROS, Ca2+, and the von Hippel-Lindau (VHL) pathway, involving GSK3β and the ubiquitin ligase FBXW1A/βTrCP. Thereby, we reveal a previously unknown function of the GSK3β/HIFα/βTrCP1 axis in ER homeostasis and demonstrate that inhibition of the HIF-1 and HIF-2 response and genetic deficiency of GSK3β affects proliferation, migration, and sensitizes cells for ER stress promoted apoptosis. Vice versa, we show that hypoxia affects the ER stress response mainly through the PERK-arm of the UPR. Overall, we discovered previously unrecognized links between the HIF pathway and the ER stress response and uncovered an essential survival pathway for cells under ER stress.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland
| | - Ghulam S Raza
- Research Unit of Biomedicine, and Biocenter Oulu, Oulu University Hospital and Medical Research Center, FI-90014, Oulu, Finland
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, D-60590, Frankfurt, Germany
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, and Biocenter Oulu, Oulu University Hospital and Medical Research Center, FI-90014, Oulu, Finland
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, D-60590, Frankfurt, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland.
| |
Collapse
|
95
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
96
|
Kit OI, Pushkin AA, Alliluyev IA, Timoshkina NN, Gvaldin DY, Rostorguev EE, Kuznetsova NS. Differential expression of microRNAs targeting genes associated with the development of high-grade gliomas. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00245-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Highly malignant high-grade gliomas are tumors of the central nervous system (CNS). They are solid tumors arising from transformed cells of the brain and/or the spinal cord. In recent years, the expression of genes and regulating miRNAs in glial brain tumors has been actively studied. The present study is devoted to assessing the expression levels of miR-215-5p, miR-22-3p, miR-122-5p, miR-107, miR-324-5p, miR-34a-5p, miR-155. -5p, miR-21-5p, miR-497-5p, miR-330-3p, miR-146a-5p, miR-92a-1-5p, miR-326 and target genes EGFR, SMAD4, SMAD7, SMO, NOTCH1, NOTCH2, HIF1A, EGLIN1/3, KDM1B, KDM1A, MSI1, MSI2, TET1 in high-grade glioma tissues.
Results
As a result of the analysis of the levels of relative expression of the studied genes, there are significant changes (p < 0.05) in tumor tissue for genes: EGFR, SMAD4, SMAD7, SMO, HIF1A, EGLN1/3. We obtained data on a significant change (p < 0.05) in the levels of relative expression for microRNA: hsa-miR-215-5p, hsa-miR-22-3p, hsa-miR-122-5p, hsa-miR-107, hsa-miR-324-5p, hsa-miR-155-5p, hsa-miR-21-5p, hsa-miR-330-3p, hsa-miR-326. Data on the association of overall survival in patients with high-grade glioma and the level of relative expression of the EGFR and HIF1A genes were obtained. The obtained data demonstrate the association of overall survival of patients with high-grade glioma and the level of relative expression of EGFR, HIF1A and hsa-miR-22-3p, hsa-miR-107 and hsa-miR-330-3p.
Conclusions
The obtained data on the expression of genes and microRNAs expand the understanding of the biology of the development of high-grade glial tumors. These data demonstrate new potential therapeutic and prognostic goals in high-grade gliomas.
Collapse
|
97
|
Identification of appropriate housekeeping genes for gene expression studies in human renal cell carcinoma under hypoxic conditions. Mol Biol Rep 2022; 49:3885-3891. [PMID: 35277789 DOI: 10.1007/s11033-022-07236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hypoxia pathways are deregulated in clear renal cell carcinoma (ccRCC) because of the loss of the von Hippel-Lindau tumor suppressor function. Quantitative PCR is a powerful tool for quantifying differential expression between normal and cancer cells. Reliable gene expression analysis requires the use of genes encoding housekeeping genes. Therefore, in this study, eight reference candidate genes were evaluated to determine their stability in 786-0 cells under normoxic and hypoxic conditions. METHODS AND RESULTS Four different tools were used to rank the most stable genes-geNorm, NormFinder, BestKeeper, and Comparative Ct (ΔCt), and a general ranking was performed using RankAggreg. According to the four algorithms, the TFRC reference gene was identified as the most stable. There was no agreement among the results from the algorithms for the 2nd and 3rd positions. A general classification was then established using the RankAggreg tool. Finally, the three most suitable reference genes for use in 786-0 cells under normoxic and hypoxic conditions were TFRC, RPLP0, and SDHA. CONCLUSIONS To the best of our knowledge, this is the first study to identify reliable genes that can be used for gene expression analysis in ccRCC in a hypoxic environment.
Collapse
|
98
|
Jatho A, Zieseniss A, Brechtel-Curth K, Guo J, Böker KO, Salinas G, Wenger RH, Katschinski DM. The HIFα-Stabilizing Drug Roxadustat Increases the Number of Renal Epo-Producing Sca-1 + Cells. Cells 2022; 11:cells11040753. [PMID: 35203399 PMCID: PMC8869801 DOI: 10.3390/cells11040753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Inhibition of the prolyl-4-hydroxylase domain (PHD) enzymes, leading to the stabilization of hypoxia-inducible factor (HIF) α as well as to the stimulation of erythropoietin (Epo) synthesis, is the functional mechanism of the new anti-anemia drug roxadustat. Little is known about the effects of roxadustat on the Epo-producing cell pool. To gain further insights into the function of PHD inhibitors, we characterized the abundance of mesenchymal stem cell (MSC)-like cells after roxadustat treatment of mice. The number of Sca-1+ mesenchymal cells following roxadustat treatment increased exclusively in the kidneys. Isolated Sca-1+ cells demonstrated typical features of MSC-like cells, including adherence to tissue culture plates, trilineage differentiation potential, and expression of MSC markers. Kidney-derived Sca-1+ MSC-like cells were cultured for up to 21 days. Within the first few days in culture, cells stabilized HIF-1α and HIF-2α and temporarily increased Epo production upon incubation in hypoxia. In summary, we have identified a Sca-1+ MSC-like cell population that is involved in renal Epo production and might contribute to the strong anti-anemic effect of the PHD inhibitor roxadustat.
Collapse
Affiliation(s)
- Aline Jatho
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
- Correspondence: (A.J.); (D.M.K.)
| | - Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
| | - Katja Brechtel-Curth
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
| | - Jia Guo
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
| | - Kai Oliver Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Goettingen, Germany;
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany;
| | - Roland H. Wenger
- National Centre of Competence in Research “Kidney.CH”, 8057 Zurich, Switzerland;
- Institute of Physiology, University of Zürich, 8057 Zurich, Switzerland
| | - Dörthe M. Katschinski
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University Göttingen, 37073 Goettingen, Germany; (A.Z.); (K.B.-C.); (J.G.)
- Correspondence: (A.J.); (D.M.K.)
| |
Collapse
|
99
|
Inactivation of mouse transmembrane prolyl 4-hydroxylase increases blood brain barrier permeability and ischemia-induced cerebral neuroinflammation. J Biol Chem 2022; 298:101721. [PMID: 35151685 PMCID: PMC8914383 DOI: 10.1016/j.jbc.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm−/− mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm−/− cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm−/− mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.
Collapse
|
100
|
Cui Y, Li H, Yu SJ, Afedo SY, Bai XF. Effects of PHD and HSP90 on erythropoietin production in yak (Bos grunniens) renal interstitial fibroblast-like cells under hypoxia. J Mol Histol 2022; 53:395-411. [PMID: 35084636 DOI: 10.1007/s10735-021-10054-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
Erythropoietin (EPO), a central protein of erythropoiesis, plays an important role during hypoxia adaptation and is regulated by hypoxia-inducible factor (HIF). However, there is no report on EPO-producing cells and their regulatory mechanisms in yak (Bos grunniens). To understand EPO production and regulation of yak, kidneys from different age of yak were collected and expression of EPO, hypoxia-inducible factor 1 alpha (HIF-1α), and hypoxia-inducible factor 2 alpha (HIF-2α) were detected. Then renal tubule epithelial cells (RTECs) and peritubular interstitial fibroblast-like (RIFs) cells were isolated and cultured to determine their EPO production abilities. Subsequently, the cells were treated with dimethyloxalylglycine (DMOG) and Geldanamycin (GA), which are inhibitors of prolyl-4-hydroxylase domain (PHD) and heat shock protein 90 (HSP90) respectively, and siRNAs of HIF-1α and HIF-2α to explore their effect on EPO production and regulation. The results showed that expressions of EPO, HIF-1α, and HIF-2α were different in the different age groups of yak. High DMOG concentration caused a corresponding increase in the levels of HIF-1α and HIF-2α in RIFs and RTECs, however, EPO levels increased in RIFs only and was not detected at any concentration in RTECs; suggesting that EPO was produced in RIFs. Upon treating RIFs with siRNAs of HIF-1α and HIF-2α, we found that EPO was regulated by PHD through HIF-2α. In addition, increasing GA concentration caused a decrease in expression of HSP90, HIF-1α, HIF-2α, and EPO in RIFs. In conclusion, these findings support our proposition that PHD regulates EPO via HIF-2α in yak RIFs, while HSP90 impelled EPO expression.
Collapse
Affiliation(s)
- Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu, People's Republic of China. .,Gansu Province Livestock Embryo Engineering Research Center, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Hui Li
- College of Veterinary Medicine, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Si-Jiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu, People's Republic of China.,Gansu Province Livestock Embryo Engineering Research Center, Gansu Agricultural University, Lanzhou, 730070, China
| | - Seth Yaw Afedo
- College of Veterinary Medicine, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xue-Feng Bai
- College of Veterinary Medicine, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| |
Collapse
|