51
|
Gustorff C, Scheuer T, Schmitz T, Bührer C, Endesfelder S. GABA B Receptor-Mediated Impairment of Intermediate Progenitor Maturation During Postnatal Hippocampal Neurogenesis of Newborn Rats. Front Cell Neurosci 2021; 15:651072. [PMID: 34421540 PMCID: PMC8377254 DOI: 10.3389/fncel.2021.651072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
The neurotransmitter GABA and its receptors assume essential functions during fetal and postnatal brain development. The last trimester of a human pregnancy and early postnatal life involves a vulnerable period of brain development. In the second half of gestation, there is a developmental shift from depolarizing to hyperpolarizing in the GABAergic system, which might be disturbed by preterm birth. Alterations of the postnatal GABA shift are associated with several neurodevelopmental disorders. In this in vivo study, we investigated neurogenesis in the dentate gyrus (DG) in response to daily administration of pharmacological GABAA (DMCM) and GABAB (CGP 35348) receptor inhibitors to newborn rats. Six-day-old Wistar rats (P6) were daily injected (i.p.) to postnatal day 11 (P11) with DMCM, CGP 35348, or vehicle to determine the effects of both antagonists on postnatal neurogenesis. Due to GABAB receptor blockade by CGP 35348, immunohistochemistry revealed a decrease in the number of NeuroD1 positive intermediate progenitor cells and a reduction of proliferative Nestin-positive neuronal stem cells at the DG. The impairment of hippocampal neurogenesis at this stage of differentiation is in line with a significantly decreased RNA expression of the transcription factors Pax6, Ascl1, and NeuroD1. Interestingly, the number of NeuN-positive postmitotic neurons was not affected by GABAB receptor blockade, although strictly associated transcription factors for postmitotic neurons, Tbr1, Prox1, and NeuroD2, displayed reduced expression levels, suggesting impairment by GABAB receptor antagonization at this stage of neurogenesis. Antagonization of GABAB receptors decreased the expression of neurotrophins (BDNF, NT-3, and NGF). In contrast to the GABAB receptor blockade, the GABAA receptor antagonization revealed no significant changes in cell counts, but an increased transcriptional expression of Tbr1 and Tbr2. We conclude that GABAergic signaling via the metabotropic GABAB receptor is crucial for hippocampal neurogenesis at the time of rapid brain growth and of the postnatal GABA shift. Differentiation and proliferation of intermediate progenitor cells are dependent on GABA. These insights become more pertinent in preterm infants whose developing brains are prematurely exposed to spostnatal stress and predisposed to poor neurodevelopmental disorders, possibly as sequelae of early disruption in GABAergic signaling.
Collapse
Affiliation(s)
- Charlotte Gustorff
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Till Scheuer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
52
|
The Alteration of Chloride Homeostasis/GABAergic Signaling in Brain Disorders: Could Oxidative Stress Play a Role? Antioxidants (Basel) 2021; 10:antiox10081316. [PMID: 34439564 PMCID: PMC8389245 DOI: 10.3390/antiox10081316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
In neuronal precursors and immature neurons, the depolarizing (excitatory) effect of γ-Aminobutyric acid (GABA) signaling is associated with elevated [Cl−]i; as brain cells mature, a developmental switch occurs, leading to the decrease of [Cl−]i and to the hyperpolarizing (inhibitory) effect of GABAergic signaling. [Cl−]i is controlled by two chloride co-transporters: NKCC1, which causes Cl− to accumulate into the cells, and KCC2, which extrudes it. The ontogenetic upregulation of the latter determines the above-outlined switch; however, many other factors contribute to the correct [Cl−]i in mature neurons. The dysregulation of chloride homeostasis is involved in seizure generation and has been associated with schizophrenia, Down’s Syndrome, Autism Spectrum Disorder, and other neurodevelopmental disorders. Recently, much effort has been put into developing new drugs intended to inhibit NKCC1 activity, while no attention has been paid to the origin of [Cl−]i dysregulation. Our study examines the pathophysiology of Cl− homeostasis and focuses on the impact of oxidative stress (OS) and inflammation on the activity of Cl− co-transporters, highlighting the relevance of OS in numerous brain abnormalities and diseases. This hypothesis supports the importance of primary prevention during pregnancy. It also integrates the therapeutic framework addressed to restore normal GABAergic signaling by counteracting the alteration in chloride homeostasis in central nervous system (CNS) cells, aiming at limiting the use of drugs that potentially pose a health risk.
Collapse
|
53
|
Janoš P, Magistrato A. All-Atom Simulations Uncover the Molecular Terms of the NKCC1 Transport Mechanism. J Chem Inf Model 2021; 61:3649-3658. [PMID: 34213892 DOI: 10.1021/acs.jcim.1c00551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secondary-active Na-K-Cl cotransporter 1 (NKCC1), member of the cation-chloride cotransporter (CCC) family, ensures the electroneutral movement of Cl-, Na+, and K+ ions across cellular membranes. NKCC1 regulates Cl- homeostasis and cell volume, handling a pivotal role in transepithelial water transport and neuronal excitability. Aberrant NKCC1 transport is hence implicated in a variety of human diseases (hypertension, renal disorders, neuropathies, and cancer). Building on the newly resolved NKCC1 cryo-EM structure, all-atom enhanced sampling simulations unprecedentedly unlock the mechanism of NKCC1-mediated ion transport, assessing the order and the molecular basis of its interdependent ion translocation. Our outcomes strikingly advance the understanding of the physiological mechanism of CCCs and disclose a key role of CCC-conserved asparagine residues, whose side-chain promiscuity ensures the transport of both negatively and positively charged ions along the same translocation route. This study sets a conceptual basis to devise NKCC-selective inhibitors to treat diseases linked to Cl- dishomeostasis.
Collapse
Affiliation(s)
- Pavel Janoš
- National Research Council (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
54
|
Sprengers JJ, van Andel DM, Zuithoff NPA, Keijzer-Veen MG, Schulp AJA, Scheepers FE, Lilien MR, Oranje B, Bruining H. Bumetanide for Core Symptoms of Autism Spectrum Disorder (BAMBI): A Single Center, Double-Blinded, Participant-Randomized, Placebo-Controlled, Phase-2 Superiority Trial. J Am Acad Child Adolesc Psychiatry 2021; 60:865-876. [PMID: 32730977 DOI: 10.1016/j.jaac.2020.07.888] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Recent trials have indicated positive effects of bumetanide in autism spectrum disorder (ASD). We tested efficacy of bumetanide on core symptom domains using a single center, parallel-group, participant-randomized, double-blind, placebo-controlled phase-2 superiority trial in a tertiary hospital in the Netherlands. METHOD Unmedicated children aged 7 to 15 years with ASD and IQ ≥55 were block-randomized 1:1 to oral-solution bumetanide versus placebo, titrated to a maximum of 1.0 mg twice daily for 91 days (D91), followed by a 28-day wash-out period. The primary outcome was difference in Social Responsiveness Scale-2 (SRS-2) total score at D91, analyzed by modified intention-to-treat with linear mixed models. RESULTS A total of 92 participants (mean age 10.5 [SD 2.4] years) enrolled between June 2016 and December 2018. In all, 47 children were allocated to bumetanide and 45 to placebo. Two participants dropped out per treatment arm. After 91 days, bumetanide was not superior to placebo on the primary outcome, the SRS-2 (mean difference -3.16, 95% CI = -9.68 to 3.37, p = .338). A superior effect was found on one of the secondary outcomes, the Repetitive Behavior Scale-Revised (mean difference -4.16, 95% CI = -8.06 to -0.25, p = .0375), but not on the Sensory Profile (mean difference 5.64, 95% CI = -11.30 to 22.57, p = .508) or the Aberrant Behavior Checklist Irritability Subscale (mean difference -0.65, 95% CI = -2.83 to 1.52, p = .552). No significant wash-out effect was observed. Significant adverse effects were predominantly diuretic effects (orthostatic hypotension (17 [36%] versus 5 [11%], p = .007); hypokalemia (24 [51%] versus 0 [0%], p < .0001), the occurrence of which did not statistically influence treatment outcome. CONCLUSION The trial outcome was negative in terms of no superior effect on the primary outcome. The secondary outcomes suggest efficacy on repetitive behavior symptoms for a subset of patients. CLINICAL TRIAL REGISTRATION INFORMATION Bumetanide in Autism Medication and Biomarker Study (BAMBI); https://www.clinicaltrialsregister.eu/; 2014-001560-35.
Collapse
Affiliation(s)
- Jan J Sprengers
- UMC Utrecht Brain Centre, University Medical Centre Utrecht, the Netherlands
| | - Dorinde M van Andel
- UMC Utrecht Brain Centre, University Medical Centre Utrecht, the Netherlands
| | - Nicolaas P A Zuithoff
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Mandy G Keijzer-Veen
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, the Netherlands
| | - Annelien J A Schulp
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, the Netherlands
| | | | - Marc R Lilien
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, the Netherlands
| | - Bob Oranje
- UMC Utrecht Brain Centre, University Medical Centre Utrecht, the Netherlands
| | - Hilgo Bruining
- UMC Utrecht Brain Centre, University Medical Centre Utrecht, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, N=You centre, Amsterdam Neuroscience, Amsterdam Reproduction and Development, the Netherlands.
| |
Collapse
|
55
|
Borgogno M, Savardi A, Manigrasso J, Turci A, Portioli C, Ottonello G, Bertozzi SM, Armirotti A, Contestabile A, Cancedda L, De Vivo M. Design, Synthesis, In Vitro and In Vivo Characterization of Selective NKCC1 Inhibitors for the Treatment of Core Symptoms in Down Syndrome. J Med Chem 2021; 64:10203-10229. [PMID: 34137257 PMCID: PMC8311653 DOI: 10.1021/acs.jmedchem.1c00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular chloride concentration [Cl-]i is defective in several neurological disorders. In neurons, [Cl-]i is mainly regulated by the action of the Na+-K+-Cl- importer NKCC1 and the K+-Cl- exporter KCC2. Recently, we have reported the discovery of ARN23746 as the lead candidate of a novel class of selective inhibitors of NKCC1. Importantly, ARN23746 is able to rescue core symptoms of Down syndrome (DS) and autism in mouse models. Here, we describe the discovery and extensive characterization of this chemical class of selective NKCC1 inhibitors, with focus on ARN23746 and other promising derivatives. In particular, we present compound 40 (ARN24092) as a backup/follow-up lead with in vivo efficacy in a mouse model of DS. These results further strengthen the potential of this new class of compounds for the treatment of core symptoms of brain disorders characterized by the defective NKCC1/KCC2 expression ratio.
Collapse
Affiliation(s)
- Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.,Dulbecco Telethon Institute, 38123 Rome, Italy
| | - Jacopo Manigrasso
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Alessandra Turci
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.,Università degli Studi di Genova, via Balbi, 5, 16126 Genoa, Italy
| | - Corinne Portioli
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.,Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Giuliana Ottonello
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Andrea Contestabile
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy.,Dulbecco Telethon Institute, 38123 Rome, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| |
Collapse
|
56
|
Atypical electrophysiological and behavioral responses to diazepam in a leading mouse model of Down syndrome. Sci Rep 2021; 11:9521. [PMID: 33947925 PMCID: PMC8096846 DOI: 10.1038/s41598-021-89011-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
Mounting evidence implicates dysfunctional GABAAR-mediated neurotransmission as one of the underlying causes of learning and memory deficits observed in the Ts65Dn mouse model of Down syndrome (DS). The specific origin and nature of such dysfunction is still under investigation, which is an issue with practical consequences to preclinical and clinical research, as well as to the care of individuals with DS and anxiety disorder or those experiencing seizures in emergency room settings. Here, we investigated the effects of GABAAR positive allosteric modulation (PAM) by diazepam on brain activity, synaptic plasticity, and behavior in Ts65Dn mice. We found Ts65Dn mice to be less sensitive to diazepam, as assessed by electroencephalography, long-term potentiation, and elevated plus-maze. Still, diazepam pre-treatment displayed typical effectiveness in reducing susceptibility and severity to picrotoxin-induced seizures in Ts65Dn mice. These findings fill an important gap in the understanding of GABAergic function in a key model of DS.
Collapse
|
57
|
Heron SE, Regan BM, Harris RV, Gardner AE, Coleman MJ, Bennett MF, Grinton BE, Helbig KL, Sperling MR, Haut S, Geller EB, Widdess-Walsh P, Pelekanos JT, Bahlo M, Petrovski S, Heinzen EL, Hildebrand MS, Corbett MA, Scheffer IE, Gécz J, Berkovic SF. Association of SLC32A1 Missense Variants With Genetic Epilepsy With Febrile Seizures Plus. Neurology 2021; 96:e2251-e2260. [PMID: 34038384 DOI: 10.1212/wnl.0000000000011855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/05/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. METHODS We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated. Targeted resequencing was performed on 278 patients with febrile seizures or GEFS+ phenotypes. Variants were validated and familial segregation examined by Sanger sequencing. RESULTS Eight previously unreported missense variants were identified in SLC32A1, coding for the vesicular inhibitory amino acid cotransporter VGAT. Two variants cosegregated with the phenotype in 2 large GEFS+ families containing 8 and 10 affected individuals, respectively. Six further variants were identified in smaller families with GEFS+ or idiopathic generalized epilepsy (IGE). CONCLUSION Missense variants in SLC32A1 cause GEFS+ and IGE. These variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition. Examination of further epilepsy cohorts will determine the full genotype-phenotype spectrum associated with SLC32A1 variants.
Collapse
Affiliation(s)
- Sarah E Heron
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Brigid M Regan
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Rebekah V Harris
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Alison E Gardner
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J Coleman
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mark F Bennett
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Bronwyn E Grinton
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Katherine L Helbig
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Michael R Sperling
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Sheryl Haut
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Eric B Geller
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Peter Widdess-Walsh
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - James T Pelekanos
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melanie Bahlo
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Slavé Petrovski
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Erin L Heinzen
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Michael S Hildebrand
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mark A Corbett
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Ingrid E Scheffer
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jozef Gécz
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Samuel F Berkovic
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
58
|
Peerboom C, Wierenga CJ. The postnatal GABA shift: A developmental perspective. Neurosci Biobehav Rev 2021; 124:179-192. [PMID: 33549742 DOI: 10.1016/j.neubiorev.2021.01.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
GABA is the major inhibitory neurotransmitter that counterbalances excitation in the mature brain. The inhibitory action of GABA relies on the inflow of chloride ions (Cl-), which hyperpolarizes the neuron. In early development, GABA signaling induces outward Cl- currents and is depolarizing. The postnatal shift from depolarizing to hyperpolarizing GABA is a pivotal event in brain development and its timing affects brain function throughout life. Altered timing of the postnatal GABA shift is associated with several neurodevelopmental disorders. Here, we argue that the postnatal shift from depolarizing to hyperpolarizing GABA represents the final shift in a sequence of GABA shifts, regulating proliferation, migration, differentiation, and finally plasticity of developing neurons. Each developmental GABA shift ensures that the instructive role of GABA matches the circumstances of the developing network. Sensory input may be a crucial factor in determining proper timing of the postnatal GABA shift. A developmental perspective is necessary to interpret the full consequences of a mismatch between connectivity, activity and GABA signaling during brain development.
Collapse
Affiliation(s)
- Carlijn Peerboom
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Biology Department, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
59
|
Pires J, Nelissen R, Mansvelder HD, Meredith RM. Spontaneous synchronous network activity in the neonatal development of mPFC in mice. Dev Neurobiol 2021; 81:207-225. [PMID: 33453138 PMCID: PMC8048581 DOI: 10.1002/dneu.22811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Spontaneous Synchronous Network Activity (SSA) is a hallmark of neurodevelopment found in numerous central nervous system structures, including neocortex. SSA occurs during restricted developmental time‐windows, commonly referred to as critical periods in sensory neocortex. Although part of the neocortex, the critical period for SSA in the medial prefrontal cortex (mPFC) and the underlying mechanisms for generation and propagation are unknown. Using Ca2+ imaging and whole‐cell patch‐clamp in an acute mPFC slice mouse model, the development of spontaneous activity and SSA was investigated at cellular and network levels during the two first postnatal weeks. The data revealed that developing mPFC neuronal networks are spontaneously active and exhibit SSA in the first two postnatal weeks, with peak synchronous activity at postnatal days (P)8–9. Networks remain active but are desynchronized by the end of this 2‐week period. SSA was driven by excitatory ionotropic glutamatergic transmission with a small contribution of excitatory GABAergic transmission at early time points. The neurohormone oxytocin desynchronized SSA in the first postnatal week only without affecting concurrent spontaneous activity. By the end of the second postnatal week, inhibiting GABAA receptors restored SSA. These findings point to the emergence of GABAA receptor‐mediated inhibition as a major factor in the termination of SSA in mouse mPFC.
Collapse
Affiliation(s)
- Johny Pires
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Rosalie Nelissen
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
60
|
Josiah SS, Meor Azlan NF, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Int J Mol Sci 2021; 22:1232. [PMID: 33513812 PMCID: PMC7865768 DOI: 10.3390/ijms22031232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/05/2023] Open
Abstract
Stroke is one of the major culprits responsible for morbidity and mortality worldwide, and the currently available pharmacological strategies to combat this global disease are scanty. Cation-chloride cotransporters (CCCs) are expressed in several tissues (including neurons) and extensively contribute to the maintenance of numerous physiological functions including chloride homeostasis. Previous studies have implicated two CCCs, the Na+-K+-Cl- and K+-Cl- cotransporters (NKCCs and KCCs) in stroke episodes along with their upstream regulators, the with-no-lysine kinase (WNKs) family and STE20/SPS1-related proline/alanine rich kinase (SPAK) or oxidative stress response kinase (OSR1) via a signaling pathway. As the WNK-SPAK/OSR1 pathway reciprocally regulates NKCC and KCC, a growing body of evidence implicates over-activation and altered expression of NKCC1 in stroke pathology whilst stimulation of KCC3 during and even after a stroke event is neuroprotective. Both inhibition of NKCC1 and activation of KCC3 exert neuroprotection through reduction in intracellular chloride levels and thus could be a novel therapeutic strategy. Hence, this review summarizes the current understanding of functional regulations of the CCCs implicated in stroke with particular focus on NKCC1, KCC3, and WNK-SPAK/OSR1 signaling and discusses the current and potential pharmacological treatments for stroke.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Hatherly Laboratories, Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PS, UK; (S.S.J.); (N.F.M.A.)
| |
Collapse
|
61
|
Andrews K, Josiah SS, Zhang J. The Therapeutic Potential of Neuronal K-Cl Co-Transporter KCC2 in Huntington's Disease and Its Comorbidities. Int J Mol Sci 2020; 21:9142. [PMID: 33266310 PMCID: PMC7730145 DOI: 10.3390/ijms21239142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 02/05/2023] Open
Abstract
Intracellular chloride levels in the brain are regulated primarily through the opposing effects of two cation-chloride co-transporters (CCCs), namely K+-Cl- co-transporter-2 (KCC2) and Na+-K+-Cl- co-transporter-1 (NKCC1). These CCCs are differentially expressed throughout the course of development, thereby determining the excitatory-to-inhibitory γ-aminobutyric acid (GABA) switch. GABAergic excitation (depolarisation) is important in controlling the healthy development of the nervous system; as the brain matures, GABAergic inhibition (hyperpolarisation) prevails. This developmental switch in excitability is important, as uncontrolled regulation of neuronal excitability can have implications for health. Huntington's disease (HD) is an example of a genetic disorder whereby the expression levels of KCC2 are abnormal due to mutant protein interactions. Although HD is primarily considered a motor disease, many other clinical manifestations exist; these often present in advance of any movement abnormalities. Cognitive change, in addition to sleep disorders, is prevalent in the HD population; the effect of uncontrolled KCC2 function on cognition and sleep has also been explored. Several mechanisms by which KCC2 expression is reduced have been proposed recently, thereby suggesting extensive investigation of KCC2 as a possible therapeutic target for the development of pharmacological compounds that can effectively treat HD co-morbidities. Hence, this review summarizes the role of KCC2 in the healthy and HD brain, and highlights recent advances that attest to KCC2 as a strong research and therapeutic target candidate.
Collapse
Affiliation(s)
| | | | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK; (K.A.); (S.S.J.)
| |
Collapse
|
62
|
Zarepour L, Gharaylou Z, Hadjighassem M, Shafaghi L, Majedi H, Behzad E, Hosseindoost S, Ramezani F, Nasirinezhad F. Preliminary study of analgesic effect of bumetanide on neuropathic pain in patients with spinal cord injury. J Clin Neurosci 2020; 81:477-484. [PMID: 33222966 DOI: 10.1016/j.jocn.2020.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/07/2020] [Accepted: 10/03/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND/OBJECTIVE The current study evaluated the analgesic effects of bumetanide as an adjunctive treatment in managing neuropathic pain following spinal cord injury. The peripheral expression level of Na-K-Cl-cotransporter-1 (NKCC1) and K-Cl-cotransporter-2 (KCC2) genes in polymorphonuclear lymphocytes (PMLs) assessed as a possible biomarker indicating central underlying mechanisms. METHODS This open-label, single-arm, pilot trial of bumetanide (2 mg/day) is an add-on treatment conducted in 14 SCI patients for 19 weeks. The whole duration consisted of three phases: pre-treatment (1 month), titration (3 weeks), and active treatment (4 months). Ultimately, nine patients completed the study. The primary outcome variables were the endpoint pain score measured by the numeric rating scale (NRS), and the short-form McGill Pain Questionnaire. Secondary endpoints included the Short-Form Health Survey that measures the quality of life. Blood samples were collected and used for determining the expression of NKCC1 and KCC2 genes in transcription and translation levels. RESULTS Bumetanide treatment significantly reduced average pain intensity according to the NRS and the short form of the McGill Pain Questionnaire scores. The baseline expression of KCC2 protein was low between groups and increased significantly following treatment (P < 0.05). Through the current study, pain improvement accompanied by the more significant mean change from the baseline for the overall quality of life. CONCLUSION These data might be a piece of preliminary evidence for the analgesic effect of bumetanide on neuropathic pain and could support the potential role of the upregulation of KCC2 protein and involvement of GABAergic disinhibition in producing neuropathic pain.
Collapse
Affiliation(s)
- Leila Zarepour
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Gharaylou
- Multiple Sclerosis Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Lida Shafaghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Majedi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Behzad
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saereh Hosseindoost
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
63
|
Raveendran VA, Pressey JC, Woodin MA. A Novel Small Molecule Targets NKCC1 To Restore Synaptic Inhibition. Trends Pharmacol Sci 2020; 41:897-899. [PMID: 33097285 DOI: 10.1016/j.tips.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 11/25/2022]
Abstract
Finely tuned excitation-inhibition balance is essential for proper brain function, and loss of balance resulting from reduced synaptic inhibition is associated with neurological disorders. Savardi and colleagues have discovered a novel inhibitor of a cation-chloride transporter that is required for synaptic inhibition, and which restores behaviors associated with Down syndrome (DS) and autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
64
|
Environmental regulation of the chloride transporter KCC2: switching inflammation off to switch the GABA on? Transl Psychiatry 2020; 10:349. [PMID: 33060559 PMCID: PMC7562743 DOI: 10.1038/s41398-020-01027-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Chloride homeostasis, the main determinant factor for the dynamic tuning of GABAergic inhibition during development, has emerged as a key element altered in a wide variety of brain disorders. Accordingly, developmental disorders such as schizophrenia, Autism Spectrum Disorder, Down syndrome, epilepsy, and tuberous sclerosis complex (TSC) have been associated with alterations in the expression of genes codifying for either of the two cotransporters involved in the excitatory-to-inhibitory GABA switch, KCC2 and NKCC1. These alterations can result from environmental insults, including prenatal stress and maternal separation which share, as common molecular denominator, the elevation of pro-inflammatory cytokines. In this review we report and systemize recent research articles indicating that different perinatal environmental perturbations affect the expression of chloride transporters, delaying the developmental switch of GABA signaling, and that inflammatory cytokines, in particular interleukin 1β, may represent a key causal factor for this phenomenon. Based on literature data, we provide therefore a unifying conceptual framework, linking environmental hits with the excitatory-to-inhibitory GABA switch in the context of brain developmental disorders.
Collapse
|
65
|
Meor Azlan NF, Zhang J. Role of the Cation-Chloride-Cotransporters in Cardiovascular Disease. Cells 2020; 9:2293. [PMID: 33066544 PMCID: PMC7602155 DOI: 10.3390/cells9102293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
The SLC12 family of cation-chloride-cotransporters (CCCs) is comprised of potassium chloride cotransporters (KCCs), which mediate Cl- extrusion and sodium-potassium chloride cotransporters (N[K]CCs), which mediate Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. The functions of CCCs influence a variety of physiological processes, many of which overlap with the pathophysiology of cardiovascular disease. Although not all of the cotransporters have been linked to Mendelian genetic disorders, recent studies have provided new insights into their functional role in vascular and renal cells in addition to their contribution to cardiovascular diseases. Particularly, an imbalance in potassium levels promotes the pathogenesis of atherosclerosis and disturbances in sodium homeostasis are one of the causes of hypertension. Recent findings suggest hypothalamic signaling as a key signaling pathway in the pathophysiology of hypertension. In this review, we summarize and discuss the role of CCCs in cardiovascular disease with particular emphasis on knowledge gained in recent years on NKCCs and KCCs.
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK;
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen 361004, Fujian, China
| |
Collapse
|
66
|
Successful Use of Electroconvulsive Therapy for Catatonia After Hypoxic-Ischemic Brain Injury. J Acad Consult Liaison Psychiatry 2020; 62:123-130. [PMID: 33023757 DOI: 10.1016/j.psym.2020.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022]
|
67
|
Phillips RS, Rosner I, Gittis AH, Rubin JE. The effects of chloride dynamics on substantia nigra pars reticulata responses to pallidal and striatal inputs. eLife 2020; 9:e55592. [PMID: 32894224 PMCID: PMC7476764 DOI: 10.7554/elife.55592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/14/2020] [Indexed: 11/20/2022] Open
Abstract
As a rodent basal ganglia (BG) output nucleus, the substantia nigra pars reticulata (SNr) is well positioned to impact behavior. SNr neurons receive GABAergic inputs from the striatum (direct pathway) and globus pallidus (GPe, indirect pathway). Dominant theories of action selection rely on these pathways' inhibitory actions. Yet, experimental results on SNr responses to these inputs are limited and include excitatory effects. Our study combines experimental and computational work to characterize, explain, and make predictions about these pathways. We observe diverse SNr responses to stimulation of SNr-projecting striatal and GPe neurons, including biphasic and excitatory effects, which our modeling shows can be explained by intracellular chloride processing. Our work predicts that ongoing GPe activity could tune the SNr operating mode, including its responses in decision-making scenarios, and GPe output may modulate synchrony and low-frequency oscillations of SNr neurons, which we confirm using optogenetic stimulation of GPe terminals within the SNr.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| | - Ian Rosner
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Aryn H Gittis
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Biological Sciences, Carnegie Mellon UniversityPittsburghUnited States
| | - Jonathan E Rubin
- Department of Mathematics, University of PittsburghPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
| |
Collapse
|
68
|
Savardi A, Borgogno M, Narducci R, La Sala G, Ortega JA, Summa M, Armirotti A, Bertorelli R, Contestabile A, De Vivo M, Cancedda L. Discovery of a Small Molecule Drug Candidate for Selective NKCC1 Inhibition in Brain Disorders. Chem 2020; 6:2073-2096. [PMID: 32818158 PMCID: PMC7427514 DOI: 10.1016/j.chempr.2020.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/14/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Aberrant expression ratio of Cl− transporters, NKCC1 and KCC2, is implicated in several brain conditions. NKCC1 inhibition by the FDA-approved diuretic drug, bumetanide, rescues core symptoms in rodent models and/or clinical trials with patients. However, bumetanide has a strong diuretic effect due to inhibition of the kidney Cl− transporter NKCC2, creating critical drug compliance issues and health concerns. Here, we report the discovery of a new chemical class of selective NKCC1 inhibitors and the lead drug candidate ARN23746. ARN23746 restores the physiological intracellular Cl− in murine Down syndrome neuronal cultures, has excellent solubility and metabolic stability, and displays no issues with off-target activity in vitro. ARN23746 recovers core symptoms in mouse models of Down syndrome and autism, with no diuretic effect, nor overt toxicity upon chronic treatment in adulthood. ARN23746 is ready for advanced preclinical/manufacturing studies toward the first sustainable therapeutics for the neurological conditions characterized by impaired Cl− homeostasis. NKCC1 is a promising target for the treatment of brain disorders The newly discovered ARN23746 presents selective NKCC1 versus NKCC2 and KCC2 inhibition ARN23746 restores altered neuronal chloride homeostasis in vitro ARN23746 rescues core behaviors in DS and ASD mice with no diuretic effect or toxicity
In the last few decades, drug development for brain disorders has struggled to deliver effective small molecules as novel breakthrough classes of drugs. Discovery of effective chemical compounds for brain disorders has been greatly hampered by the fact that the few currently clinically used drugs were identified by serendipity, and these drugs’ mechanism of action is often poorly understood. Here, by leveraging drug repurposing as a means to quickly and safely evaluate the new pharmacological target NKCC1 and its implications in brain disorders in animal models and patients, we report an integrated strategy for the rational design and discovery of a novel, selective, and safe NKCC1 inhibitor, active in vivo. This compound has the potential to become a clinical drug candidate to treat several neurological conditions in patients. Eventually, this integrated drug-discovery strategy has the prospective to revive the appeal of drug-discovery programs in the challenging field of neuroscience.
Collapse
Affiliation(s)
- Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genoa, Italy
| | - Marco Borgogno
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Roberto Narducci
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Giuseppina La Sala
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Jose Antonio Ortega
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Maria Summa
- In Vivo Pharmacology Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Rosalia Bertorelli
- In Vivo Pharmacology Facility, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Andrea Contestabile
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
- Corresponding author
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genoa, Italy
- Dulbecco Telethon Institute, Via Orus 2, 35129 Padova, Italy
- Corresponding author
| |
Collapse
|
69
|
Granados-Rojas L, Jerónimo-Cruz K, Juárez-Zepeda TE, Tapia-Rodríguez M, Tovar AR, Rodríguez-Jurado R, Carmona-Aparicio L, Cárdenas-Rodríguez N, Coballase-Urrutia E, Ruíz-García M, Durán P. Ketogenic Diet Provided During Three Months Increases KCC2 Expression but Not NKCC1 in the Rat Dentate Gyrus. Front Neurosci 2020; 14:673. [PMID: 32733191 PMCID: PMC7358437 DOI: 10.3389/fnins.2020.00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Ketogenic diet, a high fat and low carbohydrate diet, has been used as a non-pharmacological treatment in refractory epilepsy since 1920. In recent years, it has demonstrated to be effective in the treatment of numerous neurological and non-neurological diseases. Some neurological and neuropsychiatric disorders are known to be caused by gamma-aminobutyric acid (GABA)-mediated neurotransmission dysfunction. The strength and polarity of GABA-mediated neurotransmission are determined by the intracellular chloride concentration, which in turn is regulated by cation-chloride cotransporters NKCC1 and KCC2. Currently, it is unknown if the effect of ketogenic diet is due to the modulation of these cotransporters. Thus, we analyzed the effect of a ketogenic diet on the cation-chloride cotransporters expression in the dentate gyrus. We estimated the total number of NKCC1 immunoreactive (NKCC1-IR) neuronal and glial cells by stereology and determined KCC2 labeling intensity by densitometry in the molecular and granule layers as well as in the hilus of dentate gyrus of rats fed with normal or ketogenic diet for 3 months. The results indicated that ketogenic diet provided during 3 months increased KCC2 expression, but not NKCC1 in the dentate gyrus of the rat. The significant increase of KCC2 expression could explain, at least in part, the beneficial effect of ketogenic diet in the diseases where the GABAergic system is altered by increasing its inhibitory efficiency.
Collapse
Affiliation(s)
| | - Karina Jerónimo-Cruz
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Miguel Tapia-Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | - Matilde Ruíz-García
- Servicio de Neurología, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Pilar Durán
- Laboratorio de Biología Animal Experimental, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
70
|
Barbour AJ, Hauser KF, McQuiston AR, Knapp PE. HIV and opiates dysregulate K +- Cl - cotransporter 2 (KCC2) to cause GABAergic dysfunction in primary human neurons and Tat-transgenic mice. Neurobiol Dis 2020; 141:104878. [PMID: 32344154 PMCID: PMC7685173 DOI: 10.1016/j.nbd.2020.104878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately half of people infected with HIV (PWH) exhibit HIV-associated neuropathology (neuroHIV), even when receiving combined antiretroviral therapy. Opiate use is widespread in PWH and exacerbates neuroHIV. While neurons themselves are not infected, they incur sublethal damage and GABAergic disruption is selectively vulnerable to viral and inflammatory factors released by infected/affected glia. Here, we demonstrate diminished K+-Cl- cotransporter 2 (KCC2) levels in primary human neurons after exposure to HIV-1 or HIV-1 proteins ± morphine. Resulting disruption of GABAAR-mediated hyperpolarization/inhibition was shown using genetically-encoded voltage (Archon1) and calcium (GCaMP6f) indicators. The HIV proteins Tat (acting through NMDA receptors) and R5-gp120 (acting via CCR5) but not X4-tropic gp120 (acting via CXCR4), and morphine (acting through μ-opioid receptors) all induced KCC2 loss. We demonstrate that modifying KCC2 levels or function, or antagonizing NMDAR, CCR5 or MOR rescues KCC2 and GABAAR-mediated hyperpolarization/inhibition in HIV, Tat, or gp120 ± morphine-exposed neurons. Using an inducible, Tat-transgenic mouse neuroHIV model, we found that chronic exposure to Tat also reduces KCC2. Our results identify KCC2 as a novel therapeutic target for ameliorating the pathobiology of neuroHIV, including PWH exposed to opiates.
Collapse
Affiliation(s)
- Aaron J Barbour
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - A Rory McQuiston
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Pamela E Knapp
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
71
|
St. John Smith E, Park TJ. Neurobiology: Crowdsourcing CO2 to Conserve Brain Energy. Curr Biol 2020; 30:R649-R651. [DOI: 10.1016/j.cub.2020.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
72
|
Perspectives of Pitocin administration on behavioral outcomes in the pediatric population: recent insights and future implications. Heliyon 2020; 6:e04047. [PMID: 32509991 PMCID: PMC7264063 DOI: 10.1016/j.heliyon.2020.e04047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/18/2020] [Accepted: 05/19/2020] [Indexed: 01/23/2023] Open
Abstract
Oxytocin plays an important role in the regulation of parturition as this peptide hormone promotes uterine smooth muscle contractility in gravid women undergoing labor. Here, we review the impact of Pitocin administration on behavioral outcomes in the pediatric population. Pitocin is a synthetic preparation of oxytocin widely used in the obstetric practice for the management of labor and postpartum hemorrhage. We begin by tracing the neuroanatomy of oxytocin-containing cells from an evolutionary perspective and then summarize key findings on behavioral and neural activity reported from offspring dosed with Pitocin during vaginal delivery. Finally, we discuss future directions that are experimentally tractable for understanding the developmental consequences of Pitocin administration on a small but growing subset of children worldwide. Given that fetal past experiences can shape the future behavior of the adult, further work on oxytocin signaling pathways will provide valuable references and insights for early-brain development and state-dependent regulation of behavioral outcome.
Collapse
|
73
|
Rychlik M, Mlyniec K. Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia. Curr Neuropharmacol 2020; 18:2-13. [PMID: 31272355 PMCID: PMC7327932 DOI: 10.2174/1570159x17666190704153807] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 01/19/2023] Open
Abstract
With more people reaching an advanced age in modern society, there is a growing need for strategies to slow down age-related neuropathology and loss of cognitive functions, which are a hallmark of Alzheimer's disease. Neuroprotective drugs and candidate drug compounds target one or more processes involved in the neurodegenerative cascade, such as excitotoxicity, oxidative stress, misfolded protein aggregation and/or ion dyshomeostasis. A growing body of research shows that a G-protein coupled zinc (Zn2+) receptor (GPR39) can modulate the abovementioned processes. Zn2+ itself has a diverse activity profile at the synapse, and by binding to numerous receptors, it plays an important role in neurotransmission. However, Zn2+ is also necessary for the formation of toxic oligomeric forms of amyloid beta, which underlie the pathology of Alzheimer’s disease. Furthermore, the binding of Zn2+ by amyloid beta causes a disruption of zincergic signaling, and recent studies point to GPR39 and its intracellular targets being affected by amyloid pathology. In this review, we present neurobiological findings related to Zn2+ and GPR39, focusing on its signaling pathways, neural plasticity, interactions with other neurotransmission systems, as well as on the effects of pathophysiological changes observed in Alzheimer's disease on GPR39 function. Direct targeting of the GPR39 might be a promising strategy for the pharmacotherapy of zincergic dyshomeostasis observed in Alzheimer’s disease. The information presented in this article will hopefully fuel further research into the role of GPR39 in neurodegeneration and help in identifying novel therapeutic targets for dementia.
Collapse
Affiliation(s)
- Michal Rychlik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
74
|
van Andel DM, Sprengers JJ, Oranje B, Scheepers FE, Jansen FE, Bruining H. Effects of bumetanide on neurodevelopmental impairments in patients with tuberous sclerosis complex: an open-label pilot study. Mol Autism 2020; 11:30. [PMID: 32381101 PMCID: PMC7204231 DOI: 10.1186/s13229-020-00335-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant disease that affects multiple organs including the brain. TSC is strongly associated with broad neurodevelopmental disorders, including autism spectrum disorder symptomatology. Preclinical TSC studies have indicated altered neuronal chloride homeostasis affecting the polarity of γ-aminobutyric acid (GABA) ergic transmission as a potential treatment target. Bumetanide, a selective NKCC1 chloride importer antagonist, may attenuate depolarizing GABA action, and in that way reduce disease burden. In this open-label pilot study, we tested the effect of bumetanide on a variety of neurophysiological, cognitive, and behavioral measures in children with TSC. METHODS Participants were treated with bumetanide (2dd 0.5-1.0 mg) for 13 weeks in an open-label trial. The Aberrant Behavior Checklist-Irritability (ABC-I) subscale was chosen as the primary endpoint. Secondary endpoints included other behavioral questionnaires in addition to event-related potentials (ERP) and neuropsychological tests if tolerated. Additionally, the treatment effect on seizure frequency and quality of life was assessed. Endpoint data were collected at baseline, after 91 days of treatment and after a 28-day wash-out period. RESULTS Fifteen patients (8-21-years old) with TSC were included of which 13 patients completed the study. Treatment was well-tolerated with only expected adverse events due to the diuretic effects of bumetanide. Irritable behavior (ABC-I) showed significant improvement after treatment in 11 out of 13 patients (t(12) = 4.41, p = .001, d = .773). A favorable effect was also found for social behavior (Social Responsiveness Scale) (t(11) = 4.01, p = .002, d = .549) and hyperactive behavior (ABC-hyperactivity subscale) (t(12) = 3.65, p = .003, d = .686). Moreover, patients rated their own health-related quality of life higher after treatment. At baseline, TSC patients showed several atypical ERPs versus typically developing peers of which prepulse inhibition was significantly decreased in the TSC group. Neuropsychological measurements showed no change and bumetanide had no effect on seizure frequency. LIMITATIONS The sample size and open-label design of this pilot study warrant caution when interpreting outcome measures. CONCLUSIONS Bumetanide treatment is a potential treatment to alleviate the behavioral burden and quality of life associated with TSC. More elaborate trials are needed to determine the application and effect size of bumetanide for the TSC population. Trial registration EU Clinical Trial Register, EudraCT 2016-002408-13 (www.clinicaltrialsregister.eu/ctr-search/trial/2016-002408-13/NL). Registered 25 July 2016.
Collapse
Affiliation(s)
- Dorinde M van Andel
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Jan J Sprengers
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bob Oranje
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Floortje E Scheepers
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
75
|
Mi TW, Sun XW, Wang ZM, Wang YY, He XC, Liu C, Zhang SF, Du HZ, Liu CM, Teng ZQ. Loss of MicroRNA-137 Impairs the Homeostasis of Potassium in Neurons via KCC2. Exp Neurobiol 2020; 29:138-149. [PMID: 32408404 PMCID: PMC7237267 DOI: 10.5607/en19072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropsychiatric disorders are the leading cause of mental and intellectual disabilities worldwide. Current therapies against neuropsychiatric disorders are very limited, and very little is known about the onset and development of these diseases, and their most effective treatments. MIR137 has been previously identified as a risk gene for the etiology of schizophrenia, bipolar disorder, and autism spectrum disorder. Here we generated a forebrain-specific MIR137 knockout mouse model, and provided evidence that loss of miR-137 resulted in impaired homeostasis of potassium in mouse hippocampal neurons. KCC2, a potassium-chloride co-transporter, was a direct downstream target of miR-137. The KCC2 specific antagonist VU0240551 could balance the current of potassium in miR-137 knockout neurons, and knockdown of KCC2 could ameliorate anxiety-like behavior in MIR137 cKO mice. These data suggest that KCC2 antagonists or knockdown might be beneficial to neuropsychiatric disorders due to the deficiency of miR-137.
Collapse
Affiliation(s)
- Ting-Wei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Meng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang-Feng Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
76
|
Brunet A, Stuart-Lopez G, Burg T, Scekic-Zahirovic J, Rouaux C. Cortical Circuit Dysfunction as a Potential Driver of Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:363. [PMID: 32410944 PMCID: PMC7201269 DOI: 10.3389/fnins.2020.00363] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects selected cortical and spinal neuronal populations, leading to progressive paralysis and death. A growing body of evidences suggests that the disease may originate in the cerebral cortex and propagate in a corticofugal manner. In particular, transcranial magnetic stimulation studies revealed that ALS patients present with early cortical hyperexcitability arising from a combination of increased excitability and decreased inhibition. Here, we discuss the possibility that initial cortical circuit dysfunction might act as the main driver of ALS onset and progression, and review recent functional, imaging and transcriptomic studies conducted on ALS patients, along with electrophysiological, pathological and transcriptomic studies on animal and cellular models of the disease, in order to evaluate the potential cellular and molecular origins of cortical hyperexcitability in ALS.
Collapse
Affiliation(s)
| | | | | | | | - Caroline Rouaux
- INSERM UMR_S 1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
77
|
Probst J, Kölker S, Okun JG, Kumar A, Gursky E, Posset R, Hoffmann GF, Peravali R, Zielonka M. Chronic hyperammonemia causes a hypoglutamatergic and hyperGABAergic metabolic state associated with neurobehavioral abnormalities in zebrafish larvae. Exp Neurol 2020; 331:113330. [PMID: 32339612 DOI: 10.1016/j.expneurol.2020.113330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/29/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic hyperammonemia is a common condition affecting individuals with inherited urea cycle disorders resulting in progressive cognitive impairment and behavioral abnormalities. Altered neurotransmission has been proposed as major source of neuronal dysfunction during chronic hyperammonemia, but the molecular pathomechanism has remained incompletely understood. Here we show that chronic exposure to ammonium acetate induces locomotor dysfunction and abnormal feeding behavior in zebrafish larvae, indicative for an impairment of higher brain functions. Biochemically, chronically elevated ammonium concentrations cause enhanced activity of glutamate decarboxylase isoforms GAD1 and GAD2 with increased formation of GABA and concomitant depletion of glutamate, ultimately leading to a dysfunctional hypoglutamatergic and hyperGABAergic metabolic state. Moreover, elevated GABA concentrations are accompanied by increased expression of GABAA receptor subunits alpha-1, gamma-2 and delta, supporting the notion of an increased GABA tone in chronic hyperammonemia. Propionate oxidation as major anaplerotic reaction sufficiently compensates for the transamination-dependent withdrawal of 2-oxoglutarate, thereby preventing bioenergetic dysfunction under chronic hyperammonemic conditions. Thus, our study extends the hypothesis of alterations in the glutamatergic and GABAergic system being an important pathophysiological factor causing neurobehavioral impairment in chronic hyperammonemia. Given that zebrafish larvae have already been successfully used for high-throughput identification of novel compounds to treat inherited neurological diseases, the reported zebrafish model should be considered an important tool for systematic drug screening targeting altered glutamatergic and GABAergic metabolism under chronic hyperammonemic conditions in the future.
Collapse
Affiliation(s)
- Joris Probst
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Amrish Kumar
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Eduard Gursky
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Roland Posset
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ravindra Peravali
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Matthias Zielonka
- Center for Child and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany.
| |
Collapse
|
78
|
Kosaka Y, Yafuso T, Shimizu-Okabe C, Kim J, Kobayashi S, Okura N, Ando H, Okabe A, Takayama C. Development and persistence of neuropathic pain through microglial activation and KCC2 decreasing after mouse tibial nerve injury. Brain Res 2020; 1733:146718. [PMID: 32045595 DOI: 10.1016/j.brainres.2020.146718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Gamma-amino butyric acid (GABA) is an inhibitory neurotransmitter in the mature brain, but is excitatory during development and after motor nerve injury. This difference in GABAergic action depends on the intracellular chloride ion concentration ([Cl-]i), primarily regulated by potassium chloride co-transporter 2 (KCC2). To reveal precise processes of the neuropathic pain through changes in GABAergic action, we prepared tibial nerve ligation and severance models using male mice, and examined temporal relationships amongst changes in (1) the mechanical withdrawal threshold in the sural nerve area, (2) localization of the molecules involved in GABAergic transmission and its upstream signaling in the dorsal horn, and (3) histology of the tibial nerve. In the ligation model, tibial nerve degeneration disappeared by day 56, but mechanical allodynia, reduced KCC2 localization, and increased microglia density remained until day 90. Microglia density was higher in the tibial zone than the sural zone before day 21, but this result was inverted after day 28. In contrast, in the severance model, all above changes were detected until day 28, but were simultaneously and significantly recovered by day 90. These results suggested that in male mice, allodynia may be caused by reduced GABAergic synaptic inhibition, resulting from elevated [Cl-]i after the reduction of KCC2 by activated microglia. Furthermore, our results suggested that factors from degenerating nerve terminals may diffuse into the sural zone, whereby they induced the development of allodynia in the sural nerve area, while other factors in the sural zone may mediate persistent allodynia through the same pathway.
Collapse
Affiliation(s)
- Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
79
|
Maguire JL. Get With the (Developmental) Program. Epilepsy Curr 2020; 20:102-104. [PMID: 32313506 PMCID: PMC7160877 DOI: 10.1177/1535759720901606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Impaired Regulation of KCC2 Phosphorylation Leads to Neuronal Network Dysfunction and Neurodevelopmental Pathology Pisella LI, Gaiarsa JL, Diabira D, et al. Sci Signal. 2019:12(603):eaay0300. doi:10.1126/scisignal.aay0300. KCC2 is a vital neuronal K+/Cl− cotransporter that is implicated in the etiology of numerous neurological diseases. In normal cells, KCC2 undergoes developmental dephosphorylation at Thr906 and Thr1007. We engineered mice with heterozygous phosphomimetic mutations T906E and T1007E (KCC2E/+) to prevent the normal developmental dephosphorylation of these sites. Immature (postnatal day 15) but not juvenile (postnatal day 30) KCC2E/+ mice exhibited altered GABAergic inhibition, an increased glutamate/GABA synaptic ratio, and greater susceptibility to seizure. KCC2E/+ mice also had abnormal ultrasonic vocalizations at postnatal days 10 to 12 and impaired social behavior at postnatal day 60. Postnatal bumetanide treatment restored network activity by postnatal day 15 but failed to restore social behavior by postnatal day 60. Our data indicate that posttranslational KCC2 regulation controls the GABAergic developmental sequence in vivo, indicating that deregulation of KCC2 could be a risk factor for the emergence of neurological pathology. Developmental Regulation of KCC2 Phosphorylation Has Long-Term Impacts on Cognitive Function Moore YE, Conway LC, Wobst HJ, et al. Front Mol Neurosci. 2019;12:173. doi:10.3389/fnmol.2019.00173. The GABAA receptor-mediated currents shift from excitatory to inhibitory during postnatal brain development in rodents. A postnatal increase in KCC2 protein expression is considered to be the sole mechanism controlling the developmental onset of hyperpolarizing synaptic transmission, but here we identify a key role for KCC2 phosphorylation in the developmental EGABA shift. Preventing phosphorylation of KCC2 in vivo at either residue serine 940 (S940), or at residues threonine 906 and threonine 1007 (T906/T1007), delayed or accelerated the postnatal onset of KCC2 function, respectively. Several models of neurodevelopmental disorders including Rett syndrome, Fragile × and Down syndrome exhibit delayed postnatal onset of hyperpolarizing GABAergic inhibition, but whether the timing of the onset of hyperpolarizing synaptic inhibition during development plays a role in establishing adulthood cognitive function is unknown; we have used the distinct KCC2-S940A and KCC2-T906A/T1007A knock-in mouse models to address this issue. Altering KCC2 function resulted in long-term abnormalities in social behavior and memory retention. Tight regulation of KCC2 phosphorylation is therefore required for the typical timing of the developmental onset of hyperpolarizing synaptic inhibition, and it plays a fundamental role in the regulation of adulthood cognitive function.
Collapse
|
80
|
Liu R, Wang J, Liang S, Zhang G, Yang X. Role of NKCC1 and KCC2 in Epilepsy: From Expression to Function. Front Neurol 2020; 10:1407. [PMID: 32010056 PMCID: PMC6978738 DOI: 10.3389/fneur.2019.01407] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/23/2019] [Indexed: 01/21/2023] Open
Abstract
As a main inhibitory neurotransmitter in the central nervous system, γ-aminobutyric acid (GABA) activates chloride-permeable GABAa receptors (GABAa Rs) and induces chloride ion (Cl−) flow, which relies on the intracellular chloride concentration ([Cl−]i) of the postsynaptic neuron. The Na-K-2Cl cotransporter isoform 1 (NKCC1) and the K-Cl cotransporter isoform 2 (KCC2) are two main cation-chloride cotransporters (CCCs) that have been implicated in human epilepsy. NKCC1 and KCC2 reset [Cl−]i by accumulating and extruding Cl−, respectively. Previous studies have shown that the profile of NKCC1 and KCC2 in neonatal neurons may reappear in mature neurons under some pathophysiological conditions, such as epilepsy. Although increasing studies focusing on the expression of NKCC1 and KCC2 have suggested that impaired chloride plasticity may be closely related to epilepsy, additional neuroelectrophysiological research aimed at studying the functions of NKCC1 and KCC2 are needed to understand the exact mechanism by which they induce epileptogenesis. In this review, we aim to briefly summarize the current researches surrounding the expression and function of NKCC1 and KCC2 in epileptogenesis and its implications on the treatment of epilepsy. We will also explore the potential for NKCC1 and KCC2 to be therapeutic targets for the development of novel antiepileptic drugs.
Collapse
Affiliation(s)
- Ru Liu
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute of Brain Disorders, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Junling Wang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute of Brain Disorders, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Shuli Liang
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Yang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute of Brain Disorders, Beijing, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
81
|
Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther 2020; 205:107422. [DOI: 10.1016/j.pharmthera.2019.107422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
82
|
Pisella LI, Gaiarsa JL, Diabira D, Zhang J, Khalilov I, Duan J, Kahle KT, Medina I. Impaired regulation of KCC2 phosphorylation leads to neuronal network dysfunction and neurodevelopmental pathology. Sci Signal 2019; 12:eaay0300. [PMID: 31615899 PMCID: PMC7192243 DOI: 10.1126/scisignal.aay0300] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
KCC2 is a vital neuronal K+/Cl- cotransporter that is implicated in the etiology of numerous neurological diseases. In normal cells, KCC2 undergoes developmental dephosphorylation at Thr906 and Thr1007 We engineered mice with heterozygous phosphomimetic mutations T906E and T1007E (KCC2E/+ ) to prevent the normal developmental dephosphorylation of these sites. Immature (postnatal day 15) but not juvenile (postnatal day 30) KCC2E/+ mice exhibited altered GABAergic inhibition, an increased glutamate/GABA synaptic ratio, and greater susceptibility to seizure. KCC2E/+ mice also had abnormal ultrasonic vocalizations at postnatal days 10 to 12 and impaired social behavior at postnatal day 60. Postnatal bumetanide treatment restored network activity by postnatal day 15 but failed to restore social behavior by postnatal day 60. Our data indicate that posttranslational KCC2 regulation controls the GABAergic developmental sequence in vivo, indicating that deregulation of KCC2 could be a risk factor for the emergence of neurological pathology.
Collapse
Affiliation(s)
- Lucie I Pisella
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Jean-Luc Gaiarsa
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Diabé Diabira
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Ilgam Khalilov
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| | - JingJing Duan
- Department of Neurobiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Igor Medina
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France.
| |
Collapse
|
83
|
Tiihonen J, Koskuvi M, Storvik M, Hyötyläinen I, Gao Y, Puttonen KA, Giniatullina R, Poguzhelskaya E, Ojansuu I, Vaurio O, Cannon TD, Lönnqvist J, Therman S, Suvisaari J, Kaprio J, Cheng L, Hill AF, Lähteenvuo M, Tohka J, Giniatullin R, Lehtonen Š, Koistinaho J. Sex-specific transcriptional and proteomic signatures in schizophrenia. Nat Commun 2019; 10:3933. [PMID: 31477693 PMCID: PMC6718673 DOI: 10.1038/s41467-019-11797-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
It has remained unclear why schizophrenia typically manifests after adolescence and which neurobiological mechanisms are underlying the cascade leading to the actual onset of the illness. Here we show that the use of induced pluripotent stem cell-derived neurons of monozygotic twins from pairs discordant for schizophrenia enhances disease-specific signal by minimizing genetic heterogeneity. In proteomic and pathway analyses, clinical illness is associated especially with altered glycosaminoglycan, GABAergic synapse, sialylation, and purine metabolism pathways. Although only 12% of all 19,462 genes are expressed differentially between healthy males and females, up to 61% of the illness-related genes are sex specific. These results on sex-specific genes are replicated in another dataset. This implies that the pathophysiology differs between males and females, and may explain why symptoms appear after adolescence when the expression of many sex-specific genes change, and suggests the need for sex-specific treatments.
Collapse
Affiliation(s)
- Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institutet, Byggnad R5, SE-171 76, Stockholm, Sweden. .,Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240, Kuopio, Finland.
| | - Marja Koskuvi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, PO Box 63, FI-00271, Helsinki, Finland
| | - Markus Storvik
- Department of Pharmacology, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Ida Hyötyläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Yanyan Gao
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Katja A Puttonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Ekaterina Poguzhelskaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Ilkka Ojansuu
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240, Kuopio, Finland
| | - Olli Vaurio
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240, Kuopio, Finland
| | - Tyrone D Cannon
- Department of Psychology and Psychiatry, Yale University, 1 Prospect Street, New Haven, Connecticut, 06511, USA
| | - Jouko Lönnqvist
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland.,Department of Psychiatry, University of Helsinki, PO Box 22, FI-00014, Helsinki, Finland
| | - Sebastian Therman
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health Unit, Department of Public Health Solutions, National Institute for Health and Welfare, PO Box 30, FI-00271, Helsinki, Finland
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, PO Box 20, FI-00014, Helsinki, Finland.,Institute for Molecular Medicine FIMM, University of Helsinki, PO Box 20, FI-00014, Helsinki, Finland
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Science Drive, Bundoora, VIC, 3083, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Science Drive, Bundoora, VIC, 3083, Australia
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Niuvankuja 65, FI-70240, Kuopio, Finland.,Institute for Molecular Medicine FIMM, University of Helsinki, PO Box 20, FI-00014, Helsinki, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland. .,Neuroscience Center, University of Helsinki, PO Box 63, FI-00271, Helsinki, Finland.
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland. .,Neuroscience Center, University of Helsinki, PO Box 63, FI-00271, Helsinki, Finland.
| |
Collapse
|
84
|
Song S, Luo L, Sun B, Sun D. Roles of glial ion transporters in brain diseases. Glia 2019; 68:472-494. [PMID: 31418931 DOI: 10.1002/glia.23699] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na+ /H+ exchangers (NHE), Na+ /Ca2+ exchangers (NCX), Na+ -K+ -Cl- cotransporters (NKCC), and Na+ -HCO3 - cotransporters (NBC). In acute neurological diseases, such as ischemic stroke and traumatic brain injury (TBI), these ion transporters are rapidly activated and play significant roles in regulation of the intra- and extracellular pH, Na+ , K+ , and Ca2+ homeostasis, synaptic plasticity, and myelin formation. However, overstimulation of these ion transporters can contribute to glial apoptosis, demyelination, inflammation, and excitotoxicity. In chronic brain diseases, such as glioma, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), glial ion transporters are involved in the glioma Warburg effect, glial activation, neuroinflammation, and neuronal damages. These findings suggest that glial ion transporters are involved in tissue structural and functional restoration, or brain injury and neurological disease development and progression. A better understanding of these ion transporters in acute and chronic neurological diseases will provide insights for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
85
|
Li Q, Wang L, Ma Y, Yue W, Zhang D, Li J. P-Rex1 Overexpression Results in Aberrant Neuronal Polarity and Psychosis-Related Behaviors. Neurosci Bull 2019; 35:1011-1023. [PMID: 31286410 DOI: 10.1007/s12264-019-00408-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Neuronal polarity is involved in multiple developmental stages, including cortical neuron migration, multipolar-to-bipolar transition, axon initiation, apical/basal dendrite differentiation, and spine formation. All of these processes are associated with the cytoskeleton and are regulated by precise timing and by controlling gene expression. The P-Rex1 (phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1) gene for example, is known to be important for cytoskeletal reorganization, cell motility, and migration. Deficiency of P-Rex1 protein leads to abnormal neuronal migration and synaptic plasticity, as well as autism-related behaviors. Nonetheless, the effects of P-Rex1 overexpression on neuronal development and higher brain functions remain unclear. In the present study, we explored the effect of P-Rex1 overexpression on cerebral development and psychosis-related behaviors in mice. In utero electroporation at embryonic day 14.5 was used to assess the influence of P-Rex1 overexpression on cell polarity and migration. Primary neuron culture was used to explore the effects of P-Rex1 overexpression on neuritogenesis and spine morphology. In addition, P-Rex1 overexpression in the medial prefrontal cortex (mPFC) of mice was used to assess psychosis-related behaviors. We found that P-Rex1 overexpression led to aberrant polarity and inhibited the multipolar-to-bipolar transition, leading to abnormal neuronal migration. In addition, P-Rex1 overexpression affected the early development of neurons, manifested as abnormal neurite initiation with cytoskeleton change, reduced the axon length and dendritic complexity, and caused excessive lamellipodia in primary neuronal culture. Moreover, P-Rex1 overexpression decreased the density of spines with increased height, width, and head area in vitro and in vivo. Behavioral tests showed that P-Rex1 overexpression in the mouse mPFC caused anxiety-like behaviors and a sensorimotor gating deficit. The appropriate P-Rex1 level plays a critical role in the developing cerebral cortex and excessive P-Rex1 might be related to psychosis-related behaviors.
Collapse
Affiliation(s)
- Qiongwei Li
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
| | - Lifang Wang
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
| | - Yuanlin Ma
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China
| | - Weihua Yue
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China.,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Dai Zhang
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Jun Li
- Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Health Center Key Laboratory of Mental Health (Peking University), Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, 100191, China.
| |
Collapse
|
86
|
Gharaylou Z, Shafaghi L, Oghabian MA, Yoonessi A, Tafakhori A, Shahsavand Ananloo E, Hadjighassem M. Longitudinal Effects of Bumetanide on Neuro-Cognitive Functioning in Drug-Resistant Epilepsy. Front Neurol 2019; 10:483. [PMID: 31133976 PMCID: PMC6517515 DOI: 10.3389/fneur.2019.00483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
Antiepileptic drugs (AEDs) have repeatedly shown inconsistent and almost contradictory effects on the neurocognitive system, from substantial impairments in processing speed to the noticeable improvement in working memory and executive functioning. Previous studies have provided a novel insight into the cognitive improvement by bumetanide as a potential antiepileptic drug. Through the current investigation, we evaluated the longitudinal effects of bumetanide, an NKCC1 co-transporter antagonist, on the brain microstructural organization as a probable underlying component for cognitive performance. Microstructure assessment was completed using SPM for the whole brain assay and Freesurfer/TRACULA for the automatic probabilistic tractography analysis. Primary cognitive operations including selective attention and processing speed, working memory capacity and spatial memory were evaluated in 12 patients with a confirmed diagnosis of refractory epilepsy. Participants treated with bumetanide (2 mg/ day) in two divided doses as an adjuvant therapy to their regular AEDs for 6 months, which followed by the re-assessment of their cognitive functions and microstructural organizations. Seizure frequency reduced in eight patients which accompanied by white matter reconstruction; fractional anisotropy (FA) increased in the cingulum-cingulate gyrus (CCG), anterior thalamic radiation (ATR), and temporal part of the superior longitudinal fasciculus (SLFt) in correlation with the clinical response. The voxel-based analysis in responder patients revealed increased FA in the left hippocampus, right cerebellum, and right medial temporal lobe, while mean diffusivity (MD) values reduced in the right occipital lobe and cerebellum. Microstructural changes in SLFt and ATR accompanied by a reduction in the error rate in the spatial memory test. These primary results have provided preliminary evidence for the effect of bumetanide on cognitive functioning through microstructural changes in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Zeinab Gharaylou
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Lida Shafaghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Yoonessi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Imam Khomeini Hospital, Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
87
|
Brandenburg JE, Fogarty MJ, Sieck GC. A Critical Evaluation of Current Concepts in Cerebral Palsy. Physiology (Bethesda) 2019; 34:216-229. [PMID: 30968751 PMCID: PMC7938766 DOI: 10.1152/physiol.00054.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 11/22/2022] Open
Abstract
Spastic cerebral palsy (CP), despite the name, is not consistently identifiable by specific brain lesions. CP animal models focus on risk factors for development of CP, yet few reproduce the diagnostic symptoms. Animal models of CP must advance beyond risk factors to etiologies, including both the brain and spinal cord.
Collapse
Affiliation(s)
- Joline E Brandenburg
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine , Rochester, Minnesota
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine , Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
88
|
Masuda F, Nakajima S, Miyazaki T, Yoshida K, Tsugawa S, Wada M, Ogyu K, Croarkin PE, Blumberger DM, Daskalakis ZJ, Mimura M, Noda Y. Motor cortex excitability and inhibitory imbalance in autism spectrum disorder assessed with transcranial magnetic stimulation: a systematic review. Transl Psychiatry 2019; 9:110. [PMID: 30846682 PMCID: PMC6405856 DOI: 10.1038/s41398-019-0444-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/02/2019] [Accepted: 02/16/2019] [Indexed: 01/21/2023] Open
Abstract
Cortical excitation/inhibition (E/I) imbalances contribute to various clinical symptoms observed in autism spectrum disorder (ASD). However, the detailed pathophysiologic underpinning of E/I imbalance remains uncertain. Transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) are a non-invasive tool for examining cortical inhibition in ASD. Here, we conducted a systematic review on TMS neurophysiology in motor cortex (M1) such as MEPs and short-interval intracortical inhibition (SICI) between individuals with ASD and controls. Out of 538 initial records, we identified six articles. Five studies measured MEP, where four studies measured SICI. There were no differences in MEP amplitudes between the two groups, whereas SICI was likely to be reduced in individuals with ASD compared with controls. Notably, SICI largely reflects GABA(A) receptor-mediated function. Conversely, other magnetic resonance spectroscopy and postmortem methodologies assess GABA levels. The present review demonstrated that there may be neurophysiological deficits in GABA receptor-mediated function in ASD. In conclusion, reduced GABAergic function in the neural circuits could underlie the E/I imbalance in ASD, which may be related to the pathophysiology of clinical symptoms of ASD. Therefore, a novel treatment that targets the neural circuits related to GABA(A) receptor-mediated function in regions involved in the pathophysiology of ASD may be promising.
Collapse
Affiliation(s)
- Fumi Masuda
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0000 9747 6806grid.410827.8Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan
| | - Shinichiro Nakajima
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0001 2157 2938grid.17063.33Multimodal Imaging Group, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Takahiro Miyazaki
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Sakiko Tsugawa
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Paul E. Croarkin
- 0000 0000 8793 5925grid.155956.bPharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Daniel M. Blumberger
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Zafiris J. Daskalakis
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Masaru Mimura
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
89
|
Hsu YT, Chang YG, Chern Y. Insights into GABA Aergic system alteration in Huntington's disease. Open Biol 2018; 8:rsob.180165. [PMID: 30518638 PMCID: PMC6303784 DOI: 10.1098/rsob.180165] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disease that is characterized by a triad of motor, psychiatric and cognitive impairments. There is still no effective therapy to delay or halt the disease progress. The striatum and cortex are two particularly affected brain regions that exhibit dense reciprocal excitatory glutamate and inhibitory gamma-amino butyric acid (GABA) connections. Imbalance between excitatory and inhibitory signalling is known to greatly affect motor and cognitive processes. Emerging evidence supports the hypothesis that disrupted GABAergic circuits underlie HD pathogenesis. In the present review, we focused on the multiple defects recently found in the GABAergic inhibitory system, including altered GABA level and synthesis, abnormal subunit composition and distribution of GABAA receptors and aberrant GABAA receptor-mediated signalling. In particular, the important role of cation–chloride cotransporters (i.e. NKCC1 and KCC2) is discussed. Recent studies also suggest that neuroinflammation contributes significantly to the abnormal GABAergic inhibition in HD. Thus, GABAA receptors and cation–chloride cotransporters are potential therapeutic targets for HD. Given the limited availability of therapeutic treatments for HD, a better understanding of GABAergic dysfunction in HD could provide novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yi-Ting Hsu
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Ya-Gin Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yijuang Chern
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
90
|
Wang B, Li HH, Yue XJ, Jia FY, DU L. [A review on the role of γ-aminobutyric acid signaling pathway in autism spectrum disorder]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:974-978. [PMID: 30477634 PMCID: PMC7389027 DOI: 10.7499/j.issn.1008-8830.2018.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
The etiology and pathogenesis of autism spectrum disorder (ASD) are not yet clear. Studies have shown that there are many neurotransmitter abnormalities in children with ASD, mainly involving in glutamate, γ-aminobutyric acid (GABA), dopamine, 5-HT and oxytocin. The imbalance of excitatory glutamatergic neurotransmitters and inhibitory GABAergic neurotransmitters is closely related to the pathogenesis of ASD. Both animal model studies and clinical studies on ASD suggest that GABA signaling pathway may play an important role in the pathogenesis of ASD. This article reviews the research on the association between GABA signaling pathway and the pathogenesis of ASD to further explore the pathogenesis of ASD and provide theoretical basis for the treatment of ASD.
Collapse
Affiliation(s)
- Bing Wang
- Department of Developmental and Behaviorial Pediatrics, First Hospital of Jilin University, Changchun 130021, China.
| | | | | | | | | |
Collapse
|