51
|
Krady JK, Lin HW, Liberto CM, Basu A, Kremlev SG, Levison SW. Ciliary neurotrophic factor and interleukin-6 differentially activate microglia. J Neurosci Res 2008; 86:1538-47. [DOI: 10.1002/jnr.21620] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
52
|
Bjugstad KB, Redmond DE, Lampe KJ, Kern DS, Sladek JR, Mahoney MJ. Biocompatibility of PEG-Based Hydrogels in Primate Brain. Cell Transplant 2008. [DOI: 10.3727/096368908784423292] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Degradable polymers have been used successfully in a wide variety of peripheral applications from tissue regeneration to drug delivery. These polymers induce little inflammatory response and appear to be well accepted by the host environment. Their use in the brain, for neural tissue reconstruction or drug delivery, also could be advantageous in treating neurodegenerative disorders. Because the brain has a unique immune response, a polymer that is compatible in the body may not be so in the brain. In the present study, polyethylene glycol (PEG)-based hydrogels were implanted into the striatum and cerebral cortex of nonhuman primates. Four months after implantation, brains were processed to evaluate the extent of astrogliosis and scaring, the presence of microglia/macrophages, and the extent of T-cell infiltration. Hydrogels with 20% w/v PEG implanted into the brain stimulated a slight increase in astrocytic and microglial/macrophage presence, as indicated by a small increase in glial fibrillary acidic protein (GFAP) and CD68 staining intensity. This increase was not substantially different from that found in the sham-implanted hemispheres of the brain. Staining for CD3+ T cells indicated no presence of peripheral T-cell infiltration. No gliotic scarring was seen in any implanted hemisphere. The combination of low density of GFAP-positive cells and CD68-positive cells, the absence of T cells, and the lack of gliotic scarring suggest that this level of immune response is not indicative of immunorejection and that the PEG-based hydrogel has potential to be used in the primate brain for local drug delivery or neural tissue regeneration.
Collapse
Affiliation(s)
- K. B. Bjugstad
- Department Pediatrics, University Colorado Denver and Health Sciences Center, Aurora, CO, USA
| | - D. E. Redmond
- Departments Psychiatry and Neurosurgery, Yale University, New Haven, CT, USA
| | - K. J. Lampe
- Department Chemical and Biological Engineering, University Colorado, Boulder, CO, USA
| | - D. S. Kern
- Department Pediatrics, University Colorado Denver and Health Sciences Center, Aurora, CO, USA
| | - J. R. Sladek
- Department Pediatrics, University Colorado Denver and Health Sciences Center, Aurora, CO, USA
| | - M. J. Mahoney
- Department Chemical and Biological Engineering, University Colorado, Boulder, CO, USA
| |
Collapse
|
53
|
Ekerbicer N, Tarakci F, Barut T, Inan S. Immunolocalization of VEGF, VEGFR-1 and VEGFR-2 in lung tissues after acute hemorrhage in rats. Acta Histochem 2008; 110:285-93. [PMID: 18321563 DOI: 10.1016/j.acthis.2007.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/28/2007] [Accepted: 10/09/2007] [Indexed: 11/28/2022]
Abstract
In treatment of hypovolemia it is important to reestablish normal tissue hemodynamics after fluid resuscitation. Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFR) have been identified as important in many physiological and pathological processes. In this study, we aimed to investigate the histo-physiological effects of VEGF, VEGFR-1 (flt-1) and VEGFR-2 (KDR/flk-1) in resuscitation with different plasma substitutes on lung tissues after acute hemorrhage in rats. Male Sprague-Dawley rats (n=25) were used in this study. The left femoral vein and artery were cannulated for the administration of volume expanders and for direct measurement of mean arterial blood pressure (MAP) (Power-Lab) and heart rate (HR). Fifteen rats were bled (5 ml/10 min) and infused (5 ml/5 min) with one of three randomly selected fluids: (a) dextran-70 (Macrodex); (b) gelatin (Gelofusine); or (c) physiological saline (PS, 0.9% isotonic saline) solutions. Five rats were bled and none were infused (hypovolemia group) and five rats were untreated as the control group. At the end of the experiment, rats were sacrificed and lung tissues were removed for routine processing and paraffin wax embedding. Sections of tissue were stained with hematoxylin and eosin (H&E) and selected blocks were then prepared for indirect immunohistochemical labeling for anti-VEGF, anti-VEGFR-1 and anti-VEGFR-2 primary antibodies. It was observed that both MAP and HR decreased parallel to blood withdrawn in this time interval. The MAP and HR were restored in the following periods. In the control rats, positive immunoreactivity of VEGF and its receptors (VEGFR-1 and VEGFR-2) were detected in respiratory epithelial cells, respiratory and vascular smooth muscle cells, alveolar cells and endothelial cells. While strong immunoreactivities of VEGF and VEGFR-1 were observed in the hypovolemia group, only moderate immunoreactivity of VEGFR-2 was seen in this group. Moderately strong immunolabeling of VEGF and VEGFR-1 were observed in the dextran-70, gelatin and PS resuscitated groups, whereas only weak immunolabeling of VEGFR-2 was observed in these groups. In summary, the vascular protecting effects of these factors were observed with fluid resuscitation, contributing to the pathophysiological changes seen in hypovolemia.
Collapse
Affiliation(s)
- Nuran Ekerbicer
- Department of Physiology, Faculty of Medicine, Celal Bayar University, Dekanlik Binasi, Uncubozkoy Mevkii, 45030 Manisa, Turkey.
| | | | | | | |
Collapse
|
54
|
He J, Crews FT. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 2007; 210:349-58. [PMID: 18190912 DOI: 10.1016/j.expneurol.2007.11.017] [Citation(s) in RCA: 405] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/02/2007] [Accepted: 11/13/2007] [Indexed: 01/12/2023]
Abstract
Cytokines and microglia have been implicated in anxiety, depression, neurodegeneration as well as the regulation of alcohol drinking and other consumatory behaviors, all of which are associated with alcoholism. Studies using animal models of alcoholism suggest that microglia and proinflammatory cytokines contribute to alcoholic pathologies [Crews, F.T., Bechara, R., Brown, L.A., Guidot, D.M., Mandrekar, P., Oak, S., Qin, L., Szabo, G., Wheeler, M., Zou, J., (2006) Cytokines and alcohol. Alcohol., Clin. Exp. Res. 30:720-730]. In the current study, human postmortem brains from moderate drinking controls and alcoholics obtained from the New South Wales Tissue Resource Center were used to study the cytokine, monocyte chemoattractant protein 1 (MCP-1,CCL2) and microglia markers in various brain regions. Since MCP-1 is a key proinflammatory cytokine induced by chronic alcohol treatment of mice, and known to regulate drinking behavior in mice, MCP-1 protein levels from human brain homogenate were measured using ELISA, and indicated increased MCP-1 concentration in ventral tegmental area (VTA), substantia nigra (SN), hippocampus and amygdala of alcoholic brains as compared with controls. Immunohistochemistry was further performed to visualize human microglia using ionized calcium binding adaptor protein-1 (Iba-1), and Glucose transporter-5 (GluT5). Alcoholics were found to have brain region-specific increases in microglial markers. In cingulate cortex, both Iba-1 and GluT5 were increased in alcoholic brains relative to controls. Alternatively, no detectable change was found in amygdala nuclei. In VTA and midbrain, only GluT5, but not Iba-1 was increased in alcoholic brains. These data suggest that the enhanced expression of MCP-1 and microglia activities in alcoholic brains could contribute to ethanol-induced pathogenesis.
Collapse
Affiliation(s)
- Jun He
- Bowles Center for Alcohol Studies, Department of Pharmacology and Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | | |
Collapse
|
55
|
Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol 2007; 184:53-68. [PMID: 17188755 PMCID: PMC1868538 DOI: 10.1016/j.jneuroim.2006.11.014] [Citation(s) in RCA: 917] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 12/17/2022]
Abstract
Recent works in the area of stroke and brain ischemia has demonstrated the significance of the inflammatory response accompanying necrotic brain injury. Acutely, this response appears to contribute to ischemic pathology, and anti-inflammatory strategies have become popular. This chapter will discuss the current knowledge of the contribution of systemic and local inflammation in experimental stroke. It will review the role of specific cell types including leukocytes, endothelium, glia, microglia, the extracellular matrix and neurons. Intracellular inflammatory signaling pathways such as nuclear factor kappa beta and mitogen-activated protein kinases, and mediators produced by inflammatory cells such as cytokines, chemokines, reactive oxygen species and arachidonic acid metabolites will be reviewed as well as the potential for therapy in stroke and hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Xian Nan Tang
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
56
|
Abstract
This chapter will discuss the current knowledge of the contribution of systemic and local inflammation in acute and sub-chronic stages of experimental stroke in both the adult and neonate. It will review the role of specific cell types and interactions among blood cells, endothelium, glia, microglia, the extracellular matrix and neurons - cumulatively called "neurovascular unit" - in stroke induction and evolution. Intracellular inflammatory signaling pathways such as nuclear factor kappa beta and mitogen-activated protein kinases, and mediators produced by inflammatory cells such as cytokines, chemokines, reactive oxygen species and arachidonic acid metabolites, as well as the modifying role of age on these mechanisms, will be reviewed as well as the potential for therapy in stroke and hypoxic-ischemic injury.
Collapse
|
57
|
Lin CH, Cheng FC, Lu YZ, Chu LF, Wang CH, Hsueh CM. Protection of ischemic brain cells is dependent on astrocyte-derived growth factors and their receptors. Exp Neurol 2006; 201:225-33. [PMID: 16765947 DOI: 10.1016/j.expneurol.2006.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 04/03/2006] [Accepted: 04/05/2006] [Indexed: 01/14/2023]
Abstract
An in vitro ischemia model (oxygen, glucose, and serum deprivation) is used to investigate the possible cellular and molecular mechanisms responsible for cerebral ischemia. We have previously demonstrated that supernatants derived from ischemic microglia can protect ischemic brain cells by releasing GDNF and TGF-beta1. In the present study, we investigate whether products of ischemic astrocytes can also protect ischemic microglia, astrocytes, and neurons in a similar manner. Supernatants from ischemic astrocytes were collected after various periods of ischemia and incubated with microglia, astrocytes, or neurons individually, under in vitro ischemic conditions. The components responsible for the protective effects of astrocyte-derived supernatants were then identified by Western blot, ELISA, trypan blue dye exclusion, and immunoblocking assays. Results showed that under conditions of in vitro ischemia the number of surviving microglia, astrocytes, and neurons was significantly increased by the incorporation of the astrocyte-derived supernatants. Astrocyte supernatant-mediated protection of ischemic microglia was dependent on TGF-beta1 and NT-3, ischemic astrocytes were protected by GDNF, and ischemic neurons were protected by NT-3. In addition, protein expression of TGF-beta1 and NT-3 receptors in microglia, GDNF receptors in astrocytes, and NT-3 receptors in neurons was increased by in vitro ischemia. These results suggest that astrocyte-derived protection of ischemic brain cells is dependent not only on factors released from the ischemic astrocytes, but also on the type of receptor present on the responding cells. Therapeutic potential of TGF-beta1, GDNF, and NT-3 in the control of cerebral ischemia is further suggested.
Collapse
Affiliation(s)
- Chi-Hsin Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
58
|
Lai AY, Todd KG. Microglia in cerebral ischemia: molecular actions and interactions. Can J Physiol Pharmacol 2006; 84:49-59. [PMID: 16845890 DOI: 10.1139/y05-143] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise role of microglia in stroke and cerebral ischemia has been the subject of debate for a number of years. Microglia are capable of synthesizing numerous soluble and membrane-bound biomolecules, some known to be neuroprotective, some neurotoxic, whereas others have less definitive bioactivities. The molecular mechanisms through which microglia activate these molecules have thus become an important area of ischemia research. Here we provide a survey review that summarizes the key actions of microglial factors in cerebral ischemia including complement proteins, chemokines, pro-inflammatory cytokines, neurotrophic factors, hormones, and proteinases, as well several important messenger molecules that play a part in how these factors respond to extracellular signals during ischemic injuries. We also provide some new perspectives on how microglial intracellular signaling may contribute to the seemingly contradictory roles of several microglial effector molecules.
Collapse
Affiliation(s)
- Aaron Y Lai
- Neurochemical Research Unit, Department of Psychiatry and Centre for Neuroscience, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
59
|
Hwang IK, Yoo KY, Kim DW, Choi SY, Kang TC, Kim YS, Won MH. Ionized Calcium-binding Adapter Molecule 1 Immunoreactive Cells Change in the Gerbil Hippocampal CA1 Region after Ischemia/Reperfusion. Neurochem Res 2006; 31:957-65. [PMID: 16841189 DOI: 10.1007/s11064-006-9101-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2006] [Indexed: 02/06/2023]
Abstract
Ionized calcium-binding adapter molecule 1 (iba-1) is specifically expressed in microglia and plays an important role in the regulation of the function of microglia. We observed chronological changes of iba-1-immunoreactive cells and iba-1 level in the gerbil hippocampal CA1 region after transient ischemia. Transient forebrain ischemia in gerbils was induced by the occlusion of bilateral common carotid arteries for 5 min. Immunohistochemical and Western blot analysis of iba-1 were performed in the gerbil ischemic hippocampus. In the sham-operated group, iba-1-immunoreactive cells were detected in the CA1 region. Thirty minutes after ischemia/reperfusion, iba-1 immunoreactivity significantly increased, and its immunoreactive cells were well ramified. Three hours after ischemia/reperfusion, iba-1 immunoreactivity and level decreased, and thereafter they increased again with time after ischemia/reperfusion. Three days after ischemia/reperfusion, iba-1-immunoreactive cells had well-ramified processes, which projected to the stratum pyramidale of the CA1 region. Seven days after ischemia/reperfusion, iba-1 immunoreactivity and level were highest in the CA1 region, whereas they significantly decreased in the CA1 region 10 days after ischemia/reperfusion. Iba-1-immunoreactive cells in the ischemic CA1 region were co-localized with OX-42, a microglia marker. In brief, iba-1-immunoreactive cells change morphologically and iba-1 immunoreactivity alters in the CA1 region with time after ischemia/reperfusion. These may be associated with the delayed neuronal death of CA1 pyramidal cells in the gerbil ischemic hippocampus.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
60
|
Ekerbicer N, Inan S, Tarakci F, Cilaker S, Ozbek M. Histophysiological effects of fluid resuscitation on heart, lung and brain tissues in rats with hypovolemia. Acta Histochem 2006; 108:373-83. [PMID: 16762404 DOI: 10.1016/j.acthis.2006.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/26/2006] [Accepted: 03/02/2006] [Indexed: 11/19/2022]
Abstract
The efficacy of using colloids and crystalloids in the treatment of hypovolemia still remains controversial. An important aspect in treating hypovolemia is to re-establish normal tissue hemodynamics after fluid resuscitation. Production of nitric oxide (NO) or growth factors such as transforming growth factor beta (TGF-beta) has been identified as a key mechanism in physiological and pathological processes in the different systems. This study was designed to investigate the histophysiological effects of resuscitation with different plasma substitutes on the heart, lung and brain tissues following acute blood loss in male Sprague-Dawley rats weighing 250-280g (n=30). After anesthesia with sodium pentobarbital, the left femoral vein and artery were cannulated for the administration of volume expanders and for direct measurement of arterial pressure and heart rate. Twenty rats were bled (5ml/10min) and infused (5ml/10min) with one of four randomly selected solutions, (a) human albumin, (b) gelatin (Gelofusine), (c) dextran-70 (Macrodex); or (d) physiological saline (0.9% isotonic saline). Five control rats were bled without infusion. Tissue samples were taken and fixed in 10% formalin solution, then processed for embedding in paraffin wax. Sections were cut and stained with hematoxylin and eosin. Indirect immunohistochemical labelling was performed to reveal binding of primary antibodies against endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and TGF-beta. Mild immunoreactivity of eNOS was observed in endothelial cells of vessels in brain, heart and lung tissues. Increased immunoreactivities of eNOS, iNOS and TGF-beta were observed in the non-fluid resuscitated group in these organs; mild, moderate, moderate and strong immunoreactivities were seen in the albumin, gelatin, physiological saline and dextran-70 treated groups, respectively. Immunoreactivities of iNOS and TGF-beta in the non-fluid resuscitated group were increased significantly, in comparison to the other groups, apart from the dextran-70 treated group. The results of this study show that gelatin solution and physiological saline may be of use after acute blood loss, and dextran-70 is not the preferred resuscitation fluid in the early stages of acute blood loss. It was concluded that albumin solution is the preferred fluid for resuscitation.
Collapse
Affiliation(s)
- Nuran Ekerbicer
- Department of Physiology, Faculty of Medicine, Celel Bayar University, Dekanlik Binasi, Uncubozkoy-Manisa, Turkey.
| | | | | | | | | |
Collapse
|
61
|
Muraoka K, Shingo T, Yasuhara T, Kameda M, Yuan W, Hayase H, Matsui T, Miyoshi Y, Date I. The high integration and differentiation potential of autologous neural stem cell transplantation compared with allogeneic transplantation in adult rat hippocampus. Exp Neurol 2006; 199:311-27. [PMID: 16529744 DOI: 10.1016/j.expneurol.2005.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 11/30/2005] [Accepted: 12/01/2005] [Indexed: 12/25/2022]
Abstract
Cell therapy is thought to have a central role in restorative therapy, which aims to restore function to the damaged nervous system. The purpose of this study was to establish an autologous neural stem cell (NSC) transplantation model using adult rats and to compare survival, migration, and differentiation between this system and allogeneic NSC transplantation. Furthermore, we compared the immunologic response of the host tissue between autologous and allogeneic transplantation. NSCs were removed from the subventricular zone of adult Fischer 344 rats using stereotactic methods. NSCs were expanded and microinjected into normal hippocampus in the autologous brain. Allogeneic NSC (derived from adult Wistar rats) transplantation was performed using the same procedure, and hippocampal sections were analyzed immunohistologically 3 weeks post-transplantation. The cell survival and migration rate were higher for autologous transplantation than for allogeneic transplantation, and the neuronal differentiation rate in the autologous transplanted cells far exceeded that of allogeneic transplantation. Furthermore, there was less astrocyte and microglia reactivity in the host tissue of the autologous transplantation compared with allogeneic transplantation. These findings demonstrate that immunoreactivity of the host tissue strongly influences cell transplantation in the CNS as the autologous transplantation did not induce host tissue immunoreactivity; the microenvironment was essentially maintained in an optimal condition for the transplanted cells.
Collapse
Affiliation(s)
- K Muraoka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Komitova M, Johansson BB, Eriksson PS. On neural plasticity, new neurons and the postischemic milieu: An integrated view on experimental rehabilitation. Exp Neurol 2006; 199:42-55. [PMID: 16631168 DOI: 10.1016/j.expneurol.2006.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 03/05/2006] [Indexed: 12/18/2022]
Abstract
This review discusses actual and potential contributors to functional improvement after stroke injuries. Topics that will be covered are neuronal re-organization and sprouting, neural stem/progenitor cell activation and neuronal replacement, as well as the neuronal milieu defined by glia, inflammatory cells and blood vessel supply. It is well established that different types of neuronal plasticity ultimately lead to post-stroke recovery. However, an untapped potential which only recently has started to be extensively explored is neuronal replacement through endogenous or exogenous resources. Major experimental efforts are needed to achieve progress in this burgeoning area. The review stresses the importance of applying neurodevelopmental principles as well as performing a characterization of the role of the postischemic milieu when studying adult brain neural stem/progenitor cells. Integrated and multifaceted experimentation, incorporating actual and possible poststroke function modulators, will be necessary in order to determine future strategies that will ultimately enable considerable progress in the field of neurorehabilitation.
Collapse
Affiliation(s)
- Mila Komitova
- Arvid Carlsson Institute, Division for Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | |
Collapse
|
63
|
Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. Microglia provide neuroprotection after ischemia. FASEB J 2006; 20:714-6. [PMID: 16473887 DOI: 10.1096/fj.05-4882fje] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many neurological insults are accompanied by a marked acute inflammatory reaction, involving the activation of microglia. Using a model of exogenous application of fluorescence-labeled BV2 microglia in pathophysiologically relevant concentrations onto organotypic hippocampal slice cultures, we investigated the specific effects of microglia on neuronal damage after ischemic injury. Neuronal cell death after oxygen-glucose deprivation (OGD) was determined by propidium iodide incorporation and Nissl staining. Migration and interaction with neurons were analyzed by time resolved 3-D two-photon microscopy. We show that microglia protect against OGD-induced neuronal damage and engage in close physical cell-cell contact with neurons in the damaged brain area. Neuroprotection and migration of microglia were not seen with integrin regulator CD11a-deficient microglia or HL-60 granulocytes. The induction of migration and neuron-microglia interaction deep inside the slice was markedly increased under OGD conditions. Lipopolysaccharide-prestimulated microglia failed to provide neuroprotection after OGD. Pharmacological interference with microglia function resulted in a reduced neuroprotection. Microglia proved to be neuroprotective even when applied up to 4 h after OGD, thus defining a "protective time window." In acute injury such as trauma or stroke, appropriately activated microglia may primarily have a neuroprotective role. Anti-inflammatory treatment within the protective time window of microglia would therefore be counterintuitive.
Collapse
Affiliation(s)
- Jens Neumann
- Leibniz Institute for Neurobiology, Project Group Neuropharmacology, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
64
|
Lin CH, Lu YZ, Cheng FC, Chu LF, Hsueh CM. Bax-regulated mitochondria-mediated apoptosis is responsible for the in vitro ischemia induced neuronal cell death of Sprague Dawley rat. Neurosci Lett 2005; 387:22-7. [PMID: 16084019 DOI: 10.1016/j.neulet.2005.06.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/28/2005] [Accepted: 06/29/2005] [Indexed: 11/16/2022]
Abstract
An in vitro ischemia model was used to determine the molecular mechanisms responsible for the ischemia-induced neuronal cell death. Additionally, the neuronal protective mechanisms of anti-apoptotic drugs against ischemia were also evaluated. In this study, the primary neuronal cultures were incubated in an anoxic chamber with 95% of N2 and 5% of CO2 for various times. The death rate, degree of the apoptotic damage, reduction of mitochondrial membrane potential, translocation of Bax, release of cytochrome C and activation of caspase-9 and -3 were determined at each time point. Results showed that a Bax-regulated mitochondria- mediated apoptosis is responsible for the in vitro ischemia-induced neuronal death. Reduction in mitochondrial membrane potential plays no role in triggering this apoptosis. Furthermore, the anti-apoptotic drugs: furosemide (a Bax blocker) and ZVAD-fmk (caspase inhibitor) but not cyclosporine A (a MPT pore blocker), significantly protected the neurons against ischemia-induced damage. This provides an additional consideration in the future selection of new anti-ischemic drugs.
Collapse
Affiliation(s)
- Chi-Hsin Lin
- Department of Life Sciences, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan
| | | | | | | | | |
Collapse
|