51
|
Griffith B, Jain R. Perfusion Imaging in Neuro-Oncology: Basic Techniques and Clinical Applications. Magn Reson Imaging Clin N Am 2017; 24:765-779. [PMID: 27742116 DOI: 10.1016/j.mric.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Perfusion imaging is a method for assessing the flow of blood occurring at the tissue level and can be accomplished by both CT and MR perfusion techniques. The use of perfusion imaging has increased substantially in the past decade, particularly in neuro-oncologic imaging, where it is has been used for brain tumor grading and directing biopsies or targeted therapy, as well as for the evaluation of treatment response and disease progression. This article discusses the basic principles and techniques of perfusion imaging, as well as its applications in neuro-oncology.
Collapse
Affiliation(s)
- Brent Griffith
- Department of Radiology, Henry Ford Health System, Detroit, MI, USA.
| | - Rajan Jain
- NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
52
|
Brain Perfusion and Diffusion Abnormalities in Children Treated for Posterior Fossa Brain Tumors. J Pediatr 2017; 185:173-180.e3. [PMID: 28187964 DOI: 10.1016/j.jpeds.2017.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/28/2016] [Accepted: 01/06/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To compare cerebral perfusion and diffusion in survivors of childhood posterior fossa brain tumor with neurologically normal controls and correlate differences with cognitive dysfunction. STUDY DESIGN We analyzed retrospectively arterial spin-labeled cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) in 21 patients with medulloblastoma (MB), 18 patients with pilocytic astrocytoma (PA), and 64 neurologically normal children. We generated ANCOVA models to evaluate treatment effects on the cerebral cortex, thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens, and cerebral white matter at time points an average of 5.7 years after original diagnosis. A retrospective review of patient charts identified 12 patients with neurocognitive data and in whom the relationship between IQ and magnetic resonance imaging variables was assessed for each brain structure. RESULTS Patients with MB (all treated with surgery, chemotherapy, and radiation) had significantly lower global CBF relative to controls (10%-23% lower, varying by anatomic region, all adjusted P?<?.05), whereas patients with PA (all treated with surgery alone) had normal CBF. ADC was decreased specifically in the hippocampus and amygdala of patients with MB and within the amygdala of patients with PA but otherwise remained normal after therapy. In the patients with tumor previously evaluated for IQ, regional ADC, but not CBF, correlated with IQ (R2?=?0.33-0.75). CONCLUSIONS The treatment for MB, but not PA, was associated with globally reduced CBF. Treatment in both tumor types was associated with diffusion abnormalities of the mesial temporal lobe structures. Despite significant perfusion abnormalities in patients with MB, diffusion, but not perfusion, correlated with cognitive outcomes.
Collapse
|
53
|
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare aggressive high-grade type of extranodal lymphoma. PCNSL can have a variable imaging appearance and can mimic other brain disorders such as encephalitis, demyelination, and stroke. In addition to PCNSL, the CNS can be secondarily involved by systemic lymphoma. Computed tomography and conventional MRI are the initial imaging modalities to evaluate these lesions. Recently, however, advanced MRI techniques are more often used in an effort to narrow the differential diagnosis and potentially inform diagnostic and therapeutic decisions.
Collapse
|
54
|
Nabavizadeh SA, Mowla A, Vossough A. Letter by Nabavizadeh et al Regarding Article, “Prediction of Blood–Brain Barrier Disruption and Intracerebral Hemorrhagic Infarction Using Arterial Spin-Labeling Magnetic Resonance Imaging”. Stroke 2017; 48:e112. [DOI: 10.1161/strokeaha.116.016457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- S. Ali Nabavizadeh
- Department of Radiology, Hospital of University of Pennsylvania, Philadelphia
| | - Ashkan Mowla
- Stroke Division, Department of Neurology, University at Buffalo, State University of New York
| | - Arastoo Vossough
- Department of Radiology, Children’s Hospital of Philadelphia, PA
| |
Collapse
|
55
|
Tong E, Sugrue L, Wintermark M. Understanding the Neurophysiology and Quantification of Brain Perfusion. Top Magn Reson Imaging 2017; 26:57-65. [PMID: 28277465 DOI: 10.1097/rmr.0000000000000128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Newer neuroimaging technology has moved beyond pure anatomical imaging and ventured into functional and physiological imaging. Perfusion magnetic resonance imaging (PWI), which depicts hemodynamic conditions of the brain at the microvascular level, has an increasingly important role in clinical central nervous system applications. This review provides an overview of the established role of PWI in brain tumor and cerebrovascular imaging, as well as some emerging applications in neuroimaging. PWI allows better characterization of brain tumors, grading, and monitoring. In acute stroke imaging, PWI is utilized to distinguish penumbra from infarcted tissue. PWI is a promising tool in the assessment of neurodegenerative and neuropsychiatric diseases, although its clinical role is not yet defined.
Collapse
Affiliation(s)
- Elizabeth Tong
- *Department of Radiology & Biomedical Imaging, University of California, San Francisco †Department of Neuroradiology, Stanford University Medical Center, Palo Alto, CA
| | | | | |
Collapse
|
56
|
Furtado AD, Ceschin R, Blüml S, Mason G, Jakacki RI, Okada H, Pollack IF, Panigrahy A. Neuroimaging of Peptide-based Vaccine Therapy in Pediatric Brain Tumors: Initial Experience. Neuroimaging Clin N Am 2017; 27:155-166. [PMID: 27889021 DOI: 10.1016/j.nic.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The potential benefits of peptide-based immunotherapy for pediatric brain tumors are under investigation. Treatment-related heterogeneity has resulted in radiographic challenges, including pseudoprogression. Conventional MR imaging has limitations in assessment of different forms of treatment-related heterogeneity, particularly regarding distinguishing true tumor progression from efficacious treatment responses. Advanced neuroimaging techniques, including diffusion magnetic resonance (MR), perfusion MR, and MR spectroscopy, may add value in the assessment of treatment-related heterogeneity. Observations suggest that recent delineation of specific response criteria for immunotherapy of adult brain tumors is likely relevant to the pediatric population and further validation in multicenter pediatric brain tumor peptide-based vaccine studies is warranted.
Collapse
Affiliation(s)
- Andre D Furtado
- Department of Radiology, University of Pittsburgh, 3600 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Rafael Ceschin
- Department of Radiology, University of Pittsburgh, 3600 Forbes Avenue, Pittsburgh, PA 15213, USA; Department of Bioinformatics, University of Pittsburgh, 5607 Baum Boulevard, Suite 500, Pittsburgh, PA 15206, USA
| | - Stefan Blüml
- Department of Radiology, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Gary Mason
- Department of Pediatrics, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Regina I Jakacki
- Department of Pediatrics, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, 505 Parnassus Avenue, M-779, San Francisco, CA 94143, USA
| | - Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Children's Hospital of Pittsburgh, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh, 3600 Forbes Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
57
|
Leoni R, Oliveira I, Pontes-Neto O, Santos A, Leite J. Cerebral blood flow and vasoreactivity in aging: an arterial spin labeling study. Braz J Med Biol Res 2017; 50:e5670. [PMID: 28355354 PMCID: PMC5423749 DOI: 10.1590/1414-431x20175670] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
Regional cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) in young and elderly participants were assessed using pulsed arterial spin labeling (ASL) and blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) techniques in combination with inhalation of CO2. Pulsed ASL and BOLD-MRI were acquired in seventeen asymptomatic volunteers (10 young adults, age: 30±7 years; 7 elderly adults, age: 64±8 years) with no history of diabetes, hypertension, and neurological diseases. Data from one elderly participant was excluded due to the incorrigible head motion. Average baseline CBF in gray matter was significantly reduced in elderly (46±9 mL·100 g-1·min-1) compared to young adults (57±8 mL·100 g-1·min-1; P=0.02). Decreased pulsed ASL-CVR and BOLD-CVR in gray matter were also observed in elderly (2.12±1.30 and 0.13±0.06 %/mmHg, respectively) compared to young adults (3.28±1.43 and 0.28±0.11 %/mmHg, respectively; P<0.05), suggesting some degree of vascular impairment with aging. Moreover, age-related decrease in baseline CBF was observed in different brain regions (inferior, middle and superior frontal gyri; precentral and postcentral gyri; superior temporal gyrus; cingulate gyri; insula, putamen, caudate, and supramarginal gyrus). In conclusion, CBF and CVR were successfully investigated using a protocol that causes minimal or no discomfort for the participants. Age-related decreases in baseline CBF and CVR were observed in the cerebral cortex, which may be related to the vulnerability for neurological disorders in aging.
Collapse
Affiliation(s)
- R.F. Leoni
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - I.A.F. Oliveira
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O.M. Pontes-Neto
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A.C. Santos
- Divisão de Radiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J.P. Leite
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
58
|
Fiedler TM, Ladd ME, Bitz AK. SAR Simulations & Safety. Neuroimage 2017; 168:33-58. [PMID: 28336426 DOI: 10.1016/j.neuroimage.2017.03.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 01/19/2023] Open
Abstract
At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, 52066 Aachen, Germany
| |
Collapse
|
59
|
Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Magn Reson Imaging 2017; 39:44-52. [PMID: 28137627 DOI: 10.1016/j.mri.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 11/22/2022]
Abstract
Head motion is an unsolved problem in magnetic resonance imaging (MRI) studies of the brain. Real-time tracking using a camera has recently been proposed as a way to prevent head motion artifacts. As compared to navigator-based approaches that use MRI data to detect and correct motion, optical motion correction works independently of the MRI scanner, thus providing low-latency real-time motion updates without requiring any modifications to the pulse sequence. The purpose of this study was two-fold: 1) to demonstrate that prospective optical motion correction using an optical camera mitigates artifacts from head motion in three-dimensional pseudo-continuous arterial spin labeling (3D PCASL) acquisitions and 2) to assess the effect of latency differences between real-time optical motion tracking and navigator-style approaches (such as PROMO). An optical motion correction system comprising a single camera and a marker attached to the patient's forehead was used to track motion at a rate of 60fps. In the presence of motion, continuous tracking data from the optical system was used to update the scan plane in real-time during the 3D-PCASL acquisition. Navigator-style correction was simulated by using the tracking data from the optical system and performing updates only once per repetition time. Three normal volunteers and a patient were instructed to perform continuous and discrete head motion throughout the scan. Optical motion correction yielded superior image quality compared to uncorrected images or images using navigator-style correction. The standard deviations of pixel-wise CBF differences between reference and non-corrected, navigator-style-corrected and optical-corrected data were 14.28, 14.35 and 11.09mL/100g/min for continuous motion, and 12.42, 12.04 and 9.60mL/100g/min for discrete motion. Data obtained from the patient revealed that motion can obscure pathology and that application of optical prospective correction can successfully reveal the underlying pathology in the presence of head motion.
Collapse
|
60
|
Boulouis G, Dangouloff-Ros V, Boccara O, Garabedian N, Soupre V, Picard A, Couloigner V, Boddaert N, Naggara O, Brunelle F. Arterial Spin-Labeling to Discriminate Pediatric Cervicofacial Soft-Tissue Vascular Anomalies. AJNR Am J Neuroradiol 2017; 38:633-638. [PMID: 28104640 DOI: 10.3174/ajnr.a5065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/18/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Differentiating major subtypes of cervicofacial vascular lesions is crucial for appropriate management. The aim of our study was to evaluate the performance of an MR imaging arterial spin-labeling perfusion sequence in discriminating pediatric cervicofacial soft-tissue vascular anomalies. MATERIALS AND METHODS We conducted a retrospective analysis of data from a prospectively maintained registry including pediatric patients at a tertiary pediatric center between January 2012 and January 2014. We included pediatric patients with a final diagnosis of soft-tissue vascular anomalies and an MR imaging, including an arterial spin-labeling sequence at presentation. We performed an analysis of lesion perfusion, blinded to clinical data, by using concurrent spiral 3D pseudocontinuous arterial spin-labeling (1.5T magnet; spiral matrix, 512 × 8 mm; postlabeling delay, 1025 ms). Lesional flow was recorded with calibrated intralesional ROIs. Perfusion characteristics were compared among lesion subtypes with the Mood Median test. RESULTS Among 840 patients screened, 46 matched the inclusion criteria and were included (median age, 1.45 years; interquartile range, 0.4-5.1 years; 27 females). Hemangiomas, including infantile hemangiomas (n = 18 patients) and noninvoluting (n = 2) and rapidly involuting (n = 1) congenital types, demonstrated marked hyperperfusion (median flow, 436 mL/min/100 g; interquartile range, 212.5-603 mL/min/100 g), significantly higher than that of lymphatic malformations (median, 22.5 mL/min/100 g; interquartile range, 16-60 mL/min/100 g; P < .001) or venous malformations (median, 25 mL/min/100 g; interquartile range, 15-66.5 mL/min/100 g; P = .003). CONCLUSIONS MR imaging arterial spin-labeling is a valuable tool for the assessment of soft-tissue vascular anomaly hemodynamics and for the classification of major lesion subtypes.
Collapse
Affiliation(s)
- G Boulouis
- From the Department of Pediatric Radiology (G.B., V.D.-R., N.B., O.N., F.B.) .,Institut National de la Santé et de la Recherche Médicale U894 (G.B., O.N.), Descartes University, Paris, France.,Department of Neuroradiology (G.B., O.N.), Centre Hospitalier Sainte Anne, Paris, France
| | - V Dangouloff-Ros
- From the Department of Pediatric Radiology (G.B., V.D.-R., N.B., O.N., F.B.).,Institut National de la Santé et de la Recherche Médicale U1000 (V.D.-R., N.B., F.B.)
| | - O Boccara
- Departments of Pediatric Dermatology (O.B.).,Pediatric Oto-Rhino-Laryngology (O.B., N.G., V.C.).,Pediatric Maxillo-Facial and Plastic Surgery (O.B., V.S., A.P., O.N.), Necker Children's Hospital, Descartes University, Paris, France.,Centre de Référence des Malformations Rares de la Face de la Cavite Buccale (O.B., V.S., A.P.), Maxillofacial Malformation Reference Center, Paris, France.,Faculté de Médecine Paris-Descartes (O.B., N.G., V.S., A.P., V.C., N.B., F.B.), Université Paris 5, Paris, France
| | - N Garabedian
- Pediatric Oto-Rhino-Laryngology (O.B., N.G., V.C.).,Faculté de Médecine Paris-Descartes (O.B., N.G., V.S., A.P., V.C., N.B., F.B.), Université Paris 5, Paris, France
| | - V Soupre
- Pediatric Maxillo-Facial and Plastic Surgery (O.B., V.S., A.P., O.N.), Necker Children's Hospital, Descartes University, Paris, France.,Centre de Référence des Malformations Rares de la Face de la Cavite Buccale (O.B., V.S., A.P.), Maxillofacial Malformation Reference Center, Paris, France.,Faculté de Médecine Paris-Descartes (O.B., N.G., V.S., A.P., V.C., N.B., F.B.), Université Paris 5, Paris, France
| | - A Picard
- Pediatric Maxillo-Facial and Plastic Surgery (O.B., V.S., A.P., O.N.), Necker Children's Hospital, Descartes University, Paris, France.,Centre de Référence des Malformations Rares de la Face de la Cavite Buccale (O.B., V.S., A.P.), Maxillofacial Malformation Reference Center, Paris, France.,Faculté de Médecine Paris-Descartes (O.B., N.G., V.S., A.P., V.C., N.B., F.B.), Université Paris 5, Paris, France
| | - V Couloigner
- Pediatric Oto-Rhino-Laryngology (O.B., N.G., V.C.).,Faculté de Médecine Paris-Descartes (O.B., N.G., V.S., A.P., V.C., N.B., F.B.), Université Paris 5, Paris, France
| | - N Boddaert
- From the Department of Pediatric Radiology (G.B., V.D.-R., N.B., O.N., F.B.).,Institut National de la Santé et de la Recherche Médicale U1000 (V.D.-R., N.B., F.B.).,Faculté de Médecine Paris-Descartes (O.B., N.G., V.S., A.P., V.C., N.B., F.B.), Université Paris 5, Paris, France.,Unite Mixte de Recherche 1163 (N.B., F.B.), Institut Imagine, Paris, France
| | - O Naggara
- From the Department of Pediatric Radiology (G.B., V.D.-R., N.B., O.N., F.B.).,Institut National de la Santé et de la Recherche Médicale U894 (G.B., O.N.), Descartes University, Paris, France.,Pediatric Maxillo-Facial and Plastic Surgery (O.B., V.S., A.P., O.N.), Necker Children's Hospital, Descartes University, Paris, France.,Department of Neuroradiology (G.B., O.N.), Centre Hospitalier Sainte Anne, Paris, France
| | - F Brunelle
- From the Department of Pediatric Radiology (G.B., V.D.-R., N.B., O.N., F.B.).,Institut National de la Santé et de la Recherche Médicale U1000 (V.D.-R., N.B., F.B.).,Faculté de Médecine Paris-Descartes (O.B., N.G., V.S., A.P., V.C., N.B., F.B.), Université Paris 5, Paris, France.,Unite Mixte de Recherche 1163 (N.B., F.B.), Institut Imagine, Paris, France
| |
Collapse
|
61
|
Kong L, Chen H, Yang Y, Chen L. A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade. Clin Radiol 2016; 72:255-261. [PMID: 27932251 DOI: 10.1016/j.crad.2016.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 07/23/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
AIM To investigate the ability of arterial spin labelling (ASL) perfusion parameters to distinguish high-grade from low-grade gliomas. MATERIALS AND METHODS The PubMed and EMBASE databases were systematically searched for relevant articles published up to September 2015. Studies that evaluated both high- and low-grade gliomas using ASL were included. The random effect model was used to calculate the standardised mean difference (SMD) of maximum mean absolute tumour blood flow values (aTBFmax, aTBFmean) and maximum mean relative tumour blood flow (rTBFmax, rTBFmean) between high- and low-grade gliomas. RESULTS Nine studies encompassing 305 patients with high- and low-grade gliomas, met all inclusion and exclusion criteria and were included in the study. Compared with low-grade gliomas, high-grade gliomas had a significant increase in all ASL perfusion values: aTBFmax (SMD=0.70, 95% confidence interval [CI]: 0.22-1.19, p=0.0046); aTBFmean (SMD=0.86, 95% CI: 0.2-1.52, p=0.01); rTBFmax (SMD=1.08, 95% CI: 0.54-1.63, p=0.0001) and rTBFmean (SMD=0.88, 95% CI: 0.35-1.4, p=0.0011). CONCLUSIONS The current study results indicate that tumour blood flow from ASL differs significantly with respect to the glioma grade. Despite some limitations, there is evidence that ASL may be useful to distinguish high- and low-grade gliomas. Further larger-scale studies are necessary to examine the utility of ASL to distinguish tumour grade.
Collapse
Affiliation(s)
- L Kong
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - H Chen
- Department of Anesthesiology, Nanjing General Hospital of Nanjing Military Command, Nanjing 210002, China
| | - Y Yang
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - L Chen
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei 230031, China.
| |
Collapse
|
62
|
Bulte D, Wartolowska K. Monitoring cardiac and respiratory physiology during FMRI. Neuroimage 2016; 154:81-91. [PMID: 27916663 DOI: 10.1016/j.neuroimage.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022] Open
Abstract
This article will consider how physiological monitoring can be used both as an intrinsic part of an experiment, or for removing unwanted physiological signals from the FMRI time series. As functional MRI is used for a wide variety of applications beyond the identification of regions involved in a task, different sources of noise in the time series become important. The use of arterial spin labelling sequences, either in isolation or combined with BOLD imaging, means that temporal noise must be dealt with differently. Moreover, when these are combined with global cerebrovascular stimuli, such as respiratory challenges, the standard analysis tools must be employed with great care so as not to detrimentally distort the data. Acquiring and analysing physiological data is sometimes more art than science, and this article attempts to provide some insight into common techniques as well as advice on identifying and correcting some of the problems that may be encountered.
Collapse
Affiliation(s)
- Daniel Bulte
- Functional Magnetic Resonance Imaging of the Brain Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK.
| | - Karolina Wartolowska
- Botnar Research Centre, Nuffiled Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Oxford OX3 7LD, UK
| |
Collapse
|
63
|
Li LP, Tan H, Thacker JM, Li W, Zhou Y, Kohn O, Sprague SM, Prasad PV. Evaluation of Renal Blood Flow in Chronic Kidney Disease Using Arterial Spin Labeling Perfusion Magnetic Resonance Imaging. Kidney Int Rep 2016; 2:36-43. [PMID: 28868513 PMCID: PMC5575771 DOI: 10.1016/j.ekir.2016.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction Chronic kidney disease (CKD) is known to be associated with reduced renal blood flow. However, data in humans are limited to date. Methods In this study, noninvasive arterial spin labeling magnetic resonance imaging data were acquired in 33 patients with diabetes and stage 3 CKD as well as in 30 healthy controls. Results A significantly lower renal blood flow in both the cortex (108.4 ± 36.4 vs. 207.3 ± 41.8; P < 0.001, d = 2.52) and medulla (23.2 ± 8.9 vs. 42.6 ± 15.8; P < 0.001, d = 1.5) was observed. Both cortical (ρ = 0.67, P < 0.001) and medullary (ρ = 0.62, P < 0.001) blood flow were correlated with estimated glomerular filtration rate, and cortical blood flow was found to be confounded by age and body mass index. However, in a subset of subjects who were matched for age and body mass index (n = 6), the differences between CKD patients and control subjects remained significant in both the cortex (107.4 ± 42.8 vs. 187.51 ± 20.44; P = 0.002) and medulla (15.43 ± 8.43 vs. 39.18 ± 11.13; P = 0.002). A threshold value to separate healthy controls and CKD patients was estimated to be a cortical blood flow of 142.9 and a medullary blood flow of 24.1. Discussion These results support the use of arterial spin labeling in the evaluation of renal blood flow in patients with a moderate level of CKD. Whether these measurements can identify patients at risk for progressive CKD requires further longitudinal follow-up.
Collapse
Affiliation(s)
- Lu-Ping Li
- Center for Advanced Imaging, NorthShore University HealthSystem, Evanston, IL
| | - Huan Tan
- Center for Advanced Imaging, NorthShore University HealthSystem, Evanston, IL
| | - Jon M Thacker
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - Wei Li
- Center for Advanced Imaging, NorthShore University HealthSystem, Evanston, IL
| | - Ying Zhou
- Center for Biomedical Research & Informatics, NorthShore University HealthSystem, Evanston, IL
| | - Orly Kohn
- Department of Nephrology, University of Chicago, Chicago, IL
| | - Stuart M Sprague
- Department of Nephrology, NorthShore University HealthSystem, Evanston, IL.,Department of Nephrology, University of Chicago, Chicago, IL
| | | |
Collapse
|
64
|
Mamlouk MD, Hess CP. Arterial spin-labeled perfusion for vascular anomalies in the pediatric head and neck. Clin Imaging 2016; 40:1040-6. [DOI: 10.1016/j.clinimag.2016.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 11/28/2022]
|
65
|
Eilaghi A, Yeung T, d'Esterre C, Bauman G, Yartsev S, Easaw J, Fainardi E, Lee TY, Frayne R. Quantitative Perfusion and Permeability Biomarkers in Brain Cancer from Tomographic CT and MR Images. BIOMARKERS IN CANCER 2016; 8:47-59. [PMID: 27398030 PMCID: PMC4933536 DOI: 10.4137/bic.s31801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022]
Abstract
Dynamic contrast-enhanced perfusion and permeability imaging, using computed tomography and magnetic resonance systems, are important techniques for assessing the vascular supply and hemodynamics of healthy brain parenchyma and tumors. These techniques can measure blood flow, blood volume, and blood-brain barrier permeability surface area product and, thus, may provide information complementary to clinical and pathological assessments. These have been used as biomarkers to enhance the treatment planning process, to optimize treatment decision-making, and to enable monitoring of the treatment noninvasively. In this review, the principles of magnetic resonance and computed tomography dynamic contrast-enhanced perfusion and permeability imaging are described (with an emphasis on their commonalities), and the potential values of these techniques for differentiating high-grade gliomas from other brain lesions, distinguishing true progression from posttreatment effects, and predicting survival after radiotherapy, chemotherapy, and antiangiogenic treatments are presented.
Collapse
Affiliation(s)
- Armin Eilaghi
- Department of Radiology, University of Calgary, Calgary, AB, Canada.; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Timothy Yeung
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Christopher d'Esterre
- Department of Radiology, University of Calgary, Calgary, AB, Canada.; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Glenn Bauman
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Slav Yartsev
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Jay Easaw
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, Ferrara, Italy.; Neuroradiology Unit, Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Ting-Yim Lee
- Lawson Health Research Institute and Robarts Research Institute, London, ON, Canada
| | - Richard Frayne
- Department of Radiology, University of Calgary, Calgary, AB, Canada.; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.; Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada
| |
Collapse
|
66
|
Nabavizadeh SA. Letter to the Editor: Arterial spin labeling in evaluation of venous drainage pattern in brain arteriovenous malformations. J Neurosurg Pediatr 2016; 18:139-40. [PMID: 26991885 DOI: 10.3171/2015.11.peds15670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- S Ali Nabavizadeh
- Hospital of University of Pennsylvania, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
67
|
Ata ES, Turgut M, Eraslan C, Dayanır YÖ. Comparison between dynamic susceptibility contrast magnetic resonance imaging and arterial spin labeling techniques in distinguishing malignant from benign brain tumors. Eur J Radiol 2016; 85:1545-53. [PMID: 27501887 DOI: 10.1016/j.ejrad.2016.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 04/30/2016] [Accepted: 05/24/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The purpose of this study was to preliminarily compare unenhanced arterial spin-labeled (ASL) imaging, dynamic susceptibility contrast-enhanced cerebral blood volume (DSCE-CBV) magnetic resonance imaging (MRI) for evaluation of tumor perfusion in patients with brain tumors. MATERIALS AND METHODS A total of 27 patients with brain tumors were examined in 1,5T MRI. Single phase and multiphase ASL, DSCE-CBV examinations were assessed by both qualitative and quantitative analysis for the detection of malignancy. Imaging results were correlated with a histopathology or follow-up. RESULTS Based on 31 studies in 27 patients with brain tumors, the visual inspection sensitivities for ASL and dynamic DSC perfusion imaging were 88% and 94%, respectively, with 100% specificity for both. On qualitative evaluation, sensitivities for ASL and DSC perfusion imaging perfusions were 88% and 94%, respectively, with 100% specificity for both. The highest sensitivity values for quantitative ASL imaging were obtained using a normalized cut-off ratio of 1.65, resulting in sensitivity of 94% for ASL imaging and cut-off ratio of 1.95 and sensitivity 94% for DSCE-CBV imaging. CONCLUSION The present study revealed similar sensitivity and specificity for both multhiphase ASL and DSC MRI. Thus, we suggest that ASL perfusion can be used in daily clinical practice.
Collapse
Affiliation(s)
- Emine Sevcan Ata
- Department of Radiology, Adnan Menderes University Faculty of Medicine, 09010, Aydın, Turkey; Department of Radiology, Usak State Hospital, 33940, Uşak, Turkey.
| | - Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University Faculty of Medicine, 09010, Aydın, Turkey.
| | - Cenk Eraslan
- Department of Radiology, Adnan Menderes University Faculty of Medicine, 09010, Aydın, Turkey; Department of Radiology, Ege University Faculty of Medicine, 35100, Bornova, Izmir, Turkey.
| | - Yelda Özsunar Dayanır
- Department of Radiology, Adnan Menderes University Faculty of Medicine, 09010, Aydın, Turkey.
| |
Collapse
|
68
|
Kim BS, Lee ST, Yun TJ, Lee SK, Paeng JC, Jun J, Kang KM, Choi SH, Kim JH, Sohn CH. Capability of arterial spin labeling MR imaging in localizing seizure focus in clinical seizure activity. Eur J Radiol 2016; 85:1295-303. [PMID: 27235877 DOI: 10.1016/j.ejrad.2016.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/15/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of this study was to evaluate cerebral blood flow using arterial spin labeling (ASL) perfusion magnetic resonance (MR) imaging in patients with clinical seizure activity and determine its diagnostic performance in identifying seizure focus. MATERIALS AND METHODS Institutional Review Board of our hospital approved this retrospective study. Informed consent was waived. Clinical seizure focus was determined by a neurologist based on seizure semiology, electroencephalography, and conventional imaging modalities. The diagnostic performance of ASL perfusion MR imaging to identifying seizure focus compared to clinical seizure focus was analyzed. RESULTS Clinical seizure focus was localized in 95% (42/44) of patients. The sensitivity and specificity of ASL perfusion MR imaging for identifying seizure focus were 74% (95% CI: 58%, 86%) (clinical seizure focus was localizable in 31 of 42 patients, including complete concordance in 10 patients and partial concordance in 21 patients) and 0% (95% CI: 0%, 84%) (for the two patients whose clinical seizure foci were not localizable, they were identified by ASL perfusion MR imaging), respectively. Thus, the overall accuracy of ASL perfusion MR imaging for localizing seizure focus was 70% (33/44). For 4 patients who had abnormal perfusion on ASL, their seizure foci based on ASL perfusion MR imaging were discordant with clinical seizure foci. CONCLUSION ASL perfusion MR imaging can provide information about perfusion status and important diagnostic clue in localizing seizure focus in patients with clinical seizure activity. It has the potential as a non-invasive complementary diagnostic tool for patients with clinical seizure activity.
Collapse
Affiliation(s)
- Beom Su Kim
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Jin Yun
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jinsun Jun
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Koung Mi Kang
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Hong Choi
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chul-Ho Sohn
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
69
|
Application of Arterial Spin Labelling in the Assessment of Ocular Tissues. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6240504. [PMID: 27066501 PMCID: PMC4811053 DOI: 10.1155/2016/6240504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/07/2016] [Indexed: 11/17/2022]
Abstract
Arterial spin labelling (ASL) is a noninvasive magnetic resonance imaging (MRI) modality, capable of measuring blood perfusion without the use of a contrast agent. While ASL implementation for imaging the brain and monitoring cerebral blood flow has been reviewed in depth, the technique is yet to be widely used for ocular tissue imaging. The human retina is a very thin but highly stratified structure and it is also situated close to the surface of the body which is not ideal for MR imaging. Hence, the application of MR imaging and ASL in particular has been very challenging for ocular tissues and retina. That is despite the fact that almost all of retinal pathologies are accompanied by blood perfusion irregularities. In this review article, we have focused on the technical aspects of the ASL and their implications for its optimum adaptation for retinal blood perfusion monitoring. Retinal blood perfusion has been assessed through qualitative or invasive quantitative methods but the prospect of imaging flow using ASL would increase monitoring and assessment of retinal pathologies. The review provides details of ASL application in human ocular blood flow assessment.
Collapse
|
70
|
Arterial Spin Labeling Techniques 2009-2014. J Med Imaging Radiat Sci 2016; 47:98-107. [PMID: 31047171 DOI: 10.1016/j.jmir.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/03/2015] [Accepted: 08/18/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Arterial spin labeling (ASL) techniques have been implemented across a diverse range of clinical and experimental applications. This review aims to evaluate the current feasibility of ASL in clinical neuroradiology based on recent improvements to ASL sequences and highlight areas for potential clinical applications. METHODS AND MATERIALS In December 2014, a literature search was conducted on PubMed Central, EMBASE, and Scopus using the search terms: "arterial spin labeling, neuroradiology," for studies published between 2009 and 2014 (inclusive). Of 483 studies matching the inclusion criteria, the number of studies using continuous, pseudocontinuous, pulsed, and velocity-selective ASL sequences was 42, 209, 226, and 3, respectively. Studies were classified based on several common clinical applications according to the type of ASL sequence used. Studies using pulsed ASL and pseudo-continuous ASL were grouped based on common sequences. RESULTS The number of clinical studies was 264. Numerous studies applied ASL to stroke management (43 studies), drug testing (21 studies), neurodegenerative diseases (40 studies), and psychiatric disorders (26 studies). CONCLUSIONS This review discusses several factors hindering the implementation of clinical ASL and ASL-related radiofrequency safety issues encountered in clinical practice. However, a limited number of search terms were used. Further development of robust sequences with multislice imaging capabilities and reduced radiofrequency energy deposition will hopefully improve the clinical acceptance of ASL.
Collapse
|
71
|
Hammon M, Janka R, Siegl C, Seuss H, Grosso R, Martirosian P, Schmieder RE, Uder M, Kistner I. Reproducibility of Kidney Perfusion Measurements With Arterial Spin Labeling at 1.5 Tesla MRI Combined With Semiautomatic Segmentation for Differential Cortical and Medullary Assessment. Medicine (Baltimore) 2016; 95:e3083. [PMID: 26986143 PMCID: PMC4839924 DOI: 10.1097/md.0000000000003083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging with arterial spin labeling (ASL) is a noninvasive approach to measure organ perfusion. The purpose of this study was to evaluate the reproducibility of ASL kidney perfusion measurements with semiautomatic segmentation, which allows separate quantification of cortical and medullary perfusion. The right kidneys of 14 healthy volunteers were examined 6 times on 2 occasions (3 times at each occasion). There was a 10-minute pause between each examination and a 14-day interval between the 2 occasions. Cortical, medullary, and whole kidney parenchymal perfusion was determined with customized semiautomatic segmentation software. Coefficient of variances (CVs) and intraclass correlations (ICCs) were calculated. Mean whole, cortical, and medullary kidney perfusion was 307.26 ± 25.65, 337.10 ± 34.83, and 279.61 ± 26.73 mL/min/100 g, respectively. On session 1, mean perfusion for the whole kidney, cortex, and medulla was 307.08 ± 26.91, 336.79 ± 36.54, and 279.60 ± 27.81 mL/min/100 g, respectively, and on session 2, 307.45 ± 24.65, 337.41 ± 33.48, and 279.61 ± 25.94 mL/min/100 g, respectively (P > 0.05; R² = 0.60/0.59/0.54). For whole, cortical, and medullary kidney perfusion, the total ICC/CV were 0.97/3.43 ± 0.86%, 0.97/4.19 ± 1.33%, and 0.96/4.12 ± 1.36%, respectively. Measurements did not differ significantly and showed a very good correlation (P > 0.05; R² = 0.75/0.76/0.65). ASL kidney measurements combined with operator-independent semiautomatic segmentation revealed high correlation and low variance of cortical, medullary, and whole kidney perfusion.
Collapse
Affiliation(s)
- Matthias Hammon
- From the Department of Radiology (MH, RJ, HS, MU), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz, Erlangen, Germany; Department of Computer Graphics (CS, RG), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße, Erlangen, Germany; Experimental Radiology, Department of Diagnostic and Interventional Radiology (PM), University Hospital Tübingen, Otfried-Müller-Straße, Tübingen, Germany; and Department of Nephrology and Hypertension (RES, IK), University Hospital Erlangen, Ulmenweg, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Tan H, Koktzoglou I, Prasad PV. Renal perfusion imaging with two-dimensional navigator gated arterial spin labeling. Magn Reson Med 2016; 71:570-9. [PMID: 23447145 DOI: 10.1002/mrm.24692] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE To develop a navigator technique enabling free-breathing acquisition to afford sufficient signal averaging for quantitative renal perfusion measurement using arterial spin labeling MRI. METHODS A novel two-dimensional (2D) navigator technique was implemented in concert with flow-sensitive alternating inversion recovery (FAIR) preparation and true fast imaging with steady precession (True-FISP) readout. The navigator images were obtained with a low-resolution fast low angle shot readout at end of each arterial spin labeling acquisition. A retrospective algorithm was developed to automatically detect respiratory motion for selective signal averaging. The 2D navigator-gated FAIR True-FISP sequence was performed in ten healthy volunteers and five patients with chronic kidney disease. RESULTS Excellent image quality and comparable cortical perfusion rates (healthy: 276 ± 28 mL/100 g/min, patients: 155 ± 25 mL/100 g/min) to literature values were obtained. An average of 3-fold signal-to-noise ratio improvement was obtained in the 2D navigator-gated approach compared with the breath-hold acquisition in healthy volunteers. Good image quality was achieved in patients while the results from breath-hold acquisition were unusable. The quantitative perfusion rates were significantly lower in chronic kidney disease patients compared with the healthy volunteers. CONCLUSION 2D navigator-gated free breathing arterial spin labeling is feasible and is a noninvasive method to evaluate renal perfusion both in healthy subjects and those with chronic kidney disease.
Collapse
Affiliation(s)
- Huan Tan
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | | | | |
Collapse
|
73
|
Małowidzka-Serwińska M, Żabicka M, Witkowski A, Chmielak Z, Deptuch T. Brain perfusion evaluated by perfusion-weighted magnetic resonance imaging before and after stenting internal carotid artery stenosis in asymptomatic and symptomatic patients. Neurol Neurochir Pol 2015; 49:412-20. [PMID: 26652876 DOI: 10.1016/j.pjnns.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the brain perfusion with MRI perfusion weighted imaging (PWI) before and after ICA stenting in asymptomatic and symptomatic patients. MATERIALS AND METHODS PWI was performed 3-21 days before and 3 days after ICA stenting in 31 asymptomatic patients with ICA >70% stenosis - Group I, and in 14 symptomatic patients with ICA >50% stenosis - Group II. PWI was evaluated qualitatively and quantitatively in 5 cerebral territories with: mean transit time (MTT), cerebral blood volume (CBV) and cerebral blood flow (CBF). Mean values of perfusion parameters were measured before and after stenting ΔMTT, ΔCBV, ΔCBF were calculated as subtraction of after-treatment values from those before treatment. RESULTS In qualitative evaluation after ICA stenting perfusion was normalized in 21 patients (80.8%) in Group I and in 8 patients (80%) in Group II. In quantitative estimation MTT decreased significantly after CAS on stented side vs. non-stented side in all examined patients regardless of the group, p<0.05. MTT decreased more in Group II than in Group I in all territories (p<0.05) with the exception of temporal lobe. CBV and CBF have shown insignificant differences.
Collapse
Affiliation(s)
| | - Magdalena Żabicka
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| | - Adam Witkowski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Zbigniew Chmielak
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Tomasz Deptuch
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
74
|
Siauve N, Chalouhi GE, Deloison B, Alison M, Clement O, Ville Y, Salomon LJ. Functional imaging of the human placenta with magnetic resonance. Am J Obstet Gynecol 2015; 213:S103-14. [PMID: 26428488 DOI: 10.1016/j.ajog.2015.06.045] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
Abstract
Abnormal placentation is responsible for most failures in pregnancy; however, an understanding of placental functions remains largely concealed from noninvasive, in vivo investigations. Magnetic resonance imaging (MRI) is safe in pregnancy for magnetic fields of up to 3 Tesla and is being used increasingly to improve the accuracy of prenatal imaging. Functional MRI (fMRI) of the placenta has not yet been validated in a clinical setting, and most data are derived from animal studies. FMRI could be used to further explore placental functions that are related to vascularization, oxygenation, and metabolism in human pregnancies by the use of various enhancement processes. Dynamic contrast-enhanced MRI is best able to quantify placental perfusion, permeability, and blood volume fractions. However, the transplacental passage of Gadolinium-based contrast agents represents a significant safety concern for this procedure in humans. There are alternative contrast agents that may be safer in pregnancy or that do not cross the placenta. Arterial spin labeling MRI relies on magnetically labeled water to quantify the blood flows within the placenta. A disadvantage of this technique is a poorer signal-to-noise ratio. Based on arterial spin labeling, placental perfusion in normal pregnancy is 176 ± 91 mL × min(-1) × 100 g(-1) and decreases in cases with intrauterine growth restriction. Blood oxygen level-dependent and oxygen-enhanced MRIs do not assess perfusion but measure the response of the placenta to changes in oxygen levels with the use of hemoglobin as an endogenous contrast agent. Diffusion-weighted imaging and intravoxel incoherent motion MRI do not require exogenous contrast agents, instead they use the movement of water molecules within tissues. The apparent diffusion coefficient and perfusion fraction are significantly lower in placentas of growth-restricted fetuses when compared with normal pregnancies. Magnetic resonance spectroscopy has the ability to extract information regarding metabolites from the placenta noninvasively and in vivo. There are marked differences in all 3 metabolites N-acetyl aspartate/choline levels, inositol/choline ratio between small, and adequately grown fetuses. Current research is focused on the ability of each fMRI technique to make a timely diagnosis of abnormal placentation that would allow for appropriate planning of follow-up examinations and optimal scheduling of delivery. These research programs will benefit from the use of well-defined sequences, standardized imaging protocols, and robust computational methods.
Collapse
Affiliation(s)
- Nathalie Siauve
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Hôpital Européen Georges Pompidou, Paris, France
| | - Gihad E Chalouhi
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Benjamin Deloison
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Marianne Alison
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France
| | - Olivier Clement
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; Hôpital Européen Georges Pompidou, Paris, France
| | - Yves Ville
- EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Laurent J Salomon
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
75
|
Fowkes LA, Koh DM, Collins DJ, Jerome NP, MacVicar D, Chua SC, Pearson ADJ. Childhood extracranial neoplasms: the role of imaging in drug development and clinical trials. Pediatr Radiol 2015; 45:1600-15. [PMID: 26045035 DOI: 10.1007/s00247-015-3342-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/16/2015] [Accepted: 03/16/2015] [Indexed: 12/25/2022]
Abstract
Cancer is the leading cause of death in children older than 1 year of age and new drugs are necessary to improve outcomes. Imaging is crucial to the drug development process and assessment of therapeutic response. In adults, tumours are often assessed with CT using size criteria. Unfortunately, techniques established in adults are not necessarily applicable in children due to differing pathophysiology, ability to cooperate and increased susceptibility to ionising radiation. MRI, in particular quantitative MRI, has to date not been fully utilised in children with extracranial neoplasms. The specific challenges of imaging in children, the potential for functional imaging techniques to inform upon and their inclusion in clinical trials are discussed.
Collapse
Affiliation(s)
- Lucy A Fowkes
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK.
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| | - David J Collins
- Cancer Research UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, UK
| | - Neil P Jerome
- Cancer Research UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, Surrey, UK
| | - David MacVicar
- Department of Radiology, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| | - Sue C Chua
- Nuclear Medicine & PET Department, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| | - Andrew D J Pearson
- Paediatric Drug Development Unit, Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, SM2 5PT, Surrey, UK
| |
Collapse
|
76
|
Andre JB. Arterial Spin Labeling Magnetic Resonance Perfusion for Traumatic Brain Injury: Technical Challenges and Potentials. Top Magn Reson Imaging 2015; 24:275-287. [PMID: 26502309 DOI: 10.1097/rmr.0000000000000065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Traumatic brain injury (TBI), including concussion, is a public health concern, as it affects over 1.7 million persons in the United States per year. Yet, the diagnosis of TBI, particularly mild TBI (mTBI), can be controversial, as neuroimaging findings can be sparse on conventional magnetic resonance and computed tomography examinations, and when present, often poorly correlate with clinical signs and symptoms. Furthermore, the discussion of TBI, concussion, and head impact exposure is immediately complicated by the many differing opinions of what constitutes each, their respective severities, and how the underlying biomechanics of the inciting head impact might alter the distribution, severity, and prognosis of the underlying brain injury. Advanced imaging methodologies hold promise in improving the sensitivity and detectability of associated imaging biomarkers that might better correlate with patient outcome and prognostication, allowing for improved triage and therapeutic guidance in the setting of TBI, particularly in mTBI. This work will examine the defining symptom complex associated with mTBI and explore changes in cerebral blood flow measured by arterial spin labeling, as a potential imaging biomarker for TBI, and briefly correlate these observations with findings identified by single photon emission computed tomography and positron emission tomography imaging.
Collapse
Affiliation(s)
- Jalal B Andre
- Harborview Medical Center, University of Washington, Seattle, WA
| |
Collapse
|
77
|
García-Figueiras R, Padhani AR, Beer AJ, Baleato-González S, Vilanova JC, Luna A, Oleaga L, Gómez-Caamaño A, Koh DM. Imaging of Tumor Angiogenesis for Radiologists—Part 1: Biological and Technical Basis. Curr Probl Diagn Radiol 2015; 44:407-24. [DOI: 10.1067/j.cpradiol.2015.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/09/2023]
|
78
|
Abstract
Multiple nonmorphologic magnetic resonance sequences are available in musculoskeletal imaging that can provide additional information to better characterize and diagnose musculoskeletal disorders and diseases. These sequences include blood-oxygen-level-dependent (BOLD), arterial spin labeling (ASL), diffusion-weighted imaging (DWI), and diffusion-tensor imaging (DTI). BOLD and ASL provide different methods to evaluate skeletal muscle microperfusion. The BOLD signal reflects the ratio between oxyhemoglobin and deoxyhemoglobin. ASL uses selective tagging of inflowing blood spins in a specific region for calculating local perfusion. DWI and DTI provide information about the structural integrity of soft tissue including muscles and fibers as well as pathologies.
Collapse
|
79
|
Griffith B, Jain R. Perfusion imaging in neuro-oncology: basic techniques and clinical applications. Radiol Clin North Am 2015; 53:497-511. [PMID: 25953286 DOI: 10.1016/j.rcl.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Perfusion imaging is a method for assessing the flow of blood occurring at the tissue level and can be accomplished by both CT and MR perfusion techniques. The use of perfusion imaging has increased substantially in the past decade, particularly in neuro-oncologic imaging, where it is has been used for brain tumor grading and directing biopsies or targeted therapy, as well as for the evaluation of treatment response and disease progression. This article discusses the basic principles and techniques of perfusion imaging, as well as its applications in neuro-oncology.
Collapse
Affiliation(s)
- Brent Griffith
- Department of Radiology, Henry Ford Health System, Detroit, MI, USA.
| | - Rajan Jain
- NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
80
|
Welker K, Boxerman J, Kalnin A, Kaufmann T, Shiroishi M, Wintermark M. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015; 36:E41-51. [PMID: 25907520 DOI: 10.3174/ajnr.a4341] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 11/07/2022]
Abstract
MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice.
Collapse
Affiliation(s)
- K Welker
- From the Department of Radiology (K.W., T.K.), Mayo Clinic, Rochester, Minnesota
| | - J Boxerman
- Department of Diagnostic Imaging (J.B.), Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island
| | - A Kalnin
- Department of Radiology (A.K.), Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - T Kaufmann
- From the Department of Radiology (K.W., T.K.), Mayo Clinic, Rochester, Minnesota
| | - M Shiroishi
- Division of Neuroradiology, Department of Radiology (M.S.), Keck School of Medicine, University of Southern California, Los Angeles, California
| | - M Wintermark
- Department of Radiology, Neuroradiology Section (M.W.), Stanford University, Stanford, California
| | | |
Collapse
|
81
|
Amukotuwa SA, Yu C, Zaharchuk G. 3D Pseudocontinuous arterial spin labeling in routine clinical practice: A review of clinically significant artifacts. J Magn Reson Imaging 2015; 43:11-27. [DOI: 10.1002/jmri.24873] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/22/2014] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shalini A. Amukotuwa
- Department of Radiology; Stanford University and Stanford University Medical Center; Stanford California USA
| | - Caroline Yu
- Department of Radiology; Stanford University and Stanford University Medical Center; Stanford California USA
| | - Gregory Zaharchuk
- Department of Radiology; Stanford University and Stanford University Medical Center; Stanford California USA
| |
Collapse
|
82
|
Lopez D, Pollak AW, Meyer CH, Epstein FH, Zhao L, Pesch AJ, Jiji R, Kay JR, DiMaria JM, Christopher JM, Kramer CM. Arterial spin labeling perfusion cardiovascular magnetic resonance of the calf in peripheral arterial disease: cuff occlusion hyperemia vs exercise. J Cardiovasc Magn Reson 2015; 17:23. [PMID: 25890198 PMCID: PMC4336689 DOI: 10.1186/s12968-015-0128-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/27/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Assessment of calf muscle perfusion requires a physiological challenge. Exercise and cuff-occlusion hyperemia are commonly used methods, but it has been unclear if one is superior to the other. We hypothesized that post-occlusion calf muscle perfusion (Cuff) with pulsed arterial spin labeling (PASL) cardiovascular magnetic resonance (CMR) at 3 Tesla (T) would yield greater perfusion and improved reproducibility compared to exercise hyperemia in studies of peripheral arterial disease (PAD). METHODS Exercise and Cuff cohorts were independently recruited. PAD patients had an ankle brachial index (ABI) between 0.4-0.9. Controls (NL) had no risk factors and ABI 0.9-1.4. Subjects exercised until exhaustion (15 NL-Ex, 15 PAD-Ex) or had a thigh cuff inflated for 5 minutes (12 NL-Cuff, 11 PAD-Cuff). Peak exercise and average cuff (Cuff mean ) perfusion were compared. Six participants underwent both cuff and exercise testing. Reproducibility was tested in 8 Cuff subjects (5 NL, 3 PAD). RESULTS Controls had greater perfusion than PAD independent of stressor (NL-Ex 74 ± 21 vs. PAD-Ex 43 ± 10, p = 0.01; NL-Cuff mean 109 ± 39 vs. PAD-Cuff mean 34 ± 17 ml/min-100 g, p < 0.001). However, there was no difference between exercise and Cuff mean perfusion within groups (p > 0.6). Results were similar when the same subjects had the 2 stressors performed. Cuff mean had superior reproducibility (Cuff mean ICC 0.98 vs. Exercise ICC 0.87) and area under the receiver operating characteristic curve (Cuff mean 0.992 vs. Exercise 0.905). CONCLUSIONS Cuff hyperemia differentiates PAD patients from controls, as does exercise stress. Cuff mean and exercise calf perfusion values are similar. Cuff occlusion hyperemia has superior reproducibility and thus may be the preferred stressor.
Collapse
Affiliation(s)
- David Lopez
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Amy W Pollak
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Craig H Meyer
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Frederick H Epstein
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Li Zhao
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Arthur J Pesch
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Ronny Jiji
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Jennifer R Kay
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Joseph M DiMaria
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - John M Christopher
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| | - Christopher M Kramer
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
- Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
83
|
Roy B, Trivedi R, Garg RK, Gupta PK, Tyagi R, Gupta RK. Assessment of functional and structural damage in brain parenchyma in patients with vitamin B12 deficiency: A longitudinal perfusion and diffusion tensor imaging study. Magn Reson Imaging 2015; 33:537-43. [PMID: 25708265 DOI: 10.1016/j.mri.2015.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/15/2015] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Vitamin B12 deficiency may cause neural tissue damage. Even in advanced stages, conventional imaging of brain usually appears normal in vitamin B12 deficient patients. The aim of this study was to assess the structural and functional changes in brain of patients with vitamin B12 deficiency before and after six weeks of vitamin B12 supplementation using diffusion tensor imaging and pseudo-continuous arterial spin labelling (PCASL). METHODS MR imaging including DTI and PCASL and neuropsychological tests (NPT) were performed in 16 patients with vitamin B12 deficiency and 16 controls before and after 6weeks of therapy. Cerebral blood flow (CBF) derived from PCASL and DTI indices was calculated in brain of patients with vitamin B12 deficiency and controls. RESULTS Patient with vitamin B12 deficiency showed altered neuropsychological scores and altered CBF as well as fractional anisotropy (FA) values in various brain regions as compared with controls. Both CBF values and neuropsychological scores showed complete reversibility at 6weeks post therapy. Though FA values showed significant recovery, it failed to show complete recovery. CONCLUSION Our results suggest that micro-structural recovery lags behind functional recovery in patients with vitamin B12 deficiency following therapy and CBF change may be used as an early predictor of complete recovery in patients with B12 deficiency.
Collapse
Affiliation(s)
- Bhaswati Roy
- Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| | - Richa Trivedi
- Institute of Nuclear Medicine and Allied Science, Delhi, India
| | - Ravindra K Garg
- Department of Neurology, King George Medical University, Lucknow, India
| | - Pradeep K Gupta
- Department of Neurology, King George Medical University, Lucknow, India
| | - Ritu Tyagi
- Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| | - Rakesh K Gupta
- Department of Radiology and Imaging, Fortis Memorial Research Institute, Gurgaon, Haryana, India.
| |
Collapse
|
84
|
Romero K, Lobaugh NJ, Black SE, Ehrlich L, Feinstein A. Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury. Psychiatry Res 2015; 231:15-24. [PMID: 25466236 DOI: 10.1016/j.pscychresns.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022]
Abstract
The neural underpinnings of cognitive dysfunction in mild traumatic brain injury (TBI) are not fully understood. Consequently, patient prognosis using existing clinical imaging is somewhat imprecise. Single photon emission computed tomography (SPECT) is a frequently employed investigation in this population, notwithstanding uncertainty over the clinical utility of the data obtained. In this study, subjects with mild TBI underwent (99m)Tc-ECD SPECT scanning, and were administered a brief battery of cognitive tests and self-report symptom scales of concussion and emotional distress. Testing took place 2 weeks (n=84) and 1 year (n=49) post-injury. Multivariate analysis (i.e., partial least squares analysis) revealed that frontal perfusion in right superior frontal and middle frontal gyri predicted poorer performance on the Stroop test, an index of executive function, both at initial and follow-up testing. Conversely, SPECT scans categorized as normal or abnormal by radiologists did not differentiate cognitively impaired from intact subjects. These results demonstrate the clinical utility of SPECT in mild TBI, but only when data are subjected to blood flow quantification analysis.
Collapse
Affiliation(s)
- Kristoffer Romero
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5.
| | - Nancy J Lobaugh
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8
| | - Sandra E Black
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5; L.C. Campbell Cognitive Neurology Research Unit, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5; Heart and Stroke Foundation Centre for Stroke Recovery, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
| | - Lisa Ehrlich
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
| | - Anthony Feinstein
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
| |
Collapse
|
85
|
Raffield LM, Cox AJ, Hugenschmidt CE, Freedman BI, Langefeld CD, Williamson JD, Hsu FC, Maldjian JA, Bowden DW. Heritability and genetic association analysis of neuroimaging measures in the Diabetes Heart Study. Neurobiol Aging 2014; 36:1602.e7-15. [PMID: 25523635 DOI: 10.1016/j.neurobiolaging.2014.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/15/2014] [Indexed: 12/24/2022]
Abstract
Patients with type 2 diabetes are at increased risk of age-related cognitive decline and dementia. Neuroimaging measures such as white matter lesion volume, brain volume, and fractional anisotropy may reflect the pathogenesis of these cognitive declines, and genetic factors may contribute to variability in these measures. This study examined multiple neuroimaging measures in 465 participants from 238 families with extensive genotype data in the type 2 diabetes enriched Diabetes Heart Study-Mind cohort. Heritability of these phenotypes and their association with candidate single-nucleotide polymorphisms (SNPs), and SNP data from genome- and exome-wide arrays were explored. All neuroimaging measures analyzed were significantly heritable (ĥ(2) = 0.55-0.99 in unadjusted models). Seventeen candidate SNPs (from 16 genes/regions) associated with neuroimaging phenotypes in prior studies showed no significant evidence of association. A missense variant (rs150706952, A432V) in PLEKHG4B from the exome-wide array was significantly associated with white matter mean diffusivity (p = 3.66 × 10(-7)) and gray matter mean diffusivity (p = 2.14 × 10(-7)). This analysis suggests genetic factors contribute to variation in neuroimaging measures in a population enriched for metabolic disease and other associated comorbidities.
Collapse
Affiliation(s)
- Laura M Raffield
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amanda J Cox
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christina E Hugenschmidt
- Department of Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine-Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeff D Williamson
- Department of Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fang-Chi Hsu
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joseph A Maldjian
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
86
|
Shiroishi MS, Castellazzi G, Boxerman JL, D'Amore F, Essig M, Nguyen TB, Provenzale JM, Enterline DS, Anzalone N, Dörfler A, Rovira À, Wintermark M, Law M. Principles of T2*-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging 2014; 41:296-313. [DOI: 10.1002/jmri.24648] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 04/03/2014] [Indexed: 01/17/2023] Open
Affiliation(s)
- Mark S. Shiroishi
- Keck School of Medicine; University of Southern California; Los Angeles California USA
| | - Gloria Castellazzi
- Department of Industrial and Information Engineering; University of Pavia; Pavia Italy
- Brain Connectivity Center, IRCCS “C. Mondino Foundation,”; Pavia Italy
| | - Jerrold L. Boxerman
- Warren Alpert Medical School of Brown University; Providence Rhode Island USA
| | - Francesco D'Amore
- Keck School of Medicine; University of Southern California; Los Angeles California USA
- Department of Neuroradiology; IRCCS “C. Mondino Foundation,” University of Pavia; Pavia Italy
| | - Marco Essig
- University of Manitoba's Faculty of Medicine; Winnipeg Manitoba Canada
| | - Thanh B. Nguyen
- Faculty of Medicine, Ottawa University; Ottawa Ontario Canada
| | - James M. Provenzale
- Duke University Medical Center; Durham North Carolina USA
- Emory University School of Medicine; Atlanta Georgia USA
| | | | | | - Arnd Dörfler
- University of Erlangen-Nuremberg, Erlangen; Germany
| | - Àlex Rovira
- Vall d'Hebron University Hospital; Barcelona Spain
| | - Max Wintermark
- School of Medicine; University of Virginia; Charlottesville Virginia USA
| | - Meng Law
- Keck School of Medicine; University of Southern California; Los Angeles California USA
| |
Collapse
|
87
|
Gillis KA, McComb C, Foster JE, Taylor AHM, Patel RK, Morris STW, Jardine AG, Schneider MP, Roditi GH, Delles C, Mark PB. Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. BMC Nephrol 2014; 15:23. [PMID: 24484613 PMCID: PMC3909760 DOI: 10.1186/1471-2369-15-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/28/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Measurement of renal perfusion is a crucial part of measuring kidney function. Arterial spin labelling magnetic resonance imaging (ASL MRI) is a non-invasive method of measuring renal perfusion using magnetised blood as endogenous contrast. We studied the reproducibility of ASL MRI in normal volunteers. METHODS ASL MRI was performed in healthy volunteers on 2 occasions using a 3.0 Tesla MRI scanner with flow-sensitive alternating inversion recovery (FAIR) perfusion preparation with a steady state free precession (True-FISP) pulse sequence. Kidney volume was measured from the scanned images. Routine serum and urine biochemistry were measured prior to MRI scanning. RESULTS 12 volunteers were recruited yielding 24 kidneys, with a mean participant age of 44.1 ± 14.6 years, blood pressure of 136/82 mmHg and chronic kidney disease epidemiology formula estimated glomerular filtration rate (CKD EPI eGFR) of 98.3 ± 15.1 ml/min/1.73 m2. Mean kidney volumes measured using the ellipsoid formula and voxel count method were 123.5 ± 25.5 cm3, and 156.7 ± 28.9 cm3 respectively. Mean kidney perfusion was 229 ± 41 ml/min/100 g and mean cortical perfusion was 327 ± 63 ml/min/100 g, with no significant differences between ASL MRIs. Mean absolute kidney perfusion calculated from kidney volume measured during the scan was 373 ± 71 ml/min. Bland Altman plots were constructed of the cortical and whole kidney perfusion measurements made at ASL MRIs 1 and 2. These showed good agreement between measurements, with a random distribution of means plotted against differences observed. The intra class correlation for cortical perfusion was 0.85, whilst the within subject coefficient of variance was 9.2%. The intra class correlation for whole kidney perfusion was 0.86, whilst the within subject coefficient of variance was 7.1%. CONCLUSIONS ASL MRI at 3.0 Tesla provides a repeatable method of measuring renal perfusion in healthy subjects without the need for administration of exogenous compounds. We have established normal values for renal perfusion using ASL MRI in a cohort of healthy volunteers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, UK.
| |
Collapse
|
88
|
Hoffmann A, Zhu G, Wintermark M. Advanced neuroimaging in stroke patients: prediction of tissue fate and hemorrhagic transformation. Expert Rev Cardiovasc Ther 2014; 10:515-24. [DOI: 10.1586/erc.12.30] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
89
|
Bulder MM, Bokkers RP, Hendrikse J, Kappelle LJ, Braun KP, Klijn CJ. Arterial Spin Labeling Perfusion MRI in Children and Young Adults with Previous Ischemic Stroke and Unilateral Intracranial Arteriopathy. Cerebrovasc Dis 2014; 37:14-21. [DOI: 10.1159/000355889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
|
90
|
Inoue Y, Tanaka Y, Hata H, Hara T. Arterial spin-labeling evaluation of cerebrovascular reactivity to acetazolamide in healthy subjects. AJNR Am J Neuroradiol 2013; 35:1111-6. [PMID: 24371025 DOI: 10.3174/ajnr.a3815] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Arterial spin-labeling MR imaging permits safe, repeated CBF measurement. We investigated the potential and technical factors of arterial spin-labeling imaging in assessing cerebrovascular reactivity to acetazolamide. MATERIALS AND METHODS The regional CBF was measured in 8 healthy volunteers by use of a 3D pseudocontinuous arterial spin-labeling sequence. Arterial spin labeling imaging was performed at rest and every 2 minutes after intravenous acetazolamide injection. To evaluate repeatability, regional CBF measurements were repeated without acetazolamide within an imaging session and on a separate day. Additionally, arterial spin-labeling imaging was performed at rest and after acetazolamide injection with different postlabeling delays, and regional cerebrovascular reactivity was calculated. RESULTS The regional CBF started to increase immediately after acetazolamide injection and peaked at approximately 10 minutes, followed by a slow decrease. Favorable intrasession repeatability was demonstrated, especially when scanner tuning was omitted between scans. Rest regional CBF was slightly lower with a postlabeling delay of 2525 ms than with a postlabeling delay of 1525 ms, and the postlabeling delay-dependent difference was more evident for regional CBF after acetazolamide injection and regional cerebrovascular reactivity. CONCLUSIONS Arterial spin-labeling imaging allows evaluation of the distribution, magnitude, and time course of cerebrovascular response to acetazolamide. The influence of the postlabeling delay on the estimated cerebrovascular reactivity should be noted.
Collapse
Affiliation(s)
- Y Inoue
- From the Departments of Diagnostic Radiology (Y.I., T.H.)
| | - Y Tanaka
- Radiology (Y.T., H.H.), Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - H Hata
- Radiology (Y.T., H.H.), Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - T Hara
- From the Departments of Diagnostic Radiology (Y.I., T.H.)
| |
Collapse
|
91
|
Shin DD, Ozyurt IB, Liu TT. The Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) database and analysis pipeline for arterial spin labeling MRI data. Front Neuroinform 2013; 7:21. [PMID: 24151465 PMCID: PMC3798866 DOI: 10.3389/fninf.2013.00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/26/2013] [Indexed: 11/13/2022] Open
Abstract
Arterial spin labeling (ASL) is a magnetic resonance imaging technique that provides a non-invasive and quantitative measure of cerebral blood flow (CBF). After more than a decade of active research, ASL is now emerging as a robust and reliable CBF measurement technique with increased availability and ease of use. There is a growing number of research and clinical sites using ASL for neuroscience research and clinical care. In this paper, we present an online CBF Database and Analysis Pipeline, collectively called the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) that allows researchers to upload and share ASL and clinical data. In addition to serving the role as a central data repository, the CBFBIRN provides a streamlined data processing infrastructure for CBF quantification and group analysis, which has the potential to accelerate the discovery of new scientific and clinical knowledge. All capabilities and features built into the CBFBIRN are accessed online using a web browser through a secure login. In this work, we begin with a general description of the CBFBIRN system data model and its architecture, then devote the remainder of the paper to the CBFBIRN capabilities. The latter part of our work is divided into two processing modules: (1) Data Upload and CBF Quantification Module; (2) Group Analysis Module that supports three types of analysis commonly used in neuroscience research. To date, the CBFBIRN hosts CBF maps and associated clinical data from more than 1,300 individual subjects. The data have been contributed by more than 20 different research studies, investigating the effect of various conditions on CBF including Alzheimer’s, schizophrenia, bipolar disorder, depression, traumatic brain injury, HIV, caffeine usage, and methamphetamine abuse. Several example results, generated by the CBFBIRN processing modules, are presented. We conclude with the lessons learned during implementation and deployment of the CBFBIRN and our experience in promoting data sharing.
Collapse
Affiliation(s)
- David D Shin
- Center for Functional Magnetic Resonance Imaging, University of California at San Diego La Jolla, CA, USA
| | | | | |
Collapse
|
92
|
Yeom KW, Lober RM, Barnes PD, Campen CJ. Reduced cerebral arterial spin-labeled perfusion in children with neurofibromatosis type 1. AJNR Am J Neuroradiol 2013; 34:1823-8. [PMID: 23764727 DOI: 10.3174/ajnr.a3649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Neurofibromatosis type 1 is associated with increased risk for stroke, cerebral vasculopathy, and neurocognitive deficits, but underlying hemodynamic changes in asymptomatic children remain poorly understood. We hypothesized that children with neurofibromatosis type 1 have decreased cerebral blood flow. MATERIALS AND METHODS Arterial spin-labeled CBF was measured in 14 children with neurofibromatosis type 1 (median age, 9.7 years; mean, 10.2 years; range, 22 months to 18 years) and compared with age-matched control subjects on 3T MR imaging. Three-dimensional pseudocontinuous spin-echo arterial spin-labeled technique was used. Measurements were obtained at cortical gray matter of bilateral cerebral hemispheres and centrum semiovale by use of the ROI method. Comparison by Mann-Whitney test was used, with Bonferroni-adjusted P values ≤.004 judged as significant. RESULTS We identified 7 of 12 areas with significantly diminished arterial spin-labeled CBF in patients with neurofibromatosis type 1 compared with control subjects. These areas included the anterior cingulate gyrus (P = .001), medial frontal cortex (P = .004), centrum semiovale (P = .004), temporo-occipital cortex (P = .002), thalamus (P = .001), posterior cingulate gyrus (P = .002), and occipital cortex (P = .001). Among patients with neurofibromatosis type 1, there were no significant differences in these regions on the basis of the presence of neurofibromatosis type 1 spots or neurocognitive deficits. CONCLUSIONS Reduced cerebral perfusion was seen in children with neurofibromatosis type 1, particularly in the posterior circulation and the vascular borderzones of the middle and posterior cerebral arteries.
Collapse
|
93
|
Watts JM, Whitlow CT, Maldjian JA. Clinical applications of arterial spin labeling. NMR IN BIOMEDICINE 2013; 26:892-900. [PMID: 23378178 DOI: 10.1002/nbm.2904] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 10/23/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
MR arterial spin labeling is primarily applied as a neuroimaging method to measure cerebral blood flow. As this technique becomes more widely available, a basic understanding of the clinical applications is necessary for optimal utilization in the setting of patient care. This review focuses on the use of arterial spin labeling imaging for the evaluation of cerebrovascular disease, brain tumors and neuropsychiatric illness.
Collapse
Affiliation(s)
- Jonathan M Watts
- Wake Forest School of Medicine, Department of Radiology, Winston Salem, NC, USA
| | | | | |
Collapse
|
94
|
|
95
|
Hasan KM, Ali H, Shad MU. Atlas-based and DTI-guided quantification of human brain cerebral blood flow: feasibility, quality assurance, spatial heterogeneity and age effects. Magn Reson Imaging 2013; 31:1445-52. [PMID: 23731534 DOI: 10.1016/j.mri.2013.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/27/2013] [Indexed: 12/28/2022]
Abstract
Accurate and noninvasive quantification of regional cerebral blood perfusion (CBF) of the human brain tissue would advance the study of the complex interplay between human brain structure and function, in both health and disease. Despite the plethora of works on CBF in gray matter, a detailed quantitative white matter perfusion atlas has not been presented on healthy adults using the International Consortium for Brain Mapping atlases. In this study, we present a host of assurance measures such as temporal stability, spatial heterogeneity and age effects of regional and global CBF in selected deep, cortical gray matter and white matter tracts identified and quantified using diffusion tensor imaging (DTI). We utilized whole brain high-resolution DTI combined with arterial spin labeling to quantify regional CBF on 15 healthy adults aged 23.2-57.1years. We present total brain and regional CBF, corresponding volume, mean diffusivity and fractional anisotropy spatial heterogeneity, and dependence on age as additional quality assurance measures to compare with published trends using both MRI and nuclear medicine methods. Total CBF showed a steady decrease with age in gray matter (r=-0.58; P=.03), whereas total CBF of white matter did not significantly change with age (r=0.11; P=.7). This quantitative report offers a preliminary baseline of CBF, volume and DTI measurements for the design of future multicenter and clinical studies utilizing noninvasive perfusion and DT-MRI.
Collapse
Affiliation(s)
- Khader M Hasan
- Medical School, Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
96
|
Schraml C, Schwenzer NF, Claussen CD, Martirosian P. Examination of Tissue Perfusion by Arterial Spin Labeling (ASL). CURRENT RADIOLOGY REPORTS 2013. [DOI: 10.1007/s40134-013-0009-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
97
|
Feasibility of MR perfusion-weighted imaging by use of a time-spatial labeling inversion pulse. Radiol Phys Technol 2013; 6:461-6. [PMID: 23703027 DOI: 10.1007/s12194-013-0219-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Perfusion-weighted imaging (PWI) by use of arterial spin labeling (ASL) has been introduced to the clinical setting. However, it is not widely available because it requires specialized pulse sequences. Imaging using a time-spatial labeling inversion pulse (time-SLIP), which is a magnetic resonance angiography (MRA) technique that is based on ASL, can be used in various situations. In this study, we examined the feasibility of time-SLIP PWI. Two types of time-SLIP sequences were evaluated: (1) a single inversion recovery (IR) pulse sequence, which is the same as that used in conventional time-SLIP MRA except for the timing of data acquisition, and (2) a dual IR pulse sequence, where a second, non-selective, IR pulse was added during the inflow time to suppress background signals. Subtraction processing is performed between the "on" and "off" settings of the first IR pulse (time-SLIP tag) to obtain PWI. The average signal intensity was measured in a uniform phantom as the residual of the background, and in five healthy subjects as the perfusion signal. The average signal-to-noise ratio (SNR) was also measured in the five subjects. All imaging was performed with a 1.5-T MR scanner. Images using the dual IR method showed lower background signals and higher perfusion signals compared with images using the single IR method. However, the SNR was lower in images with the dual IR method. These results demonstrate that a time-SLIP, which is an MRA method, can be used for obtaining cerebral PWI simply by adjusting the imaging parameters.
Collapse
|
98
|
Pollak AW, Meyer CH, Epstein FH, Jiji RS, Hunter JR, Dimaria JM, Christopher JM, Kramer CM. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers. JACC Cardiovasc Imaging 2013; 5:1224-30. [PMID: 23236972 DOI: 10.1016/j.jcmg.2012.03.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 02/22/2012] [Accepted: 03/07/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study hypothesized that arterial spin labeling (ASL) magnetic resonance (MR) imaging at 3-T would be a reliable noncontrast technique for measuring peak exercise calf muscle blood flow in both healthy volunteers and patients with peripheral arterial disease (PAD) and will discriminate between these groups. BACKGROUND Prior work demonstrated the utility of first-pass gadolinium-enhanced calf muscle perfusion MR imaging in patients with PAD. However, patients with PAD often have advanced renal disease and cannot receive gadolinium. METHODS PAD patients had claudication and an ankle brachial index of 0.4 to 0.9. Age-matched normal subjects (NL) had no PAD risk factors and were symptom-free with exercise. All performed supine plantar flexion exercise in a 3-T MR imaging scanner using a pedal ergometer until exhaustion or limiting symptoms and were imaged at peak exercise with 15 averaged ASL images. Peak perfusion was measured from ASL blood flow images by placing a region of interest in the calf muscle region with the greatest signal intensity. Perfusion was compared between PAD patients and NL and repeat testing was performed in 12 subjects (5 NL, 7 PAD) for assessment of reproducibility. RESULTS Peak exercise calf perfusion of 15 NL (age: 54 ± 9 years) was higher than in 15 PAD patients (age: 64 ± 5 years, ankle brachial index: 0.70 ± 0.14) (80 ± 23 ml/min - 100 g vs. 49 ± 16 ml/min/100 g, p < 0.001). Five NL performed exercise matched to PAD patients and again demonstrated higher perfusion (84 ± 25 ml/min - 100 g, p < 0.002). As a measure of reproducibility, intraclass correlation coefficient between repeated studies was 0.87 (95% confidence interval [CI]: 0.61 to 0.96). Interobserver reproducibility was 0.96 (95% CI: 0.84 to 0.99). CONCLUSIONS ASL is a reproducible noncontrast technique for quantifying peak exercise blood flow in calf muscle. Independent of exercise time, ASL discriminates between NL and PAD patients. This technique may prove useful for clinical trials of therapies for improving muscle perfusion, especially in patients unable to receive gadolinium.
Collapse
Affiliation(s)
- Amy W Pollak
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Arbeláez AM, Su Y, Thomas JB, Hauch AC, Hershey T, Ances BM. Comparison of regional cerebral blood flow responses to hypoglycemia using pulsed arterial spin labeling and positron emission tomography. PLoS One 2013; 8:e60085. [PMID: 23555895 PMCID: PMC3610825 DOI: 10.1371/journal.pone.0060085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Different brain regions sense and modulate the counterregulatory responses that can occur in response to declining plasma glucose levels. The aim of this study was to determine if changes in regional cerebral blood flow (rCBF) during hypoglycemia relative to euglycemia are similar for two imaging modalities–pulsed arterial spin labeling magnetic resonance imaging (PASL-MRI) and positron emission tomography (PET). Nine healthy non-diabetic participants underwent a hyperinsulinemic euglycemic (92±3 mg/dL) – hypoglycemic (53±1 mg/dL) clamp. Counterregulatory hormone levels were collected at each of these glycemic levels and rCBF measurements within the previously described network of hypoglycemia-responsive regions (thalamus, medial prefrontal cortex and globus pallidum) were obtained using PASL-MRI and [15O] water PET. In response to hypoglycemia, rCBF was significantly increased in the thalamus, medial prefrontal cortex, and globus pallidum compared to euglycemia for both PASL-MRI and PET methodologies. Both imaging techniques found similar increases in rCBF in the thalamus, medial prefrontal cortex, and globus pallidum in response to hypoglycemia. These brain regions may be involved in the physiologic and symptom responses to hypoglycemia. Compared to PET, PASL-MRI may provide a less invasive, less expensive method for assessing changes in rCBF during hypoglycemia without radiation exposure.
Collapse
Affiliation(s)
- Ana Maria Arbeláez
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Ishitobi M, Yoneda M, Ikawa M, Matsunaga A, Ueno K, Kimura H, Wada Y. Hashimoto's encephalopathy with hippocampus involvement detected on continuous arterial spin labeling. Psychiatry Clin Neurosci 2013; 67:128-9. [PMID: 23438170 DOI: 10.1111/pcn.12019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/27/2012] [Accepted: 12/12/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Makoto Ishitobi
- Department of Neuropsychiatry; University of Fukui; Fukui; Japan
| | - Makoto Yoneda
- Second Department of Internal Medicine; University of Fukui; Fukui; Japan
| | - Masamichi Ikawa
- Second Department of Internal Medicine; University of Fukui; Fukui; Japan
| | - Akiko Matsunaga
- Second Department of Internal Medicine; University of Fukui; Fukui; Japan
| | - Kanji Ueno
- Department of Neuropsychiatry; University of Fukui; Fukui; Japan
| | - Hirohiko Kimura
- Department of Radiology; Faculty of Medical Science; University of Fukui; Fukui; Japan
| | - Yuji Wada
- Department of Neuropsychiatry; University of Fukui; Fukui; Japan
| |
Collapse
|