51
|
Yang G, Huang H, Chen J, Gan D, Deng F, Huang Q, Wen Y, Liu M, Zhang X, Wei Y. Preparation of ionic liquids functionalized nanodiamonds-based composites through the Michael addition reaction for efficient removal of environmental pollutants. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
52
|
Javanbakht S, Shaabani A. Multicomponent Reactions-Based Modified/Functionalized Materials in the Biomedical Platforms. ACS APPLIED BIO MATERIALS 2019; 3:156-174. [DOI: 10.1021/acsabm.9b00799] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| |
Collapse
|
53
|
He Z, Jiang R, Long W, Huang H, Liu M, Chen J, Deng F, Zhou N, Zhang X, Wei Y. The combination of Diels-Alder reaction and redox polymerization for preparation of functionalized CNTs for intracellular controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110442. [PMID: 32228901 DOI: 10.1016/j.msec.2019.110442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Carbon nanotubes (CNTs) are a novel type of one-dimensional carbon nanomaterials that have been widely utilized for biomedical applications such as drug delivery, cancer photothermal treatment owing to their high surface area and unique interaction with cell membranes. However, their biomedical applications are still impeded by some drawbacks, including poor water dispersibility, lack of functional groups and toxicity. Therefore, surface modification of CNTs to overcome these issues should be importance and of great interest. In this work, we reported for the first time that CNTs could be surface modification through the combination of Diels-Alder (D-A) reaction and redox polymerization, this strategy shows the advantages of mild reaction conditions, water tolerance, low temperature and hydroxyl-surfaced initiator. In this modification procedure, the hydroxyl groups were introduced on the surface of CNTs through the D-A reaction that was adopted for grafting the copolymers, which were initiated by the Ce(IV)/HNO3 redox system using the hydrophilic and biocompatible poly(ethylene glycol) methyl ether methacrylate (PEGMA) and carboxyl-rich acrylic acid (AA) as monomers. The final CNTs-OH-PAA@PEGMA composites were characterized by a series of characterization techniques. The drug loading and release results suggested that anticancer agent cis‑platinum (CDDP) could be loaded on CNTs-OH-PAA@PEGMA composites through coordination with carboxyl groups and drug release behavior could be controlled by pH. More importantly, the cell viability results clearly demonstrated that CNTs-OH-PAA@PEGMA composites displayed low toxicity and the drug could be transported in cells and still maintain their therapeutic effects.
Collapse
Affiliation(s)
- Ziyang He
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ruming Jiang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Wei Long
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
54
|
Tang X, Zhang L, Hu R, Tang BZ. Multicomponent Tandem Polymerization of Aromatic Alkynes, Carbonyl Chloride, and Fischer's Base toward Poly(diene merocyanine)s. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaojuan Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Lihui Zhang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced EmissionSouth China University of Technology Guangzhou Guangdong 510640 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong, China
| |
Collapse
|
55
|
Long W, Ouyang H, Wan W, Yan W, Zhou C, Huang H, Liu M, Zhang X, Feng Y, Wei Y. "Two in one": Simultaneous functionalization and DOX loading for fabrication of nanodiamond-based pH responsive drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110413. [PMID: 31923965 DOI: 10.1016/j.msec.2019.110413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/13/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023]
Abstract
Nanodiamond (ND) has been widely studied as a new type of carbon nanomaterials that is expected to be used as a promising candidate in various fields especially in the field of biomedicine. However, its poor water dispersibility and insufficient controlled release limit its practical applications. In this paper, ND-based composites with pH-responsive hydrazone bonds were successfully prepared by a simple chemical reaction between ester groups and hydrazine hydrate, in which ester groups were conjugated on the surface of ND via thiol-ene click reaction. On the other hand, CHO-PEG and doxorubicin hydrochloride (DOX) were linked on the carriers through formation of hydrazone bonds, resulting in improving water dispersibility and high drug loading capacity. The structure, thermal stability, surface morphology and particle size of ND carriers were characterized by different equipment. Results demonstrated that we have successfully prepared these functionalized ND. The release rate of DOX in acidic environment was significantly greater than that in normal physiological environment. More importantly, cell viability and optical imaging results showed that ND-based composites possess good biocompatibility, therapeutic effect, and could successfully transport DOX to HepG2 cells. Considering the above results, we believe that our new ND carriers will become promising candidates for intracellular controlled drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weimin Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenfeng Yan
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chaoqun Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
56
|
Ahmed HB. Recruitment of various biological macromolecules in fabrication of gold nanoparticles: Overview for preparation and applications. Int J Biol Macromol 2019; 140:265-277. [DOI: 10.1016/j.ijbiomac.2019.08.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/26/2022]
|
57
|
Facile fabrication and biological imaging applications of salicylaldehyde based fluorescent organic nanoparticles with aggregation-induced emission and ESIPT feature. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
58
|
Surface modification of fluorescent Tb 3+-doped layered double hydroxides with hyperbranched polymers through host-guest interaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109976. [PMID: 31499989 DOI: 10.1016/j.msec.2019.109976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 11/20/2022]
Abstract
The preparation of fluorescent inorganic-organic polymer composites for biomedical applications has become one of the most interest research focuses recently. In this work, we reported a novel method for the preparation of Tb3+-doped luminescent layered double hydroxides (LDHs) based composites by taken advantage of a one-pot supramolecular chemistry. The adamantane can be immobilized on the surface of Tb3+-doped LDHs to obtain LDH-Ad, which could be further utilized for modified by the β-cyclodextrin (β-CD) containing hyperbranched polyglycerols (β-CD-HPG) through the host-guest interaction. Based on the characterization results, we demonstrated that the hyperbranched polyglycerol could be facilely introduced on these fluorescent Tb3+-doped LDHs through the method described in this work. The obtained Tb3+-doped LDHs based polymer composites (LDHs-β-CD-HPG) display improved water dispersibility and still maintain their fluorescence. The results based on various biological assays suggest that LDHs-β-CD-HPG polymer composites are of low cytotoxicity and their cell uptake behavior can be effectively traced using confocal laser imaging. All of the above results demonstrated that the fluorescent Tb3+-doped LDHs based polymer composites could be effectively surface modified with hydrophilic hyperbranched polymers through a one-pot facile host-guest interaction and the resultant fluorescent composites are of excellent physicochemical properties and display great potential for biomedical applications. This novel surface modification method should also be important for fabrication of other multifunctional composites and therefore great advanced the development of biomedical applications of fluorescent LDHs based polymer composites and related materials.
Collapse
|
59
|
Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal. Int J Biol Macromol 2019; 136:476-485. [DOI: 10.1016/j.ijbiomac.2019.06.112] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/21/2023]
|
60
|
Laser ablation assisted preparation of MnO2 nanocolloids from waste battery cell powder: Evaluation of physico-chemical, electrical and biological properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
61
|
Shahzad MK, Zhang Y, Raza A, Ikram M, Qi K, Khan MU, Aslam MJ, Alhazaa A. Polymer Microfibers Incorporated with Silver Nanoparticles: a New Platform for Optical Sensing. NANOSCALE RESEARCH LETTERS 2019; 14:270. [PMID: 31396725 PMCID: PMC6687803 DOI: 10.1186/s11671-019-3108-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The enhanced sensitivity of up-conversion luminescence is imperative for the application of up-conversion nanoparticles (UCNPs). In this study, microfibers were fabricated after co-doping UCNPs with polymethylmethacrylate (PMMA) and silver (Ag) solutions. Transmission losses and sensitivities of UCNPs (tetrogonal-LiYF4:Yb3+/Er3+) in the presence and absence of Ag were investigated. Sensitivity of up-conversion luminescence with Ag (LiYF4:Yb3+/Er3+/Ag) is 0.0095 K-1 and reduced to (LiYF4:Yb3+/Er3+) 0.0065 K-1 without Ag at 303 K under laser source (980 nm). The UCNP microfibers with Ag showed lower transmission losses and higher sensitivity than without Ag and could serve as promising candidate for optical applications. This is the first observation of Ag-doped microfiber via facile method.
Collapse
Affiliation(s)
- Muhammad Khuram Shahzad
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Yundong Zhang
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China.
| | - Adil Raza
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, Lahore, Punjab, 54000, Pakistan
| | - Kaiyue Qi
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Muhammad Usman Khan
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Muhammad Jehanzaib Aslam
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT), Harbin, 150080, People's Republic of China
| | - Abdulaziz Alhazaa
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia.
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
62
|
Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces 2019; 180:411-428. [DOI: 10.1016/j.colsurfb.2019.05.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
|
63
|
Highly efficient aggregation-induced emission and stimuli-responsive fluorochromism triggered by carborane-induced charge transfer state. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
64
|
Huerta-Aguilar CA, Ramírez-Guzmán B, Thangarasu P, Narayanan J, Singh N. Simultaneous recognition of cysteine and cytosine using thiophene-based organic nanoparticles decorated with Au NPs and bio-imaging of cells. Photochem Photobiol Sci 2019; 18:1761-1772. [PMID: 31111854 DOI: 10.1039/c9pp00060g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomolecules like cysteine and cytosine play a significant role in many physiological processes, and their unusual level in biological systems can lead to many diseases including cancer. Indeed, the need for selective detection of these moieties by a fluorescence probe is imperative. Thus, thiophene based Schiff N,N'-bis(thiophene-2-ylmethylene)thiophenemethane (BMTM) was synthesized and then characterized using several analytical techniques before converting it into organic nanoparticles (ONPs). Then, fluorescent organic inorganic nanohybrids (FONs) were obtained after decorating ONPs with AuNPs to yield BMTM-Au-ONPs (FONPs). The morphology of the particles, analyzed using a Transmission Electron Microscope (TEM), shows that AuNPs were embedded with low density organic matter (ONPs). FONPs were employed to recognize cysteine and cytosine simultaneously. No interference was observed from other moieties such as guanine, uracyl, NADH, NAD, ATP, and adenine during the detection. It means that the intensity of the fluorescence signal was significantly changed (enhanced for cytosine and quenched for cysteine). So, FONPs were used to detect cysteine and cytosine in real samples, like Saccharomyces cerevisiae cells. As expected, no considerable fluorescence signal for cysteine was observed, while for cytosine, strong fluorescence signals were detected in the cells. DFT was used to explain the interaction of FONPs with cysteine or cytosine.
Collapse
Affiliation(s)
- Carlos Alberto Huerta-Aguilar
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510 México D.F., Mexico. and División de Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense, C.P. 54910 Tultitlán, Estado de México, Mexico
| | - Brayan Ramírez-Guzmán
- División de Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense, C.P. 54910 Tultitlán, Estado de México, Mexico
| | - Pandiyan Thangarasu
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, 04510 México D.F., Mexico.
| | - Jayanthi Narayanan
- División de Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense, C.P. 54910 Tultitlán, Estado de México, Mexico
| | - Narinder Singh
- Department of chemistry, Indian Institute of Technology (IIT), Ropar, India
| |
Collapse
|
65
|
Cui Y, Huang H, Liu M, Chen J, Deng F, Zhou N, Zhang X, Wei Y. Facile preparation of luminescent cellulose nanocrystals with aggregation-induced emission feature through Ce(IV) redox polymerization. Carbohydr Polym 2019; 223:115102. [PMID: 31426952 DOI: 10.1016/j.carbpol.2019.115102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
Cellulose nanocrystals (CNCs) are a novel type of natural nanomaterials that have attracted tremendous research interest for various applications especially in the biomedical fields owing to their natural origin, biodegradable potential, remarkable biocompatibility and massive reactive hydroxyl groups. In this work, a novel strategy has been developed for fabrication of luminescent CNCs with aggregation-induced emission (AIE) feature for the first time through a facile one-step Ce(IV) redox polymerization for direct surface grafting of AIE dye (PhE) and hydrophilic monomer Poly(ethylene glycol) monomethyl ether acrylate (PEGMA) on CNCs. Various characterization techniques would demonstrate the successful preparation of resultant CNC-PhE-PEGMA with uniform nanoscale size, remarkable fluorescent properties and extremely low cytotoxicity. Furthermore, compared with conventional modification strategy of CNCs, Ce(IV) redox polymerization only need moderate temperature and can operate in aqueous solution utilizing surface hydroxyl groups of CNCs as polymerization activity sites. More importantly, CNC-PhE-PEGMA show desirable fluorescent properties and can be used for cell dyeing, indicating their potential for biomedical applications.
Collapse
Affiliation(s)
- Yi Cui
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, PR China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
66
|
Khademi S, Sarkar S, Shakeri-Zadeh A, Attaran N, Kharrazi S, Ay MR, Azimian H, Ghadiri H. Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: An in vivo study. Int J Biochem Cell Biol 2019; 114:105554. [PMID: 31276787 DOI: 10.1016/j.biocel.2019.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 11/15/2022]
Abstract
The development of various cost-effective multifunctional contrast agent for specific targeting molecular imaging of tumors presents a great challenge. We report here the in vivo targeting imaging of folic acid (FA) gold nanoparticles (AuNPs) through cysteamine (Cys) linking for targeted of human nasopharyngeal head and neck cancer by computed tomography (CT). The toxicity of nanoparticles in kidney, heart, spleen, brain and liver was evaluated by H&E (hematoxylin and eosin) assay. We showed that the formed FA-Cys-AuNPs with an Au core size of ˜13 nm are non-cytotoxic in the particle concentration of 3 × 103 μg/ ml. The nude mice were scanned using a 64-slice CT scan with parameters (80 kVp, slice thickness: 0.625 mm, mAs: 200, pitch: 1). CT scan was performed before and after (Three and six hours) I.V (Intra Venous) injection of AuNPs and FA-Cys-AuNPs. The distribution of nanoparticles in the nude mice was evaluated by imaging and coupled plasma optical emission spectrometry (ICP-OES) analysis. The findings clearly illustrated that a small tumor, which is undetectable via computed tomography, is enhanced by X-ray attenuation and becomes visible (4.30-times) by the molecularly targeted AuNPs. It was further demonstrated that active tumor cells targeting (FA-Cys-AuNPs) is more specific and efficient (2.03-times) than passive targeting AuNPs. According to the results, FA-Cys-AuNPs can be employed as a promising contrast agent in CT scan imaging and maybe in radiotherapy that require enhanced radiation dose.
Collapse
Affiliation(s)
- Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ghadiri
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
67
|
Introducing the Kabachnik–Fields multicomponent reaction for functionalization of multiwalled carbon nanotubes and their performance for removal of methylene blue. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
68
|
Karami P, Salkhi Khasraghi S, Hashemi M, Rabiei S, Shojaei A. Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications. Adv Colloid Interface Sci 2019; 269:122-151. [PMID: 31082543 DOI: 10.1016/j.cis.2019.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/14/2019] [Accepted: 04/24/2019] [Indexed: 11/28/2022]
Abstract
Nanodiamond (ND) is an allotrope of carbon nanomaterials which exhibits many outstanding physical, mechanical, thermal, optical and biocompatibility characteristics. Meanwhile, ND particles possess unique spherical shape containing diamond-like structure at the core with graphitic carbon outer shell which intuitively contains many oxygen-containing functional groups at the outer surface. Such superior properties and unique structural morphology of NDs are essentially attractive to develop polymer composites with multifunctional properties. However, despite a long history from the discovery of NDs, which is dated back to the1960s, this nanoparticle has been less explored in the field of polymer (nano)composites compared with other carbon nanomaterials, e.g. carbon nanotube (CNT) and graphene. However, open literature indicates that research works in the field of polymer/ND (PND) composites have gained great momentum in the past half a decade. The present article provides a comprehensive review on recent achievements in ND based polymer composites. This review covers a very broad aspect from the synthesis, purification and functionalization of NDs to dispersion, preparation and fabrication of polymer/ND (PND) composites with a look in their recent applications for both structural and functional basis. Therefore, the review would be useful to pave the way for researchers to take some advancing steps in this respect.
Collapse
Affiliation(s)
- Pooria Karami
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Samaneh Salkhi Khasraghi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Mohammadjafar Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Sima Rabiei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran.
| |
Collapse
|
69
|
Gharieh A, Khoee S, Mahdavian AR. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv Colloid Interface Sci 2019; 269:152-186. [PMID: 31082544 DOI: 10.1016/j.cis.2019.04.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
In recent years, polymer nanoparticles (PNPs) have found their ways into numerous applications extending from electronics to photonics, conducting materials to sensors and medicine to biotechnology. Physical properties and surface morphology of PNPs are the most important parameters that significantly affect on their exploitations and can be controlled through the synthesis process. Emulsion and miniemulsion techniques are among the most efficient and wide-spread methods for preparation of PNPs. The objective of this review is to present and highlight the recent developments in the advanced PNPs with specific properties that are produced through emulsion and miniemulsion processes.
Collapse
Affiliation(s)
- Ali Gharieh
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran.
| |
Collapse
|
70
|
Bio-assay: The best alternative for conventional methods in detection of epidermal growth factor. Int J Biol Macromol 2019; 133:624-639. [DOI: 10.1016/j.ijbiomac.2019.04.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
71
|
Querobino SM, de Faria NC, Vigato AA, da Silva BGM, Machado IP, Costa MS, Costa FN, de Araujo DR, Alberto-Silva C. Physicochemical data of oleic acid-poloxamer organogel for intravaginal voriconazole delivery. Data Brief 2019; 25:104180. [PMID: 31321270 PMCID: PMC6614085 DOI: 10.1016/j.dib.2019.104180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/02/2019] [Accepted: 06/17/2019] [Indexed: 12/03/2022] Open
Abstract
Functional polymeric nanoparticles have attracted attention for different biomedical applications, including drug delivery. Poloxamers (PL), a synthetic copolymers of poly(ethyleneoxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), that exhibit thermoreversible behavior in aqueous solutions. Physicochemical properties of Oleic Acid-Poloxamer (OA-PL) organogel for intravaginal controlled Voriconazole (VRC) delivery were assessed using three different oils (isopropyl myristate - IPM, isopropyl palmitate - IPP, and oleic acid – OA, in order to select the most suitable oil phase for increasing the solubility of the drug and its dispersion in the final aqueous phase. Organogel structural organization was assessed by VRC partition coefficient, differential scanning calorimetry (DSC), rheological analysis, and drug release assay. These data are complementary to the research article entitled “Sodium alginate in oil-poloxamer organogels for intravaginal drug delivery: influence on structural parameters, drug release mechanisms, cytotoxicity and in vitro antifungal activity” - Materials Science and Engineering: C, 2019. 99: p. 1350–1361.
Collapse
Affiliation(s)
- Samyr M Querobino
- Universidade do Estado de Minas Gerais - UEMG, Av. Juca Stockler, 1130, Bairro Belo Horizonte, Passos, 37900-106, MG, Brazil
| | - Naially C de Faria
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Av. dos Estados, n° 5001, Bloco A, Torre 3, Lab 503-3, Santo André, SP, Brazil
| | - Aryane A Vigato
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Av. dos Estados, n° 5001, Bloco A, Torre 3, Lab 503-3, Santo André, SP, Brazil
| | - Bruna G M da Silva
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi, n° 2911, São José dos Campos, SP, Brazil
| | - Ian P Machado
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05588-000, SP, Brazil
| | - Maricilia S Costa
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba (UNIVAP), Av. Shishima Hifumi, n° 2911, São José dos Campos, SP, Brazil
| | - Fanny N Costa
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Av. dos Estados, n° 5001, Bloco A, Torre 3, Lab 503-3, Santo André, SP, Brazil
| | - Daniele R de Araujo
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Av. dos Estados, n° 5001, Bloco A, Torre 3, Lab 503-3, Santo André, SP, Brazil
| | - Carlos Alberto-Silva
- Natural and Human Sciences Center, Federal University of ABC (UFABC), Rua Arcturus, n° 03, Bloco Delta, São Bernardo do Campo, 09606-070, SP, Brazil
| |
Collapse
|
72
|
Kang J, Yu J, Li A, Zhao D, Liu B, Guo L, Tang B. Amorphous Ag 2S Micro-rods-Enhanced Fluorescence on Liquid Crystals: Cation-π Interaction-Triggered Aggregation-Induced Emission Effect. iScience 2019; 15:119-126. [PMID: 31048146 PMCID: PMC6495463 DOI: 10.1016/j.isci.2019.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022] Open
Abstract
Aggregation-induced emission (AIE) system has long been regarded as a promising substitute to overcome the aggregation-caused quenching in traditional luminescent liquid crystals, which could further enhance its efficiency and application. However, due to the intrinsic weak interaction between hybrid components, heterogeneous inorganic materials-induced AIE process was rarely reported. In this study, trace amounts of amorphous Ag2S microrods and an AIE-active liquid crystalline compound tetraphenylethylene-propylbenzene (TPE-PPE) were proposed to construct additional intense interaction to trigger AIE effect. The enhanced concentration of unsaturated Ag ions and excess positive charge on Ag2S surface promote a cation-π interaction with TPE-PPE, leading to a 36-fold increase in fluorescence, which is predominately high in luminescent liquid crystal system. To the best of our knowledge, this is the first report of the AIE process activated by cation-π interaction. This novel approach would provide guidance to fabricate high-luminescence meso phases for future luminescent display device.
Collapse
Affiliation(s)
- Jianxin Kang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Jian Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Anran Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Dongyu Zhao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China.
| | - Bin Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Lin Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China.
| | - Benzhong Tang
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
73
|
Pattarayingsakul W, Pudgerd A, Munkongwongsiri N, Vanichviriyakit R, Chaijarasphong T, Thitamadee S, Kruangkum T. The gastric sieve of penaeid shrimp species is a sub-micrometer nutrient filter. ACTA ACUST UNITED AC 2019; 222:jeb.199638. [PMID: 31028105 DOI: 10.1242/jeb.199638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
Unlike that of vertebrates, the penaeid shrimp stomach is of ectodermic origin and is thus covered by a cuticle that is sloughed upon molting. It is composed of two chambers, here called the anterior and posterior stomach chambers, ASC and PSC, respectively. The PSC contains a filtration structure variously called a pyloric filter, filter press, gastric filter or gastric sieve (GS), and the last of these will be used here. The GS resembles an elongated, inverted-V, dome-like, chitinous structure with a midline ridge that is integral to the ventral base of the PSC. The dome surface is covered with a carpet-like layer of minute, comb-like setae bearing laterally branching setulae. This carpet serves as a selective filter that excludes large partially digested food particles but allows smaller particles and soluble materials to enter hepatopancreatic ducts that conduct them into the shrimp hepatopancreas (HP), where further digestion and absorption of nutrients takes place. Although the GS function is well known, its exclusion limit for particulate material has not been clearly defined. Using histological and ultra-structure analysis, we show that the GS sieve pore diameter is approximately 0.2-0.7 µm in size, indicating a size exclusion limit of substantially less than 1 µm. Using fluorescent microbeads, we show that particles of 1 µm diameter could not pass through the GS but that particles of 0.1 µm diameter did pass through to accumulate in longitudinal grooves and move on to the HP, where some were internalized by tubule epithelial cells. We found no significant difference in these sizes between the species Penaeus monodon and Penaeus vannamei or between juveniles and adults in P. vannamei This information will be of value for the design of particulate feed ingredients such as nutrients, therapeutic drugs and toxin-absorbing materials that may selectively target the stomach, intestine or HP of cultivated shrimp.
Collapse
Affiliation(s)
- Werawich Pattarayingsakul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Arnon Pudgerd
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand.,Division of Anatomy, School of Medical Science, University of Phayao, Muang, Phayao 56000, Thailand
| | - Natthinee Munkongwongsiri
- Aquatic Animal Health Research Team (AQHT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd, Bangkok 0400, Thailand
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand.,Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Thawatchai Chaijarasphong
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Siripong Thitamadee
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Thanapong Kruangkum
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand .,Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| |
Collapse
|
74
|
Wang T, Liu M, Xu D, Chen J, Wan Q, Wen Y, Huang H, Deng F, Zhang X, Wei Y. Facile fabrication of cross-linked fluorescent organic nanoparticles with aggregation-induced emission characteristic via the thiol-ene click reaction and their potential for biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:293-299. [DOI: 10.1016/j.msec.2018.12.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/12/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
|
75
|
Qiu J, Chen Y, Jiang S, Guo H, Yang F. A fluorescent sensor based on aggregation-induced emission: highly sensitive detection of hydrazine and its application in living cell imaging. Analyst 2019; 143:4298-4305. [PMID: 30095834 DOI: 10.1039/c8an00863a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aggregation-induced emission (AIE) molecules eliminate the aggregation-caused quenching (ACQ) phenomenon effectively and exhibit excellent properties of a fluorescent sensor in the aggregated state. In this paper, an allochroic fluorescent sensor based on AIE molecules with a diphenylacrylonitrile structure was prepared in high yield by a simple procedure. This molecule possessed good AIE properties and exhibited a sensitive sensor ability for aliphatic amines with an obvious color change from orange to blue-green. The detailed investigation on the detection of hydrazine suggested that the detection limit for hydrazine was 3.67 × 10-6 M, and the highly sensitive sensor for hydrazine was not influenced by other species. The sensor mechanism was confirmed by using 1H NMR and MS spectra. The sensor for hydrazine was successfully applied in a test paper, exhibiting good practical application potential for detecting hydrazine. The experiment of living cell imaging suggested that this sensor showed superior bioimaging performance and presented sensitive detection for hydrazine with an obvious color change from orange to blue-green.
Collapse
Affiliation(s)
- Jiabin Qiu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, P. R. China.
| | | | | | | | | |
Collapse
|
76
|
Lee KC, Lo PY, Lee GY, Zheng JH, Cho EC. Carboxylated carbon nanomaterials in cell cycle and apoptotic cell death regulation. J Biotechnol 2019; 296:14-21. [DOI: 10.1016/j.jbiotec.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/27/2022]
|
77
|
Design of a multimodal colloidal polymeric drug delivery vesicle: A detailed pharmaceutical study. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
78
|
Zhang H, Sun Y, Zhou T, Yu Q, Yang Z, Cai Z, Cang H. Poly(2-oxazoline)-based nanoparticles with aggregation-induced emission (AIE) for targeted cell imaging. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Huaihong Zhang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Tao Zhou
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Qing Yu
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhenqing Yang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhaosheng Cai
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Hui Cang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
79
|
Choudhury K, Singh R, Kumar P, Ranjan M, Srivastava A, Kumar A. Effect of confined geometry on the size distribution of nanoparticles produced by laser ablation in liquid medium. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2018.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
80
|
Huang H, Liu M, Jiang R, Chen J, Huang Q, Wen Y, Tian J, Zhou N, Zhang X, Wei Y. Water-dispersible fluorescent nanodiamonds for biological imaging prepared by thiol-ene click chemistry. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
81
|
Mao LC, Zhang XY, Wei Y. Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2208-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
82
|
Dwivedi BK, Singh RS, Ali A, Sharma V, Mobin SM, Pandey DS. AIE active piperazine appended naphthalimide-BODIPYs: photophysical properties and applications in live cell lysosomal tracking. Analyst 2019; 144:331-341. [DOI: 10.1039/c8an01390j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Piperazine appended naphthalimide-BODIPYs (NPB1–NPB4) exhibiting solvatochromism, aggregation-induced emission, and high selectivity towards lysosomal pH in living cells have been described.
Collapse
Affiliation(s)
| | - Roop Shikha Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| | - Afsar Ali
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| | - Vinay Sharma
- School of Basic Sciences
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore – 453 552
- India
| | - Shaikh M. Mobin
- School of Basic Sciences
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore – 453 552
- India
| | - Daya Shankar Pandey
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| |
Collapse
|
83
|
Halder S, Manna U, Das G. Tuning the aggregation performance by varying the substituent position: comparative study of neutral bis-urea derivatives in aqueous medium. NEW J CHEM 2019. [DOI: 10.1039/c9nj03297e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A set of three neutral bis-urea derivatives has been purposefully chosen to investigate the consequences of positional isomers on the aggregation performance.
Collapse
Affiliation(s)
- Senjuti Halder
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Utsab Manna
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | - Gopal Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| |
Collapse
|
84
|
Deng F, Zhou H, Chen J, Huang H, Tian J, Wen Y, Huang Q, Liu M, Zhang X, Wei Y. Surface PEGylation and biological imaging of fluorescent Tb3+-doped layered double hydroxides through the photoinduced RAFT polymerization. J Colloid Interface Sci 2018; 532:641-649. [DOI: 10.1016/j.jcis.2018.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/28/2023]
|
85
|
Li H, Zhang B, Lü S, Ma H, Liu M. Synthesis and characterization of a nano fluorescent starch. Int J Biol Macromol 2018; 120:1225-1231. [DOI: 10.1016/j.ijbiomac.2018.08.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
|
86
|
Hu R, Zhou F, Zhou T, Shen J, Wang Z, Zhao Z, Qin A, Tang BZ. Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AIEgen. Biomaterials 2018; 187:47-54. [DOI: 10.1016/j.biomaterials.2018.09.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
|
87
|
Precise design and synthesis of an AIE fluorophore with near-infrared emission for cellular bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:399-406. [DOI: 10.1016/j.msec.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 06/22/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
|
88
|
De-La-Cuesta J, Pomposo JA. Photoactivation of Aggregation-Induced Emission Molecules for Fast and Efficient Synthesis of Highly Fluorescent Single-Chain Nanoparticles. ACS OMEGA 2018; 3:15193-15199. [PMID: 30555999 PMCID: PMC6289576 DOI: 10.1021/acsomega.8b02374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Single-chain nanoparticles (SCNPs) are ultrasmall soft nanomaterials constructed via intrachain cross-linking of individual precursor polymer chains, with promising prospects for nanomedicine, catalysis, and sensing, among other different fields. SCNPs are versatile building blocks for the construction of new fluorescent probes with ultrasmall size, higher brightness, and better photostability than previous particle-based systems. Herein, we report on a new, fast, and efficient method to produce SCNPs with intense fluorescence emission in solution which is based on the photoactivation of appropriate aggregation-induced emission (AIE) cross-linking molecules containing azide functional groups. Remarkably, the presence of the azide moiety-that can be transformed to highly reactive nitrene species upon UV irradiation-was found to be essential for the SCNPs to display intense fluorescence emission. We attribute the fluorescence properties of the SCNPs to the immobilization of the initially nonfluorescent AIE molecules via intrachain cross-linking upon photoactivation. Such cross-linking-induced immobilization process activates the AIE mechanism and, hence, leads to fluorescent SCNPs in both solution and solid state.
Collapse
Affiliation(s)
- Julen De-La-Cuesta
- Centro
de Física de Materiales (CSIC, UPV/EHU) and Materials Physics
Center MPC, Paseo Manuel
de Lardizabal 5, E-20018 San Sebastián, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC, UPV/EHU) and Materials Physics
Center MPC, Paseo Manuel
de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad
del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
- IKERBASQUE—Basque
Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|
89
|
Mehnath S, Ayisha Sithika MA, Arjama M, Rajan M, Amarnath Praphakar R, Jeyaraj M. Sericin-chitosan doped maleate gellan gum nanocomposites for effective cell damage in Mycobacterium tuberculosis. Int J Biol Macromol 2018; 122:174-184. [PMID: 30393136 DOI: 10.1016/j.ijbiomac.2018.10.167] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/13/2018] [Accepted: 10/24/2018] [Indexed: 01/22/2023]
Abstract
Polysaccharides are increasingly used as biodegradable nanocarrier to selectively deliver therapeutic agents to specific cells. In this study, maleate gellan gum (MA-GG) formed by addition of free radical polymerizable groups, which can be polymerized presence of acetone to design biodegradable three-dimensional networks, were synthesized by esterification. Natural silk sericin was grafted over the maleate gellan gum surface. Maleate Gellan Gum- Silk Sericin-Chitosan (MA-GG-SS-CS) nanocomposites loaded with rifampicin (RF) and pyrazinamide (PZA) to overcome the problems associated with Tuberculosis (TB) therapy. The pH responsive behavior of gellan gum nanocomposites was reposed by silk sericin and exhibited sustained release of 79% RF and 82% PZA for 120 h at pH 4.0. The designed formulations shows higher antimycobacterial activity and rapid delivery of drugs at TB infected macrophage. Nanomaterial effectively aggregated and internalized into the bacterial cells and MH-S cells. Dual drug release inside the cells makes damage in the cell membrane. Green nanocomposites studies pave the way for important use of macromolecules in pulmonary delivery TB drugs.
Collapse
Affiliation(s)
- Sivaraj Mehnath
- University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | | | - Mukherjee Arjama
- University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | | | | | | |
Collapse
|
90
|
Chi W, Yuan W, Du J, Han T, Li H, Li Y, Tang BZ. Construction of Functional Hyperbranched Poly(phenyltriazolylcarboxylate)s by Metal-Free Phenylpropiolate-Azide Polycycloaddition. Macromol Rapid Commun 2018; 39:e1800604. [PMID: 30252976 DOI: 10.1002/marc.201800604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Indexed: 01/21/2023]
Abstract
The 1,3-dipolar cycloaddition of activated internal alkynes with azides has been developed into an efficient polymerization reaction for constructing functional linear 1,4,5-trisubstitued polytriazoles. However, it is rarely employed for the synthesis of hyperbranched polymers. In this work, metal-free polycycloadditions of tris(3-phenylpropiolate)s (1) and tetraphenylethene-containing diazides (2) are performed in dimethylformamide at 100 °C for 7 and 12 h, producing hyperbranched poly(phenyltriazolylcarboxylate)s (hb-PPTCs) with high molecular weights and satisfactory regioregularities in good yields. The hb-PPTCs have good solubility in common organic solvents and high thermal stability. They are non-emissive in solutions, but emit intensively upon aggregation, showing an aggregation-induced emission effect. Their aggregates can work as fluorescent sensors for explosive detection with high sensitivity. Furthermore, the polymers can be utilized for the fabrication of 2D fluorescent patterns with high resolution by UV irradiation through copper grid masks.
Collapse
Affiliation(s)
- Weiwen Chi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jun Du
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ting Han
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
91
|
Huang L, Yang S, Chen J, Tian J, Huang Q, Huang H, Wen Y, Deng F, Zhang X, Wei Y. A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:270-278. [PMID: 30423709 DOI: 10.1016/j.msec.2018.09.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Fluorescent silica nanoparticles (FSNPs) have attracted great interest for potential applications in biological and biomedical fields because they possess higher fluorescence quantum yield and better fluorescence stability as comparison with small organic fluorescent molecules. The encapsulation of covalent linkage with fluorescent organic dyes or fluorescent metal complexes has demonstrated to be the commonly adopted strategies for fabrication of FSNPs previously. However, it is still challengeable to obtain FSNPs based polymer composites with intensive fluorescence and good water dispersibility through a one-pot surface modification strategy. In this paper, we developed a facile method to fabricate novel FSNPs based polymer composites (PhE@MSNs-PEtOx) through introducing the aggregation-induced emission (AIE) dye (PhE-OH) and poly(2-ethyl-2-oxazoline) (PEtOx) onto mesoporous silica nanoparticles (MSNs) based on cationic ring opening polymerization (CROP). The resulting PhE@MSNs-PEtOx composites possess strong fluorescence emission, excellent hydrophilicity and biocompatibility. These features make the final FSNPs based polymer composites great potential for biomedical applications. Taken together, we have developed for the first time that FSNPs based polymer composites can be facilely prepared through the one-pot introduction of AIE dyes and hydrophilic PEtOx on MSNs. Moreover, the novel FSNPs based composites could also be utilized for other biomedical applications considered their properties.
Collapse
Affiliation(s)
- Long Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Saijiao Yang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Qiang Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China; Department of Chemistry and Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
92
|
Kong TT, Zhao Z, Li Y, Wu F, Jin T, Tang BZ. Detecting live bacteria instantly utilizing AIE strategies. J Mater Chem B 2018; 6:5986-5991. [PMID: 32254718 DOI: 10.1039/c8tb01390j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of biosensor molecules evoking fluorescent emission by rotation-restricted binding with bacteria was examined for its applicability in detecting live bacteria instantly. The fluorogens possessed multiple tetraphenylethene (TPE)-cored boronic acids to oligomerize through complexation with cis-diols on bacterial surfaces, resulting in aggregation-induced emission (AIE). The fluorogen having two boronic acid units discriminated between live and dead bacteria by showing AIE activity only with the latter. Live bacteria were instantly detected by consequent treatment with reagents of three and four di-boronates (which showed AIE activity with both live and dead bacteria). This phenomenon may lead to a practical method for live bacteria detection.
Collapse
Affiliation(s)
- Ting Ting Kong
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | |
Collapse
|
93
|
Huang L, Mu Y, Chen J, Tian J, Huang Q, Huang H, Deng F, Wen Y, Zhang X, Wei Y. One-pot ultrafast preparation of silica quantum dots and their utilization for fabrication of luminescent mesoporous silica nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:679-685. [PMID: 30274101 DOI: 10.1016/j.msec.2018.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 12/25/2022]
Abstract
Silica quantum dots (SiQDs) and their luminescent composites have displayed great potential for biomedical applications owing to their chemical inert and low cost. In this work, we report a facile, cost-effective and ultrafast strategy to prepare a stable luminescent SiQDs using N-[3-(trimethoxysilyl)propyl]ethylenediamine (EDAS) and salicylaldehyde as precursors for the first time. These luminescent SiQDs were further utilized for fabrication of luminescent mesoporous silica nanoparticles (MSNs) through direct encapsulation of SiQDs by MSNs. The novel synthetic and modified SiQDs uses commercial raw materials and the entire reaction can be completed within 30 s. The successful preparation of SiQDs and SiQDs@MSNs were characterized by various characterization equipments. The cell viability as well as cell uptake behavior of SiQDs@MSNs were also examined to evaluate their potential for biomedical applications. We demonstrated that these SiQDs@MSNs are low toxicity and of great potential for biological imaging. Based on the above results, we believe that these SiQDs@MSNs should be novel and promising candidates for biomedical applications owing to their intense fluorescence, biocompatibility and high specific surface areas.
Collapse
Affiliation(s)
- Long Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yurong Mu
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiang Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
94
|
Huang H, Cui Y, Liu M, Chen J, Wan Q, Wen Y, Deng F, Zhou N, Zhang X, Wei Y. A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. J Colloid Interface Sci 2018; 532:767-773. [PMID: 30130727 DOI: 10.1016/j.jcis.2018.07.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Fluorescent carbon nanoparticles (FCNs) have gradually become the most promising alternative candidates to other traditional fluorescent nanomaterials for biological applications on account of their excellent fluorescence property and remarkable biocompatibility. Although many methods have reported on the preparation of FCNs, to date, no studies have reported the preparation of polymers of functionalized FCNs. A high-efficiency method was developed in this work to synthesize high-quality poly(ethylene oxide) (PEG)-functionalized FCNs from cigarette ash and thiol group-containing PEG via a facile one-pot ultrasonic irradiation treatment. A series of characterization techniques demonstrated the uniform nanoscale size, good fluorescence stability, high water dispersibility and remarkable biocompatibility of the generated FCNs. Furthermore, cell imaging was easily achieved at high resolution using the synthetic FCNs as probes, which validates their potential for bioimaging applications. In summary, an efficient one-pot strategy is reported for the first time on the preparation of PEG-functionalized FCNs with the assistance of ultrasonic irradiation. This method should be of great research interest for the fabrication of other polymer-functionalized FCNs with designable properties and functions.
Collapse
Affiliation(s)
- Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yi Cui
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan. @tsinghua.edu.cn
| |
Collapse
|
95
|
Facile fabrication of organic dyed polymer nanoparticles with aggregation-induced emission using an ultrasound-assisted multicomponent reaction and their biological imaging. J Colloid Interface Sci 2018; 519:137-144. [DOI: 10.1016/j.jcis.2018.01.084] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
|
96
|
Dong J, Liu M, Jiang R, Huang H, Wan Q, Wen Y, Tian J, Dai Y, Zhang X, Wei Y. Synthesis and biological imaging of cross-linked fluorescent polymeric nanoparticles with aggregation-induced emission characteristics based on the combination of RAFT polymerization and the Biginelli reaction. J Colloid Interface Sci 2018; 528:192-199. [PMID: 29857250 DOI: 10.1016/j.jcis.2018.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Fluorescent probes have long been regarded as tools for imaging living organisms with advantages such as high sensitivity, good designability and multifunctional potential. Many fluorescent probes, especially the probes based on aggregation-induced emission (AIE) dyes, have received increasing attention since the AIE phenomenon was discovered. These AIE dye-based fluorescent probes could elegantly overcome the notorious quenching effect caused by aggregation of conventional organic dyes. However, it is still difficult to directly apply these AIE-active dyes for biomedical applications owing to their hydrophobic nature. Therefore, the development of novel and facile strategies to endow them with water dispersibility is of critical importance. In this work, we exploit an efficient and simple strategy to fabricate an AIE dye-based fluorescent copolymer through the combination of reversible addition-fragmentation chain transfer and the Biginelli reaction. Moreover, the copolymer can self-assemble to fluorescent polymeric nanoparticles (FPNs) in water solution. Hydrophilic poly(PEGMA-co-AEMA) was reacted with the AIE-active dye 4',4‴-(1,2-diphenylethene-1,2-diyl)bis([1,1'-biphenyl]-4-carbaldehyde (CHO-TPE-CHO) to form amphiphilic luminescent polymers using urea as the connection bridge. The successful synthesis of the final products (poly(PEGMA-co-AEMA-TPE) FPNs) was confirmed by various instruments. Furthermore, Transmission electron microscopy (TEM) images manifest that poly(PEGMA-co-AEMA-TPE) copolymers will self-assemble into spherical nanoparticles in aqueous environments with sizes between 100 nm and 200 nm. The cell uptake and bioimaging experiment confirm that poly(PEGMA-co-AEMA-TPE) FPNs have excellent biocompatibility and emit strong green fluorescence in a cellular environment. Thus, poly(PEGMA-co-AEMA-TPE) FPNs are excellent candidates for biomedical applications.
Collapse
Affiliation(s)
- Jiande Dong
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ruming Jiang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yanfeng Dai
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
97
|
Guo L, Li L, Liu M, Wan Q, Tian J, Huang Q, Wen Y, Liang S, Zhang X, Wei Y. Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
98
|
Zeng G, Liu M, Jiang R, Huang Q, Huang L, Wan Q, Dai Y, Wen Y, Zhang X, Wei Y. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:154-159. [DOI: 10.1016/j.msec.2017.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 01/19/2023]
|
99
|
Wang K, Li J, Ji S, Li L, Qiu Z, Pan C, Zhang J, Huo Y. Fluorescence probes based on AIE luminogen: application for sensing Hg2+ in aqueous media and cellular imaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj02245c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
S1 and S2 could be applied for sensing Hg2+ in aqueous media and cellular imaging with remarkable AIEE.
Collapse
Affiliation(s)
- Kai Wang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Jiajun Li
- Key Laboratory of Molecular Target & Clinical Pharmacology
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou 511436
- China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Lujun Li
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Zhipeng Qiu
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Chengqiang Pan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou 511436
- China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
- Guangdong Engineering Research Center for Scientific Research and Biochemical Detection reagent
| |
Collapse
|
100
|
Du M, Huo B, Li M, Shen A, Bai X, Lai Y, Liu J, Yang Y. A “Turn-On” fluorescent probe for sensitive and selective detection of fluoride ions based on aggregation-induced emission. RSC Adv 2018; 8:32497-32505. [PMID: 35547726 PMCID: PMC9086254 DOI: 10.1039/c8ra06774k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/08/2018] [Indexed: 11/23/2022] Open
Abstract
Based on the fluorophore of 2-(2′-hydroxyphenyl)benzothiazole (HBT) with aggregation-induced emission (AIE) properties, a highly selective and sensitive fluorescent probe PBT towards F− was investigated. “Turn-On” fluorescence type signaling was realized by employing fluoride-selective cleavage of the latent thiophosphinated probe in mixed aqueous media. The probe is designed in such a way that the excited state intramolecular proton transfer (ESIPT) of the HBT moiety becomes blocked. The chemodosimetric approach of F− to the probe results in the recovery of the ESIPT by removal of a free AIE-active HBT moiety through a subsequent hydrolysis process. The F− detection limit of the probe was 3.8 nM in the dynamic range of 0.5 μM to 10 μM. In addition, the proposed probe has been used to detect F− in water samples and toothpaste samples with satisfying results. A “Turn-On” fluorescent probe PBT for sensitive and selective detection of fluoride ions based on aggregation-induced emission.![]()
Collapse
Affiliation(s)
- Man Du
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Baolong Huo
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Mengwen Li
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Ao Shen
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Xue Bai
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Yaru Lai
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Jiemin Liu
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Yunxu Yang
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|