51
|
Torres E, Fombuena V, Vallés-Lluch A, Ellingham T. Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:418-424. [DOI: 10.1016/j.msec.2017.02.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
|
52
|
Ahmad N, Alam MA, Ahmad R, Naqvi AA, Ahmad FJ. Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:432-446. [PMID: 28503995 DOI: 10.1080/21691401.2017.1324466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Docetaxel (DTX), a cytotoxic taxane, is a poor water-soluble drug and exhibits less oral bioavailability. Current research investigates the effective transport, for DTX-loaded chitosan (CS)-coated-poly-lactide-co-glycolide (PLGA)-nanoparticles (NPs) (DTX-CS-PLGA-NPs) and DTX-PLGA-NPs as well as a novel third-generation P-gp inhibitor i.e. GF120918 (Elacridar), across intestinal epithelium with its successive uptake by the tumour cells in an in vitro model. The prepared NPs showed a spherical shape particle size i.e. <123.96 nm with polydispersity index (PDI) of <0.290 whereas for CS-coated NPs, the zeta potential was converted from negative to positive value along with a small modification in particle size distribution. The entrapment efficiency observed for DTX-CS-PLGA-NPs was 74.77%, whereas the in vitro release profile revealed an initial rapid DTX release followed by a sustained release pattern. For apparent permeability, DTX-CS-PLGA-NPs and DTX-PLGA-NPs along with GF120918 showed a five-fold (p < .01) and 2.2-fold enhancement, respectively, as observed in rat ileum permeation study. Similarly, for pharmacokinetic (PK) studies, higher oral bioavailability was observed from DTX-CS-PLGA-NPs (5.11-folds) and DTX-PLGA-NPs (3.29-folds) as compared with DTX-suspension (DTX-S). Cell uptake studies on A549 cells as performed for DTX-CS-PLGA-NPs and DTX-PLGA-NPs loaded with rhodamine 123 dye, exhibited enhanced uptake as compared with plain dye solution. The enhanced uptake for DTX-CS-PLGA-NPs and DTX-PLGA-NPs formulations in the presence of GF120918 was confirmed further with the help of confocal laser scanning microscopic images (CLSM). The potential of the third-generation novel P-gp inhibitor (GF120918) investigated for the effective delivery of DTX as well as investigation of permeability and uptake studies whereby a strong potential of GF120918 for effective oral delivery was established.
Collapse
Affiliation(s)
- Niyaz Ahmad
- a Department of Pharmaceutics , College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (formerly University of Dammam) , Dammam , Kingdom of Saudi Arabia
| | - Md Aftab Alam
- b Department of Pharmaceutics, School of Medical and Allied Sciences , Galgotias University , Greater Noida , India
| | - Rizwan Ahmad
- c Department of Natural Products and Alternative Medicine , College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (formerly University of Dammam) , Dammam , Kingdom of Saudi Arabia
| | - Atta Abbas Naqvi
- d Department of Pharmacy Practice , College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (formerly University of Dammam) , Dammam , Kingdom of Saudi Arabia
| | - Farhan Jalees Ahmad
- e Nanomedicine Lab, Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard , New Delhi , India
| |
Collapse
|
53
|
Li CJ, Liu XZ, Zhang L, Chen LB, Shi X, Wu SJ, Zhao JN. Advances in Bone-targeted Drug Delivery Systems for Neoadjuvant Chemotherapy for Osteosarcoma. Orthop Surg 2017; 8:105-10. [PMID: 27384718 DOI: 10.1111/os.12238] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/21/2016] [Indexed: 12/25/2022] Open
Abstract
Targeted therapy for osteosarcoma includes organ, cell and molecular biological targeting; of these, organ targeting is the most mature. Bone-targeted drug delivery systems are used to concentrate chemotherapeutic drugs in bone tissues, thus potentially resolving the problem of reaching the desired foci and minimizing the toxicity and adverse effects of neoadjuvant chemotherapy. Some progress has been made in bone-targeted drug delivery systems for treatment of osteosarcoma; however, most are still at an experimental stage and there is a long transitional period to clinical application. Therefore, determining how to combine new, polymolecular and multi-pathway targets is an important research aspect of designing new bone-targeted drug delivery systems in future studies. The purpose of this article was to review the status of research on targeted therapy for osteosarcoma and to summarize the progress made thus far in developing bone-targeted drug delivery systems for neoadjuvant chemotherapy for osteosarcoma with the aim of providing new ideas for highly effective therapeutic protocols with low toxicity for patients with osteosarcoma.
Collapse
Affiliation(s)
- Cheng-Jun Li
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiao-Zhou Liu
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Lei Zhang
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Long-Bang Chen
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xin Shi
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Su-Jia Wu
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Jian-Ning Zhao
- Department of Orthopaedics, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
54
|
Badran MM, Mady MM, Ghannam MM, Shakeel F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int J Biol Macromol 2017; 95:643-649. [PMID: 27908720 DOI: 10.1016/j.ijbiomac.2016.11.098] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
5-Fluorouracil (5-FU) loaded chitosan (C) coated polylactic-co-glycolic acid (PLGA) nanoparticles [NPs] (C-5-FU PLGA NPs) and polycaprolactone [PCL] (C-5-FU PCL NPs) were employed as the carriers for cancer treatment. The prepared NPs showed the spherical shape of NPs with the particle size in the range of 188.1-302.2nm with polydispersity index (PDI) of <0.30. C-coated NPs converted zeta potential from negative to positive value with small modification in particle size distribution. The entrapment efficiency of 5-FU was recorded in the range of 32-51%. The in vitro release studies showed an initial rapid 5-FU release followed by a sustained release profile. The in vitro cytotoxicity of C-5-FU PLGA NPs showed significant inhibition of colon cancer cells (HT-29) compared to the other NPs and drug solution. These results showed that C-5-FU PLGA NPs can be considered as a promising carrier for cancer therapy.
Collapse
Affiliation(s)
- Mohamed M Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohsen M Mady
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Magdy M Ghannam
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Center of Excellence in Biotechnology Research (CEBR), King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
55
|
Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen-Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold. Int J Mol Sci 2017; 18:ijms18010087. [PMID: 28054960 PMCID: PMC5297721 DOI: 10.3390/ijms18010087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/26/2016] [Accepted: 12/29/2016] [Indexed: 02/05/2023] Open
Abstract
Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen-chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen-chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials.
Collapse
|
56
|
Ignjatović NL, Penov-Gaši KM, Wu VM, Ajduković JJ, Kojić VV, Vasiljević-Radović D, Kuzmanović M, Uskoković V, Uskoković DP. Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. Colloids Surf B Biointerfaces 2016; 148:629-639. [PMID: 27694053 DOI: 10.1016/j.colsurfb.2016.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.
Collapse
Affiliation(s)
- Nenad L Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Katarina M Penov-Gaši
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA
| | - Jovana J Ajduković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Dana Vasiljević-Radović
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Maja Kuzmanović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA; Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052, USA.
| | - Dragan P Uskoković
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia.
| |
Collapse
|
57
|
Czikó M, Bogya ES, Paizs C, Katona G, Konya Z, Kukovecz Á, Barabás R. Albumin adsorption study onto hydroxyapatite-multiwall carbon nanotube based composites. MATERIALS CHEMISTRY AND PHYSICS 2016; 180:314-325. [DOI: 10.1016/j.matchemphys.2016.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
Visan A, Stan GE, Ristoscu C, Popescu-Pelin G, Sopronyi M, Besleaga C, Luculescu C, Chifiriuc MC, Hussien MD, Marsan O, Kergourlay E, Grossin D, Brouillet F, Mihailescu IN. Combinatorial MAPLE deposition of antimicrobial orthopedic maps fabricated from chitosan and biomimetic apatite powders. Int J Pharm 2016; 511:505-515. [PMID: 27418570 DOI: 10.1016/j.ijpharm.2016.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 11/30/2022]
Abstract
Chitosan/biomimetic apatite thin films were grown in mild conditions of temperature and pressure by Combinatorial Matrix-Assisted Pulsed Laser Evaporation on Ti, Si or glass substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. A KrF* excimer (λ=248nm, τFWHM=25ns) laser source was used in all experiments. The nature and surface composition of deposited materials and the spatial distribution of constituents were studied by SEM, EDS, AFM, GIXRD, FTIR, micro-Raman, and XPS. The antimicrobial efficiency of the chitosan/biomimetic apatite layers against Staphylococcus aureus and Escherichia coli strains was interrogated by viable cell count assay. The obtained thin films were XRD amorphous and exhibited a morphology characteristic to the laser deposited structures composed of nanometric round shaped grains. The surface roughness has progressively increased with chitosan concentration. FTIR, EDS and XPS analyses indicated that the composition of the BmAp-CHT C-MAPLE composite films gradually modified from pure apatite to chitosan. The bioevaluation tests indicated that S. aureus biofilm is more susceptible to the action of chitosan-rich areas of the films, whilst the E. coli biofilm proved more sensible to areas containing less chitosan. The best compromise should therefore go, in our opinion, to zones with intermediate-to-high chitosan concentration which can assure a large spectrum of antimicrobial protection concomitantly with a significant enhancement of osseointegration, favored by the presence of biomimetic hydroxyapatite.
Collapse
Affiliation(s)
- A Visan
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele-Ilfov, Romania
| | - G E Stan
- National Institute of Materials Physics, 077125 Magurele-Ilfov, Romania
| | - C Ristoscu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele-Ilfov, Romania
| | - G Popescu-Pelin
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele-Ilfov, Romania
| | - M Sopronyi
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele-Ilfov, Romania
| | - C Besleaga
- National Institute of Materials Physics, 077125 Magurele-Ilfov, Romania
| | - C Luculescu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele-Ilfov, Romania
| | - M C Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; Earth, Environmental and Life Sciences Division, Research Institute of the University of Bucharest, 77206 Bucharest, Romania
| | - M D Hussien
- Department of Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; Earth, Environmental and Life Sciences Division, Research Institute of the University of Bucharest, 77206 Bucharest, Romania
| | - O Marsan
- University of Toulouse, CIRIMAT, UPS INPT CNRS, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| | - E Kergourlay
- University of Toulouse, CIRIMAT, UPS INPT CNRS, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| | - D Grossin
- University of Toulouse, CIRIMAT, UPS INPT CNRS, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| | - F Brouillet
- University of Toulouse, CIRIMAT, UPS INPT CNRS, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| | - I N Mihailescu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele-Ilfov, Romania.
| |
Collapse
|