51
|
Abstract
Telocytes, a novel type of interstitial cells with very long and thin prolongations, have been identified in many organs in mammals. At present, the ultrastructural, immunocytochemical and electrophysiological properties of telocytes in multiple organs have been understood. However, telocytes in spleen, especially their roles in spleen have not been reported. The aim of this study was to investigate the ultrastructure, distribution and immunophenotypes of splenic telocytes. Rat spleen was harvested for the ultrastructure analysis by transmission electron microscopy (TEM). The primary culture of telocytes was performed after combined enzymatic digestion. The characteristic morphology was analyzed by a scanning electron microscopy (SEM). It was shown that telocytes displayed a piriform/spindle/triangular shape with long and slender telopods and extremely long prolongation contracting with surrounding cells in the spleen. Their dynamic profiles of cytoplasmic separation were recorded by the Live Cell Imaging System. The length of telopods was mostly distributing in 20–30 μm, in accordance with normal distribution. Most telocytes had three or two telopods (28.71% and 22.58% respectively). Immunostaining indicated that these cells were positive for vimentin, CD34, nanog and sca-1, but negative for c-kit. These data prove the existence of telocytes in the spleen, which may serve as the experimental base for exploring their roles in the spleen.
Collapse
Affiliation(s)
- Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, P.R. China
- Department of Human Anatomy and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Cixia Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Li Gan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - He Li
- Department of Human Anatomy and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, P.R. China
- * E-mail:
| |
Collapse
|
52
|
Albulescu R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med 2015; 19:1783-1794. [PMID: 26176909 PMCID: PMC4549029 DOI: 10.1111/jcmm.12624] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Telocytes (TCs) are interstitial cells that are present in numerous organs, including the heart interstitial space and cardiac stem cell niche. TCs are completely different from fibroblasts. TCs release extracellular vesicles that may interact with cardiac stem cells (CSCs) via paracrine effects. Data on the secretory profile of TCs and the bidirectional shuttle vesicular signalling mechanism between TCs and CSCs are scarce. We aimed to characterize and understand the in vitro effect of the TC secretome on CSC fate. Therefore, we studied the protein secretory profile using supernatants from mouse cultured cardiac TCs. We also performed a comparative secretome analysis using supernatants from rat cultured cardiac TCs, a pure CSC line and TCs-CSCs in co-culture using (i) high-sensitivity on-chip electrophoresis, (ii) surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and (iii) multiplex analysis by Luminex-xMAP. We identified several highly expressed molecules in the mouse cardiac TC secretory profile: interleukin (IL)-6, VEGF, macrophage inflammatory protein 1α (MIP-1α), MIP-2 and MCP-1, which are also present in the proteome of rat cardiac TCs. In addition, rat cardiac TCs secrete a slightly greater number of cytokines, IL-2, IL-10, IL-13 and some chemokines like, GRO-KC. We found that VEGF, IL-6 and some chemokines (all stimulated by IL-6 signalling) are secreted by cardiac TCs and overexpressed in co-cultures with CSCs. The expression levels of MIP-2 and MIP-1α increased twofold and fourfold, respectively, when TCs were co-cultured with CSCs, while the expression of IL-2 did not significantly differ between TCs and CSCs in mono culture and significantly decreased (twofold) in the co-culture system. These data suggest that the TC secretome plays a modulatory role in stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Radu Albulescu
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
- National Institute for Chemical Pharmaceutical Research & DevelopmentBucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Daniela I Popescu
- Biochemistry-Proteomics Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Sanda M Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Department of Ultrastructural Pathology, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Laurentiu M Popescu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Department of Advanced Studies, Victor Babeş National Institute of PathologyBucharest, Romania
| |
Collapse
|
53
|
Bei Y, Wang F, Yang C, Xiao J. Telocytes in regenerative medicine. J Cell Mol Med 2015; 19:1441-54. [PMID: 26059693 PMCID: PMC4511344 DOI: 10.1111/jcmm.12594] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/15/2015] [Indexed: 12/13/2022] Open
Abstract
Telocytes (TCs) are a distinct type of interstitial cells characterized by a small cell body and extremely long and thin telopodes (Tps). The presence of TCs has been documented in many tissues and organs (go to http://www.telocytes.com). Functionally, TCs form a three-dimensional (3D) interstitial network by homocellular and heterocellular communication and are involved in the maintenance of tissue homeostasis. As important interstitial cells to guide or nurse putative stem and progenitor cells in stem cell niches in a spectrum of tissues and organs, TCs contribute to tissue repair and regeneration. This review focuses on the latest progresses regarding TCs in the repair and regeneration of different tissues and organs, including heart, lung, skeletal muscle, skin, meninges and choroid plexus, eye, liver, uterus and urinary system. By targeting TCs alone or in tandem with stem cells, we might promote regeneration and prevent the evolution to irreversible tissue damage. Exploring pharmacological or non-pharmacological methods to enhance the growth of TCs would be a novel therapeutic strategy besides exogenous transplantation for many diseased disorders.
Collapse
Affiliation(s)
- Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai UniversityShanghai, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of MedicineShanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of MedicineShanghai, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai UniversityShanghai, China
| |
Collapse
|
54
|
Nakagomi T, Nakano-Doi A, Kawamura M, Matsuyama T. Do Vascular Pericytes Contribute to Neurovasculogenesis in the Central Nervous System as Multipotent Vascular Stem Cells? Stem Cells Dev 2015; 24:1730-9. [PMID: 25900222 DOI: 10.1089/scd.2015.0039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that multipotent stem cells are harbored within a vascular niche inside various organs. Although a precise phenotype of resident vascular stem cells (VSCs) that can function as multipotent stem cells remains unclear, accumulating evidence shows that multipotent VSCs are likely vascular pericytes (PCs) that localize within blood vessels. These PCs are multipotent, possessing the ability to differentiate into various cell types, including vascular lineage cells. In addition, brain PCs are unique: They are derived from neural crest and can differentiate into neural lineage cells. Because PCs in the central nervous system (CNS) can contribute to both neurogenesis and vasculogenesis, they may mediate the reparative process of neurovascular units that are constructed by neural and vascular cells. Here, we describe the activity of PCs when viewed as multipotent VSCs, primarily regarding their neurogenic and vasculogenic potential in the CNS. We also discuss similarities between PCs and other candidates for multipotent VSCs, including perivascular mesenchymal stem cells, neural crest-derived stem cells, adventitial progenitor cells, and adipose-derived stem cells.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan
| | - Akiko Nakano-Doi
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan
| | - Miki Kawamura
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan .,2 Department of Neurology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Tomohiro Matsuyama
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan
| |
Collapse
|
55
|
Li H, Zhang H, Yang L, Lu S, Ge J. Telocytes in mice bone marrow: electron microscope evidence. J Cell Mol Med 2015; 18:975-8. [PMID: 25059385 PMCID: PMC4508138 DOI: 10.1111/jcmm.12337] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/26/2014] [Indexed: 12/27/2022] Open
Abstract
Telocytes (TCs) are a novel type of interstitial cell of whom presence has been recently documented in many tissues and organs. However, whether TCs exists in bone marrow is still not reported. This study aims to find out TCs in mice bone marrow by using scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM images showed that in mice bone marrow most of TCs have small spherical cell body (usually 4-6 μm diameter) with thin long telopodes (Tps; usually one to three). The longest Tp observed was about 70 μm, with an uneven calibre. Direct intercellular contacts exist between TCs. TEM shows mitochondria within dilations of Tps. Also, by TEM, we show the close spatial relations of Tps with blood vessels. In conclusion, this study provides ultrastructural evidence regarding the existence of TCs in mice bone marrow, in situ.
Collapse
Affiliation(s)
- Hua Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Physiology and Medicine/Cardiology, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
56
|
Bei Y, Zhou Q, Fu S, Lv D, Chen P, Chen Y, Wang F, Xiao J. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One 2015; 10:e0115991. [PMID: 25693182 PMCID: PMC4333820 DOI: 10.1371/journal.pone.0115991] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/03/2014] [Indexed: 01/30/2023] Open
Abstract
Telocytes (TCs) are a peculiar type of interstitial cells with very long prolongations termed telopodes. TCs have previously been identified in different anatomic structures of the heart, and have also been isolated and cultured from heart tissues in vitro. TCs and fibroblasts, both located in the interstitial spaces of the heart, have different morphologies and functionality. However, other than microscopic observation, a reliable means to make differential diagnosis of cardiac TCs from fibroblasts remains unclear. In the present study, we isolated and cultured cardiac TCs and fibroblasts from heart tissues, and observed their different morphological features and immunophenotypes in primary culture. Morphologically, TCs had extremely long and thin telopodes with moniliform aspect, stretched away from cell bodies, while cell processes of fibroblasts were short, thick and cone shaped. Furthermore, cardiac TCs were positive for CD34/c-kit, CD34/vimentin, and CD34/PDGFR-β, while fibroblasts were only vimentin and PDGFR-β positive. In addition, TCs were also different from pericytes as TCs were CD34 positive and α-SMA weak positive while pericytes were CD34 negative but α-SMA positive. Besides that, we also showed cardiac TCs were homogenously positive for mesenchymal marker CD29 but negative for hematopoietic marker CD45, indicating that TCs could be a source of cardiac mesenchymal cells. The differences in morphological features and immunophenotypes between TCs and fibroblasts will provide more compelling evidence to differentiate cardiac TCs from fibroblasts.
Collapse
Affiliation(s)
- Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qiulian Zhou
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Siyi Fu
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Dongchao Lv
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Ping Chen
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Chen
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences and Innovative Drug Research Center, School of Life Science, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
57
|
Roatesi I, Radu BM, Cretoiu D, Cretoiu SM. Uterine Telocytes: A Review of Current Knowledge. Biol Reprod 2015; 93:10. [PMID: 25695721 DOI: 10.1095/biolreprod.114.125906] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/10/2015] [Indexed: 01/05/2023] Open
Abstract
Telocytes (TCs), a novel cell type, are briefly defined as interstitial cells with telopodes (Tps). However, a specific immunocytochemical marker has not yet been found; therefore, electron microscopy is currently the only accurate method for identifying TCs. TCs are considered to have a mesenchymal origin. Recently proteomic analysis, microarray-based gene expression analysis, and the micro-RNA signature clearly showed that TCs are different from fibroblasts, mesenchymal stem cells, and endothelial cells. The dynamics of Tps were also revealed, and some electrophysiological properties of TCs were described (such as membrane capacitance, input resistance, membrane resting potential, and absence of action potentials correlated with different ionic currents characteristics), which can be used to distinguish uterine TCs from smooth muscle cells (SMCs). Here, we briefly present the most recent findings on the characteristics of TCs and their functions in human pregnant and nonpregnant uteri.
Collapse
Affiliation(s)
- Iurie Roatesi
- Victor Babeş National Institute of Pathology, Bucharest, Romania Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Beatrice Mihaela Radu
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dragos Cretoiu
- Victor Babeş National Institute of Pathology, Bucharest, Romania Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Sanda Maria Cretoiu
- Victor Babeş National Institute of Pathology, Bucharest, Romania Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
58
|
Cismaşiu VB, Popescu LM. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. J Cell Mol Med 2015; 19:351-8. [PMID: 25600068 PMCID: PMC4407601 DOI: 10.1111/jcmm.12529] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/09/2014] [Indexed: 12/11/2022] Open
Abstract
Telocytes (TCs) are cells ubiquitously distributed in the body and characterized by very long and thin prolongations named telopodes (Tps). Cardiac TCs are the best characterized TCs for the moment. Tps release extracellular vesicles (EVs) in vivo and in vitro suggesting that TCs regulate the activity of other cells by vesicular paracrine signals. TCs have been found within the stem cell niche of several organs. Electron microscopy or electron tomography has shown that Tps are located in close vicinity of stem cells (SC). Since stem cell regulation by niche components involves paracrine signalling, we have investigated if TCs could be part of this mechanism. Using fluorescent labelling of cells and EVs with calcein and Cy5-miR-21 oligos, we provide evidence that TCs can modulate SC through EVs loaded with microRNAs. TCs deliver microRNA to cardiac stem cells (CSCs), as well as to other types of SCs (e.g. hematopoietic SC) indicating that this mechanism is not restricted to cardiac tissue. We also found that CSCs deliver microRNA loaded EVs to TCs, suggesting that there is a continuous, post-transcriptional regulatory signal back and forth between TCs and SC. In conclusion, our data reveal the existence of a reciprocal (bidirectional) epigenetic signalling between TCs and SC.
Collapse
Affiliation(s)
- Valeriu B Cismaşiu
- Laboratory of Cellular Medicine, "Victor Babeş" National Institute of Pathology, Bucharest, Romania
| | | |
Collapse
|
59
|
Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J Cell Mol Med 2015; 19:31-45. [PMID: 25545142 PMCID: PMC4288347 DOI: 10.1111/jcmm.12509] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023] Open
Abstract
Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days-1 year), children (6-17 years) and adults (34-60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm(2) ) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52-62%; vascular smooth muscle cells and pericytes 22-28%, Schwann cells with nerve endings 6-7%, fibroblasts 3-10%, macrophages 1-8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults).
Collapse
Affiliation(s)
- Laurentiu M Popescu
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and PharmacyBucharest, Romania
- Division of Advanced Studies, ‘Victor Babeş’ National Institute of PathologyBucharest, Romania
| | - Antoanela Curici
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and PharmacyBucharest, Romania
| | - Enshi Wang
- State Key Laboratory of Cardiovascular Disease, Center for Pediatric Cardiac Surgery, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical SciencesBeijing, China
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease, Center for Pediatric Cardiac Surgery, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical SciencesBeijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Center for Pediatric Cardiac Surgery, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical SciencesBeijing, China
| | - Mihaela Gherghiceanu
- Laboratory for Electron Microscopy, ‘Victor Babeş’ National Institute of PathologyBucharest, Romania
| |
Collapse
|
60
|
Bill BR, Korzh V. Choroid plexus in developmental and evolutionary perspective. Front Neurosci 2014; 8:363. [PMID: 25452709 PMCID: PMC4231874 DOI: 10.3389/fnins.2014.00363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/22/2014] [Indexed: 01/17/2023] Open
Abstract
The blood-cerebrospinal fluid boundary is present at the level of epithelial cells of the choroid plexus. As one of the sources of the cerebrospinal fluid (CSF), the choroid plexus (CP) plays an important role during brain development and function. Its formation has been studied largely in mammalian species. Lately, progress in other model animals, in particular the zebrafish, has brought a deeper understanding of CP formation, due in part to the ability to observe CP development in vivo. At the same time, advances in comparative genomics began providing information, which opens a possibility to understand further the molecular mechanisms involved in evolution of the CP and the blood-cerebrospinal fluid boundary formation. Hence this review focuses on analysis of the CP from developmental and evolutionary perspectives.
Collapse
Affiliation(s)
- Brent Roy Bill
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | - Vladimir Korzh
- Agency for Science, Technology and Research of Singapore, Institute of Molecular and Cell Biology Singapore, Singapore ; National University of Singapore, Department of Biological Sciences Singapore, Singapore
| |
Collapse
|
61
|
Cretoiu D, Hummel E, Zimmermann H, Gherghiceanu M, Popescu LM. Human cardiac telocytes: 3D imaging by FIB-SEM tomography. J Cell Mol Med 2014; 18:2157-64. [PMID: 25327290 PMCID: PMC4224550 DOI: 10.1111/jcmm.12468] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023] Open
Abstract
Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs’ three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type.
Collapse
Affiliation(s)
- D Cretoiu
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; 'Victor Babeş' National Institute of Pathology, Bucharest, Romania
| | | | | | | | | |
Collapse
|
62
|
Zheng M, Sun X, Zhang M, Qian M, Zheng Y, Li M, Cretoiu SM, Chen C, Chen L, Cretoiu D, Popescu LM, Fang H, Wang X. Variations of chromosomes 2 and 3 gene expression profiles among pulmonary telocytes, pneumocytes, airway cells, mesenchymal stem cells and lymphocytes. J Cell Mol Med 2014; 18:2044-60. [PMID: 25278030 PMCID: PMC4244019 DOI: 10.1111/jcmm.12429] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/18/2014] [Indexed: 01/11/2023] Open
Abstract
Telocytes (TCs) were identified as a distinct cellular type of the interstitial tissue and defined as cells with extremely long telopodes (Tps). Our previous data demonstrated patterns of mouse TC-specific gene profiles on chromosome 1. The present study focuses on the identification of characters and patterns of TC-specific or TC-dominated gene expression profiles in chromosome 2 and 3, the network of principle genes and potential functional association. We compared gene expression profiles of pulmonary TCs, mesenchymal stem cells, fibroblasts, alveolar type II cells, airway basal cells, proximal airway cells, CD8+T cells from bronchial lymph nodes (T-BL), and CD8+ T cells from lungs (T-LL). We identified that 26 or 80 genes of TCs in chromosome 2 and 13 or 59 genes of TCs up-or down-regulated in chromosome 3, as compared with other cells respectively. Obvious overexpression of Myl9 in chromosome 2 of TCs different from other cells, indicates that biological functions of TCs are mainly associated with tissue/organ injury and ageing, while down-expression of Pltp implies that TCs may be associated with inhibition or reduction of inflammation in the lung. Dominant overexpression of Sh3glb1, Tm4sf1 or Csf1 in chromosome 3 of TCs is mainly associated with tumour promotion in lung cancer, while most down-expression of Pde5 may be involved in the development of pulmonary fibrosis and other acute and chronic interstitial lung disease.
Collapse
Affiliation(s)
- Minghuan Zheng
- Biomedical Research Center, Minhang Hospital & Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Wang F, Song Y, Bei Y, Zhao Y, Xiao J, Yang C. Telocytes in liver regeneration: possible roles. J Cell Mol Med 2014; 18:1720-6. [PMID: 25130653 PMCID: PMC4196648 DOI: 10.1111/jcmm.12355] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/22/2014] [Indexed: 01/20/2023] Open
Abstract
Telocytes (TCs) are a novel type of interstitial cells which are potentially involved in tissue regeneration and repair (http://www.telocytes.com). Previously, we documented the presence of TCs in liver. However, the possible roles of TCs in liver regeneration remain unknown. In this study, a murine model of partial hepatectomy (PH) was used to induce liver regeneration. The number of TCs detected by double labelling immunofluorescence methods (CD34/PDGFR-α, CD34/PDGFR-ß and CD34/Vimentin) was significantly increased when a high level of hepatic cell proliferation rate (almost doubled) as shown by 5-ethynyl-2′-deoxyuridine (EdU) immunostaining and Western Blot of Proliferating cell nuclear antigen (PCNA) was found at 48 and 72 hrs post-PH. Meanwhile, the number of CK-19 positive-hepatic stem cells peaked at 72 hrs post-PH, co-ordinating with the same time-point, when the number of TCs was most significantly increased. Taken together, the results indicate a close relationship between TCs and the cells essentially involved in liver regeneration: hepatocytes and stem cells. It remains to be determined how TCs affect hepatocytes proliferation and/or hepatic stem cell differentiation in liver regeneration. Besides intercellular junctions, we may speculate a paracrine effect via ectovesicles.
Collapse
Affiliation(s)
- Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
64
|
Li H, Lu S, Liu H, Ge J, Zhang H. Scanning electron microscope evidence of telocytes in vasculature. J Cell Mol Med 2014; 18:1486-9. [PMID: 24913701 PMCID: PMC4124031 DOI: 10.1111/jcmm.12333] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/12/2014] [Indexed: 01/18/2023] Open
Abstract
Here, we here present scanning electron microscope data for the existent telocytes (TCs) on the endothelial surface of the wall of pig coronary arteries, internal thoracic arteries and carotid arteries. These cells have a small (8.39 ± 1.97 μm/4.95 ± 0.91 μm) cell body of different shapes (from round to triangular, depending on the number of cellular prolongations) with very long (of about 30 μm) and thin cellular processes called telopodes (Tps), which have uneven calibre. The number of Tps ranges between 2 and 6. Tps typically present the alternation of podoms and podomers, and also have a dichotomic branching pattern. These data could influence the current attempts for elucidating the role(s) of TCs.
Collapse
Affiliation(s)
- Hua Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Physiology and Medicine/Cardiology, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
65
|
Edelstein L, Smythies J. The role of telocytes in morphogenetic bioelectrical signaling: once more unto the breach. Front Mol Neurosci 2014; 7:41. [PMID: 24860423 PMCID: PMC4026729 DOI: 10.3389/fnmol.2014.00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/22/2014] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - John Smythies
- Department of Psychology, Center for Brain and Cognition, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
66
|
Luesma MJ, Gherghiceanu M, Popescu LM. Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med 2014; 17:1016-24. [PMID: 23991685 PMCID: PMC3780542 DOI: 10.1111/jcmm.12111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/27/2013] [Indexed: 12/11/2022] Open
Abstract
The potential of stem cell (SC) therapies for eye diseases is well-recognized. However, the results remain only encouraging as little is known about the mechanisms responsible for eye renewal, regeneration and/or repair. Therefore, it is critical to gain knowledge about the specific tissue environment (niches) where the stem/progenitor cells reside in eye. A new type of interstitial cell–telocyte (TC) (http://www.telocytes.com) was recently identified by electron microscopy (EM). TCs have very long (tens of micrometres) and thin (below 200 nm) prolongations named telopodes (Tp) that form heterocellular networks in which SCs are embedded. We found TCs by EM and electron tomography in sclera, limbus and uvea of the mouse eye. Furthermore, EM showed that SCs were present in the anterior layer of the iris and limbus. Adhaerens and gap junctions were found to connect TCs within a network in uvea and sclera. Nanocontacts (electron-dense structures) were observed between TCs and other cells: SCs, melanocytes, nerve endings and macrophages. These intercellular ‘feet’ bridged the intercellular clefts (about 10 nm wide). Moreover, exosomes (extracellular vesicles with a diameter up to 100 nm) were delivered by TCs to other cells of the iris stroma. The ultrastructural nanocontacts of TCs with SCs and the TCs paracrine influence via exosomes in the epithelial and stromal SC niches suggest an important participation of TCs in eye regeneration.
Collapse
Affiliation(s)
- María José Luesma
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
67
|
Li L, Lin M, Li L, Wang R, Zhang C, Qi G, Xu M, Rong R, Zhu T. Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med 2014; 18:1144-56. [PMID: 24758589 PMCID: PMC4508154 DOI: 10.1111/jcmm.12274] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/05/2014] [Indexed: 01/09/2023] Open
Abstract
Telocytes (TCs), a distinct type of interstitial cells, have been identified in many organs via electron microscopy. However, their precise function in organ regeneration remains unknown. This study investigated the paracrine effect of renal TCs on renal tubular epithelial cells (TECs) in vitro, the regenerative function of renal TCs in renal tubules after ischaemia–reperfusion injury (IRI) in vivo and the possible mechanisms involved. In a renal IRI model, transplantation of renal TCs was found to decrease serum creatinine and blood urea nitrogen (BUN) levels, while renal fibroblasts exerted no such effect. The results of histological injury assessments and the expression levels of cleaved caspase-3 were consistent with a change in kidney function. Our data suggest that the protective effect of TCs against IRI occurs via inflammation-independent mechanisms in vivo. Furthermore, we found that renal TCs could not directly promote the proliferation and anti-apoptosis properties of TECs in vitro. TCs did not display any advantage in paracrine growth factor secretion in vitro compared with renal fibroblasts. These data indicate that renal TCs protect against renal IRI via an inflammation-independent pathway and that growth factors play a significant role in this mechanism. Renal TCs may protect TECs in certain microenvironments while interacting with other cells.
Collapse
Affiliation(s)
- Liping Li
- Department of Urology, Fudan University Zhongshan Hospital, Shanghai, China; Shanghai Key Lab of Organ Transplantation, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Wang X. Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med 2014; 18:568-89. [PMID: 24674459 PMCID: PMC4000110 DOI: 10.1111/jcmm.12290] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/24/2014] [Indexed: 12/22/2022] Open
Abstract
Telocytes (TCs) were recently described as interstitial cells with very long prolongations named telopodes (Tps; http://www.telocytes.com). Establishing the TC proteome is a priority to show that TCs are a distinct type of cells. Therefore, we examined the molecular aspects of lung TCs by comparison with fibroblasts (FBs). Proteins extracted from primary cultures of these cells were analysed by automated 2-dimensional nano-electrospray ionization liquid chromatography tandem mass spectrometry (2D Nano-ESI LC-MS/MS). Differentially expressed proteins were screened by two-sample t-test (P < 0.05) and fold change (>2), based on the bioinformatics analysis. We identified hundreds of proteins up- or down-regulated, respectively, in TCs as compared with FBs. TC proteins with known identities are localized in the cytoskeleton (87%) and plasma membrane (13%), while FB up-regulated proteins are in the cytoskeleton (75%) and destined to extracellular matrix (25%). These identified proteins were classified into different categories based on their molecular functions and biological processes. While the proteins identified in TCs are mainly involved in catalytic activity (43%) and as structural molecular activity (25%), the proteins in FBs are involved in catalytic activity (24%) and in structural molecular activity, particularly synthesis of collagen and other extracellular matrix components (25%). Anyway, our data show that TCs are completely different from FBs. In conclusion, we report here the first extensive identification of proteins from TCs using a quantitative proteomics approach. Protein expression profile shows many up-regulated proteins e.g. myosin-14, periplakin, suggesting that TCs might play specific roles in mechanical sensing and mechanochemical conversion task, tissue homoeostasis and remodelling/renewal. Furthermore, up-regulated proteins matching those found in extracellular vesicles emphasize TCs roles in intercellular signalling and stem cell niche modulation. The novel proteins identified in TCs will be an important resource for further proteomic research and it will possibly allow biomarker identification for TCs. It also creates the premises for understanding the pathogenesis of some lung diseases involving TCs.
Collapse
Affiliation(s)
- Yonghua Zheng
- Department of Respirology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
69
|
Yang Y, Sun W, Wu SM, Xiao J, Kong X. Telocytes in human heart valves. J Cell Mol Med 2014; 18:759-65. [PMID: 24674389 PMCID: PMC4119382 DOI: 10.1111/jcmm.12285] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/17/2014] [Indexed: 12/14/2022] Open
Abstract
Valve interstitial cells (VICs) are responsible for maintaining the structural integrity and dynamic behaviour of the valve. Telocytes (TCs), a peculiar type of interstitial cells, have been recently identified by Popescu's group in epicardium, myocardium and endocardium (visit www.telocytes.com). The presence of TCs has been identified in atria, ventricles and many other tissues and organ, but not yet in heart valves. We used transmission electron microscopy and immunofluorescence methods (double labelling for CD34 and c-kit, or vimentin, or PDGF Receptor-β) to provide evidence for the existence of TCs in human heart valves, including mitral valve, tricuspid valve and aortic valve. TCs are found in both apex and base of heart valves, with a similar density of 27-28 cells/mm(2) in mitral valve, tricuspid valve and aortic valve. Since TCs are known for the participation in regeneration or repair biological processes, it remains to be determined how TCs contributes to the valve attempts to re-establish normal structure and function following injury, especially a complex junction was found between TCs and a putative stem (progenitor) cell.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
70
|
Nogueira AB, Sogayar MC, Colquhoun A, Siqueira SA, Nogueira AB, Marchiori PE, Teixeira MJ. Existence of a potential neurogenic system in the adult human brain. J Transl Med 2014; 12:75. [PMID: 24655332 PMCID: PMC3998109 DOI: 10.1186/1479-5876-12-75] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 03/13/2014] [Indexed: 01/17/2023] Open
Abstract
Background Prevailingly, adult mammalian neurogenesis is thought to occur in discrete, separate locations known as neurogenic niches that are best characterized in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). The existence of adult human neurogenic niches is controversial. Methods The existence of neurogenic niches was investigated with neurogenesis marker immunostaining in histologically normal human brains obtained from autopsies. Twenty-eight adult temporal lobes, specimens from limbic structures and the hypothalamus of one newborn and one adult were examined. Results The neural stem cell marker nestin stained circumventricular organ cells and the immature neuronal marker doublecortin (DCX) stained hypothalamic and limbic structures adjacent to circumventricular organs; both markers stained a continuous structure running from the hypothalamus to the hippocampus. The cell proliferation marker Ki-67 was detected predominately in structures that form the septo-hypothalamic continuum. Nestin-expressing cells were located in the fimbria-fornix at the insertion of the choroid plexus; ependymal cells in this structure expressed the putative neural stem cell marker CD133. From the choroidal fissure in the temporal lobe, a nestin-positive cell layer spread throughout the SVZ and subpial zone. In the subpial zone, a branch of this layer reached the hippocampal sulcus and ended in the SGZ (principally in the newborn) and in the subiculum (principally in the adults). Another branch of the nestin-positive cell layer in the subpial zone returned to the optic chiasm. DCX staining was detected in the periventricular and middle hypothalamus and more densely from the mammillary body to the subiculum through the fimbria-fornix, thus running through the principal neuronal pathway from the hippocampus to the hypothalamus. The column of the fornix forms part of this pathway and appears to coincide with the zone previously identified as the human rostral migratory stream. Partial co-labeling with DCX and the neuronal marker βIII-tubulin was also observed. Conclusions Collectively, these findings suggest the existence of an adult human neurogenic system that rises from the circumventricular organs and follows, at minimum, the circuitry of the hypothalamus and limbic system.
Collapse
Affiliation(s)
- Adriano Barreto Nogueira
- Division of Neurosurgery Clinic, Hospital das Clínicas, Faculty of Medicine, University of São Paulo, Avenida Dr, Eneas de Carvalho Aguiar 255, 05403-900 São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
71
|
Qi G, Lin M, Xu M, Manole CG, Wang X, Zhu T. Telocytes in the human kidney cortex. J Cell Mol Med 2014; 16:3116-22. [PMID: 23241355 PMCID: PMC4393739 DOI: 10.1111/j.1582-4934.2012.01582.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/17/2012] [Indexed: 02/06/2023] Open
Abstract
Renal interstitial cells play an important role in the physiology and pathology of the kidneys. As a novel type of interstitial cell, telocytes (TCs) have been described in various tissues and organs, including the heart, lung, skeletal muscle, urinary tract, etc. (www.telocytes.com). However, it is not known if TCs are present in the kidney interstitium. We demonstrated the presence of TCs in human kidney cortex interstitium using primary cell culture, transmission electron microscopy (TEM) and in situ immunohistochemistry (IHC). Renal TCs were positive for CD34, CD117 and vimentin. They were localized in the kidney cortex interstitial compartment, partially covering the tubules and vascular walls. Morphologically, renal TCs resemble TCs described in other organs, with very long telopodes (Tps) composed of thin segments (podomers) and dilated segments (podoms). However, their possible roles (beyond intercellular signalling) as well as their specific phenotype in the kidney remain to be established.
Collapse
Affiliation(s)
- Guisheng Qi
- Department of Urology, Fudan University Zhongshan Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
72
|
Zheng Y, Chen X, Qian M, Zhang M, Zhang D, Bai C, Wang Q, Wang X. Human lung telocytes could promote the proliferation and angiogenesis of human pulmonary microvascular endothelial cells in vitro. MOLECULAR AND CELLULAR THERAPIES 2014; 2:3. [PMID: 26056572 PMCID: PMC4452074 DOI: 10.1186/2052-8426-2-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/22/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND In the previous studies, telocytes were found near the capillaries in many tissues, especially on the extracellular matrix of blood vessels and positive to CD34 and c-kit. Therefore, the present study aimed to explore if telocytes could produce angiogenesis associated cytokines, promote the proliferation and the angiogenesis of vascular endothelial cells in vitro. METHODS Human lung telocytes were isolated and cultured, and were identified by immunofluorescence cytochemistry with CD34, c-kit and vimentin. Telocytes conditional media (TCM) was prepared, and the expressions of angiogenesis associated cytokines in TCM were detected by ELISA. Human pulmonary microvascular endothelial cells (HPMECs) were cultured with DMEM media or TCM for 72 hours. The proliferation of HPMECs was continuously detected with CCK-8 kit at an interval of 12 hours. HPMECs were also injured by lipopolysaccharide, and cultured with TCM and DMEM respectively, and the tube formation capacity was detected. RESULTS Telocytes were positive for CD34, c-kit and vimentin. The expressions of VEGF and EGF in TCM were significantly higher, the proliferation of HPMECs cultured with TCM significantly increased, and the tube formation of HPMECs injured by endotoxin was improved with the culture of TCM, as compared with the culture of DMEM. CONCLUSION The present study provides the evidence that human lung telocytes could produce the growth factors, such as VEGF and EGF. Telocytes conditional media induced the proliferation of pulmonary endothelial cells and prevented from endotoxin-induced compromise of pulmonary endothelial angiogenesis.
Collapse
Affiliation(s)
- Yonghua Zheng
- />Department of Respiratory Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University School of Medicine, Fenglin Rd, No 180, Xuhui Dist, Shanghai, 320003 China
| | - Xiaoke Chen
- />Department of thoracic surgery, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University School of Medicine, Fenglin Rd, No 180, Xuhui Dist, Shanghai, 320003 China
| | - Mengjia Qian
- />Biomedical Research Center, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University School of Medicine, Fenglin Rd, No 180, Xuhui Dist, Shanghai, 320003 China
| | - Miaomiao Zhang
- />Biomedical Research Center, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University School of Medicine, Fenglin Rd, No 180, Xuhui Dist, Shanghai, 320003 China
| | - Ding Zhang
- />Department of Respiratory Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University School of Medicine, Fenglin Rd, No 180, Xuhui Dist, Shanghai, 320003 China
| | - Chunxue Bai
- />Department of Respiratory Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University School of Medicine, Fenglin Rd, No 180, Xuhui Dist, Shanghai, 320003 China
| | - Qun Wang
- />Department of thoracic surgery, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University School of Medicine, Fenglin Rd, No 180, Xuhui Dist, Shanghai, 320003 China
| | - Xiangdong Wang
- />Department of Respiratory Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University School of Medicine, Fenglin Rd, No 180, Xuhui Dist, Shanghai, 320003 China
| |
Collapse
|
73
|
Smythies J, Edelstein L. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front Cell Neurosci 2014; 7:278. [PMID: 24427115 PMCID: PMC3879459 DOI: 10.3389/fncel.2013.00278] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- John Smythies
- Center for Brain and Cognition, University of California San Diego, CA, USA
| | | |
Collapse
|
74
|
Xiao J, Wang F, Liu Z, Yang C. Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med 2013; 17:1537-42. [PMID: 24266938 PMCID: PMC3914652 DOI: 10.1111/jcmm.12195] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/26/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatic interstitial cells play a vital role in regulating essential biological processes of the liver. Telocytes (TCs), a novel type of interstitial cells firstly identified by Popescu and his coworkers, have been reported in many tissues and organs, but not yet in liver (go to http://www.telocytes.com). We used transmission electron microscopy and immunofluorescence (double labelling for CD34 and c-kit/CD117, or vimentin, or PDGF Receptor-α, or β) to provide evidence for the existence of TCs in mice liver. The distribution of TCs in liver was found to be of similar density in the four hepatic lobes. In conclusion, here we show the presence of TCs in mice liver. It remains to be determined the possible roles of TCs in the control of liver homeostasis and regeneration, the more so as a close special relationship was found between TCs and hepatic putative stem (progenitor) cells.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China; Innovative Drug Research Center, Shanghai University, Shanghai, China
| | | | | | | |
Collapse
|
75
|
Zheng Y, Zhang M, Qian M, Wang L, Cismasiu VB, Bai C, Popescu LM, Wang X. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med 2013; 17:567-77. [PMID: 23621815 PMCID: PMC3822657 DOI: 10.1111/jcmm.12052] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 12/23/2022] Open
Abstract
Telocytes (TCs) are interstitial cells with telopodes – very long prolongations that establish intercellular contacts with various types of cells. Telocytes have been found in many organs and various species and have been characterized ultrastructurally, immunophenotypically and electrophysiologically (http://www.telocytes.com). Telocytes are distributed through organ stroma forming a three-dimensional network in close contacts with blood vessels, nerve bundles and cells of the local immune system. Moreover, it has been shown that TCs express a broad range of microRNAs, such as pro-angiogenic and stromal-specific miRs. In this study, the gene expression profile of murine lung TCs is compared with other differentiated interstitial cells (fibroblasts) and with stromal stem/progenitor cells. More than 2000 and 4000 genes were found up- or down-regulated, respectively, in TCs as compared with either MSCs or fibroblasts. Several components or regulators of the vascular basement membrane are highly expressed in TCs, such as Nidogen, Collagen type IV and Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Given that TCs locate in close vicinity of small vessels and capillaries, the data suggest the implication of TCs in vascular branching. Telocytes express also matrix metalloproteases Mmp3 and Mmp10, and thus could regulate extracellular matrix during vascular branching and de novo vessel formation. In conclusion, our data show that TCs are not fibroblasts, as the ultrastructure, immunocytochemistry and microRNA assay previously indicated. Gene expression profile demonstrates that TCs are functionally distinct interstitial cells with specific roles in cell signalling, tissue remodelling and angiogenesis.
Collapse
Affiliation(s)
- Yonghua Zheng
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Díaz-Flores L, Gutiérrez R, Sáez FJ, Díaz-Flores L, Madrid JF. Telocytes in neuromuscular spindles. J Cell Mol Med 2013; 17:457-65. [PMID: 23621814 PMCID: PMC3822646 DOI: 10.1111/jcmm.12015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/04/2012] [Indexed: 02/02/2023] Open
Abstract
A new cell type named telocyte (TC) has recently been identified in various stromal tissues, including skeletal muscle interstitium. The aim of this study was to investigate by means of light (conventional and immunohistochemical procedures) and electron microscopy the presence of TCs in adult human neuromuscular spindles (NMSs) and lay the foundations for future research on their behaviour during human foetal development and in skeletal muscle pathology. A large number of TCs were observed in NMSs and were characterized ultrastructurally by very long, initially thin, moniliform prolongations (telopodes - Tps), in which thin segments (podomeres) alternated with dilations (podoms). TCs formed the innermost and (partially) the outermost layers of the external NMS capsule and the entire NMS internal capsule. In the latter, the Tps were organized in a dense network, which surrounded intrafusal striated muscle cells, nerve fibres and vessels, suggesting a passive and active role in controlling NMS activity, including their participation in cell-to-cell signalling. Immunohistochemically, TCs expressed vimentin, CD34 and occasionally c-kit/CD117. In human foetus (22-23 weeks of gestational age), TCs and perineural cells formed a sheath, serving as an interconnection guide for the intrafusal structures. In pathological conditions, the number of CD34-positive TCs increased in residual NMSs between infiltrative musculoaponeurotic fibromatosis and varied in NMSs surrounded by lymphocytic infiltrate in inflammatory myopathy. We conclude that TCs are numerous in NMSs (where striated muscle cells, nerves and vessels converge), which provide an ideal microanatomic structure for TC study.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain.
| | | | | | | | | |
Collapse
|
77
|
Chen X, Zheng Y, Manole CG, Wang X, Wang Q. Telocytes in human oesophagus. J Cell Mol Med 2013; 17:1506-12. [PMID: 24188731 PMCID: PMC4117563 DOI: 10.1111/jcmm.12149] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/24/2013] [Indexed: 12/17/2022] Open
Abstract
Telocytes (TCs), a new type of interstitial cells, were identified in many different organs and tissues of mammalians and humans. In this study, we show the presence, in human oesophagus, of cells having the typical features of TCs in lamina propria of the mucosa, as well as in muscular layers. We used transmission electron microscopy (TEM), immunohistochemistry (IHC) and primary cell culture. Human oesophageal TCs present a small cell body with 2–3 very long Telopodes (Tps). Tps consist of an alternation of thin segments (podomers) and thick segments (podoms) and have a labyrinthine spatial arrangement. Tps establish close contacts (‘stromal synapses’) with other neighbouring cells (e.g. lymphocytes, macrophages). The ELISA testing of the supernatant of primary culture of TCs indicated that the concentrations of VEGF and EGF increased progressively. In conclusion, our study shows the existence of typical TCs at the level of oesophagus (mucosa, submucosa and muscular layer) and suggests their possible role in tissue repair.
Collapse
Affiliation(s)
- Xiaoke Chen
- Department of thoracic surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
78
|
Horch RE, Boos AM, Quan Y, Bleiziffer O, Detsch R, Boccaccini AR, Alexiou C, Sun J, Beier JP, Arkudas A. Cancer research by means of tissue engineering--is there a rationale? J Cell Mol Med 2013; 17:1197-206. [PMID: 24118692 PMCID: PMC4159017 DOI: 10.1111/jcmm.12130] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) has evoked new hopes for the cure of organ failure and tissue loss by creating functional substitutes in the laboratory. Besides various innovations in the context of Regenerative Medicine (RM), TE also provided new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. Recent advances in stem cell technology--including embryonic and adult stem cells and induced pluripotent stem cells--clearly show the need to better understand all relevant mechanisms to control cell growth when such techniques will be administered to patients. Such TE-Cancer research models allow us to investigate the interactions that occur when replicating physiological and pathological conditions during the initial phases of replication, morphogenesis, differentiation and growth under variable given conditions. Tissue microenvironment has been extensively studied in many areas of TE and it plays a crucial role in cell signalling and regulation of normal and malignant cell functions. This article is intended to give an overview on some of the most recent developments and possible applications of TE and RM methods with regard to the improvement of cancer research with TE platforms. The synthesis of TE with innovative methods of molecular biology and stem-cell technology may help investigate and potentially modulate principal phenomena of tumour growth and spreading, as well as tumour-related angiogenesis. In the future, these models have the potential to investigate the optimal materials, culture conditions and material structure to propagate tumour growth.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany; Emerging Fields Initiative, FAU Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Bassotti G, Villanacci V, Creƫoiu D, Creƫoiu SM, Becheanu G. Cellular and molecular basis of chronic constipation: taking the functional/idiopathic label out. World J Gastroenterol 2013; 19:4099-4105. [PMID: 23864772 PMCID: PMC3710411 DOI: 10.3748/wjg.v19.i26.4099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 02/06/2023] Open
Abstract
In recent years, the improvement of technology and the increase in knowledge have shifted several strongly held paradigms. This is particularly true in gastroenterology, and specifically in the field of the so-called "functional" or "idiopathic" disease, where conditions thought for decades to be based mainly on alterations of visceral perception or aberrant psychosomatic mechanisms have, in fact, be reconducted to an organic basis (or, at the very least, have shown one or more demonstrable abnormalities). This is particularly true, for instance, for irritable bowel syndrome, the prototype entity of "functional" gastrointestinal disorders, where low-grade inflammation of both mucosa and myenteric plexus has been repeatedly demonstrated. Thus, researchers have also investigated other functional/idiopathic gastrointestinal disorders, and found that some organic ground is present, such as abnormal neurotransmission and myenteric plexitis in esophageal achalasia and mucosal immune activation and mild eosinophilia in functional dyspepsia. Here we show evidence, based on our own and other authors' work, that chronic constipation has several abnormalities reconductable to alterations in the enteric nervous system, abnormalities mainly characterized by a constant decrease of enteric glial cells and interstitial cells of Cajal (and, sometimes, of enteric neurons). Thus, we feel that (at least some forms of) chronic constipation should no more be considered as a functional/idiopathic gastrointestinal disorder, but instead as a true enteric neuropathic abnormality.
Collapse
|
80
|
Matyja A, Gil K, Pasternak A, Sztefko K, Gajda M, Tomaszewski KA, Matyja M, Walocha JA, Kulig J, Thor P. Telocytes: new insight into the pathogenesis of gallstone disease. J Cell Mol Med 2013; 17:734-42. [PMID: 23551596 PMCID: PMC3823177 DOI: 10.1111/jcmm.12057] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/01/2013] [Indexed: 12/11/2022] Open
Abstract
The major mechanisms of gallstone formation include biliary cholesterol hypersecretion, supersaturation and crystallization, mucus hypersecretion, gel formation and bile stasis. Gallbladder hypomotility seems to be a key event that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile. Telocytes, a new type of interstitial cells, have been recently identified in many organs, including gallbladder. Considering telocyte functions, it is presumed that these cells might be involved in the signalling processes. The purpose of this study was to correlate the quantity of telocytes in the gallbladder with the lithogenicity of bile. Gallbladder specimens were collected from 24 patients who underwent elective laparoscopic cholecystectomy for symptomatic gallstone disease. The control group consisted of 25 consecutive patients who received elective treatment for pancreatic head tumours. Telocytes were visualized in paraffin sections of gallbladders with double immunofluorescence using primary antibodies against c-Kit (anti-CD117) and anti-mast cell tryptase. Cholesterol, phospholipid and bile acid levels were measured in gallbladder bile. The number of telocytes in the gallbladder wall was significantly lower in the study group than that in the control group (3.03 ± 1.43 versus 6.34 ± 1.66 cell/field of view in the muscularis propria, P < 0.001) and correlated with a significant increase in the cholesterol saturation index. The glycocholic and taurocholic acid levels were significantly elevated in the control subjects compared with the study group. The results suggest that bile composition may play an important role in the reduction in telocytes density in the gallbladder.
Collapse
Affiliation(s)
- Andrzej Matyja
- First Department of General, Oncological and Gastrointestinal Surgery, Jagiellonian University Medical College, Krakow, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Mou Y, Wang Y, Li J, Lü S, Duan C, Du Z, Yang G, Chen W, Zhao S, Zhou J, Wang C. Immunohistochemical characterization and functional identification of mammary gland telocytes in the self-assembly of reconstituted breast cancer tissue in vitro. J Cell Mol Med 2012. [PMID: 23206234 PMCID: PMC3823137 DOI: 10.1111/j.1582-4934.2012.01646.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Telocyte (TC) as a special stromal cell exists in mammary gland and might play an important role in the balance of epithelium-stroma of mammary gland. Considering that different types of breast interstitial cells influence the development and progression of breast cancer, TCs may have its distinct role in this process. We here studied the roles of TCs in the self-assembly of reconstituted breast cancer tissue. We co-cultured primary isolated TCs and other breast stromal cells with breast cancer EMT-6 cells in collagen/Matrigel scaffolds to reconstitute breast cancer tissue in vitro. Using histology methods, we investigated the immunohistochemical characteristics and potential functions of TCs in reconstituted breast cancer tissue. TCs in primary mammary gland stromal cells with long and thin overlapping cytoplasmic processes, expressed c-kit/CD117, CD34 and vimentin in reconstitute breast cancer tissue. The transmission electron microscopy showed that the telocyte-like cells closely communicated with breast cancer cells as well as other stromal cells, and might serve as a bridge that directly linked the adjacent cells through membrane-to-membrane contact. Compared with cancer tissue sheets of EMT-6 alone, PCNA proliferation index analysis and TUNEL assay showed that TCs and other breast stromal cells facilitated the formation of typical nest structure, promoted the proliferation of breast cancer cells, and inhibited their apoptosis. In conclusion, we successfully reconstituted breast cancer tissue in vitro, and it seems to be attractive that TCs had potential functions in self-assembly of EMT-6/stromal cells reconstituted breast cancer tissue.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O. Telocytes in human skin--are they involved in skin regeneration? J Cell Mol Med 2012; 16:1405-20. [PMID: 22500885 PMCID: PMC3823211 DOI: 10.1111/j.1582-4934.2012.01580.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Telocytes (TCs), a particular interstitial cell type, have been recently described in a wide variety of mammalian organs (www.telocytes.com). The TCs are identified morphologically by a small cell body and extremely long (tens to hundreds of μm), thin prolongations (less than 100 nm in diameter, below the resolving power of light microscopy) called telopodes. Here, we demonstrated with electron microscopy and immunofluorescence that TCs were present in human dermis. In particular, TCs were found in the reticular dermis, around blood vessels, in the perifollicular sheath, outside the glassy membrane and surrounding sebaceous glands, arrector pili muscles and both the secretory and excretory portions of eccrine sweat glands. Immunofluorescence screening and laser scanning confocal microscopy showed two subpopulations of dermal TCs; one expressed c-kit/CD117 and the other was positive for CD34. Both subpopulations were also positive for vimentin. The TCs were connected to each other by homocellular junctions, and they formed an interstitial 3D network. We also found TCs adjoined to stem cells in the bulge region of hair follicles. Moreover, TCs established atypical heterocellular junctions with stem cells (clusters of undifferentiated cells). Given the frequency of allergic skin pathologies, we would like to emphasize the finding that close, planar junctions were frequently observed between TCs and mast cells. In conclusion, based on TC distribution and intercellular connections, our results suggested that TCs might be involved in skin homeostasis, skin remodelling, skin regeneration and skin repair.
Collapse
Affiliation(s)
- Laura Ceafalan
- Molecular Medicine Laboratory, V. Babeş National Institute of Pathology, Bucharest, Romania
| | | | | | | |
Collapse
|
83
|
Creţoiu SM, Creţoiu D, Popescu LM. Human myometrium - the ultrastructural 3D network of telocytes. J Cell Mol Med 2012; 16:2844-9. [PMID: 23009098 PMCID: PMC4118253 DOI: 10.1111/j.1582-4934.2012.01651.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/22/2012] [Indexed: 01/05/2023] Open
Abstract
Telocytes (TCs), a novel type of interstitial cells, were recently described in the interstitial space of tissues (www.telocytes.com). Telocytes TCs have several very long, moniliform extensions, namely telopodes (Tps). However, the functional role(s) of TCs is not yet understood. Successive photomicrographs of ultrathin sections were concatenated to capture the entire length of Tps which usually measure tens to hundreds of micrometres. Besides the podoms (dilations) and podomers (thin segments), ultrastructural features of Tps include the dichotomous branching and establishing homo- and heterocellular contacts. Telopodes make a labyrinthine system by 3D convolution and overlapping, their number being roughly estimated at approximately 20 per 1000 μm(2) . Moreover, the presence of extracellular vesicles (shedding vesicles/exosomes) along the Tps suggests an active intercellular signalling (micro- and macromolecules), with possible significance in regulating uterine contractility.
Collapse
Affiliation(s)
- Sanda M Creţoiu
- Division of Cellular and Molecular Medicine, Department of Morphological Sciences, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Department of Ultrastructural Pathology, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Dragos Creţoiu
- Division of Cellular and Molecular Medicine, Department of Morphological Sciences, Carol Davila University of Medicine and PharmacyBucharest, Romania
- Molecular Medicine Department, Victor Babeş National Institute of PathologyBucharest, Romania
| | - Laurentiu M Popescu
- Division of Advanced Studies, Victor Babeş National Institute of PathologyBucharest, Romania
| |
Collapse
|
84
|
Abstract
BACKGROUND Telocytes, a new type of interstitial cells, have been identified in many organs in mammals. The present studies aimed at investigating the ultrastructure, distribution and interactions of telocytes with surrounding cells in the urinary system of rats, to confirm the existence of telocytes in kidneys, ureter and urinary bladder. METHODS Samples of kidney, ureter, or urinary bladder were harvested for the ultrastructure by the electron microscope. The primary culture of telocytes was performed to investigate the dynamic alterations. RESULTS Telocytes mainly located in the sub-capsular space of kidney, or between smooth muscle bundles and in the lamina propria of ureter and urinary bladder. Telocytes established numerous contacts with macrophages in the sub-capsular space of kidney, or with smooth muscle cells, nerve endings as well as blood capillaries in the ureter and urinary bladder. The complete morphology of telocytes with telopodes was observed clearly through the primary cell culture from the kidney tissues of rats. CONCLUSIONS Our data evidenced the existence of telocytes in the urinary system, which may contribute to the tissue reparation and regeneration.
Collapse
Affiliation(s)
- Yonghua Zheng
- Department of Pulmonary Medicine, Fudan University, Zhongshan Hospital, No.180, Fenglin Road, Shanghai 200032, China
| | - Tongyu Zhu
- Department of Urology Surgery, Fudan University, Zhongshan Hospital, No.180, Fenglin Road, Shanghai 200032, China
- Key Lab of Shanghai Organ Transplantation, Fudan University Zhongshan Hospital, No.180, Fenglin Road, Shanghai 200032, China
| | - Miao Lin
- Department of Urology Surgery, Fudan University, Zhongshan Hospital, No.180, Fenglin Road, Shanghai 200032, China
| | - Duojiao Wu
- Biomedical Research Center, Fudan University, Zhongshan Hospital, No.180, Fenglin Road, Shanghai 200032, China
- Department of Urology Surgery, Fudan University, Zhongshan Hospital, No.180, Fenglin Road, Shanghai 200032, China
| | - Xiangdong Wang
- Department of Pulmonary Medicine, Fudan University, Zhongshan Hospital, No.180, Fenglin Road, Shanghai 200032, China
- Biomedical Research Center, Fudan University, Zhongshan Hospital, No.180, Fenglin Road, Shanghai 200032, China
| |
Collapse
|