51
|
Shi D, Wang B, Li H, Lian Y, Ma Q, Liu T, Cao M, Ma Y, Shi L, Yuan W, Shi J, Chu Y. Pseudouridine synthase 1 regulates erythropoiesis via transfer RNAs pseudouridylation and cytoplasmic translation. iScience 2024; 27:109265. [PMID: 38450158 PMCID: PMC10915626 DOI: 10.1016/j.isci.2024.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Pseudouridylation plays a regulatory role in various physiological and pathological processes. A prime example is the mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA), characterized by defective pseudouridylation resulting from genetic mutations in pseudouridine synthase 1 (PUS1). However, the roles and mechanisms of pseudouridylation in normal erythropoiesis and MLASA-related anemia remain elusive. We established a mouse model carrying a point mutation (R110W) in the enzymatic domain of PUS1, mimicking the common mutation in human MLASA. Pus1-mutant mice exhibited anemia at 4 weeks old. Impaired mitochondrial oxidative phosphorylation was also observed in mutant erythroblasts. Mechanistically, mutant erythroblasts showed defective pseudouridylation of targeted tRNAs, altered tRNA profiles, decreased translation efficiency of ribosomal protein genes, and reduced globin synthesis, culminating in ineffective erythropoiesis. Our study thus provided direct evidence that pseudouridylation participates in erythropoiesis in vivo. We demonstrated the critical role of pseudouridylation in regulating tRNA homeostasis, cytoplasmic translation, and erythropoiesis.
Collapse
Affiliation(s)
- Deyang Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Department of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Bichen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Haoyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yu Lian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qiuyi Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Tong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mutian Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
52
|
Fagre C, Gilbert W. Beyond reader proteins: RNA binding proteins and RNA modifications in conversation to regulate gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1834. [PMID: 38444048 DOI: 10.1002/wrna.1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Post-transcriptional mRNA modifications play diverse roles in gene expression and RNA function. In many cases, RNA modifications function by altering how cellular machinery such as RNA binding proteins (RBPs) interact with RNA substrates. For instance, N6-methyladenosine (m6A) is recognized by the well-characterized YTH domain-containing family of "reader" proteins. For other mRNA modifications, similar global readers of modification status have not been clearly defined. Rather, most interactions between RBPs and RNA modifications have a more complicated dependence on sequence context and binding modality. The current handful of studies that demonstrate modifications impacting protein binding likely represent only a fraction of the full landscape. In this review, we dissect the known instances of RNA modifications altering RBP binding, specifically m6A, N1-methyladenosine (m1A), 5-methylcytosine (m5C), pseudouridine (Ψ), and internal N7-methylguanosine. We then review the biochemical properties of these and other identified mRNA modifications including dihydrouridine (D), N4-acetylcytosine (ac4C), and 2'-O-Methylation (Nme). We focus on how these properties would be likely to impact RNA:RBP interactions, including by changes to hydrogen bond potential, base-stacking efficiency, and RNA conformational preferences. The effects of RNA modifications on secondary structure have been well-studied, and we briefly discuss how structural effects imparted by modifications can lead to protein binding changes. Finally, we discuss strategies for uncovering as-yet-to-be identified modification-sensitive RBP:RNA Interactions. Coordinating future efforts to intersect the epitranscriptome and the RNA-protein interactome will illuminate the rules governing RNA modification recognition and the mechanisms responsible for the biological consequences of mRNA modification. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Christian Fagre
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Wendy Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
53
|
Chen H, Zhao S. Research progress of RNA pseudouridine modification in nervous system. Int J Neurosci 2024:1-11. [PMID: 38407188 DOI: 10.1080/00207454.2024.2315483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Recent advances of pseudouridine (Ψ, 5-ribosyluracil) modification highlight its crucial role as a post-transcriptional regulator in gene expression and its impact on various RNA processes. Ψ synthase (PUS), a category of RNA-modifying enzymes, orchestrates the pseudouridylation reaction. It can specifically recognize conserved sequences or structural motifs within substrates, thereby regulating the biological function of various RNA molecules accurately. Our comprehensive review underscored the close association of PUS1, PUS3, PUS7, PUS10, and dyskerin PUS1 with various nervous system disorders, including neurodevelopmental disorders, nervous system tumors, mitochondrial myopathy, lactic acidosis and sideroblastic anaemia (MLASA) syndrome, peripheral nervous system disorders, and type II myotonic dystrophy. In light of these findings, this study elucidated how Ψ strengthened RNA structures and contributed to RNA function, thereby providing valuable insights into the intricate molecular mechanisms underlying nervous system diseases. However, the detailed effects and mechanisms of PUS on neuron remain elusive. This lack of mechanistic understanding poses a substantial obstacle to the development of therapeutic approaches for various neurological disorders based on Ψ modification.
Collapse
Affiliation(s)
- Hui Chen
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shuang Zhao
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
54
|
Zhang F, Ignatova VV, Ming GL, Song H. Advances in brain epitranscriptomics research and translational opportunities. Mol Psychiatry 2024; 29:449-463. [PMID: 38123727 PMCID: PMC11116067 DOI: 10.1038/s41380-023-02339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valentina V Ignatova
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
55
|
Chen JL, Leeder WM, Morais P, Adachi H, Yu YT. Pseudouridylation-mediated gene expression modulation. Biochem J 2024; 481:1-16. [PMID: 38174858 DOI: 10.1042/bcj20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA-guided pseudouridylation, a widespread post-transcriptional RNA modification, has recently gained recognition for its role in cellular processes such as pre-mRNA splicing and the modulation of premature termination codon (PTC) readthrough. This review provides insights into its mechanisms, functions, and potential therapeutic applications. It examines the mechanisms governing RNA-guided pseudouridylation, emphasizing the roles of guide RNAs and pseudouridine synthases in catalyzing uridine-to-pseudouridine conversion. A key focus is the impact of RNA-guided pseudouridylation of U2 small nuclear RNA on pre-mRNA splicing, encompassing its influence on branch site recognition and spliceosome assembly. Additionally, the review discusses the emerging role of RNA-guided pseudouridylation in regulating PTC readthrough, impacting translation termination and genetic disorders. Finally, it explores the therapeutic potential of pseudouridine modifications, offering insights into potential treatments for genetic diseases and cancer and the development of mRNA vaccine.
Collapse
Affiliation(s)
- Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | | | | | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| |
Collapse
|
56
|
Cottrell KA, Andrews RJ, Bass BL. The competitive landscape of the dsRNA world. Mol Cell 2024; 84:107-119. [PMID: 38118451 PMCID: PMC10843539 DOI: 10.1016/j.molcel.2023.11.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.
Collapse
Affiliation(s)
- Kyle A Cottrell
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Ryan J Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
57
|
Rodell R, Robalin N, Martinez NM. Why U matters: detection and functions of pseudouridine modifications in mRNAs. Trends Biochem Sci 2024; 49:12-27. [PMID: 38097411 PMCID: PMC10976346 DOI: 10.1016/j.tibs.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 01/07/2024]
Abstract
The uridine modifications pseudouridine (Ψ), dihydrouridine, and 5-methyluridine are present in eukaryotic mRNAs. Many uridine-modifying enzymes are associated with human disease, underscoring the importance of uncovering the functions of uridine modifications in mRNAs. These modified uridines have chemical properties distinct from those of canonical uridines, which impact RNA structure and RNA-protein interactions. Ψ, the most abundant of these uridine modifications, is present across (pre-)mRNAs. Recent work has shown that many Ψs are present at intermediate to high stoichiometries that are likely conducive to function and at locations that are poised to influence pre-/mRNA processing. Technological innovations and mechanistic investigations are unveiling the functions of uridine modifications in pre-mRNA splicing, translation, and mRNA stability, which are discussed in this review.
Collapse
Affiliation(s)
- Rebecca Rodell
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Robalin
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Martinez
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
58
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
59
|
Dhingra Y, Lahiri M, Bhandari N, Kaur I, Gupta S, Agarwal M, Katiyar-Agarwal S. Genome-wide identification, characterization, and expression analysis unveil the roles of pseudouridine synthase (PUS) family proteins in rice development and stress response. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1981-2004. [PMID: 38222285 PMCID: PMC10784261 DOI: 10.1007/s12298-023-01396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
Pseudouridylation, the conversion of uridine (U) to pseudouridine (Ѱ), is one of the most prevalent and evolutionary conserved RNA modifications, which is catalyzed by pseudouridine synthase (PUS) enzymes. Ѱs play a crucial epitranscriptomic role by regulating attributes of cellular RNAs across diverse organisms. However, the precise biological functions of PUSs in plants remain largely elusive. In this study, we identified and characterized 21 members in the rice PUS family which were categorized into six distinct subfamilies, with RluA and TruA emerging as the most extensive. A comprehensive analysis of domain structures, motifs, and homology modeling revealed that OsPUSs possess all canonical features of true PUS proteins, essential for substrate recognition and catalysis. The exploration of OsPUS promoters revealed presence of cis-acting regulatory elements associated with hormone and abiotic stress responses. Expression analysis of OsPUS genes showed differential expression at developmental stages and under stress conditions. Notably, OsTruB3 displayed high expression in salt, heat, and drought stresses. Several OsRluA members showed induction in heat stress, while a significant decline in expression was observed for various OsTruA members in drought and salinity. Furthermore, miRNAs predicted to target OsPUSs were themselves responsive to variable stresses, adding an additional layer of regulatory complexity of OsPUSs. Study of protein-protein interaction networks provided substantial support for the potential regulatory role of OsPUSs in numerous cellular and stress response pathways. Conclusively, our study provides functional insights into the OsPUS family, contributing to a better understanding of their crucial roles in shaping the development and stress adaptation in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01396-4.
Collapse
Affiliation(s)
- Yashika Dhingra
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| | - Milinda Lahiri
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| | - Nikunj Bhandari
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| | - Inderjit Kaur
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
- Present Address: Institute of Plant Sciences, Universität Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Manu Agarwal
- Department of Botany, University of Delhi, North Campus, Delhi, 110007 India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Marg, Dhaula Kuan, New Delhi, 110021 India
| |
Collapse
|
60
|
Monziani A, Ulitsky I. Noncoding snoRNA host genes are a distinct subclass of long noncoding RNAs. Trends Genet 2023; 39:908-923. [PMID: 37783604 DOI: 10.1016/j.tig.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.
Collapse
Affiliation(s)
- Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
61
|
Niu Y, Liu L. RNA pseudouridine modification in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6431-6447. [PMID: 37581601 DOI: 10.1093/jxb/erad323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Pseudouridine is one of the well-known chemical modifications in various RNA species. Current advances to detect pseudouridine show that the pseudouridine landscape is dynamic and affects multiple cellular processes. Although our understanding of this post-transcriptional modification mainly depends on yeast and human models, the recent findings provide strong evidence for the critical role of pseudouridine in plants. Here, we review the current knowledge of pseudouridine in plant RNAs, including its synthesis, degradation, regulatory mechanisms, and functions. Moreover, we propose future areas of research on pseudouridine modification in plants.
Collapse
Affiliation(s)
- Yanli Niu
- Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Lingyun Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
62
|
Kudrin P, Rebane A. Do RNA modifications contribute to modulation of immune responses in allergic diseases? FRONTIERS IN ALLERGY 2023; 4:1277244. [PMID: 38026133 PMCID: PMC10679440 DOI: 10.3389/falgy.2023.1277244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
RNA modifications have emerged as a fundamental mechanism of post-transcriptional gene regulation, playing vital roles in cellular physiology and the development of various diseases. While the investigation of RNA modifications has seen significant advancements, the exploration of their implication in allergic diseases has been comparatively overlooked. Allergic reactions, including hay fever, asthma, eczema and food allergies, result from hypersensitive immune responses, affecting a considerable population worldwide. Despite the high prevalence, the molecular mechanisms underlying these responses remain partially understood. The potential role of RNA modifications in modulating the hypersensitive immune responses has yet to be fully elucidated. This mini-review seeks to shed light on potential connections between RNA modifications and allergy, highlighting recent findings and potential future research directions. By expanding our understanding of the complex interplay between RNA modifications and allergic responses, we hope to unlock new avenues for allergy diagnosis, prognosis, and therapeutic intervention.
Collapse
Affiliation(s)
- Pavel Kudrin
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
63
|
Tan Y, Wang Z, Wang Y, Tian X, Huang Y, Wu G, Lu J. Multi-omics analysis reveals PUS1 triggered malignancy and correlated with immune infiltrates in NSCLC. Aging (Albany NY) 2023; 15:12136-12154. [PMID: 37925171 PMCID: PMC10683629 DOI: 10.18632/aging.205169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 11/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the main pathological type of lung cancer. In this study, multi-omics analysis revealed a significant increase of pseudouridine synthase 1 (PUS1) in NSCLC and the high expression of PUS1 was associated with shorter OS (Overall Survival), PFS (Progression Free Survival), and PPS (Post Progression Survival) of NSCLC patients. Clinical subgroup analysis showed that PUS1 may be involved in the occurrence and development of NSCLC. Besides, TIMER, ESTIMATE, and IPS analysis suggested that PUS1 expression was associated with immune cell infiltration, and the expression of PUS1 was significantly negatively correlated with DC cell infiltration. GESA analysis also indicated PUS1 may involve in DNA_REPAIR, E2F_TARGETS, MYC_TARGETS_V2, G2M_CHECKPOINT and MYC_TARGETS_V1 pathways and triggered NSCLC malignancy through MCM5 or XPO1. Furthermore, PUS1 may be a potential target for NSCLC therapy.
Collapse
Affiliation(s)
- Yonghuang Tan
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhaotong Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yingzhao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaolu Tian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yunru Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Guoyong Wu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jianjun Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
64
|
Fleming AM, Zhu J, Done VK, Burrows CJ. Advantages and challenges associated with bisulfite-assisted nanopore direct RNA sequencing for modifications. RSC Chem Biol 2023; 4:952-964. [PMID: 37920399 PMCID: PMC10619145 DOI: 10.1039/d3cb00081h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 11/04/2023] Open
Abstract
Nanopore direct RNA sequencing is a technology that allows sequencing for epitranscriptomic modifications with the possibility of a quantitative assessment. In the present work, pseudouridine (Ψ) was sequenced with the nanopore before and after the pH 7 bisulfite reaction that yields stable ribose adducts at C1' of Ψ. The adducted sites produced greater base call errors in the form of deletion signatures compared to Ψ. Sequencing studies on E. coli rRNA and tmRNA before and after the pH 7 bisulfite reaction demonstrated that using chemically-assisted nanopore sequencing has distinct advantages for minimization of false positives and false negatives in the data. The rRNA from E. coli has 19 known U/C sequence variations that give similar base call signatures as Ψ, and therefore, are false positives when inspecting base call data; however, these sites are refractory to reacting with bisulfite as is easily observed in nanopore data. The E. coli tmRNA has a low occupancy Ψ in a pyrimidine-rich sequence context that is called a U representing a false negative; partial occupancy by Ψ is revealed after the bisulfite reaction. In a final study, 5-methylcytidine (m5C) in RNA can readily be observed after the pH 5 bisulfite reaction in which the parent C deaminates to U and the modified site does not react. This locates m5C when using bisulfite-assisted nanopore direct RNA sequencing, which is otherwise challenging to observe. The advantages and challenges of the overall approach are discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| | - Judy Zhu
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| | - Vilhelmina K Done
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah 315 S. 1400 East Salt Lake City UT 84112-0850 USA
| |
Collapse
|
65
|
Burdick JT, Comai A, Bruzel A, Sun G, Dedon PC, Cheung VG. Nanopore-based direct sequencing of RNA transcripts with 10 different modified nucleotides reveals gaps in existing technology. G3 (BETHESDA, MD.) 2023; 13:jkad200. [PMID: 37655917 PMCID: PMC10627276 DOI: 10.1093/g3journal/jkad200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/14/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
RNA undergoes complex posttranscriptional processing including chemical modifications of the nucleotides. The resultant-modified nucleotides are an integral part of RNA sequences that must be considered in studying the biology of RNA and in the design of RNA therapeutics. However, the current "RNA-sequencing" methods primarily sequence complementary DNA rather than RNA itself, which means that the modifications present in RNA are not captured in the sequencing results. Emerging direct RNA-sequencing technologies, such as those offered by Oxford Nanopore, aim to address this limitation. In this study, we synthesized and used Nanopore technology to sequence RNA transcripts consisting of canonical nucleotides and 10 different modifications in various concentrations. The results show that direct RNA sequencing still has a baseline error rate of >10%, and although some modifications can be detected, many remain unidentified. Thus, there is a need to develop sequencing technologies and analysis methods that can comprehensively capture the total complexity of RNA. The RNA sequences obtained through this project are made available for benchmarking analysis methods.
Collapse
Affiliation(s)
- Joshua T Burdick
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Annelise Comai
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan Bruzel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vivian G Cheung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
66
|
Kramer NJ, Prakash G, Isaac RS, Choquet K, Soto I, Petrova B, Merens HE, Kanarek N, Churchman LS. Regulators of mitonuclear balance link mitochondrial metabolism to mtDNA expression. Nat Cell Biol 2023; 25:1575-1589. [PMID: 37770567 PMCID: PMC11370000 DOI: 10.1038/s41556-023-01244-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.
Collapse
Affiliation(s)
- Nicholas J Kramer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gyan Prakash
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karine Choquet
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Iliana Soto
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hope E Merens
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
67
|
Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, Liu J, Li F, Li W, Liu H. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:412. [PMID: 37884527 PMCID: PMC10603151 DOI: 10.1038/s41392-023-01638-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.
Collapse
Affiliation(s)
- Cong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
68
|
Imbriano C, Moresi V, Belluti S, Renzini A, Cavioli G, Maretti E, Molinari S. Epitranscriptomics as a New Layer of Regulation of Gene Expression in Skeletal Muscle: Known Functions and Future Perspectives. Int J Mol Sci 2023; 24:15161. [PMID: 37894843 PMCID: PMC10606696 DOI: 10.3390/ijms242015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epitranscriptomics refers to post-transcriptional regulation of gene expression via RNA modifications and editing that affect RNA functions. Many kinds of modifications of mRNA have been described, among which are N6-methyladenosine (m6A), N1-methyladenosine (m1A), 7-methylguanosine (m7G), pseudouridine (Ψ), and 5-methylcytidine (m5C). They alter mRNA structure and consequently stability, localization and translation efficiency. Perturbation of the epitranscriptome is associated with human diseases, thus opening the opportunity for potential manipulations as a therapeutic approach. In this review, we aim to provide an overview of the functional roles of epitranscriptomic marks in the skeletal muscle system, in particular in embryonic myogenesis, muscle cell differentiation and muscle homeostasis processes. Further, we explored high-throughput epitranscriptome sequencing data to identify RNA chemical modifications in muscle-specific genes and we discuss the possible functional role and the potential therapeutic applications.
Collapse
Affiliation(s)
- Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy;
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| |
Collapse
|
69
|
Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m 6A mRNA modifications. Nat Rev Mol Cell Biol 2023; 24:714-731. [PMID: 37369853 DOI: 10.1038/s41580-023-00622-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
70
|
Zhang M, Jiang Z, Ma Y, Liu W, Zhuang Y, Lu B, Li K, Peng J, Yi C. Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nat Chem Biol 2023; 19:1185-1195. [PMID: 36997645 DOI: 10.1038/s41589-023-01304-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/02/2023] [Indexed: 04/07/2023]
Abstract
Pseudouridine (Ψ) is an abundant post-transcriptional RNA modification in ncRNA and mRNA. However, stoichiometric measurement of individual Ψ sites in human transcriptome remains unaddressed. Here we develop 'PRAISE', via selective chemical labeling of Ψ by bisulfite to induce nucleotide deletion signature during reverse transcription, to realize quantitative assessment of the Ψ landscape in the human transcriptome. Unlike traditional bisulfite treatment, our approach is based on quaternary base mapping and revealed an ~10% median modification level for 2,209 confident Ψ sites in HEK293T cells. By perturbing pseudouridine synthases, we obtained differential mRNA targets of PUS1, PUS7, TRUB1 and DKC1, with TRUB1 targets showing the highest modification stoichiometry. In addition, we quantified known and new Ψ sites in mitochondrial mRNA catalyzed by PUS1. Collectively, we provide a sensitive and convenient method to measure transcriptome-wide Ψ; we envision this quantitative approach would facilitate emerging efforts to elucidate the function and mechanism of mRNA pseudouridylation.
Collapse
Affiliation(s)
- Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhe Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yichen Ma
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wenqing Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
71
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
72
|
Petri BJ, Cave MC, Klinge CM. Changes in m6A in Steatotic Liver Disease. Genes (Basel) 2023; 14:1653. [PMID: 37628704 PMCID: PMC10454815 DOI: 10.3390/genes14081653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
| | - Matthew C. Cave
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
73
|
Luo W, Xu Z, Wang H, Lu Z, Ding L, Wang R, Xie H, Zheng Q, Lin Y, Zhou Z, Li Y, Chen X, Li G, Xia L. HIF1A-repressed PUS10 regulates NUDC/Cofilin1 dependent renal cell carcinoma migration by promoting the maturation of miR-194-5p. Cell Biosci 2023; 13:153. [PMID: 37596681 PMCID: PMC10439626 DOI: 10.1186/s13578-023-01094-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/29/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is characterized by a high rate of distant metastasis, which leads to poor prognosis in patients with advanced RCC. PUS10 has been recognized as a member of the pseudouridine synthase family, and recently other functions beyond the synthesis of the RNA modification have been uncovered. However, little is known about its role in diseases such as cancer. METHODS RT-qPCR, western blot and immunohistochemistry were used to measure the expression of PUS10 in RCC tissues. Transwell assay, wound healing assay, and in vivo metastasis model were conducted to determine the function of PUS10 in RCC progression. MicroRNA sequencing and GEO database were used to screen for the downstream microRNAs of PUS10. RNA immunoprecipitation, dual luciferase reporter assay, immunostaining, and rescue experiments were employed to establish the PUS10/miR-194-5p/nuclear distribution protein C(NUDC)/Cofilin1 axis in RCC migration. Chromatin immunoprecipitation and dual luciferase reporter assay were used to verify its upstream transcriptional regulator. RESULTS The expression of PUS10 was significantly decreased in RCC tissues, and low expression predicted poor prognosis. In vitro and in vivo experiments showed that PUS10 suppressed RCC migration, which, however, was independent of its classical pseudouridine catalytic function. Mechanically, PUS10 promoted the maturation of miR-194-5p, which sequentially inhibited RCC migration via disrupting NUDC-dependent cytoskeleton. Furthermore, hypoxia and HIF-1 A were found involved in the downregulation of PUS10. CONCLUSION We unraveled PUS10 restrained RCC migration via the PUS10/miR-194-5p/NUDC/Cofilin1 pathway, which independent of its classical catalytic function. Furthermore, a linkage between the critical tumor microenvironment hallmark with malfunction of the forementioned metastasis inhibition mechanism was presented, as demonstrated by repressed expression of PUS10 due to hypoxia and HIF-1A.
Collapse
Affiliation(s)
- Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
74
|
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, Fan C, Li Z, Wang F, Guo C, Zhou M, Liao Q, Wang H, Xiang B, Jiang W, Li G, Zeng Z, Xiong W. RNA modifications in cancer. Br J Cancer 2023; 129:204-221. [PMID: 37095185 PMCID: PMC10338518 DOI: 10.1038/s41416-023-02275-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.
Collapse
Affiliation(s)
- Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Jiawei Ouyang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
75
|
Pederiva C, Trevisan DM, Peirasmaki D, Chen S, Savage SA, Larsson O, Ule J, Baranello L, Agostini F, Farnebo M. Control of protein synthesis through mRNA pseudouridylation by dyskerin. SCIENCE ADVANCES 2023; 9:eadg1805. [PMID: 37506213 PMCID: PMC10381945 DOI: 10.1126/sciadv.adg1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Posttranscriptional modifications of mRNA have emerged as regulators of gene expression. Although pseudouridylation is the most abundant, its biological role remains poorly understood. Here, we demonstrate that the pseudouridine synthase dyskerin associates with RNA polymerase II, binds to thousands of mRNAs, and is responsible for their pseudouridylation, an action that occurs in chromatin and does not appear to require a guide RNA with full complementarity. In cells lacking dyskerin, mRNA pseudouridylation is reduced, while at the same time, de novo protein synthesis is enhanced, indicating that this modification interferes with translation. Accordingly, mRNAs with fewer pseudouridines due to knockdown of dyskerin are translated more efficiently. Moreover, mRNA pseudouridylation is severely reduced in patients with dyskeratosis congenita caused by inherited mutations in the gene encoding dyskerin (i.e., DKC1). Our findings demonstrate that pseudouridylation by dyskerin modulates mRNA translatability, with important implications for both normal development and disease.
Collapse
Affiliation(s)
- Chiara Pederiva
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Davide M. Trevisan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Shan Chen
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20852, USA
| | - Ola Larsson
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK
- UK Dementia Research Institute, King’s College London, London W1T 7NF, UK
- National Institute of Chemistry, 1001 Ljubljana, Slovenia
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Federico Agostini
- Science for Life Laboratory, Stockholm 17165, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 17165, Sweden
| | - Marianne Farnebo
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
76
|
Zhang D, Liu S, Wu Q, Ma Y, Zhou S, Liu Z, Sun W, Lu Z. Prognostic model for hepatocellular carcinoma based on anoikis-related genes: immune landscape analysis and prediction of drug sensitivity. Front Med (Lausanne) 2023; 10:1232814. [PMID: 37502362 PMCID: PMC10369074 DOI: 10.3389/fmed.2023.1232814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) represents a complex ailment characterized by an unfavorable prognosis in advanced stages. The involvement of immune cells in HCC progression is of significant importance. Moreover, metastasis poses a substantial impediment to enhanced prognostication for HCC patients, with anoikis playing an indispensable role in facilitating the distant metastasis of tumor cells. Nevertheless, limited investigations have been conducted regarding the utilization of anoikis factors for predicting HCC prognosis and assessing immune infiltration. This present study aims to identify hepatocellular carcinoma-associated anoikis-related genes (ANRGs), establish a robust prognostic model for HCC, and delineate distinct immune characteristics based on the anoikis signature. Cell migration and cytotoxicity experiments were performed to validate the accuracy of the ANRGs model. Methods Consensus clustering based on ANRGs was employed in this investigation to categorize HCC samples obtained from both TCGA and Gene Expression Omnibus (GEO) cohorts. To assess the differentially expressed genes, Cox regression analysis was conducted, and subsequently, prognostic gene signatures were constructed using LASSO-Cox methodology. External validation was performed at the International Cancer Genome Conference. The tumor microenvironment (TME) was characterized utilizing ESTIMATE and CIBERSORT algorithms, while machine learning techniques facilitated the identification of potential target drugs. The wound healing assay and CCK-8 assay were employed to evaluate the migratory capacity and drug sensitivity of HCC cell lines, respectively. Results Utilizing the TCGA-LIHC dataset, we devised a nomogram integrating a ten-gene signature with diverse clinicopathological features. Furthermore, the discriminative potential and clinical utility of the ten-gene signature and nomogram were substantiated through ROC analysis and DCA. Subsequently, we devised a prognostic framework leveraging gene expression data from distinct risk cohorts to predict the drug responsiveness of HCC subtypes. Conclusion In this study, we have established a promising HCC prognostic ANRGs model, which can serve as a valuable tool for clinicians in selecting targeted therapeutic drugs, thereby improving overall patient survival rates. Additionally, this model has also revealed a strong connection between anoikis and immune cells, providing a potential avenue for elucidating the mechanisms underlying immune cell infiltration regulated by anoikis.
Collapse
Affiliation(s)
- Dengyong Zhang
- Graduate School, Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sihua Liu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiong Wu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Ma
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuo Zhou
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhong Liu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wanliang Sun
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zheng Lu
- Graduate School, Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
77
|
Pomaville MM, He C. Advances in targeting RNA modifications for anticancer therapy. Trends Cancer 2023; 9:528-542. [PMID: 37147166 PMCID: PMC10330282 DOI: 10.1016/j.trecan.2023.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Numerous strategies are employed by cancer cells to control gene expression and facilitate tumorigenesis. In the study of epitranscriptomics, a diverse set of modifications to RNA represent a new player of gene regulation in disease and in development. N6-methyladenosine (m6A) is the most common modification on mammalian messenger RNA and tends to be aberrantly placed in cancer. Recognized by a series of reader proteins that dictate the fate of the RNA, m6A-modified RNA could promote tumorigenesis by driving protumor gene expression signatures and altering the immunologic response to tumors. Preclinical evidence suggests m6A writer, reader, and eraser proteins are attractive therapeutic targets. First-in-human studies are currently testing small molecule inhibition against the methyltransferase-like 3 (METTL3)/methyltransferase-like 14 (METTL14) methyltransferase complex. Additional modifications to RNA are adopted by cancers to drive tumor development and are under investigation.
Collapse
Affiliation(s)
- Monica M Pomaville
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| | - Chuan He
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
78
|
Abstract
Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, N6-methyladenosine (m6A). We first describe the discovery of the key enzymes that deposit and remove m6A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m6A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA;
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
79
|
Abstract
Chemical modifications on mRNA represent a critical layer of gene expression regulation. Research in this area has continued to accelerate over the last decade, as more modifications are being characterized with increasing depth and breadth. mRNA modifications have been demonstrated to influence nearly every step from the early phases of transcript synthesis in the nucleus through to their decay in the cytoplasm, but in many cases, the molecular mechanisms involved in these processes remain mysterious. Here, we highlight recent work that has elucidated the roles of mRNA modifications throughout the mRNA life cycle, describe gaps in our understanding and remaining open questions, and offer some forward-looking perspective on future directions in the field.
Collapse
Affiliation(s)
- Wendy V Gilbert
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA;
| | - Sigrid Nachtergaele
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
80
|
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023; 119:1324-1335. [PMID: 36657944 PMCID: PMC10262186 DOI: 10.1093/cvr/cvad014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cleavage and polyadenylation of pre-mRNAs is a necessary step for gene expression and function. Majority of human genes exhibit multiple polyadenylation sites, which can be alternatively used to generate different mRNA isoforms from a single gene. Alternative polyadenylation (APA) of pre-mRNAs is important for the proteome and transcriptome landscape. APA is tightly regulated during development and contributes to tissue-specific gene regulation. Mis-regulation of APA is linked to a wide range of pathological conditions. APA-mediated gene regulation in the heart is emerging as a new area of research. Here, we will discuss the impact of APA on gene regulation during heart development and in cardiovascular diseases. First, we will briefly review how APA impacts gene regulation and discuss molecular mechanisms that control APA. Then, we will address APA regulation during heart development and its dysregulation in cardiovascular diseases. Finally, we will discuss pre-mRNA targeting strategies to correct aberrant APA patterns of essential genes for the treatment or prevention of cardiovascular diseases. The RNA field is blooming due to advancements in RNA-based technologies. RNA-based vaccines and therapies are becoming the new line of effective and safe approaches for the treatment and prevention of human diseases. Overall, this review will be influential for understanding gene regulation at the RNA level via APA in the heart and will help design RNA-based tools for the treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Environment and Life, Beijing University of Technology, Xueyuan Road, Haidian District, Beijing 100124, PR China
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
| |
Collapse
|
81
|
Li L, Zhu C, Xu S, Xu Q, Xu D, Gan S, Cui X, Tang C. PUS1 is a novel biomarker for evaluating malignancy of human renal cell carcinoma. Aging (Albany NY) 2023; 15:204799. [PMID: 37315299 PMCID: PMC10292901 DOI: 10.18632/aging.204799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies. Despite the rapid development of the oncology research and surgical treatment, the prognosis of RCC has not significantly improved. Thus, exploration of the pathological molecular mechanism and development of new therapeutic targets of RCC are of great importance. Herein, by bioinformatic analysis and in vitro cell experiments, we report that, the expression of pseudouridine synthase 1 (PUS1), belonging to the family of PUS enzymes that participate in RNA modifications, is closely associated with RCC progression. In addition, the upregulated PUS1 expression results in the elevated RCC cancer cell viability, migration, invasion and colony formation ability, whereas the decreased PUS1 expression exerts the opposite effects on RCC cells. Thus, our findings show the potential role of PUS1 in RCC cells, providing with evidence that PUS1 is involved in RCC progression, which may help contribute to RCC diagnosis and intervention in clinic.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai 201805, China
| | - Chongying Zhu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Da Xu
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai 201805, China
| | - Sishun Gan
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai 201805, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| |
Collapse
|
82
|
Prall W, Ganguly DR, Gregory BD. The covalent nucleotide modifications within plant mRNAs: What we know, how we find them, and what should be done in the future. THE PLANT CELL 2023; 35:1801-1816. [PMID: 36794718 PMCID: PMC10226571 DOI: 10.1093/plcell/koad044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 05/30/2023]
Abstract
Although covalent nucleotide modifications were first identified on the bases of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), a number of these epitranscriptome marks have also been found to occur on the bases of messenger RNAs (mRNAs). These covalent mRNA features have been demonstrated to have various and significant effects on the processing (e.g. splicing, polyadenylation, etc.) and functionality (e.g. translation, transport, etc.) of these protein-encoding molecules. Here, we focus our attention on the current understanding of the collection of covalent nucleotide modifications known to occur on mRNAs in plants, how they are detected and studied, and the most outstanding future questions of each of these important epitranscriptomic regulatory signals.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Diep R Ganguly
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, School of Arts and Sciences, 433 S. University Ave., Philadelphia, PA 19104, USA
| |
Collapse
|
83
|
Lim WF, Rinaldi C. RNA Transcript Diversity in Neuromuscular Research. J Neuromuscul Dis 2023:JND221601. [PMID: 37182892 DOI: 10.3233/jnd-221601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Three decades since the Human Genome Project began, scientists have now identified more then 25,000 protein coding genes in the human genome. The vast majority of the protein coding genes (> 90%) are multi-exonic, with the coding DNA being interrupted by intronic sequences, which are removed from the pre-mRNA transcripts before being translated into proteins, a process called splicing maturation. Variations in this process, i.e. by exon skipping, intron retention, alternative 5' splice site (5'ss), 3' splice site (3'ss), or polyadenylation usage, lead to remarkable transcriptome and proteome diversity in human tissues. Given its critical biological importance, alternative splicing is tightly regulated in a tissue- and developmental stage-specific manner. The central nervous system and skeletal muscle are amongst the tissues with the highest number of differentially expressed alternative exons, revealing a remarkable degree of transcriptome complexity. It is therefore not surprising that splicing mis-regulation is causally associated with a myriad of neuromuscular diseases, including but not limited to amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD), and myotonic dystrophy type 1 and 2 (DM1, DM2). A gene's transcript diversity has since become an integral and an important consideration for drug design, development and therapy. In this review, we will discuss transcript diversity in the context of neuromuscular diseases and current approaches to address splicing mis-regulation.
Collapse
Affiliation(s)
- Wooi Fang Lim
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
84
|
Abstract
Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.
Collapse
Affiliation(s)
- Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Meng Michelle Xu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China;
| |
Collapse
|
85
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
86
|
How does precursor RNA structure influence RNA processing and gene expression? Biosci Rep 2023; 43:232489. [PMID: 36689327 PMCID: PMC9977717 DOI: 10.1042/bsr20220149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023] Open
Abstract
RNA is a fundamental biomolecule that has many purposes within cells. Due to its single-stranded and flexible nature, RNA naturally folds into complex and dynamic structures. Recent technological and computational advances have produced an explosion of RNA structural data. Many RNA structures have regulatory and functional properties. Studying the structure of nascent RNAs is particularly challenging due to their low abundance and long length, but their structures are important because they can influence RNA processing. Precursor RNA processing is a nexus of pathways that determines mature isoform composition and that controls gene expression. In this review, we examine what is known about human nascent RNA structure and the influence of RNA structure on processing of precursor RNAs. These known structures provide examples of how other nascent RNAs may be structured and show how novel RNA structures may influence RNA processing including splicing and polyadenylation. RNA structures can be targeted therapeutically to treat disease.
Collapse
|
87
|
Zhang F, Yoon K, Zhang DY, Kim NS, Ming GL, Song H. Epitranscriptomic regulation of cortical neurogenesis via Mettl8-dependent mitochondrial tRNA m 3C modification. Cell Stem Cell 2023; 30:300-311.e11. [PMID: 36764294 PMCID: PMC10031801 DOI: 10.1016/j.stem.2023.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Increasing evidence implicates the critical roles of various epitranscriptomic RNA modifications in different biological processes. Methyltransferase METTL8 installs 3-methylcytosine (m3C) modification of mitochondrial tRNAs in vitro; however, its role in intact biological systems is unknown. Here, we show that Mettl8 is localized in mitochondria and installs m3C specifically on mitochondrial tRNAThr/Ser(UCN) in mouse embryonic cortical neural stem cells. At molecular and cellular levels, Mettl8 deletion in cortical neural stem cells leads to reduced mitochondrial protein translation and attenuated respiration activity. At the functional level, conditional Mettl8 deletion in mice results in impaired embryonic cortical neural stem cell maintenance in vivo, which can be rescued by pharmacologically enhancing mitochondrial functions. Similarly, METTL8 promotes mitochondrial protein expression and neural stem cell maintenance in human forebrain cortical organoids. Together, our study reveals a conserved epitranscriptomic mechanism of Mettl8 and mitochondrial tRNA m3C modification in maintaining embryonic cortical neural stem cells in mice and humans.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kijun Yoon
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nam-Shik Kim
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
88
|
Dai Q, Zhang LS, Sun HL, Pajdzik K, Yang L, Ye C, Ju CW, Liu S, Wang Y, Zheng Z, Zhang L, Harada BT, Dou X, Irkliyenko I, Feng X, Zhang W, Pan T, He C. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat Biotechnol 2023; 41:344-354. [PMID: 36302989 PMCID: PMC10017504 DOI: 10.1038/s41587-022-01505-w] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/08/2022] [Indexed: 12/23/2022]
Abstract
Functional characterization of pseudouridine (Ψ) in mammalian mRNA has been hampered by the lack of a quantitative method that maps Ψ in the whole transcriptome. We report bisulfite-induced deletion sequencing (BID-seq), which uses a bisulfite-mediated reaction to convert pseudouridine stoichiometrically into deletion upon reverse transcription without cytosine deamination. BID-seq enables detection of abundant Ψ sites with stoichiometry information in several human cell lines and 12 different mouse tissues using 10-20 ng input RNA. We uncover consensus sequences for Ψ in mammalian mRNA and assign different 'writer' proteins to individual Ψ deposition. Our results reveal a transcript stabilization role of Ψ sites installed by TRUB1 in human cancer cells. We also detect the presence of Ψ within stop codons of mammalian mRNA and confirm the role of Ψ in promoting stop codon readthrough in vivo. BID-seq will enable future investigations of the roles of Ψ in diverse biological processes.
Collapse
Affiliation(s)
- Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | - Li-Sheng Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| | - Hui-Lung Sun
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Kinga Pajdzik
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Lei Yang
- First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Cheng-Wei Ju
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yuru Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Zhong Zheng
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Linda Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Bryan T Harada
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Xiaoyang Dou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Iryna Irkliyenko
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xinran Feng
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
89
|
Anreiter I, Tian YW, Soller M. The cap epitranscriptome: Early directions to a complex life as mRNA. Bioessays 2023; 45:e2200198. [PMID: 36529693 DOI: 10.1002/bies.202200198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Animal, protist and viral messenger RNAs (mRNAs) are most prominently modified at the beginning by methylation of cap-adjacent nucleotides at the 2'-O-position of the ribose (cOMe) by dedicated cap methyltransferases (CMTrs). If the first nucleotide of an mRNA is an adenosine, PCIF1 can methylate at the N6 -position (m6 A), while internally the Mettl3/14 writer complex can methylate. These modifications are introduced co-transcriptionally to affect many aspects of gene expression including localisation to synapses and local translation. Of particular interest, transcription start sites of many genes are heterogeneous leading to sequence diversity at the beginning of mRNAs, which together with cOMe and m6 Am could constitute an extensive novel layer of gene expression control. Given the role of cOMe and m6 A in local gene expression at synapses and higher brain functions including learning and memory, such code could be implemented at the transcriptional level for lasting memories through local gene expression at synapses.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Yuan W Tian
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Soller
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
90
|
Kramer NJ, Prakash G, Choquet K, Soto I, Petrova B, Merens HE, Kanarek N, Churchman LS. Genome-wide screens for mitonuclear co-regulators uncover links between compartmentalized metabolism and mitochondrial gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528118. [PMID: 36798306 PMCID: PMC9934615 DOI: 10.1101/2023.02.11.528118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells, in which gene expression must be coordinated across organelles using distinct pools of ribosomes. How cells produce and maintain the accurate subunit stoichiometries for these OXPHOS complexes remains largely unknown. To identify genes involved in dual-origin protein complex synthesis, we performed FACS-based genome-wide screens analyzing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of cytochrome c oxidase (Complex IV). We identified novel genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6 . We found that PREPL specifically regulates Complex IV biogenesis by interacting with mitochondrial protein synthesis machinery, while NME6, an uncharacterized nucleoside diphosphate kinase (NDPK), controls OXPHOS complex biogenesis through multiple mechanisms reliant on its NDPK domain. First, NME6 maintains local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Second, through stabilizing interactions with RCC1L, NME6 modulates the activity of mitoribosome regulatory complexes, leading to disruptions in mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression. Finally, we present these screens as a resource, providing a catalog of genes involved in mitonuclear gene regulation and OXPHOS biogenesis.
Collapse
|
91
|
Tang J, Wang X, Xiao D, Liu S, Tao Y. The chromatin-associated RNAs in gene regulation and cancer. Mol Cancer 2023; 22:27. [PMID: 36750826 PMCID: PMC9903551 DOI: 10.1186/s12943-023-01724-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Eukaryotic genomes are prevalently transcribed into many types of RNAs that translate into proteins or execute gene regulatory functions. Many RNAs associate with chromatin directly or indirectly and are called chromatin-associated RNAs (caRNAs). To date, caRNAs have been found to be involved in gene and transcriptional regulation through multiple mechanisms and have important roles in different types of cancers. In this review, we first present different categories of caRNAs and the modes of interaction between caRNAs and chromatin. We then detail the mechanisms of chromatin-associated nascent RNAs, chromatin-associated noncoding RNAs and emerging m6A on caRNAs in transcription and gene regulation. Finally, we discuss the roles of caRNAs in cancer as well as epigenetic and epitranscriptomic mechanisms contributing to cancer, which could provide insights into the relationship between different caRNAs and cancer, as well as tumor treatment and intervention.
Collapse
Affiliation(s)
- Jun Tang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078 Hunan China ,grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078 Hunan China
| | - Xiang Wang
- grid.216417.70000 0001 0379 7164Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China. .,Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
92
|
Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023; 70:JME-22-0110. [PMID: 36367225 PMCID: PMC9790079 DOI: 10.1530/jme-22-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Epitranscriptomic modification of RNA regulates human development, health, and disease. The true diversity of the transcriptome in breast cancer including chemical modification of transcribed RNA (epitranscriptomics) is not well understood due to limitations of technology and bioinformatic analysis. N-6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of mRNA and regulates splicing, stability, translation, and intracellular localization of transcripts depending on m6A association with reader RNA-binding proteins. m6A methylation is catalyzed by the METTL3 complex and removed by specific m6A demethylase ALKBH5, with the role of FTO as an 'eraser' uncertain. In this review, we provide an overview of epitranscriptomics related to mRNA and focus on m6A in mRNA and its detection. We summarize current knowledge on altered levels of writers, readers, and erasers of m6A and their roles in breast cancer and their association with prognosis. We summarize studies identifying m6A peaks and sites in genes in breast cancer cells.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
93
|
The Repertoire of RNA Modifications Orchestrates a Plethora of Cellular Responses. Int J Mol Sci 2023; 24:ijms24032387. [PMID: 36768716 PMCID: PMC9916637 DOI: 10.3390/ijms24032387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Although a plethora of DNA modifications have been extensively investigated in the last decade, recent breakthroughs in molecular biology, including high throughput sequencing techniques, have enabled the identification of post-transcriptional marks that decorate RNAs; hence, epitranscriptomics has arisen. This recent scientific field aims to decode the regulatory layer of the transcriptome and set the ground for the detection of modifications in ribose nucleotides. Until now, more than 170 RNA modifications have been reported in diverse types of RNA that contribute to various biological processes, such as RNA biogenesis, stability, and transcriptional and translational accuracy. However, dysfunctions in the RNA-modifying enzymes that regulate their dynamic level can lead to human diseases and cancer. The present review aims to highlight the epitranscriptomic landscape in human RNAs and match the catalytic proteins with the deposition or deletion of a specific mark. In the current review, the most abundant RNA modifications, such as N6-methyladenosine (m6A), N5-methylcytosine (m5C), pseudouridine (Ψ) and inosine (I), are thoroughly described, their functional and regulatory roles are discussed and their contributions to cellular homeostasis are stated. Ultimately, the involvement of the RNA modifications and their writers, erasers, and readers in human diseases and cancer is also discussed.
Collapse
|
94
|
Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet 2023; 39:74-88. [PMID: 36379743 DOI: 10.1016/j.tig.2022.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Cancer was initially considered to be an exclusively genetic disease, but an interplay of dysregulated genetic and epigenetic mechanisms is now known to contribute to the cancer phenotype. More recently, chemical modifications of RNA molecules - the so-called epitranscriptome - have been found to regulate various aspects of RNA function and homeostasis. Specific enzymes, known as RNA-modifying proteins (RMPs), are responsible for depositing, removing, and reading chemical modifications in RNA. Intensive investigations in the epitranscriptomic field in recent years, in conjunction with great technological advances, have revealed the critical role of RNA modifications in regulating numerous cellular pathways. Furthermore, growing evidence has revealed that RNA modification machinery is often altered in human cancers, highlighting the enormous potential of RMPs as pharmacological targets or diagnostic markers.
Collapse
Affiliation(s)
- Ines Orsolic
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Arnaud Carrier
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
95
|
Li Y, Tian W, Zhang H. RNA Modifications in Hematologic Malignancies. Cancer Treat Res 2023; 190:181-207. [PMID: 38113002 DOI: 10.1007/978-3-031-45654-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemical modifications on macromolecules such as DNA, RNA and proteins play important roles in almost all biological processes. The revival of RNA modification research began with the discovery of RNA modification machineries, and with the development of better techniques for characterizing and profiling these modifications at the transcriptome-wide level. Hematopoietic system is maintained by hematopoietic stem cells that possess efficient self-renewal capacity and the potential of differentiation into all lineages of blood cells, and the imbalance of this homeostasis frequently causes hematologic malignancies such as leukemia. Recent studies reveal that dysregulated RNA modifications play essential roles in hematologic malignancies. Herein, we summarize recent advances in some major RNA modifications, the detection methods, roles and mechanisms of these RNA modifications in hematologic malignancies.
Collapse
Affiliation(s)
- Yashu Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, No.185, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Wen Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, No.185, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, P. R. China
| | - Haojian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, No.185, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, P. R. China.
| |
Collapse
|
96
|
Gallicchio L, Olivares GH, Berry CW, Fuller MT. Regulation and function of alternative polyadenylation in development and differentiation. RNA Biol 2023; 20:908-925. [PMID: 37906624 PMCID: PMC10730144 DOI: 10.1080/15476286.2023.2275109] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Alternative processing of nascent mRNAs is widespread in eukaryotic organisms and greatly impacts the output of gene expression. Specifically, alternative cleavage and polyadenylation (APA) is a co-transcriptional molecular process that switches the polyadenylation site (PAS) at which a nascent mRNA is cleaved, resulting in mRNA isoforms with different 3'UTR length and content. APA can potentially affect mRNA translation efficiency, localization, stability, and mRNA seeded protein-protein interactions. APA naturally occurs during development and cellular differentiation, with around 70% of human genes displaying APA in particular tissues and cell types. For example, neurons tend to express mRNAs with long 3'UTRs due to preferential processing at PASs more distal than other PASs used in other cell types. In addition, changes in APA mark a variety of pathological states, including many types of cancer, in which mRNAs are preferentially cleaved at more proximal PASs, causing expression of mRNA isoforms with short 3'UTRs. Although APA has been widely reported, both the function of APA in development and the mechanisms that regulate the choice of 3'end cut sites in normal and pathogenic conditions are still poorly understood. In this review, we summarize current understanding of how APA is regulated during development and cellular differentiation and how the resulting change in 3'UTR content affects multiple aspects of gene expression. With APA being a widespread phenomenon, the advent of cutting-edge scientific techniques and the pressing need for in-vivo studies, there has never been a better time to delve into the intricate mechanisms of alternative cleavage and polyadenylation.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| | - Gonzalo H. Olivares
- Escuela de Kinesiología, Facultad de Medicina y Ciencias de la Salud, Center for Integrative Biology (CIB), Universidad Mayor, Chile and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
97
|
Lan C, Huang X, Liao X, Zhou X, Peng K, Wei Y, Han C, Peng T, Wang J, Zhu G. PUS1 May Be a Potential Prognostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma. Pharmgenomics Pers Med 2023; 16:337-355. [PMID: 37091827 PMCID: PMC10115212 DOI: 10.2147/pgpm.s405621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Objective The mechanisms of pseudouridine synthase (PUS) are not definite in hepatocellular carcinoma (HCC), the objective of this study is to investigate the effect of PUS genes in HCC. Materials and Methods Differentially expressed and prognostic gene of PUS enzymes was identified based on The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Profiling Interactive Analysis (GEPIA) databases. For the identified gene, pseudouridine synthase 1 (PUS1), was used for further research. The clinicopathological feature of PUS1 was analyzed by Student's t-test. Prognostic significance was explored by Kaplan-Meier (KM) analysis and Cox proportional hazards regression model. Receiver operating characteristic (ROC) curve was applied to appraise diagnostic and prognostic value. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Gene Set Enrichment Analysis (GSEA) were implemented to explore mechanism of PUS1. A Guangxi cohort was applied to verify differential expression. In vitro cell experiments were implemented to investigate the influence for proliferation, reactive oxygen species (ROS) level, migration, and invasion of HCC cells after a knockdown of PUS1. Results PUS1 was significantly overexpressed in HCC tissues, and patients with high PUS1 were related to unpromising clinicopathological features. Survival analysis revealed high PUS1 expression was associated with a poor overall survival (OS) and 1 year-recurrence free survival (RFS), was an independent risk factor. Meanwhile, ROC curve showed that PUS1 had a diagnostic and prognostic significance to HCC. Functional enrichment analysis implied that PUS1 may be involved in metabolic pathways, mitochondrial function, non-alcoholic fatty liver disease (NAFLD), and some important carcinogenic pathways. Cell assays revealed that knockdown of PUS1 significantly constrained the migration, proliferation, invasion and improved the ROS level of HCC cells. Conclusion PUS1 may be a prognostic biomarker and a underlying treatment target for HCC.
Collapse
Affiliation(s)
- Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xinlei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Kai Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Jianyao Wang, Department of General Surgery, Shenzhen Children’s Hospital, Lianhua District, Shenzhen, 518026, Guangdong Province, People’s Republic of China, Email
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
- Correspondence: Guangzhi Zhu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China, Tel +86-771-5356528, Fax +86-771-5350031, Email
| |
Collapse
|
98
|
Cerneckis J, Cui Q, Liu W, Shi Y. RNA Modifications in Cancer Stem Cell Biology. Cancer Treat Res 2023; 190:25-47. [PMID: 38112998 DOI: 10.1007/978-3-031-45654-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Post-transcriptional regulation of gene expression shapes the cell state both in health and disease. RNA modifications-especially N6-methyladenosine (m6A)-have recently emerged as key players in RNA processing that depends on a sophisticated interplay between proteins of the RNA modification machinery. Importantly, the RNA epitranscriptome becomes dysregulated in cancer and promotes cancer-associated gene expression programs as well as cancer cell adaptation to the tumor microenvironment. At the top of the tumor hierarchy, cancer stem cells (CSCs) are master regulators of tumorigenesis and resistance to therapeutic intervention. Therefore, defining how RNA modifications influence the CSC state is of great importance for cancer drug development. In this chapter, we summarize the current knowledge of the roles of RNA modifications in shaping the CSC state and driving gene expression programs that confer stem-like properties to CSCs, promote CSC adaptation to the local microenvironment, and endow CSCs with metastatic potential and drug resistance.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Qi Cui
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Wei Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
99
|
The role of post-transcriptional modifications during development. Biol Futur 2022:10.1007/s42977-022-00142-3. [PMID: 36481986 DOI: 10.1007/s42977-022-00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
AbstractWhile the existence of post-transcriptional modifications of RNA nucleotides has been known for decades, in most RNA species the exact positions of these modifications and their physiological function have been elusive until recently. Technological advances, such as high-throughput next-generation sequencing (NGS) methods and nanopore-based mapping technologies, have made it possible to map the position of these modifications with single nucleotide accuracy, and genetic screens have uncovered the “writer”, “reader” and “eraser” proteins that help to install, interpret and remove such modifications, respectively. These discoveries led to intensive research programmes with the aim of uncovering the roles of these modifications during diverse biological processes. In this review, we assess novel discoveries related to the role of post-transcriptional modifications during animal development, highlighting how these discoveries can affect multiple aspects of development from fertilization to differentiation in many species.
Collapse
|
100
|
Athanasopoulou K, Daneva GN, Boti MA, Dimitroulis G, Adamopoulos PG, Scorilas A. The Transition from Cancer "omics" to "epi-omics" through Next- and Third-Generation Sequencing. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122010. [PMID: 36556377 PMCID: PMC9785810 DOI: 10.3390/life12122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of gene transcription, as well as post-translational protein modifications, which cooperatively promote carcinogenesis. These findings suggest that the adoption of a multidimensional approach can provide a much more precise and comprehensive picture of the tumor landscape, hence serving as a powerful tool in cancer research and precision oncology. The introduction of next- and third-generation sequencing technologies paved the way for the decoding of genetic information and the elucidation of cancer-related cellular compounds and mechanisms. In the present review, we discuss the current and emerging applications of both generations of sequencing technologies, also referred to as massive parallel sequencing (MPS), in the fields of cancer genomics, transcriptomics and proteomics, as well as in the progressing realms of epi-omics. Finally, we provide a brief insight into the expanding scope of sequencing applications in personalized cancer medicine and pharmacogenomics.
Collapse
|