51
|
Longo LVG, Nakayasu ES, Matsuo AL, Peres da Silva R, Sobreira TJP, Vallejo MC, Ganiko L, Almeida IC, Puccia R. Identification of human plasma proteins associated with the cell wall of the pathogenic fungus Paracoccidioides brasiliensis. FEMS Microbiol Lett 2013; 341:87-95. [PMID: 23398536 DOI: 10.1111/1574-6968.12097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/25/2013] [Indexed: 01/16/2023] Open
Abstract
Paracoccidioides brasiliensis and Paracoccidioides lutzii are thermodimorphic species that cause paracoccidioidomycosis. The cell wall is the outermost fungal organelle to form an interface with the host. A number of host effector compounds, including immunologically active molecules, circulate in the plasma. In the present work, we extracted cell-wall-associated proteins from the yeast pathogenic phase of P. brasiliensis, isolate Pb3, grown in the presence of human plasma and analyzed bound plasma proteins by liquid chromatography-tandem mass spectrometry. Transport, complement activation/regulation, and coagulation pathway were the most abundant functional groups identified. Proteins related to iron/copper acquisition, immunoglobulins, and protease inhibitors were also detected. Several human plasma proteins described here have not been previously reported as interacting with fungal components, specifically, clusterin, hemopexin, transthyretin, ceruloplasmin, alpha-1-antitrypsin, apolipoprotein A-I, and apolipoprotein B-100. Additionally, we observed increased phagocytosis by J774.16 macrophages of Pb3 grown in plasma, suggesting that plasma proteins interacting with P. brasiliensis cell wall might be interfering in the fungal relationship with the host.
Collapse
Affiliation(s)
- Larissa V G Longo
- Escola Paulista de Medicina, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Leptospiral LruA is required for virulence and modulates an interaction with mammalian apolipoprotein AI. Infect Immun 2013; 81:3872-9. [PMID: 23918777 DOI: 10.1128/iai.01195-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Leptospirosis is a worldwide zoonosis caused by spirochetes of the genus Leptospira. While understanding of pathogenesis remains limited, the development of mutagenesis in Leptospira has provided a powerful tool for identifying novel virulence factors. LruA is a lipoprotein that has been implicated in leptospiral uveitis as a target of the immune response. In this study, two lruA mutants, M754 and M765, generated by transposon mutagenesis from Leptospira interrogans serovar Manilae, were characterized. In M754, the transposon inserted in the middle of lruA, resulting in no detectable expression of LruA. In M765, the transposon inserted toward the 3' end of the gene, resulting in expression of a truncated protein. LruA was demonstrated to be on the cell surface in M765 and the wild type (WT). M754, but not M765, was attenuated in a hamster model of acute infection. A search for differential binding to human serum proteins identified a serum protein of around 30 kDa bound to the wild type and the LruA deletion mutant (M754), but not to the LruA truncation mutant (M765). Two-dimensional separation of proteins from leptospiral cells incubated with guinea pig serum identified the 28-kDa apolipoprotein A-I (ApoA-I) as a major mammalian serum protein that binds Leptospira in vitro. Interestingly, M754 (with no detectable LruA) bound more ApoA-I than did the LruA-expressing strains Manilae wild type and M765. Our data thus identify LruA as a surface-exposed leptospiral virulence factor that contributes to leptospiral pathogenesis, possibly by modulating cellular interactions with serum protein ApoA-I.
Collapse
|
53
|
Miller DP, McDowell JV, Rhodes DV, Allard A, Caimano M, Bell J, Marconi RT. Sequence divergence in the Treponema denticola FhbB protein and its impact on factor H binding. Mol Oral Microbiol 2013; 28:316-30. [PMID: 23601078 PMCID: PMC3785937 DOI: 10.1111/omi.12027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
Treponema denticola is an anaerobic spirochete whose abundance in the subgingival crevice correlates with the development and severity of periodontal disease. The ability of T. denticola to survive and thrive in the hostile environment of the periodontal pocket is due, at least in part, to its ability to bind factor H (FH), a negative regulator of the alternative complement pathway. The FH binding protein of T. denticola has been identified as FhbB and its atomic structure has been determined. The interaction of FH with T. denticola is unique in that FH bound to the cell surface is cleaved by the T. denticola protease, dentilisin. It has been postulated that FH cleavage by T. denticola leads to immune dysregulation in periodontal pockets. In this study, we conduct a comparative assessment of the sequence, properties, structure and ligand binding kinetics of the FhbB proteins of strains 33521 and 35405. The biological outcome of the interaction of these strains with FH could differ significantly as 33521 lacks dentilisin activity. The data presented here offer insight into our understanding of the interactions of T. denticola with the host and its potential to influence disease progression.
Collapse
Affiliation(s)
- Daniel P. Miller
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - John V. McDowell
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - DeLacy V. Rhodes
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - Anna Allard
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Melissa Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Jessica Bell
- Department of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
- Center for the Study of Biological Complexity, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
54
|
Iliev ID, Underhill DM. Striking a balance: fungal commensalism versus pathogenesis. Curr Opin Microbiol 2013; 16:366-73. [PMID: 23756050 DOI: 10.1016/j.mib.2013.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 02/06/2023]
Abstract
The environment is suffused with nearly countless types of fungi, and our immune systems must be tuned to cope with constant exposure to them. In addition, it is becoming increasingly clear that many surfaces of our bodies are colonized with complex populations of fungi (the mycobiome) in the same way that they are colonized with complex populations of bacteria. The immune system must tolerate colonization with commensal fungi but defend against fungal invasion. Truly life-threatening fungal infections are common only when this balance is disrupted through, for example, profound immunosuppression or genetic mutation. Recent studies have begun to shed light on how this balance is established and maintained, and suggest future studies on the role of fungi in homeostatic conditions.
Collapse
Affiliation(s)
- Iliyan D Iliev
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
55
|
Caesar JJE, Wallich R, Kraiczy P, Zipfel PF, Lea SM. Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of Borrelia burgdorferi. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:629-33. [PMID: 23722839 PMCID: PMC3668580 DOI: 10.1107/s1744309113012748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Borrelia burgdorferi has evolved many mechanisms of evading the different immune systems across its range of reservoir hosts, including the capture and presentation of host complement regulators factor H and factor H-like protein-1 (FHL-1). Acquisition is mediated by a family of complement regulator-acquiring surface proteins (CRASPs), of which the atomic structure of CspA (BbCRASP-1) is known and shows the formation of a homodimeric species which is required for binding. Mutagenesis studies have mapped a putative factor H binding site to a cleft between the two subunits. Presented here is a new atomic structure of CspA which shows a degree of flexibility between the subunits which may be critical for factor H scavenging by increasing access to the binding interface and allows the possibility that the assembly can clamp around the bound complement regulators.
Collapse
Affiliation(s)
- Joseph J. E. Caesar
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| | - Reinhard Wallich
- Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, Frankfurt University Hospital, Paul-Ehrlich-Strasse 40, 60596 Frankfurt, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Products Research and Infection Biology, Beutenbergstrasse 11a, 07745 Jena, Germany
- Friedrich Schiller University of Jena, 07737 Jena, Germany
| | - Susan M. Lea
- Oxford Martin School of Vaccine Design, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| |
Collapse
|
56
|
Caesar JJE, Johnson S, Kraiczy P, Lea SM. ErpC, a member of the complement regulator-acquiring family of surface proteins from Borrelia burgdorferi, possesses an architecture previously unseen in this protein family. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:624-8. [PMID: 23722838 PMCID: PMC3668579 DOI: 10.1107/s1744309113013249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Borrelia burgdorferi is a spirochete responsible for Lyme disease, the most commonly occurring vector-borne disease in Europe and North America. The bacterium utilizes a set of proteins, termed complement regulator-acquiring surface proteins (CRASPs), to aid evasion of the human complement system by recruiting and presenting complement regulator factor H on its surface in a manner that mimics host cells. Presented here is the atomic resolution structure of a member of this protein family, ErpC. The structure provides new insights into the mechanism of recruitment of factor H and other factor H-related proteins by acting as a molecular mimic of host glycosaminoglycans. It also describes the architecture of other CRASP proteins belonging to the OspE/F-related paralogous protein family and suggests that they have evolved to bind specific complement proteins, aiding survival of the bacterium in different hosts.
Collapse
Affiliation(s)
- Joseph J. E. Caesar
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, Frankfurt University Hospital, Paul-Ehrlich-Strasse 40, 60596 Frankfurt, Germany
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, England
| |
Collapse
|
57
|
Meri T, Amdahl H, Lehtinen MJ, Hyvärinen S, McDowell JV, Bhattacharjee A, Meri S, Marconi R, Goldman A, Jokiranta TS. Microbes bind complement inhibitor factor H via a common site. PLoS Pathog 2013; 9:e1003308. [PMID: 23637600 PMCID: PMC3630169 DOI: 10.1371/journal.ppat.1003308] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 03/02/2013] [Indexed: 11/18/2022] Open
Abstract
To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19–20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a “superevasion site.” Complement is an important arm of innate immunity. Activation of this plasma protein cascade leads to opsonization of targets for phagocytosis, direct lysis of Gram-negative bacteria, and enhancement of the inflammatory and acquired immune responses. No specific signal is needed for activation of the alternative pathway of complement, leading to its activation on all unprotected surfaces. Pathogenic microbes need to evade this pathway, and several species are known to recruit host complement inhibitor factor H (FH) to prevent the activation. FH is important for protection of host cells, too, as defects in FH lead to a severe autoreactive disease, atypical hemolytic uremic syndrome. We have now identified at the molecular level a common mechanism by which seven different microbes, Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumoniae, Candida albicans, Borrelia burgdorferi and B. hermsii, recruit FH. All microbes bind FH via a common site on domain 20, which facilitates formation of a tripartite complex between the microbial protein, the main complement opsonin C3b, and FH. We show that, by utilizing the common microbial binding site on FH20, microbes can inhibit complement more efficiently. This detailed knowledge on mechanism of complement evasion can be used in developing novel antimicrobial chemotherapy.
Collapse
Affiliation(s)
- T Meri
- Haartman Institute, Department of Bacteriology and Immunology and Immunobiology Research Program, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
|
59
|
Simon N, Lasonder E, Scheuermayer M, Kuehn A, Tews S, Fischer R, Zipfel P, Skerka C, Pradel G. Malaria Parasites Co-opt Human Factor H to Prevent Complement-Mediated Lysis in the Mosquito Midgut. Cell Host Microbe 2013; 13:29-41. [DOI: 10.1016/j.chom.2012.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/06/2012] [Accepted: 11/20/2012] [Indexed: 12/15/2022]
|
60
|
Luo S, Hoffmann R, Skerka C, Zipfel PF. Glycerol-3-phosphate dehydrogenase 2 is a novel factor H-, factor H-like protein 1-, and plasminogen-binding surface protein of Candida albicans. J Infect Dis 2012. [PMID: 23204165 DOI: 10.1093/infdis/jis718] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Candida albicans uses human complement regulators such as factor H and factor H-like protein 1 (FHL-1) for immune evasion. To define the whole panel of fungal complement-evasion molecules, C. albicans cell extract was absorbed to a factor H-coupled matrix. One 52-kDa protein was eluted and identified by mass spectrometry as glycerol-3-phosphate dehydrogenase 2 (Gpd2). Consequently, Gpd2 was recombinantly expressed and purified. Recombinant Gpd2 binds factor Hand and FHL-1, mainly via short consensus repeat 7; and binds plasminogen, via lysine residues. The 3 human complement regulators, when attached to candida Gpd2, became functionally active, and the attached host proteins assist in inactivation of the complement cascade or cleave fibrinogen in the extracellular matrix component fibrinogen. Polyclonal Gpd2 antiserum was generated and localized Gpd2 at the surface of C. albicans. In addition, candida Gpd2 bound to human nonphagocytic cells but not to phagocytic U937 cells. Thus, candida Gpd2 is a novel fungal immune evasion protein that binds several human complement regulators and, in addition, binds human cells.
Collapse
Affiliation(s)
- Shanshan Luo
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Germany
| | | | | | | |
Collapse
|
61
|
Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 2012; 35:369-89. [PMID: 22715882 DOI: 10.1146/annurev-neuro-061010-113810] [Citation(s) in RCA: 778] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An unexpected role for the classical complement cascade in the elimination of central nervous system (CNS) synapses has recently been discovered. Complement proteins are localized to developing CNS synapses during periods of active synapse elimination and are required for normal brain wiring. The function of complement proteins in the brain appears analogous to their function in the immune system: clearance of cellular material that has been tagged for elimination. Similarly, synapses tagged with complement proteins may be eliminated by microglial cells expressing complement receptors. In addition, developing astrocytes release signals that induce the expression of complement components in the CNS. In the mature brain, early synapse loss is a hallmark of several neurodegenerative diseases. Complement proteins are profoundly upregulated in many CNS diseases prior to signs of neuron loss, suggesting a reactivation of similar developmental mechanisms of complement-mediated synapse elimination potentially driving disease progression.
Collapse
Affiliation(s)
- Alexander H Stephan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA.
| | | | | |
Collapse
|
62
|
Moriarty TJ, Shi M, Lin YP, Ebady R, Zhou H, Odisho T, Hardy PO, Salman-Dilgimen A, Wu J, Weening EH, Skare JT, Kubes P, Leong J, Chaconas G. Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules. Mol Microbiol 2012; 86:1116-31. [PMID: 23095033 DOI: 10.1111/mmi.12045] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2012] [Indexed: 01/02/2023]
Abstract
Systemic dissemination of microbial pathogens permits microbes to spread from the initial site of infection to secondary target tissues and is responsible for most mortality due to bacterial infections. Dissemination is a critical stage of disease progression by the Lyme spirochaete, Borrelia burgdorferi. However, many mechanistic features of the process are not yet understood. A key step is adhesion of circulating microbes to vascular surfaces in the face of the shear forces present in flowing blood. Using real-time microscopic imaging of the Lyme spirochaete in living mice we previously identified the first bacterial protein (B. burgdorferi BBK32) shown to mediate vascular adhesion in vivo. Vascular adhesion is also dependent on host fibronectin (Fn) and glycosaminoglycans (GAGs). In the present study, we investigated the mechanisms of BBK32-dependent vascular adhesion in vivo. We determined that BBK32-Fn interactions (tethering) function as a molecular braking mechanism that permits the formation of more stable BBK32-GAG interactions (dragging) between circulating bacteria and vascular surfaces. Since BBK32-like proteins are expressed in a variety of pathogens we believe that the vascular adhesion mechanisms we have deciphered here may be critical for understanding the dissemination mechanisms of other bacterial pathogens.
Collapse
Affiliation(s)
- Tara J Moriarty
- Matrix Dynamics Group, and Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 3E2, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Schindler MKH, Schütz MS, Mühlenkamp MC, Rooijakkers SHM, Hallström T, Zipfel PF, Autenrieth IB. Yersinia enterocolitica YadA mediates complement evasion by recruitment and inactivation of C3 products. THE JOURNAL OF IMMUNOLOGY 2012; 189:4900-8. [PMID: 23071281 DOI: 10.4049/jimmunol.1201383] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Yersinia adhesin A (YadA) is a major virulence factor of Yersinia enterocolitica. YadA mediates host cell binding and autoaggregation and protects the pathogen from killing by the complement system. Previous studies demonstrated that YadA is the most important single factor mediating serum resistance of Y. enterocolitica, presumably by binding C4b binding protein (C4BP) and factor H, which are both complement inhibitors. Factor H acts as a cofactor for factor I-mediated cleavage of C3b into the inactive form iC3b and thus prevents formation of inflammatory effector compounds and the terminal complement complex. In this study, we challenged the current direct binding model of factor H to YadA and show that Y. enterocolitica YadA recruits C3b and iC3b directly, without the need of an active complement cascade or additional serum factors. Enhanced binding of C3b does not decrease survival of YadA-expressing Yersiniae because C3b becomes readily inactivated by factor H and factor I. Binding of factor H to YadA is greatly reduced in the absence of C3. Experiments using Yersinia lacking YadA or expressing YadA with reduced trimeric stability clearly demonstrate that both the presence and full trimeric stability of YadA are essential for complement resistance. A novel mechanism of factor H binding is presented in which YadA exploits recruitment of C3b or iC3b to attract large amounts of factor H. As a consequence, formation of the terminal complement complex is limited and bacterial survival is enhanced. These findings add a new aspect of how Y. enterocolitica effectively evades the host complement system.
Collapse
Affiliation(s)
- Magnus K H Schindler
- Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
64
|
Plasminogen binding proteins and plasmin generation on the surface of Leptospira spp.: the contribution to the bacteria-host interactions. J Biomed Biotechnol 2012; 2012:758513. [PMID: 23118516 PMCID: PMC3481863 DOI: 10.1155/2012/758513] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 11/23/2022] Open
Abstract
Leptospirosis is considered a neglected infectious disease of human and veterinary concern. Although extensive investigations on host-pathogen interactions have been pursued by several research groups, mechanisms of infection, invasion and persistence of pathogenic Leptospira spp. remain to be elucidated. We have reported the ability of leptospires to bind human plasminogen (PLG) and to generate enzimatically active plasmin (PLA) on the bacteria surface. PLA-coated Leptospira can degrade immobilized ECM molecules, an activity with implications in host tissue penetration. Moreover, we have identified and characterized several proteins that may act as PLG-binding receptors, each of them competent to generate active plasmin. The PLA activity associated to the outer surface of Leptospira could hamper the host immune attack by conferring the bacteria some benefit during infection. The PLA-coated leptospires obstruct complement C3b and IgG depositions on the bacterial surface, most probably through degradation. The decrease of leptospiral opsonization might be an important aspect of the immune evasion strategy. We believe that the presence of PLA on the leptospiral surface may (i) facilitate host tissue penetration, (ii) help the bacteria to evade the immune system and, as a consequence, (iii) permit Leptospira to reach secondary sites of infection.
Collapse
|
65
|
Hay RJ, Steer AC, Engelman D, Walton S. Scabies in the developing world--its prevalence, complications, and management. Clin Microbiol Infect 2012; 18:313-23. [PMID: 22429456 DOI: 10.1111/j.1469-0691.2012.03798.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scabies remains one of the commonest of skin diseases seen in developing countries. Although its distribution is subject to a cycle of infection, with peaks and troughs of disease prevalence, this periodicity is often less obvious in poor communities. Scabies is a condition that affects families, particularly the most vulnerable; it also has the greatest impact on young children. Largely through the association with secondary bacterial infection caused by group A streptococci and Staphylococcus aureus, the burden of disease is compounded by nephritis, rheumatic fever and sepsis in developing countries. However, with a few notable exceptions, it remains largely neglected as an important public health problem. The purpose of this review is to provide an update on the current position of scabies with regard to its complications and control in resource-poor countries.
Collapse
Affiliation(s)
- R J Hay
- International Foundation for Dermatology, London, UK.
| | | | | | | |
Collapse
|
66
|
Mika A, Reynolds SL, Mohlin FC, Willis C, Swe PM, Pickering DA, Halilovic V, Wijeyewickrema LC, Pike RN, Blom AM, Kemp DJ, Fischer K. Novel scabies mite serpins inhibit the three pathways of the human complement system. PLoS One 2012; 7:e40489. [PMID: 22792350 PMCID: PMC3394726 DOI: 10.1371/journal.pone.0040489] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/07/2012] [Indexed: 01/06/2023] Open
Abstract
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage.
Collapse
Affiliation(s)
- Angela Mika
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Zipfel PF, Skerka C. Complement, Candida, and cytokines: the role of C5a in host response to fungi. Eur J Immunol 2012; 42:822-5. [PMID: 22531909 DOI: 10.1002/eji.201242466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complement is the central host defense system that clears invading microbes and balances homeostasis. Pathogenic microbes such as Candida albicans have to breach this efficient and important immune defense layer in order to propagate within the host and to establish an infection. Knowing exactly how the activated complement cascade responds to and attacks microbial invaders is central to understanding the immune battle and the infection process. This also allows a better understanding of how Candida counteracts the individual steps of host innate immunity. Ultimately this knowledge will allow the design of appropriate therapeutic molecules. In this issue Cheng et al. [Eur. J. Immunol. 2012. 42: 993-1004] identify a new cellular effect of the activated human complement system in the defense against the fungal pathogen C. albicans. The authors show that the complement activation fragment C5a, which is formed in response to Candida infection, induces the cellular release of the inflammatory cytokines IL-6 and IL-1β.
Collapse
Affiliation(s)
- Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Infection Biology, Beutenbergstrasse, Jena, Germany.
| | | |
Collapse
|
68
|
Sharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA, Foster TJ, Cunnion KM. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PLoS One 2012; 7:e38407. [PMID: 22675461 PMCID: PMC3364985 DOI: 10.1371/journal.pone.0038407] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/04/2012] [Indexed: 01/24/2023] Open
Abstract
Similar to other highly successful invasive bacterial pathogens, Staphylococcus aureus recruits the complement regulatory protein factor H (fH) to its surface to inhibit the alternative pathway of complement. Here, we report the identification of the surface-associated protein SdrE as a fH-binding protein using purified fH overlay of S. aureus fractionated cell wall proteins and fH cross-linking to S. aureus followed by mass spectrometry. Studies using recombinant SdrE revealed that rSdrE bound significant fH whether from serum or as a purified form, in both a time- and dose-dependent manner. Furthermore, rSdrE-bound fH exhibited cofactor functionality for factor I (fI)-mediated cleavage of C3b to iC3b which correlated positively with increasing amounts of fH. Expression of SdrE on the surface of the surrogate bacterium Lactococcus lactis enhanced recruitment of fH which resulted in increased iC3b generation. Moreover, surface expression of SdrE led to a reduction in C3-fragment deposition, less C5a generation, and reduced killing by polymorphonuclear cells. Thus, we report the first identification of a S. aureus protein associated with the staphylococcal surface that binds factor H as an immune evasion mechanism.
Collapse
Affiliation(s)
- Julia A Sharp
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Chin CY, Monack DM, Nathan S. Delayed activation of host innate immune pathways in streptozotocin-induced diabetic hosts leads to more severe disease during infection with Burkholderia pseudomallei. Immunology 2012; 135:312-32. [PMID: 22136109 DOI: 10.1111/j.1365-2567.2011.03544.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a predisposing factor of melioidosis, contributing to higher mortality rates in diabetics infected with Burkholderia pseudomallei. To investigate how diabetes alters the inflammatory response, we established a streptozotocin (STZ) -induced diabetic murine acute-phase melioidosis model. Viable B. pseudomallei cells were consistently detected in the blood, liver and spleen during the 42-hr course of infection but the hyperglycaemic environment did not increase the bacterial burden. However, after 24 hr, granulocyte counts increased in response to infection, whereas blood glucose concentrations decreased over the course of infection. A genome-wide expression analysis of the STZ-diabetic murine acute melioidosis liver identified ~1000 genes whose expression was altered in the STZ-diabetic mice. The STZ-diabetic host transcriptional response was compared with the normoglycaemic host transcriptional response recently reported by our group. The microarray data suggest that the presence of elevated glucose levels impairs the host innate immune system by delaying the identification and recognition of B. pseudomallei surface structures. Consequently, the host is unable to activate the appropriate innate immune response over time, which may explain the increased susceptibility to melioidosis in the STZ-diabetic host. Nevertheless, a general 'alarm signal' of infection as well as defence programmes are still triggered by the STZ-diabetic host, although only 24 hr after infection. In summary, this study demonstrates that in the face of a B. pseudomallei acute infection, poor glycaemic control impaired innate responses during the early stages of B. pseudomallei infection, contributing to the increased susceptibility of STZ-induced diabetics to this fatal disease.
Collapse
Affiliation(s)
- Chui-Yoke Chin
- School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | | | | |
Collapse
|
70
|
Abstract
Plasminogen is a 92-kDa single chain glycoprotein that circulates in plasma as a zymogen and when converted to proteolytically active plasmin dissolves preformed fibrin clots and extracellular matrix components. Here, we characterize the role of plasmin(ogen) in the complement cascade. Plasminogen binds the central complement protein C3, the C3 cleavage products C3b and C3d, and C5. Plasminogen binds to C3, C3b, C3d, and C5 via lysine residues, and the interaction is ionic strength-dependent. Plasminogen and Factor H bind C3b; however, the two proteins bind to different sites and do not compete for binding. Plasminogen affects complement action in multiple ways. Plasminogen enhanced Factor I-mediated C3b degradation in the presence of the cofactor Factor H. Plasminogen when activated to plasmin inhibited complement as demonstrated by hemolytic assays using either rabbit or sheep erythrocytes. Similarly, plasmin either in the fluid phase or attached to surfaces inhibited complement that was activated via the alternative and classical pathways and cleaved C3b to fragments of 68, 40, 30, and 17 kDa. The C3b fragments generated by plasmin differ in size from those generated by the complement protease Factor I, suggesting that plasmin-mediated C3b cleavage fragments lack effector function. Plasmin also cleaved C5 to products of 65, 50, 30, and 25 kDa. Thus, plasmin(ogen) regulates both complement and coagulation, the two central cascade systems of a vertebrate organism. This complement-inhibitory activity of plasmin provides a new explanation why pathogenic microbes utilize plasmin(ogen) for immune evasion and tissue penetration.
Collapse
Affiliation(s)
- Diana Barthel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | | | | |
Collapse
|
71
|
Cantas L, Midtlyng PJ, Sørum H. Impact of antibiotic treatments on the expression of the R plasmid tra genes and on the host innate immune activity during pRAS1 bearing Aeromonas hydrophila infection in zebrafish (Danio rerio). BMC Microbiol 2012; 12:37. [PMID: 22429905 PMCID: PMC3340321 DOI: 10.1186/1471-2180-12-37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/19/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The transfer of R plasmids between bacteria has been well studied under laboratory conditions and the transfer frequency has been found to vary between plasmids and under various physical conditions. For the first time, we here study the expression of the selected plasmid mobility genes traD, virB11 and virD4 in the 45 kb IncU plasmid, pRAS1, conferring resistance to tetracycline, trimethoprim and sulphonamide, using an in vivo zebrafish infection- treatment model. RESULTS Three days after oral infection of adult zebrafish with Aeromonas hydrophila harboring pRAS1, elevated expression of pro-inflammatory cytokine (TNF α, IL-1β and IL-8) and complement C3 genes in the intestine coincided with disease symptoms. Tetracycline, trimethoprim and an ineffective concentration of flumequine given 48 h prior to sampling, strongly increased expression of plasmid mobility genes, whereas an effective dosage of flumequine resulted in lower levels of mRNA copies of these genes relative to placebo treatment. Following effective treatment with flumequine, and ineffective treatments with a low concentration of flumequine, with trimethoprim or with sulphonamide, the intestinal expression of immune genes was strongly induced compared to placebo treated control fish. CONCLUSIONS Treatment of zebrafish infected with an antibiotic resistant (TcR, TmR, SuR) A. hydrophila with ineffective concentrations of flumequine or the ineffective antimicrobials tetracycline and trimethoprim strongly induced expression of genes mediating conjugative transfer of the R-plasmid pRAS1. Simultaneously, there was a strong induction of selected inflammatory and immune response genes, which was again evident in fish subjected to ineffective treatment protocols. Our findings point to the essential role of therapeutic practices in escalation or control of antibiotic resistance transfer, and suggest that antibiotic substances, even in sub-inhibitory concentrations, may stimulate innate defenses against bacterial infections.
Collapse
Affiliation(s)
- Leon Cantas
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Ullevålsveien 72, PO 8146, 0033 Oslo, Norway.
| | | | | |
Collapse
|
72
|
Zarember KA, Marshall-Batty KR, Cruz AR, Chu J, Fenster ME, Shoffner AR, Rogge LS, Whitney AR, Czapiga M, Song HH, Shaw PA, Nagashima K, Malech HL, DeLeo FR, Holland SM, Gallin JI, Greenberg DE. Innate immunity against Granulibacter bethesdensis, an emerging gram-negative bacterial pathogen. Infect Immun 2012; 80:975-81. [PMID: 22184421 PMCID: PMC3294668 DOI: 10.1128/iai.05557-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/29/2011] [Indexed: 12/17/2022] Open
Abstract
Acetic acid bacteria were previously considered nonpathogenic in humans. However, over the past decade, five genera of Acetobacteraceae have been isolated from patients with inborn or iatrogenic immunodeficiencies. Here, we describe the first studies of the interactions of the human innate immune system with a member of this bacterial family, Granulibacter bethesdensis, an emerging pathogen in patients with chronic granulomatous disease (CGD). Efficient phagocytosis of G. bethesdensis by normal and CGD polymorphonuclear leukocytes (CGD PMN) required heat-labile serum components (e.g., C3), and binding of C3 and C9 to G. bethesdensis was detected by immunoblotting. However, this organism survived in human serum concentrations of ≥90%, indicating a high degree of serum resistance. Consistent with the clinical host tropism of G. bethesdensis, CGD PMN were unable to kill this organism, while normal PMN, in the presence of serum, reduced the number of CFU by about 50% after a 24-h coculture. This finding, together with the observations that G. bethesdensis was sensitive to H(2)O(2) but resistant to LL-37, a human cationic antimicrobial peptide, suggests an inherent resistance to O(2)-independent killing. Interestingly, 10 to 100 times greater numbers of G. bethesdensis were required to achieve the same level of reactive oxygen species (ROS) production induced by Escherichia coli in normal PMN. In addition to the relative inability of the organism to elicit production of PMN ROS, G. bethesdensis inhibited both constitutive and FAS-induced PMN apoptosis. These properties of reduced PMN activation and resistance to nonoxidative killing mechanisms likely play an important role in G. bethesdensis pathogenesis.
Collapse
Affiliation(s)
- Kol A. Zarember
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimberly R. Marshall-Batty
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anna R. Cruz
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica Chu
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael E. Fenster
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
| | - Adam R. Shoffner
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
| | - Larissa S. Rogge
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adeline R. Whitney
- Laboratory of Human Bacterial Pathogenesis, NIAID/NIH, Hamilton, Montana, USA
| | - Meggan Czapiga
- Research Technologies Branch, NIAID/NIH, Bethesda, Maryland, USA
| | - Helen H. Song
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pamela A. Shaw
- Biostatistics Research Branch, NIAID/NIH, Bethesda, Maryland, USA
| | | | - Harry L. Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, NIAID/NIH, Hamilton, Montana, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
| | - John I. Gallin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David E. Greenberg
- Laboratory of Clinical Infectious Diseases, NIAID/NIH, Bethesda, Maryland, USA
- Research Technologies Branch, NIAID/NIH, Bethesda, Maryland, USA
| |
Collapse
|
73
|
Miller DP, Bell JK, McDowell JV, Conrad DH, Burgner JW, Héroux A, Marconi RT. Structure of factor H-binding protein B (FhbB) of the periopathogen, Treponema denticola: insights into progression of periodontal disease. J Biol Chem 2012; 287:12715-22. [PMID: 22371503 DOI: 10.1074/jbc.m112.339721] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is the most common disease of microbial etiology in humans. Periopathogen survival is dependent upon evasion of complement-mediated destruction. Treponema denticola, an important contributor to periodontitis, evades killing by the alternative complement cascade by binding factor H (FH) to its surface. Bound FH is rapidly cleaved by the T. denticola protease, dentilisin. In this report, the structure of the T. denticola FH-binding protein, FhbB, was solved to 1.7 Å resolution. FhbB possesses a unique fold that imparts high thermostability. The kinetics of the FH/FhbB interaction were assessed using surface plasmon resonance. A K(D) value in the micromolar range (low affinity) was demonstrated, and rapid off kinetics were observed. Site-directed mutagenesis and sucrose octasulfate competition assays collectively indicate that the negatively charged face of FhbB binds within FH complement control protein module 7. This study provides significant new insight into the molecular basis of FH/FhbB interaction and advances our understanding of the role that T. denticola plays in the development and progression of periodontal disease.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Jusko M, Potempa J, Karim AY, Ksiazek M, Riesbeck K, Garred P, Eick S, Blom AM. A metalloproteinase karilysin present in the majority of Tannerella forsythia isolates inhibits all pathways of the complement system. THE JOURNAL OF IMMUNOLOGY 2012; 188:2338-49. [PMID: 22287711 DOI: 10.4049/jimmunol.1101240] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tannerella forsythia is a poorly studied pathogen despite being one of the main causes of periodontitis, which is an inflammatory disease of the supporting structures of the teeth. We found that despite being recognized by all complement pathways, T. forsythia is resistant to killing by human complement, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with karilysin, a metalloproteinase of T. forsythia, resulted in a decrease in bactericidal activity of the serum. T. forsythia strains expressing karilysin at higher levels were more resistant than low-expressing strains. Furthermore, the low-expressing strain was significantly more opsonized with activated complement factor 3 and membrane attack complex from serum compared with the other strains. The high-expressing strain was more resistant to killing in human blood. The protective effect of karilysin against serum bactericidal activity was attributable to its ability to inhibit complement at several stages. The classical and lectin complement pathways were inhibited because of the efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4 by karilysin, whereas inhibition of the terminal pathway was caused by degradation of C5. Interestingly, karilysin was able to release biologically active C5a peptide in human plasma and induce migration of neutrophils. Importantly, we detected the karilysin gene in >90% of gingival crevicular fluid samples containing T. forsythia obtained from patients with periodontitis. Taken together, the newly characterized karilysin appears to be an important virulence factor of T. forsythia and might have several important implications for immune evasion.
Collapse
Affiliation(s)
- Monika Jusko
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, S-205 02 Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Moritella viscosa bypasses Atlantic salmon epidermal keratocyte clearing activity and might use skin surfaces as a port of infection. Vet Microbiol 2012; 154:353-62. [DOI: 10.1016/j.vetmic.2011.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 07/05/2011] [Accepted: 07/21/2011] [Indexed: 11/20/2022]
|
76
|
Fischer K, Holt D, Currie B, Kemp D. Scabies: important clinical consequences explained by new molecular studies. ADVANCES IN PARASITOLOGY 2012; 79:339-73. [PMID: 22726646 DOI: 10.1016/b978-0-12-398457-9.00005-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2004, we reviewed the status of disease caused by the scabies mite Sarcoptes scabiei at the time and pointed out that very little basic research had ever been done. The reason for this was largely the lack of availability of mites for experimental purposes and, to a degree, a consequent lack of understanding of its importance, resulting in the trivial name 'itch mite'. Scabies is responsible for major morbidity in disadvantaged communities and immunocompromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by bacterial pathogens such as Streptococcus pyogenes and Staphylococcus aureus via skin lesions, resulting in severe downstream disease such as in a high prevalence of rheumatic fever/heart disease in affected communities. We now have further evidence that in disadvantaged populations living in tropical climates, scabies rather than 'Strep throat' is an important source of S. pyogenes causing rheumatic fever and eventually rheumatic heart disease. In addition, our work has resulted in two fundamental research tools that facilitate much of the current biomedical research efforts on scabies, namely a public database containing ~45,000 scabies mite expressed sequence tags and a porcine in vivo model. Here we will discuss novel and unexpected proteins encountered in the database that appear crucial to mite survival with regard to digestion and evasion of host defence. The mode(s) of action of some of these have been at least partially revealed. Further, newly discovered molecules that may well have a similar role, such as a family of inactivated cysteine proteases, are yet to be investigated. Hence, there are now whole families of potential targets for chemical inhibitors of S. scabiei. These efforts put today's scabies research in a unique position to design and test small molecules that may specifically interfere with mite-derived molecules, such as digestive proteases and mite complement inhibitors. The porcine scabies model will be available to trial in vivo treatment with potential inhibitors. New therapies for scabies may be developed from these studies and may contribute to reduce the spread of scabies and the subsequent prevalence of bacterial skin infections and their devastating sequelae in the community.
Collapse
Affiliation(s)
- Katja Fischer
- Queensland Institute of Medical Research, Herston, Austraria
| | | | | | | |
Collapse
|
77
|
Barthel D, Singh B, Riesbeck K, Zipfel PF. Haemophilus influenzae uses the surface protein E to acquire human plasminogen and to evade innate immunity. THE JOURNAL OF IMMUNOLOGY 2011; 188:379-85. [PMID: 22124123 DOI: 10.4049/jimmunol.1101927] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pathogenic microbes acquire the human plasma protein plasminogen to their surface. In this article, we characterize binding of this important coagulation regulator to the respiratory pathogen nontypeable Haemophilus influenzae and identify the Haemophilus surface protein E (PE) as a new plasminogen-binding protein. Plasminogen binds dose dependently to intact bacteria and to purified PE. The plasminogen-PE interaction is mediated by lysine residues and is also affected by ionic strength. The H. influenzae PE knockout strain (nontypeable H. influenzae 3655Δpe) bound plasminogen with ∼65% lower intensity as compared with the wild-type, PE-expressing strain. In addition, PE expressed ectopically on the surface of Escherichia coli also bound plasminogen. Plasminogen, either attached to intact H. influenzae or bound to PE, was accessible for urokinase plasminogen activator. The converted active plasmin cleaved the synthetic substrate S-2251, and the natural substrates fibrinogen and C3b. Using synthetic peptides that cover the complete sequence of the PE protein, the major plasminogen-binding region was localized to a linear 28-aa-long N-terminal peptide, which represents aa 41-68. PE binds plasminogen and also vitronectin, and the two human plasma proteins compete for PE binding. Thus, PE is a major plasminogen-binding protein of the Gram-negative bacterium H. influenzae, and when converted to plasmin, PE-bound plasmin aids in immune evasion and contributes to bacterial virulence.
Collapse
Affiliation(s)
- Diana Barthel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Germany
| | | | | | | |
Collapse
|
78
|
Mika A, Goh P, Holt DC, Kemp DJ, Fischer K. Scabies mite peritrophins are potential targets of human host innate immunity. PLoS Negl Trop Dis 2011; 5:e1331. [PMID: 21980545 PMCID: PMC3181238 DOI: 10.1371/journal.pntd.0001331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/07/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pruritic scabies lesions caused by Sarcoptes scabiei burrowing in the stratum corneum of human skin facilitate opportunistic bacterial infections. Emerging resistance to current therapeutics emphasizes the need to identify novel targets for protective intervention. We have characterized several protein families located in the mite gut as crucial factors for host-parasite interactions. Among these multiple proteins inhibit human complement, presumably to avoid complement-mediated damage of gut epithelial cells. Peritrophins are major components of the peritrophic matrix often found in the gut of arthropods. We hypothesized that a peritrophin, if abundant in the scabies mite gut, could be an activator of complement. METHODOLOGY/PRINCIPAL FINDINGS A novel full length scabies mite peritrophin (SsPTP1) was identified in a cDNA library from scabies mites. The amino acid sequence revealed four putative chitin binding domains (CBD). Recombinant expression of one CBD of the highly repetitive SsPTP1 sequence as TSP-hexaHis-fusion protein resulted in soluble protein, which demonstrated chitin binding activity in affinity chromatography assays. Antibodies against a recombinant SsPTP1 fragment were used to immunohistochemically localize native SsPTP1 in the mite gut and in fecal pellets within the upper epidermis, co-localizing with serum components such as host IgG and complement. Enzymatic deglycosylation confirmed strong N- and O-glycosylation of the native peritrophin. Serum incubation followed by immunoblotting with a monoclonal antibody against mannan binding lectin (MBL), the recognition molecule of the lectin pathway of human complement activation, indicated that MBL may specifically bind to glycosylated SsPTP1. CONCLUSIONS/SIGNIFICANCE This study adds a new aspect to the accumulating evidence that complement plays a major role in scabies mite biology. It identifies a novel peritrophin localized in the mite gut as a potential target of the lectin pathway of the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut.
Collapse
Affiliation(s)
- Angela Mika
- Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
| | - Priscilla Goh
- Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
| | - Deborah C. Holt
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Dave J. Kemp
- Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
| | - Katja Fischer
- Queensland Institute of Medical Research and Australian Centre for International and Tropical Health and Nutrition, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
79
|
Johnson S, Waters A. Is complement a culprit in infection-induced forms of haemolytic uraemic syndrome? Immunobiology 2011; 217:235-43. [PMID: 21852019 DOI: 10.1016/j.imbio.2011.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/30/2011] [Accepted: 07/18/2011] [Indexed: 12/25/2022]
Abstract
Haemolytic uraemic syndrome (HUS) accounts for the most common cause of childhood acute renal failure. Characterized by the classical triad of a microangiopathic haemolytic anaemia, thrombocytopaenia and acute renal failure, HUS occurs as a result of Shiga-toxin producing microbes in 90% of cases. The remaining 10% of cases represent a heterogeneous subgroup in which inherited and acquired forms of complement dysregulation have been described in up to 60%. Emerging evidence suggests that microbes associated with HUS exhibit interaction with the complement system. With the advent of improved genetic diagnosis, it is likely that certain cases of infection-induced HUS may be attributed to underlying defects in complement components. This review summarises the interplay between complement and infection in the pathogenesis of HUS.
Collapse
Affiliation(s)
- Sally Johnson
- Department of Paediatric Nephrology, Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle Upon Tyne, UK.
| | | |
Collapse
|
80
|
Kishore U, Sim RB. Factor H as a regulator of the classical pathway activation. Immunobiology 2011; 217:162-8. [PMID: 21852018 DOI: 10.1016/j.imbio.2011.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 06/29/2011] [Accepted: 07/18/2011] [Indexed: 12/31/2022]
Abstract
C1q, the first subcomponent of the classical pathway, is a charge pattern recognition molecule that binds a diverse range of self, non-self and altered self ligands, leading to pro-inflammatory complement activation. Although complement is required for tissue homeostasis as well as defence against pathogens, exaggerated complement activation can be damaging to the tissue. Therefore, a fine balance between complement activation and inhibition is necessary. We have recently found that factor H, a polyanion recognition molecule and soluble regulator of alternative pathway activation in blood and on cell surfaces, can directly compete with C1q in binding to anionic phospholipids (cardiolipin), lipid A and Escherichia coli (three known activators of the classical pathway) and acts as a direct down regulator of the complement classical pathway. This ability of factor H to dampen classical pathway activation is distinct from its role as an alternative pathway down-regulator. Thus, by directly competing for specific C1q ligands (exogenous as well as endogenous), factor H is likely to be involved in fine-tuning and balancing the C1q-driven inflammatory processes in autoimmunity and infection. However, in the case of apoptotic cells, C1q-mediated enhancement of uptake/adhesion of the apoptotic cells by monocytes was reduced by factor H. Thus, factor H may be important in controlling the inflammation, which might arise from C1q deposition on apoptotic cells.
Collapse
Affiliation(s)
- Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, London, UK.
| | | |
Collapse
|
81
|
Vieira ML, de Morais ZM, Vasconcellos SA, Romero EC, Nascimento ALTO. In vitro evidence for immune evasion activity by human plasmin associated to pathogenic Leptospira interrogans. Microb Pathog 2011; 51:360-5. [PMID: 21802507 DOI: 10.1016/j.micpath.2011.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 12/28/2022]
Abstract
Leptospirosis is a widespread re-emerging zoonosis of human and veterinary concern. It has been shown that virulent leptospires protect themselves against the host's innate immune system, a strategy that allows the bacteria to reach immunologically safe environments. Although extensive studies on host-pathogen interactions have been performed, little is known on how leptospires deal with host immune attack. In a previous work, we demonstrated the ability of leptospires to bind human plasminogen (PLG), that after treatment with activators, conferred plasmin (PLA) activity on the bacteria surface. In this study, we show that the PLA activity associated to the outer surface of Leptospira could interfere with the host immune attack by conferring some evasion advantage during infection. We demonstrate that PLA-coated leptospires interfere with complement C3b and IgG depositions on the bacterial surface, probably through the degradation of these components, thus diminishing opsonization process. Similar decrease on the deposition was observed when normal and immune sera from patients diagnosed with leptospirosis were employed as a source of IgG. We believe that decreasing opsonization by PLA generation might be an important aspect of the leptospiral immune escape strategy and survival. To our knowledge, this is the first proteolytic activity of plasmin associated-Leptospira related to anti-opsonic properties reported to date.
Collapse
Affiliation(s)
- Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
82
|
Fraga TR, Barbosa AS, Isaac L. Leptospirosis: aspects of innate immunity, immunopathogenesis and immune evasion from the complement system. Scand J Immunol 2011; 73:408-19. [PMID: 21204903 DOI: 10.1111/j.1365-3083.2010.02505.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. It constitutes a major public health problem in developing countries, with outcomes ranging from subclinical infections to fatal pulmonary haemorrhage and Weil's syndrome. To successfully establish an infection, leptospires bind to extracellular matrix compounds and host cells. The interaction of leptospires with pathogen recognition receptors is a fundamental issue in leptospiral immunity as well as in immunophatology. Pathogenic but not saprophytic leptospires are able to evade the host complement system, circulate in the blood and spread into tissues. The target organs in human leptospirosis include the kidneys and the lungs. The association of an autoimmune process with these pathologies has been explored and diverse mechanisms that permit leptospires to survive in the kidneys of reservoir animals have been proposed. However, despite the intense research aimed at the development of a leptospirosis vaccine supported by the genome sequencing of Leptospira strains, there have been relatively few studies focused on leptospiral immunity. The knowledge of evasion strategies employed by pathogenic leptospires to subvert the immune system is of extreme importance as they may represent targets for the development of new treatments and prophylactic approaches in leptospirosis.
Collapse
Affiliation(s)
- T R Fraga
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
83
|
Cavadas M, González-Fernández A, Franco R. Pathogen-mimetic stealth nanocarriers for drug delivery: a future possibility. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:730-43. [PMID: 21658473 DOI: 10.1016/j.nano.2011.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/21/2011] [Accepted: 04/18/2011] [Indexed: 01/28/2023]
Abstract
UNLABELLED The Mononuclear Phagocyte System (MPS) is a major constraint to nanocarrier-based drug-delivery systems (DDS) by exerting a negative impact on blood circulation times and biodistribution. Current approaches rely on the protein- and cell-repelling properties of inert hydrophilic polymers, to enable escape from the MPS. Poly(ethylene glycol) (PEG) has been particularly useful in this regard, and it also exerts positive effects in other blood compatibility parameters, being correlated with decreased hemolysis, thrombogenicity, complement activation and protein adsorption, due to its uncharged and hydrophilic nature. However, PEGylated nanocarriers are commonly found in the liver and spleen, the major MPS organs. In fact, a hydrophilic and cell-repelling delivery system is not always beneficial, as it might decrease the interaction with the target cell and hinder drug release. Here, a full scope of the immunological and biochemical barriers is presented along with some selected examples of alternatives to PEGylation. We present a novel conceptual approach that includes virulence factors for the engineering of bioactive, immune system-evasive stealth nanocarriers. FROM THE CLINICAL EDITOR The efficacy of nanocarrier-based drug-delivery systems is often dampened by the Mononuclear Phagocyte System (MPS). Current approaches to circumvent MPS rely on protein- and cell-repelling properties of inert hydrophilic polymers, including PEG. This paper discusses the full scope of the immunological and biochemical barriers along with selected examples of alternatives to PEGylation.
Collapse
Affiliation(s)
- Miguel Cavadas
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | |
Collapse
|
84
|
Interactions of complement proteins C1q and factor H with lipid A and Escherichia coli: further evidence that factor H regulates the classical complement pathway. Protein Cell 2011; 2:320-32. [PMID: 21574022 DOI: 10.1007/s13238-011-1029-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022] Open
Abstract
Proteins of the complement system are known to interact with many charged substances. We recently characterized binding of C1q and factor H to immobilized and liposomal anionic phospholipids. Factor H inhibited C1q binding to anionic phospholipids, suggesting a role for factor H in regulating activation of the complement classical pathway by anionic phospholipids. To extend this finding, we examined interactions of C1q and factor H with lipid A, a well-characterized activator of the classical pathway. We report that C1q and factor H both bind to immobilized lipid A, lipid A liposomes and intact Escherichia coli TG1. Factor H competes with C1q for binding to these targets. Furthermore, increasing the factor H: C1q molar ratio in serum diminished C4b fixation, indicating that factor H diminishes classical pathway activation. The recombinant forms of the Cterminal, globular heads of C1q A, B and C chains bound to lipid A and E. coli in a manner qualitatively similar to native C1q, confirming that C1q interacts with these targets via its globular head region. These observations reinforce our proposal that factor H has an additional complement regulatory role of down-regulating classical pathway activation in response to certain targets. This is distinct from its role as an alternative pathway down-regulator. We suggest that under physiological conditions, factor H may serve as a downregulator of bacterially-driven inflammatory responses, thereby fine-tuning and balancing the inflammatory response in infections with Gram-negative bacteria.
Collapse
|
85
|
Immune escape of the human facultative pathogenic yeast Candida albicans: the many faces of the Candida Pra1 protein. Int J Med Microbiol 2011; 301:423-30. [PMID: 21565550 DOI: 10.1016/j.ijmm.2011.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Infectious diseases caused by human pathogenic fungi represent a major and global health problem. Based on the limited efficacy of existing drugs and the increasing resistance to antifungal compounds, new strategies are urgently needed to fight such fungal infections. The medically important pathogen Candida albicans can exist as an opportunistic yeast, but can also cause severe diseases, septicaemia, and death. In order to establish new strategies to fight Candida infections and to interfere with survival of the pathogen, it is highly relevant to understand the molecular and immunology interactions between the pathogen C. albicans and the human host. This immune cross talk has moved into the focus of infectious disease research. In this review, we summarize the diverse and multiple levels of the immune cross talk between the fungal pathogen C. albicans and the human host. In particular, we define how one single fungal protein Pra1 (pH-regulated antigen 1) interferes and controls host immune attack at multiple levels and thus contributes to fungal immune escape. Candida Pra1 represents a promising candidate for immune interference.
Collapse
|
86
|
Pisa D, Alonso R, Carrasco L. Fungal infection in a patient with multiple sclerosis. Eur J Clin Microbiol Infect Dis 2011; 30:1173-80. [PMID: 21533622 DOI: 10.1007/s10096-011-1206-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 02/25/2011] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system, whose causes are still unknown. We have proposed that MS, as well as some ophthalmologic diseases, are associated with fungal infection. In the present study, we closely monitored a patient with MS over a three-year period. Antibodies against different Candida spp. were detected in peripheral blood serum, although the titer of these antibodies fluctuated. The presence of fungal macromolecules, such as proteins, polysaccharides, and DNA, was also tested. In several sera samples, antigens related to C. famata were evidenced by the slot-blot test using a rabbit polyclonal antibody against these species, while high levels of β-1,3 glucan were detected with the commercial Fungitell assay. Despite the variations by sample, we concluded that all fungal macromolecules, that is, proteins, polysaccharides, and DNA, were present in blood from the MS patient which was analyzed. Several fungal species were identified using polymerase chain reaction (PCR) followed by sequencing. Antibodies against Candida spp. as well as C. famata-related antigens were also detected in cerebrospinal fluid (CSF). Our findings provide support for the notion that disseminated mycosis is present in this patient.
Collapse
Affiliation(s)
- D Pisa
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
87
|
Abstract
Age-related macular degeneration (AMD) is an inflammatory disease, which causes visual impairment and blindness in older people. The proteins of the complement system are central to the development of this disease. Local and systemic inflammation in AMD are mediated by the deregulated action of the alternative pathway of the complement system. Variants in complement system genes alter an individual's risk of developing AMD. Recent studies have shown how some risk-associated genetic variants alter the function of the complement system. In this review, we describe the evolution of the complement system and bring together recent research to form a picture of how changes in complement system genes and proteins affect the function of the complement cascade, and how this affects the development of AMD. We discuss the application of this knowledge to prevention and possible future treatments of AMD.
Collapse
|
88
|
Hallström T, Nordström T, Tan TT, Manolov T, Lambris JD, Isenman DE, Zipfel PF, Blom AM, Riesbeck K. Immune evasion of Moraxella catarrhalis involves ubiquitous surface protein A-dependent C3d binding. THE JOURNAL OF IMMUNOLOGY 2011; 186:3120-9. [PMID: 21270401 DOI: 10.4049/jimmunol.1002621] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complement system plays an important role in eliminating invading pathogens. Activation of complement results in C3b deposition (opsonization), phagocytosis, anaphylatoxin (C3a, C5a) release, and consequently cell lysis. Moraxella catarrhalis is a human respiratory pathogen commonly found in children with otitis media and in adults with chronic obstructive pulmonary disease. The species has evolved multiple complement evasion strategies, which among others involves the ubiquitous surface protein (Usp) family consisting of UspA1, A2, and A2 hybrid. In the present study, we found that the ability of M. catarrhalis to bind C3 correlated with UspA expression and that C3 binding contributed to serum resistance in a large number of clinical isolates. Recombinantly expressed UspA1 and A2 inhibit both the alternative and classical pathways, C3b deposition, and C3a generation when bound to the C3 molecule. We also revealed that the M. catarrhalis UspA-binding domain on C3b was located to C3d and that the major bacterial C3d-binding domains were within UspA1(299-452) and UspA2(165-318). The interaction with C3 was not species specific since UspA-expressing M. catarrhalis also bound mouse C3 that resulted in inhibition of the alternative pathway of mouse complement. Taken together, the binding of C3 to UspAs is an efficient strategy of Moraxella to block the activation of complement and to inhibit C3a-mediated inflammation.
Collapse
Affiliation(s)
- Teresia Hallström
- Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Luo S, Blom AM, Rupp S, Hipler UC, Hube B, Skerka C, Zipfel PF. The pH-regulated antigen 1 of Candida albicans binds the human complement inhibitor C4b-binding protein and mediates fungal complement evasion. J Biol Chem 2011; 286:8021-8029. [PMID: 21212281 DOI: 10.1074/jbc.m110.130138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida albicans binds and utilizes human complement inhibitors, such as C4b-binding protein (C4BP), Factor H, and FHL-1 for immune evasion. Here, we identify Candida pH-regulated antigen 1 (Pra1) as the first fungal C4BP-binding protein. Recombinant Pra1 binds C4BP, as shown by ELISA and isothermal titration calorimetry, and the Pra1-C4BP interaction is ionic in nature. The Pra1 binding domains within C4BP were localized to the complement control protein domain 4 (CCP4), CCP7, and CCP8. C4BP bound to Pra1 maintains complement-inhibitory activity. C4BP and Factor H bind simultaneously to Candida Pra1 and do not compete for binding at physiological levels. A Pra1-overexpressing C. albicans strain, which had about 2-fold Pra1 levels at the surface acquired also about 2-fold C4BP to the surface, compared with the wild type strain CAI4. A Pra1 knock-out strain showed ∼22% reduced C4BP binding. C4BP captured by C. albicans from human serum inhibits C4b and C3b surface deposition and also maintains cofactor activity. In summary, Candida Pra1 represents the first fungal C4BP-binding surface protein. Pra1, via binding to C4BP, mediates human complement control, thereby favoring the immune and complement evasion of C. albicans.
Collapse
Affiliation(s)
| | - Anna M Blom
- the Department of Laboratory Medicine, Section of Medical Protein Chemistry, University of Lund, 20502 Malmö, Sweden
| | - Steffen Rupp
- the Fraunhofer Institute for Interfacial Engineering, Nobelstrasse 12, 70569 Stuttgart, Germany, and
| | - Uta-Christina Hipler
- the Clinic of Dermatology and Allergology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Bernhard Hube
- the Department of Microbial Pathogenicity Mechanisms, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, 07745 Jena, Germany
| | | | - Peter F Zipfel
- From the Department of Infection Biology and; the Department of Infection Biology and.
| |
Collapse
|
90
|
Waters AM, Licht C. aHUS caused by complement dysregulation: new therapies on the horizon. Pediatr Nephrol 2011; 26:41-57. [PMID: 20556434 PMCID: PMC2991208 DOI: 10.1007/s00467-010-1556-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 12/19/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5-10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS.
Collapse
Affiliation(s)
- Aoife M. Waters
- Department of Nephrology, Great Ormond Street Hospital, London, WC1N 3JH UK ,University College London, Institute of Child Health, London, UK
| | - Christoph Licht
- Division of Nephrology, Hospital for Sick Children, Toronto, ON Canada ,Department of Paediatrics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
91
|
Reuter M, Caswell CC, Lukomski S, Zipfel PF. Binding of the human complement regulators CFHR1 and factor H by streptococcal collagen-like protein 1 (Scl1) via their conserved C termini allows control of the complement cascade at multiple levels. J Biol Chem 2010; 285:38473-85. [PMID: 20855886 DOI: 10.1074/jbc.m110.143727] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Group A streptococci (GAS) utilize soluble human complement regulators to evade host complement attack. Here, we characterized the binding of the terminal complement complex inhibitor complement Factor H-related protein 1 (CFHR1) and of the C3 convertase regulator Factor H to the streptococcal collagen-like proteins (Scl). CFHR1 and Factor H, but no other member of the Factor H protein family (CFHR2, CFHR3, or CFHR4A), bound to the two streptococcal proteins Scl1.6 and Scl1.55, which are expressed by GAS serotypes M6 and M55. The two human regulators bound to the Scl1 proteins via their conserved C-terminal attachment region, i.e. CFHR1 short consensus repeats 3-5 (SCR3-5) and Factor H SCR18-20. Binding was affected by ionic strength and by heparin. CFHR1 and the C-terminal attachment region of Factor H did not bind to Scl1.1 and Scl2.28 proteins but did bind to intact M1-type and M28-type GAS, which express Scl1.1 and Scl2.28, respectively, thus arguing for the presence of an additional binding mechanism to CFHR1 and Factor H. Furthermore mutations within the C-terminal heparin-binding region and Factor H mutations that are associated with the acute renal disease atypical hemolytic uremic syndrome blocked the interaction with the two streptococcal proteins. Binding of CFHR1 affected the complement regulatory functions of Factor H on the level of the C3 convertase. Apparently, streptococci utilize two types of complement regulator-acquiring surface proteins; type A proteins, as represented by Scl1.6 and Scl1.55, bind to CFHR1 and Factor H via their conserved C-terminal region and do not bind the Factor H-like protein 1 (FHL-1). On the contrary, type B proteins, represented by M-, M-like, and the fibronectin-binding protein Fba proteins, bind Factor H and FHL-1 via domain SCR7 and do not bind CFHR1. In conclusion, binding of CFHR1 is at the expense of Factor H-mediated regulatory function at the level of C3 convertase and at the gain of a regulator that controls complement at the level of the C5 convertase and formation of the terminal complement complex.
Collapse
Affiliation(s)
- Michael Reuter
- Department of Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | | | | | | |
Collapse
|
92
|
Abstract
The complement system consists of a tightly regulated network of proteins that play an important role in host defense and inflammation. Complement activation results in opsonization of pathogens and their removal by phagocytes, as well as cell lysis. Inappropriate complement activation and complement deficiencies are the underlying cause of the pathophysiology of many diseases such as systemic lupus erythematosus and asthma. This review represents an overview of the complement system in an effort to understand the beneficial as well as harmful roles it plays during inflammatory responses.
Collapse
Affiliation(s)
- J Vidya Sarma
- Department of Pathology, The University of Michigan Medical School, 1301 Catherine Rd., Box 5602, Ann Arbor, MI 48109-5602, USA
| | | |
Collapse
|
93
|
MORGAN MARJORIES, ARLIAN LARRYG. Response of human skin equivalents to Sarcoptes scabiei. JOURNAL OF MEDICAL ENTOMOLOGY 2010; 47:877-883. [PMID: 20939384 PMCID: PMC2955294 DOI: 10.1603/me10012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Studies have shown that molecules in an extract made from bodies of the ectoparasitic mite, Sarcoptes scabiei De Geer, modulate cytokine secretion from cultured human keratinocytes and fibroblasts. In vivo, in the parasitized skin, these cells interact with each other by contact and cytokine mediators and with the matrix in which they reside. Therefore, these cell types may function differently together than they do separately. In this study, we used a human skin equivalent (HSE) model to investigate the influence of cellular interactions between keratinocytes and fibroblasts when the cells were exposed to active/burrowing scabies mites, mite products, and mite extracts. The HSE consisted of an epidermis of stratified stratum corneum, living keratinocytes, and basal cells above a dermis of fibroblasts in a collagen matrix. HSEs were inoculated on the surface or in the culture medium, and their cytokine secretions on the skin surface and into the culture medium were determined by enzyme-linked immunosorbent assay. Active mites on the surface of the HSE induced secretion of cutaneous T cell-attracting chemokine, thymic stromal lymphopoietin, interleukin (IL)-1alpha, IL-1beta, IL-1 receptor antagonist (IL-1ra), IL-6, IL-8, monocyte chemoattractant protein-1, granulocyte/macrophage colony-stimulating factor, and macrophage colony-stimulating factor. The main difference between HSEs and monocultured cells was that the HSEs produced the proinflammatory cytokines IL-1alpha and IL-1beta and their competitive inhibitor IL-1ra, whereas very little of these mediators was previously found for cultured keratinocytes and fibroblasts. It is not clear how the balance between these cytokines influences the overall host response. However, IL-1ra may contribute to the depression of an early cutaneous inflammatory response to scabies in humans. These contrasting results illustrate that cell interactions are important in the host's response to burrowing scabies mites.
Collapse
Affiliation(s)
| | - LARRY G. ARLIAN
- Corresponding author: Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435 ()
| |
Collapse
|
94
|
Behnsen J, Lessing F, Schindler S, Wartenberg D, Jacobsen ID, Thoen M, Zipfel PF, Brakhage AA. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect Immun 2010; 78:3585-94. [PMID: 20498262 PMCID: PMC2916278 DOI: 10.1128/iai.01353-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/08/2010] [Accepted: 05/06/2010] [Indexed: 01/15/2023] Open
Abstract
The opportunistic human pathogenic fungus Aspergillus fumigatus is a major cause of fungal infections in immunocompromised patients. Innate immunity plays an important role in the defense against infections. The complement system represents an essential part of the innate immune system. This cascade system is activated on the surface of A. fumigatus conidia and hyphae and enhances phagocytosis of conidia. A. fumigatus conidia but not hyphae bind to their surface host complement regulators factor H, FHL-1, and CFHR1, which control complement activation. Here, we show that A. fumigatus hyphae possess an additional endogenous activity to control complement activation. A. fumigatus culture supernatant efficiently cleaved complement components C3, C4, C5, and C1q as well as immunoglobulin G. Secretome analysis and protease inhibitor studies identified the secreted alkaline protease Alp1, which is present in large amounts in the culture supernatant, as the central molecule responsible for this cleavage. An alp1 deletion strain was generated, and the culture supernatant possessed minimal complement-degrading activity. Moreover, protein extract derived from an Escherichia coli strain overproducing Alp1 cleaved C3b, C4b, and C5. Thus, the protease Alp1 is responsible for the observed cleavage and degrades a broad range of different substrates. In summary, we identified a novel mechanism in A. fumigatus that contributes to evasion from the host complement attack.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Franziska Lessing
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Susann Schindler
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Dirk Wartenberg
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Marcel Thoen
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Peter F. Zipfel
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Department of Infection Biology, Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
95
|
Luo S, Hartmann A, Dahse HM, Skerka C, Zipfel PF. Secreted pH-Regulated Antigen 1 ofCandida albicansBlocks Activation and Conversion of Complement C3. THE JOURNAL OF IMMUNOLOGY 2010; 185:2164-73. [DOI: 10.4049/jimmunol.1001011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
96
|
Scorpio DG, Garyu J, Barat N, Stephen Dumler J. Anaplasma phagocytophilum propagation is enhanced in human complement-containing medium. Clin Microbiol Infect 2010; 15 Suppl 2:48-9. [PMID: 20584164 DOI: 10.1111/j.1469-0691.2008.02173.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D G Scorpio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
97
|
Agarwal V, Asmat TM, Luo S, Jensch I, Zipfel PF, Hammerschmidt S. Complement regulator Factor H mediates a two-step uptake of Streptococcus pneumoniae by human cells. J Biol Chem 2010; 285:23486-95. [PMID: 20504767 DOI: 10.1074/jbc.m110.142703] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8-11 and SCR19-20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19-20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- Vaibhav Agarwal
- Department of Genetics of Microorganisms, Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
98
|
Functional characterization of LcpA, a surface-exposed protein of Leptospira spp. that binds the human complement regulator C4BP. Infect Immun 2010; 78:3207-16. [PMID: 20404075 DOI: 10.1128/iai.00279-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that pathogenic leptospiral strains are able to bind C4b binding protein (C4BP). Surface-bound C4BP retains its cofactor activity, indicating that acquisition of this complement regulator may contribute to leptospiral serum resistance. In the present study, the abilities of seven recombinant putative leptospiral outer membrane proteins to interact with C4BP were evaluated. The protein encoded by LIC11947 interacted with this human complement regulator in a dose-dependent manner. The cofactor activity of C4BP bound to immobilized recombinant LIC11947 (rLIC11947) was confirmed by detecting factor I-mediated cleavage of C4b. rLIC11947 was therefore named LcpA (for leptospiral complement regulator-acquiring protein A). LcpA was shown to be an outer membrane protein by using immunoelectron microscopy, cell surface proteolysis, and Triton X-114 fractionation. The gene coding for LcpA is conserved among pathogenic leptospiral strains. This is the first characterization of a Leptospira surface protein that binds to the human complement regulator C4BP in a manner that allows this important regulator to control complement system activation mediated either by the classical pathway or by the lectin pathway. This newly identified protein may play a role in immune evasion by Leptospira spp. and may therefore represent a target for the development of a human vaccine against leptospirosis.
Collapse
|
99
|
Trimer stability of YadA is critical for virulence of Yersinia enterocolitica. Infect Immun 2010; 78:2677-90. [PMID: 20308293 DOI: 10.1128/iai.01350-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Yersinia adhesin A (YadA) is a trimeric autotransporter adhesin with multiple functions in host-pathogen interactions. The aim of this study was to dissect the virulence functions promoted by YadA in vitro and in vivo. To accomplish this, we generated Yersinia enterocolitica O:8 mutants expressing point mutations in YadA G389, a highly conserved residue in the membrane anchor of YadA, and analyzed their impact on YadA expression and virulence functions. We found that point mutations of YadA G389 led to impaired transport, stability, and surface display of YadA. YadA G389A and G389S mutants showed comparable YadA surface expression, autoagglutination, and adhesion to those of wild-type YadA but displayed reduced trimer stability and complement resistance in vitro and were 10- to 1,000-fold attenuated in experimental Y. enterocolitica infection in mice. The G389T, G389N, and G389H mutants lost trimer stability, exhibited strongly reduced surface display, autoagglutination, adhesion properties, and complement resistance, and were avirulent (>10,000-fold attenuation) in mice. Our data demonstrate that G389 is a critical residue of YadA, required for optimal trimer stability, transport, surface display, and serum resistance. We also show that stable trimeric YadA protein is essential for virulence of Y. enterocolitica.
Collapse
|
100
|
Influence of mannan and glucan on complement activation and C3 binding by Candida albicans. Infect Immun 2009; 78:1250-9. [PMID: 20028806 DOI: 10.1128/iai.00744-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complement system is important for host resistance to hematogenously disseminated candidiasis. However, modulation of complement activation by cell wall components of Candida albicans has not been characterized. Although intact yeast display mannan on the surface, glucan, typically located in the interior, becomes exposed during C. albicans infection. We show here the distinct effects of mannan and glucan on complement activation and opsonophagocytosis. Previous studies showed that intact cells are resistant to initiation of complement activation through the alternative pathway, and antimannan antibody reverses this resistance via an Fc-independent mechanism. The present study shows that this mannan-dependent resistance can be overcome by periodate-borohydride conversion of mannose polysaccharides to polyalcohols; cells treated with periodate-borohydride initiate the alternative pathway without the need for antibody. These observations identify an inhibitory role for intact mannan in complement activation. Next, removal of the surface-displayed mannan by acid treatment of periodate-borohydride cells exposes glucan. Glucan-displaying cells or purified beta-glucan initiate the alternative pathway when incubated with the purified proteins of the alternative pathway alone, suggesting that C. albicans glucan is a natural activator of the alternative pathway. Finally, ingestion of mannan-displaying cells by human neutrophils requires anti-mannan antibody, whereas ingestion of glucan-displaying cells requires complement. These results demonstrate a contrasting requirement of natural antibody and complement for opsonophagocytosis of C. albicans cells displaying mannan or glucan. Thus, differential surface expression of mannan and glucan may influence recognition of C. albicans by the complement system.
Collapse
|