51
|
Caffeine Neuroprotection Decreases A2A Adenosine Receptor Content in Aged Mice. Neurochem Res 2019; 44:787-795. [PMID: 30610653 DOI: 10.1007/s11064-018-02710-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/14/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
Caffeine is a bioactive compound worldwide consumed with effect into the brain. Part of its action in reducing incidence or delaying Alzheimer's and Parkinson's diseases symptoms in human is credited to the adenosine receptors properties. However, the impact of caffeine consumption during aging on survival of brain cells remains debatable. This work, we investigated the effect of low-dose of caffeine on the ectonucleotidase activities, adenosine receptors content, and paying particular attention to its pro-survival effect during aging. Male young adult and aged Swiss mice drank water or caffeine (0.3 g/L) ad libitum for 4 weeks. The results showed that long-term caffeine treatment did not unchanged ATP, ADP or AMP hydrolysis in hippocampus when compared to the mice drank water. Nevertheless, the ATP/ADP hydrolysis ratio was higher in young adult (3:1) compared to the aged (1:1) animals regardless of treatment. The content of A1 receptors did not change in any groups of mice, but the content of A2A receptors was reduced in hippocampus of mice that consumed caffeine. Moreover, the cell viability results indicated that aged mice not only had increased pyknotic neurons in the hippocampus but also had reduced damage after caffeine treatment. Overall, these findings indicate a potential neuroprotective effect of caffeine during aging through the adenosinergic system.
Collapse
|
52
|
Duarte JM, Gaspar R, Caetano L, Patrício P, Soares-Cunha C, Mateus-Pinheiro A, Alves ND, Santos AR, Ferreira SG, Sardinha V, Oliveira JF, Fontes-Ribeiro C, Sousa N, Cunha RA, Ambrósio AF, Pinto L, Rodrigues AJ, Gomes CA. Region-specific control of microglia by adenosine A 2A receptors: uncoupling anxiety and associated cognitive deficits in female rats. Glia 2019; 67:182-192. [PMID: 30461068 DOI: 10.1002/glia.23476] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/24/2023]
Abstract
Epidemiologic studies have provided compelling evidence that prenatal stress, through excessive maternal glucocorticoids exposure, is associated with psychiatric disorders later in life. We have recently reported that anxiety associated with prenatal exposure to dexamethasone (DEX, a synthetic glucocorticoid) correlates with a gender-specific remodeling of microglia in the medial prefrontal cortex (mPFC), a core brain region in anxiety-related disorders. Gender differences in microglia morphology, the higher prevalence of anxiety in women and the negative impact of anxiety in cognition, led us to specifically evaluate cognitive behavior and associated circuits (namely mPFC-dorsal hippocampus, dHIP), as well as microglia morphology in female rats prenatally exposed to dexamethasone (in utero DEX, iuDEX). We report that iuDEX impaired recognition memory and deteriorated neuronal synchronization between mPFC and dHIP. These functional deficits are paralleled by microglia hyper-ramification in the dHIP and decreased ramification in the mPFC, showing a heterogeneous remodeling of microglia morphology, both postnatally and at adulthood in different brain regions, that differently affect mood and cognition. The chronic blockade of adenosine A2A receptors (A2A R), which are core regulators of microglia morphology and physiology, ameliorated the cognitive deficits, but not the anxiety-like behavior. Notably, A2A R blockade rectified both microglia morphology in the dHIP and the lack of mPFC-dHIP synchronization, further heralding their role in cognitive function.
Collapse
Affiliation(s)
- Joana Mendes Duarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Liliana Caetano
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Rita Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Samira G Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Vanessa Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carlos Fontes-Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rodrigo A Cunha
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina A Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
53
|
Stefanello N, Spanevello RM, Passamonti S, Porciúncula L, Bonan CD, Olabiyi AA, Teixeira da Rocha JB, Assmann CE, Morsch VM, Schetinger MRC. Coffee, caffeine, chlorogenic acid, and the purinergic system. Food Chem Toxicol 2018; 123:298-313. [PMID: 30291944 DOI: 10.1016/j.fct.2018.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Coffee is a drink prepared from roasted coffee beans and is lauded for its aroma and flavour. It is the third most popular beverage in the world. This beverage is known by its stimulant effect associated with the presence of methylxanthines. Caffeine, a purine-like molecule (1,3,7 trymetylxantine), is the most important bioactive compound in coffee, among others such as chlorogenic acid (CGA), diterpenes, and trigonelline. CGA is a phenolic acid with biological properties as antioxidant, anti-inflammatory, neuroprotector, hypolipidemic, and hypoglicemic. Purinergic system plays a key role inneuromodulation and homeostasis. Extracellular ATP, other nucleotides and adenosine are signalling molecules that act through their specific receptors, namely purinoceptors, P1 for nucleosides and P2 for nucleotides. They regulate many pathological processes, since adenosine, for instance, can limit the damage caused by ATP in the excitotoxicity from the neuronal cells. The primary purpose of this review is to discuss the effects of coffee, caffeine, and CGA on the purinergic system. This review focuses on the relationship/interplay between coffee, caffeine, CGA, and adenosine, and their effects on ectonucleotidases activities as well as on the modulation of P1 and P2 receptors from central nervous system and also in peripheral tissue.
Collapse
Affiliation(s)
- Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção: Centro de Ciências Farmacêuticas, Químicas e de Alimentos, UFPel, Campus Capão do Leão 96010-900, Pelotas, RS, Brazil
| | - Sabina Passamonti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Lisiane Porciúncula
- Departamento de Bioquímica, UFRGS, 90040-060, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Denise Bonan
- Programa de Pós-graduação em Biologia Celular e Molecular Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
| | | | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, UFSM, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
54
|
Dobrachinski F, Gerbatin RR, Sartori G, Golombieski RM, Antoniazzi A, Nogueira CW, Royes LF, Fighera MR, Porciúncula LO, Cunha RA, Soares FAA. Guanosine Attenuates Behavioral Deficits After Traumatic Brain Injury by Modulation of Adenosinergic Receptors. Mol Neurobiol 2018; 56:3145-3158. [PMID: 30105669 DOI: 10.1007/s12035-018-1296-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide, triggering chronic neurodegeneration underlying cognitive and mood disorder still without therapeutic prospects. Based on our previous observations that guanosine (GUO) attenuates short-term neurochemical alterations caused by TBI, this study investigated the effects of chronical GUO treatment in behavioral, molecular, and morphological disturbances 21 days after trauma. Rats subject to TBI displayed mood (anxiety-like) and memory dysfunction. This was accompanied by a decreased expression of both synaptic (synaptophysin) and plasticity proteins (BDNF and CREB), a loss of cresyl violet-stained neurons, and increased astrogliosis and microgliosis in the hippocampus. Notably, chronic GUO treatment (7.5 mg/kg i.p. daily starting 1 h after TBI) prevented all these TBI-induced long-term behavioral, neurochemical, and morphological modifications. This neuroprotective effect of GUO was abrogated in the presence of the adenosine A1 receptor antagonist DPCPX (1 mg/kg) but unaltered by the adenosine A2A receptor antagonist SCH58261 (0.05 mg/kg). These findings show that a chronic GUO treatment prevents the long-term mood and memory dysfunction triggered by TBI, which involves adenosinergic receptors.
Collapse
Affiliation(s)
- Fernando Dobrachinski
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rogério R Gerbatin
- Laboratory of Exercise Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gláubia Sartori
- Laboratory of Synthesis, Reactivity and Pharmacological Evaluating and Toxicology of Organochalcogens, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ronaldo M Golombieski
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Alfredo Antoniazzi
- Laboratory of Biotechnology and Animal Reproduction - BioRep Veterinary Hospital, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity and Pharmacological Evaluating and Toxicology of Organochalcogens, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luiz F Royes
- Laboratory of Exercise Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michele R Fighera
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil
- Department of Neuropsychiatry, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lisiane O Porciúncula
- Laboratory of Studies on the Purinergic System, Department of Biochemistry / ICBS, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo A Cunha
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Félix A A Soares
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
55
|
Ilkiw JL, Kmita LC, Targa ADS, Noseda ACD, Rodrigues LS, Dorieux FWC, Fagotti J, Dos Santos P, Lima MMS. Dopaminergic Lesion in the Olfactory Bulb Restores Olfaction and Induces Depressive-Like Behaviors in a 6-OHDA Model of Parkinson's Disease. Mol Neurobiol 2018; 56:1082-1095. [PMID: 29869198 DOI: 10.1007/s12035-018-1134-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Olfactory impairments and depressive behavior are commonly reported by individuals with Parkinson's disease (PD) being observed before motor symptoms. The mechanisms underlying these clinical manifestations are not fully elucidated. However, the imbalance in dopaminergic neurotransmission seems to play an important role in this context. In patients and animal models of PD, an increase in the dopaminergic interneurons of the glomerular layer in olfactory bulb (OB-gl) is observed, which may contribute to the olfactory impairment. In addition, neuronal imbalance in OB is related to depressive symptoms, as demonstrated by chemical olfactory bulbectomy. In view of that, we hypothesized that a reduction in the number or density of dopaminergic neurons present in OB could promote an olfactory improvement and, in contrast, would accentuate the depressive-like behaviors in the 6-hydroxydopamine (6-OHDA) model of PD. Therefore, we performed single or double injections of 6-OHDA within the substantia nigra pars compacta (SNpc) and/or in the OB-gl. We observed that, after 7 days, the group with nigral lesion exhibited olfactory impairment, as well as the group with the lesion in the OB-gl. However, the combination of the lesions prevented the occurrence of hyposmia. In relation to depressive-like behaviors, we observed that the SNpc injury promoted depressive-like behavior, being accentuated after a double injury. Our results demonstrated the importance of the dopaminergic neurons of the OB-gl in different non-motor features of PD, since the selective reduction of these periglomerular neurons was able to induce olfactory impairment and depressive-like behaviors.
Collapse
Affiliation(s)
- Jessica L Ilkiw
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Luana C Kmita
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Adriano D S Targa
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Ana Carolina D Noseda
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Lais S Rodrigues
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Flávia W C Dorieux
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Juliane Fagotti
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Patrícia Dos Santos
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil
| | - Marcelo M S Lima
- Laboratório de Neurofisiologia. Departamento de Fisiologia, Universidade Federal do Paraná, Av. Francisco H. dos Santos s/n,, Curitiba, PR, 81531-990, Brazil.
| |
Collapse
|
56
|
Monteiro J, Alves MG, Oliveira PF, Silva BM. Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Crit Rev Food Sci Nutr 2018; 59:2597-2625. [PMID: 29624433 DOI: 10.1080/10408398.2018.1461607] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylated xanthines (methylxanthines) are available from a significant number of different botanical species. They are ordinarily included in daily diet, in many extremely common beverages and foods. Caffeine, theophylline and theobromine are the main methylxanthines available from natural sources. The supposedly relatively low toxicity of methylxanthines, combined with the many beneficial effects that have been attributed to these compounds through time, generated a justified attention and a very prolific ground for dedicated scientific reports. Methylxanthines have been widely used as therapeutical tools, in an intriguing range of medicinal scopes. In fact, methylxanthines have been/were medically used as Central Nervous System stimulants, bronchodilators, coronary dilators, diuretics and anti-cancer adjuvant treatments. Other than these applications, methylxanthines have also been hinted to hold other beneficial health effects, namely regarding neurodegenerative diseases, cardioprotection, diabetes and fertility. However, it seems now consensual that toxicity concerns related to methylxanthine consumption and/or therapeutic use should not be dismissed. Taking all the knowledge and expectations on the potential of methylxanthines into account, we propose a systematic look at the past and future of methylxanthine pharmacologic applications, discussing all the promise and anticipating possible constraints. Anyways, methylxanthines will still substantiate considerable meaningful research and discussion for years to come.
Collapse
Affiliation(s)
- João Monteiro
- Mass Spectrometry Centre, Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago , Aveiro , Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,Institute of Health Research an Innovation (i3S), University of Porto , Porto , Portugal
| | | |
Collapse
|
57
|
Impact of Coffee and Cacao Purine Metabolites on Neuroplasticity and Neurodegenerative Disease. Neurochem Res 2018; 44:214-227. [PMID: 29417473 DOI: 10.1007/s11064-018-2492-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that regular consumption of coffee, tea and dark chocolate (cacao) can promote brain health and may reduce the risk of age-related neurodegenerative disorders. However, the complex array of phytochemicals in coffee and cacao beans and tea leaves has hindered a clear understanding of the component(s) that affect neuronal plasticity and resilience. One class of phytochemicals present in relatively high amounts in coffee, tea and cacao are methylxanthines. Among such methylxanthines, caffeine has been the most widely studied and has clear effects on neuronal network activity, promotes sustained cognitive performance and can protect neurons against dysfunction and death in animal models of stroke, Alzheimer's disease and Parkinson's disease. Caffeine's mechanism of action relies on antagonism of various subclasses of adenosine receptors. Downstream xanthine metabolites, such as theobromine and theophylline, may also contribute to the beneficial effects of coffee, tea and cacao on brain health.
Collapse
|
58
|
Aurich MF, Rodrigues LS, Targa ADS, Noseda ACD, Cunha FDW, Lima MMS. Olfactory impairment is related to REM sleep deprivation in rotenone model of Parkinson's disease. ACTA ACUST UNITED AC 2017; 10:47-54. [PMID: 28966738 PMCID: PMC5611772 DOI: 10.5935/1984-0063.20170008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Olfactory dysfunction affects about 85-90% of Parkinson's disease (PD) patients with severe deterioration in the ability of discriminate several types of odors. In addition, studies reported declines in olfactory performances during a short period of sleep deprivation. Besides, PD is also known to strongly affect the occurrence and maintenance of rapid eye movement (REM) sleep. METHODS Therefore, we investigated the mechanisms involved on discrimination of a social odor (dependent on the vomeronasal system) and a non-social odor (related to the main olfactory pathway) in the rotenone model of PD. Also, a concomitant impairment in REM sleep was inflicted with the introduction of two periods (24 or 48 h) of REM sleep deprivation (REMSD). Rotenone promoted a remarkable olfactory impairment in both social and non-social odors, with a notable modulation induced by 24 h of REMSD for the non-social odor. RESULTS Our findings demonstrated the occurrence of a strong association between the density of nigral TH-ir neurons and the olfactory discrimination capacity for both odorant stimuli. Specifically, the rotenone-induced decrease of these neurons tends to elicit reductions in the olfactory discrimination ability. CONCLUSIONS These results are consistent with the participation of the nigrostriatal dopaminergic system mainly in the olfactory discrimination of a non-social odor, probably through the main olfactory pathway. Such involvement may have produce relevant impact in the preclinical abnormalities found in PD patients.
Collapse
Affiliation(s)
- Mariana F Aurich
- Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Lais S Rodrigues
- Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Adriano D S Targa
- Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ana Carolina D Noseda
- Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Flávia D W Cunha
- Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo M S Lima
- Laboratório de Neurofisiologia. Departamento de Fisiologia. Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
59
|
Yoder WM, Gaynor LS, Burke SN, Setlow B, Smith DW, Bizon JL. Interaction between age and perceptual similarity in olfactory discrimination learning in F344 rats: relationships with spatial learning. Neurobiol Aging 2017; 53:122-137. [PMID: 28259065 DOI: 10.1016/j.neurobiolaging.2017.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/22/2017] [Accepted: 01/28/2017] [Indexed: 11/28/2022]
Abstract
Emerging evidence suggests that aging is associated with a reduced ability to distinguish perceptually similar stimuli in one's environment. As the ability to accurately perceive and encode sensory information is foundational for explicit memory, understanding the neurobiological underpinnings of discrimination impairments that emerge with advancing age could help elucidate the mechanisms of mnemonic decline. To this end, there is a need for preclinical approaches that robustly and reliably model age-associated perceptual discrimination deficits. Taking advantage of rodents' exceptional olfactory abilities, the present study applied rigorous psychophysical techniques to the evaluation of discrimination learning in young and aged F344 rats. Aging did not influence odor detection thresholds or the ability to discriminate between perceptually distinct odorants. In contrast, aged rats were disproportionately impaired relative to young on problems that required discriminations between perceptually similar olfactory stimuli. Importantly, these disproportionate impairments in discrimination learning did not simply reflect a global learning impairment in aged rats, as they performed other types of difficult discriminations on par with young rats. Among aged rats, discrimination deficits were strongly associated with spatial learning deficits. These findings reveal a new, sensitive behavioral approach for elucidating the neural mechanisms of cognitive decline associated with normal aging.
Collapse
Affiliation(s)
- Wendy M Yoder
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Leslie S Gaynor
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - David W Smith
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Florida, Gainesville, FL, USA; Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA; Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
60
|
van Waarde A, Dierckx RAJO, Zhou X, Khanapur S, Tsukada H, Ishiwata K, Luurtsema G, de Vries EFJ, Elsinga PH. Potential Therapeutic Applications of Adenosine A 2A Receptor Ligands and Opportunities for A 2A Receptor Imaging. Med Res Rev 2017; 38:5-56. [PMID: 28128443 DOI: 10.1002/med.21432] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Adenosine A2A receptors (A2A Rs) are highly expressed in the human striatum, and at lower densities in the cerebral cortex, the hippocampus, and cells of the immune system. Antagonists of these receptors are potentially useful for the treatment of motor fluctuations, epilepsy, postischemic brain damage, or cognitive impairment, and for the control of an immune checkpoint during immunotherapy of cancer. A2A R agonists may suppress transplant rejection and graft-versus-host disease; be used to treat inflammatory disorders such as asthma, inflammatory bowel disease, and rheumatoid arthritis; be locally applied to promote wound healing and be employed in a strategy for transient opening of the blood-brain barrier (BBB) so that therapeutic drugs and monoclonal antibodies can enter the brain. Increasing A2A R signaling in adipose tissue is also a potential strategy to combat obesity. Several radioligands for positron emission tomography (PET) imaging of A2A Rs have been developed in recent years. This review article presents a critical overview of the potential therapeutic applications of A2A R ligands, the use of A2A R imaging in drug development, and opportunities and limitations of PET imaging in future research.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands.,Department of Nuclear Medicine, University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Xiaoyun Zhou
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Shivashankar Khanapur
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Kiichi Ishiwata
- Research Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama, 963-8052, Japan.,Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Gert Luurtsema
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Erik F J de Vries
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
61
|
Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine. Eur J Med Chem 2017; 125:652-656. [DOI: 10.1016/j.ejmech.2016.09.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/07/2023]
|
62
|
Botton PHS, Pochmann D, Rocha AS, Nunes F, Almeida AS, Marques DM, Porciúncula LO. Aged mice receiving caffeine since adulthood show distinct patterns of anxiety-related behavior. Physiol Behav 2016; 170:47-53. [PMID: 27890589 DOI: 10.1016/j.physbeh.2016.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/04/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Abstract
Caffeine is the psychostimulant most consumed worldwide. Anxiogenic effects of caffeine have been described in adult animals with controversial findings about its anxiogenic potential. Besides, the effects of caffeine on anxiety with aging are still poorly known. In this study, adult mice (6months old) started to receive caffeine (0.3 and 1.0mg/mL, drinking water) during 12-14months only in the light cycle and at weekdays. The open field (OF) and elevated plus maze (EPM) testing were used to determine the effects of caffeine on anxiety-related behavior in adult and aged mice (18-20months old). Because aging alters synaptic proteins, we also evaluated SNAP-25 (as a nerve terminals marker), GFAP (as an astrocyte marker) and adenosine A1 and A2A receptors levels in the cortex. According to the OF analysis, caffeine did not change both hypolocomotion and anxiety with aging. However, aged mice showed less anxiety behavior in the EPM, but after receiving caffeine (0.3mg/mL) during adulthood they were anxious as adult mice. While SNAP-25 and adenosine A2A receptors increased with aging, both GFAP and adenosine A1 receptors were not affected. Caffeine at moderate dose prevented the age-related increase of the SNAP-25, with no effect on adenosine A2A receptors. The absence of effect for the highest dose suggests that tolerance to caffeine may have developed over time. Aged mice showed high responsiveness to the OF, being difficult to achieve any effect of caffeine. On the other hand this substance sustained the adult anxious behavior over time in a less stressful paradigm, and this effect was coincident with changes in the SNAP-25, suggesting the involvement of this synaptic protein in the ability of caffeine to preserve changes related to emotionality with aging.
Collapse
Affiliation(s)
- Paulo Henrique S Botton
- Laboratorio de Estudos sobre o Sistema Purinérgico, Departamento de Bioquimica/ICBS, Universidade Federal do Rio Grande do Sul; Rua Ramiro Barcelos, 2600 - anexo; Porto Alegre, RS 90035-003, Brazil
| | - Daniela Pochmann
- Laboratorio de Estudos sobre o Sistema Purinérgico, Departamento de Bioquimica/ICBS, Universidade Federal do Rio Grande do Sul; Rua Ramiro Barcelos, 2600 - anexo; Porto Alegre, RS 90035-003, Brazil
| | - Andreia S Rocha
- Laboratorio de Estudos sobre o Sistema Purinérgico, Departamento de Bioquimica/ICBS, Universidade Federal do Rio Grande do Sul; Rua Ramiro Barcelos, 2600 - anexo; Porto Alegre, RS 90035-003, Brazil
| | - Fernanda Nunes
- Laboratorio de Estudos sobre o Sistema Purinérgico, Departamento de Bioquimica/ICBS, Universidade Federal do Rio Grande do Sul; Rua Ramiro Barcelos, 2600 - anexo; Porto Alegre, RS 90035-003, Brazil
| | - Amanda S Almeida
- Laboratorio de Estudos sobre o Sistema Purinérgico, Departamento de Bioquimica/ICBS, Universidade Federal do Rio Grande do Sul; Rua Ramiro Barcelos, 2600 - anexo; Porto Alegre, RS 90035-003, Brazil
| | - Daniela M Marques
- Laboratorio de Estudos sobre o Sistema Purinérgico, Departamento de Bioquimica/ICBS, Universidade Federal do Rio Grande do Sul; Rua Ramiro Barcelos, 2600 - anexo; Porto Alegre, RS 90035-003, Brazil
| | - Lisiane O Porciúncula
- Laboratorio de Estudos sobre o Sistema Purinérgico, Departamento de Bioquimica/ICBS, Universidade Federal do Rio Grande do Sul; Rua Ramiro Barcelos, 2600 - anexo; Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
63
|
López-Cruz L, San-Miguel N, Bayarri P, Baqi Y, Müller CE, Salamone JD, Correa M. Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A 2A and A 1 Receptors. Front Behav Neurosci 2016; 10:206. [PMID: 27853423 PMCID: PMC5090123 DOI: 10.3389/fnbeh.2016.00206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 11/28/2022] Open
Abstract
Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A1/A2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A1 and A2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg) increasing social contact and higher doses (1.0-1.5 g/kg) reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0-60.0 mg/kg), and even blocked social preference at higher doses (30.0-60.0 mg/kg). The A1 antagonist Cyclopentyltheophylline (CPT; 3-9 mg/kg) did not modify social contact or preference on its own, and the A2A antagonist MSX-3 (1.5-6 mg/kg) increased social interaction at all doses. Ethanol at intermediate doses (0.5-1.0 g/kg) was able to reverse the reduction in social exploration induced by caffeine (15.0-30.0 mg/kg). Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol impairs the formation of social memories, and A2A adenosine antagonists can prevent the amnestic effects of ethanol, so that animals can recognize familiar conspecifics. On the other hand, ethanol can counteract the social withdrawal induced by caffeine, a non-selective adenosine A1/A2A receptor antagonist. These results show the complex set of interactions between ethanol and caffeine, some of which could be the result of the opposing effects they have in modulating the adenosine system.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume ICastelló, Spain
| | - Noemí San-Miguel
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume ICastelló, Spain
| | - Pilar Bayarri
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume ICastelló, Spain
| | - Younis Baqi
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie, Universität BonnBonn, Germany
| | - Christa E. Müller
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie, Universität BonnBonn, Germany
| | - John D. Salamone
- Department of Psychological Sciences, University of ConnecticutStorrs, CT, USA
| | - Mercé Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume ICastelló, Spain
- Department of Psychological Sciences, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
64
|
Adenosine A 2A Receptors in the Amygdala Control Synaptic Plasticity and Contextual Fear Memory. Neuropsychopharmacology 2016; 41:2862-2871. [PMID: 27312408 PMCID: PMC5061896 DOI: 10.1038/npp.2016.98] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
The consumption of caffeine modulates working and reference memory through the antagonism of adenosine A2A receptors (A2ARs) controlling synaptic plasticity processes in hippocampal excitatory synapses. Fear memory essentially involves plastic changes in amygdala circuits. However, it is unknown if A2ARs in the amygdala regulate synaptic plasticity and fear memory. We report that A2ARs in the amygdala are enriched in synapses and located to glutamatergic synapses, where they selectively control synaptic plasticity rather than synaptic transmission at a major afferent pathway to the amygdala. Notably, the downregulation of A2ARs selectively in the basolateral complex of the amygdala, using a lentivirus with a silencing shRNA (small hairpin RNA targeting A2AR (shA2AR)), impaired fear acquisition as well as Pavlovian fear retrieval. This is probably associated with the upregulation and gain of function of A2ARs in the amygdala after fear acquisition. The importance of A2ARs to control fear memory was further confirmed by the ability of SCH58261 (0.1 mg/kg; A2AR antagonist), caffeine (5 mg/kg), but not DPCPX (0.5 mg/kg; A1R antagonist), treatment for 7 days before fear conditioning onwards, to attenuate the retrieval of context fear after 24-48 h and after 7-8 days. These results demonstrate that amygdala A2ARs control fear memory and the underlying process of synaptic plasticity in this brain region. This provides a neurophysiological basis for the association between A2AR polymorphisms and phobia or panic attacks in humans and prompts a therapeutic interest in A2ARs to manage fear-related pathologies.
Collapse
|
65
|
Segalà L, Forte M, Ortega MR, Delgado S, Rammohan K, Levin BE. Moderate Caffeine Intake and Verbal Memory in Multiple Sclerosis: A Pilot Study. JOURNAL OF CAFFEINE RESEARCH 2016. [DOI: 10.1089/jcr.2016.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Laura Segalà
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mayte Forte
- Department of Psychology, University of Massachusetts-Boston, Boston, Massachusetts
| | - Melissa R. Ortega
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Silvia Delgado
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kottil Rammohan
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Bonnie E. Levin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
- Department of Psychology, University of Miami, Coral Gables, Florida
| |
Collapse
|
66
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
67
|
Adenosine A2A receptors in the olfactory bulb suppress rapid eye movement sleep in rodents. Brain Struct Funct 2016; 222:1351-1366. [DOI: 10.1007/s00429-016-1281-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/26/2016] [Indexed: 12/25/2022]
|
68
|
Solfrizzi V, Panza F, Imbimbo BP, D'Introno A, Galluzzo L, Gandin C, Misciagna G, Guerra V, Osella A, Baldereschi M, Di Carlo A, Inzitari D, Seripa D, Pilotto A, Sabbá C, Logroscino G, Scafato E. Coffee Consumption Habits and the Risk of Mild Cognitive Impairment: The Italian Longitudinal Study on Aging. J Alzheimers Dis 2016; 47:889-99. [PMID: 26401769 DOI: 10.3233/jad-150333] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coffee, tea, or caffeine consumption may be protective against cognitive impairment and dementia. We estimated the association between change or constant habits in coffee consumption and the incidence of mild cognitive impairment (MCI). We evaluated 1,445 individuals recruited from 5,632 subjects, aged 65-84 year old, from the Italian Longitudinal Study on Aging, a population-based sample from eight Italian municipalities with a 3.5-year median follow-up. Cognitively normal older individuals who habitually consumed moderate amount of coffee (from 1 to 2 cups of coffee/day) had a lower rate of the incidence of MCI than those who never or rarely consumed coffee [1 cup/day: hazard ratio (HR): 0.47, 95% confidence interval (CI): 0.211 to 1.02 or 1-2 cups/day: HR: 0.31 95% CI: 0.13 to 0.75]. For cognitively normal older subjects who changed their coffee consumption habits, those increasing coffee consumption (>1 cup of coffee/day) had higher rate of the incidence of MCI compared to those with constant habits (up to ±1 cup of coffee/day) (HR: 1.80, 95% CI: 1.11 to 2.92) or those with reduced consumption (<1 cup of coffee/day) (HR: 2.17, 95% CI: 1.16 to 4.08). Finally, there was no significant association between subjects with higher levels of coffee consumption (>2 cups of coffee/day) and the incidence of MCI in comparison with those who never or rarely consumed coffee (HR: 0.26, 95% CI: 0.03 to 2.11). In conclusion, cognitively normal older individuals who increased their coffee consumption had a higher rate of developing MCI, while a constant in time moderate coffee consumption was associated to a reduced rate of the incidence of MCI.
Collapse
Affiliation(s)
- Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit, Rare Disease Centre, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy.,Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Alessia D'Introno
- Geriatric Medicine-Memory Unit, Rare Disease Centre, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Lucia Galluzzo
- Population Health and Health Determinants Unit, National Centre for Epidemiology, Surveillance and Health Promotion (CNESPS), Istituto Superiore di Sanità (ISS), Roma, Italy
| | - Claudia Gandin
- Population Health and Health Determinants Unit, National Centre for Epidemiology, Surveillance and Health Promotion (CNESPS), Istituto Superiore di Sanità (ISS), Roma, Italy
| | - Giovanni Misciagna
- Laboratory of Epidemiology and Biostatistics, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Castellana, Bari, Italy
| | - Vito Guerra
- Trials Centre, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Castellana, Bari, Italy
| | - Alberto Osella
- Laboratory of Epidemiology and Biostatistics, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Castellana, Bari, Italy
| | - Marzia Baldereschi
- Institute of Neuroscience, Italian National Research Council (CNR), Firenze, Italy
| | - Antonio Di Carlo
- Institute of Neuroscience, Italian National Research Council (CNR), Firenze, Italy
| | - Domenico Inzitari
- Department of Neurological and Psychiatric Sciences, University of Firenze, Firenze, Italy
| | - Davide Seripa
- Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Alberto Pilotto
- Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy.,Geriatrics Unit, Department of OrthoGeriatrics, Rehabilitation and Stabilization, Frailty Area, Galliera Hospital NR-HS, Genova, Italy
| | - Carlo Sabbá
- Geriatric Medicine-Memory Unit, Rare Disease Centre, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Emanuele Scafato
- Population Health and Health Determinants Unit, National Centre for Epidemiology, Surveillance and Health Promotion (CNESPS), Istituto Superiore di Sanità (ISS), Roma, Italy
| | | |
Collapse
|
69
|
Daulatzai MA. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox Res 2016; 30:295-337. [DOI: 10.1007/s12640-016-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
70
|
Swertisin, a C-glucosylflavone, ameliorates scopolamine-induced memory impairment in mice with its adenosine A1 receptor antagonistic property. Behav Brain Res 2016; 306:137-45. [DOI: 10.1016/j.bbr.2016.03.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/12/2016] [Accepted: 03/16/2016] [Indexed: 11/22/2022]
|
71
|
Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life. Behav Brain Res 2016; 303:76-84. [DOI: 10.1016/j.bbr.2016.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 12/30/2022]
|
72
|
Boia R, Ambrósio AF, Santiago AR. Therapeutic Opportunities for Caffeine and A 2A Receptor Antagonists in Retinal Diseases. Ophthalmic Res 2016; 55:212-8. [DOI: 10.1159/000443893] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 11/19/2022]
|
73
|
Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A2A Receptor in Hippocampal Glutamate Synapses. Mol Neurobiol 2016; 54:1552-1563. [DOI: 10.1007/s12035-016-9774-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
|
74
|
Lopes MW, Lopes SC, Santos DB, Costa AP, Gonçalves FM, de Mello N, Prediger RD, Farina M, Walz R, Leal RB. Time course evaluation of behavioral impairments in the pilocarpine model of epilepsy. Epilepsy Behav 2016; 55:92-100. [PMID: 26773677 DOI: 10.1016/j.yebeh.2015.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Epilepsy is a brain function disorder characterized by unpredictable and recurrent seizures. The majority of patients with temporal lobe epilepsy (TLE), which is the most common type of epilepsy, have to live not only with seizures but also with behavioral alterations, including anxiety, psychosis, depression, and impaired cognitive functioning. The pilocarpine model has been recognized as an animal model of TLE. However, there are few studies addressing behavioral alterations in the maturation phase when evaluating the time course of the epileptogenic process after pilocarpine administration. Therefore, the present work was designed to analyze the neurobehavioral impairments of male adult Wistar rats during maturation and chronic phases in the pilocarpine model of epilepsy. Behavioral tests included: open-field tasks, olfactory discrimination, social recognition, elevated plus maze, and the forced swimming test. The main behavioral alterations observed in both maturation and chronic phases of the pilocarpine model were olfactory and short-term social memory deficits and decrease in the immobility time in the forced swimming test. Moreover, increased anxiety-like responses were only observed in the maturation phase. These findings indicate that early behavioral impairments can be observed in the pilocarpine model during the maturation phase, and these behavioral deficits also occur during the acquired epilepsy (chronic phase). Several of the neurobehavioral impairments that are associated with epilepsy in humans were observed in the pilocarpine-treated rats, thus, rendering this animal model a useful tool to study neuroprotective strategies as well as neurobiological and psychopathological mechanisms associated with epileptogenesis.
Collapse
Affiliation(s)
- Mark William Lopes
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Samantha Cristiane Lopes
- Programa de Pós-graduação em Farmacologia, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Danúbia Bonfanti Santos
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ana Paula Costa
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe Marques Gonçalves
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Nelson de Mello
- Centro de Ciências da Saúde e do Esporte - CEFID, Universidade do Estado de Santa Catarina, Florianópolis, SC, Brazil
| | - Rui Daniel Prediger
- Programa de Pós-graduação em Farmacologia, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marcelo Farina
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Roger Walz
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Clínica Médica, Hospital Universitário (HU), Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rodrigo Bainy Leal
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
75
|
da Rocha Lindner G, Bonfanti Santos D, Colle D, Gasnhar Moreira EL, Daniel Prediger R, Farina M, Khalil NM, Mara Mainardes R. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine (Lond) 2016; 10:1127-38. [PMID: 25929569 DOI: 10.2217/nnm.14.165] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM This study investigated the neuroprotective effects of resveratrol (RVT)-loaded polysorbate 80 (PS80)-coated poly(lactide) nanoparticles in a mouse model of Parkinson's disease (PD), and compared these effects with those from bulk RVT. METHODS C57BL/6 mice received for 15 days RVT intraperitoneally (nanoparticulate or non-nanoparticulate), as well as single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that damages dopaminergic neurons and induces PD-related symptoms. RESULTS MPTP induced significant impairments on olfactory discrimination and social recognition memory, as well as caused striatal oxidative stress and reduced the expression of tyrosine hydroxylase in striatum. RVT-loaded nanoparticles (but not bulk) displayed significant neuroprotection against MPTP-induced behavioral and neurochemical changes. CONCLUSION These results point to RVT-loaded poly(lactide)-nanoparticles coated with PS80 a promising nanomedical tool and adjuvant therapy for PD.
Collapse
Affiliation(s)
- Gabriela da Rocha Lindner
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste/UNICENTRO, Rua Simeão Camargo Varela de Sá, 03, 85040-080, Guarapuava, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Perkins AE, Doremus-Fitzwater TL, Spencer RL, Varlinskaya EI, Conti MM, Bishop C, Deak T. A working model for the assessment of disruptions in social behavior among aged rats: The role of sex differences, social recognition, and sensorimotor processes. Exp Gerontol 2016; 76:46-57. [PMID: 26811912 DOI: 10.1016/j.exger.2016.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/28/2023]
Abstract
Aging results in a natural decline in social behavior, yet little is known about the processes underlying these changes. Engaging in positive social interaction is associated with many health benefits, including reduced stress reactivity, and may serve as a potential buffer against adverse consequences of aging. The goal of these studies was to establish a tractable model for the assessment of social behavior deficits associated with late aging. Thus, in Exp. 1, 1.5-, 3-, and 18-month-old male Fischer 344 (F344) rats were assessed for object investigation, and social interaction with a same-aged partner (novel/familiar), or a different-aged partner, thereby establishing working parameters for studies that followed. Results revealed that 18-month-old males exhibited reductions in social investigation and social contact behavior, with this age-related decline not influenced by familiarity or age of the social partner. Subsequently, Exp. 2 extended assessment of social behavior to both male and female F344 rats at multiple ages (3, 9, 18, and 24 months), after which a series of sensorimotor performance tests were conducted. In this study, both males and females exhibited late aging-related reductions in social interactions, but these changes were more pronounced in females. Additionally, sensorimotor performance was shown to be impaired in 24-month-olds, but not 18-month-olds, with this deficit more evident in males. Finally, Exp. 3 examined whether aging-related inflammation could account for declines in social behavior during late aging by administering naproxen (0, 7, 14, and 28 mg/kg; s.c.)-a non-steroidal anti-inflammatory drug-to 18-month-old females. Results from this study revealed that social behavior was unaffected by acute or repeated (6 days) naproxen, suggesting that aging-related social deficits in females may not be a consequence of a general aging-related inflammation and/or malaise. Together, these findings demonstrate that aging-related declines in social behavior are (i) specific to social stimuli and (ii) not indicative of a general state of aging-related debilitation. Thus, these findings establish working parameters for a highly tractable model in which the neural and hormonal mechanisms underlying aging-related declines in social behavior can be examined.
Collapse
Affiliation(s)
- Amy E Perkins
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Tamara L Doremus-Fitzwater
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Robert L Spencer
- Department of Psychology & Neuroscience, University of Colorado, Boulder, CO 80309-0345, United States
| | - Elena I Varlinskaya
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
77
|
Meusel T, Albinus J, Welge-Luessen A, Hähner A, Hummel T. Short-term effect of caffeine on olfactory function in hyposmic patients. Eur Arch Otorhinolaryngol 2016; 273:2091-5. [DOI: 10.1007/s00405-015-3879-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
|
78
|
Effects of a Proprietary Standardized Orthosiphon stamineus Ethanolic Leaf Extract on Enhancing Memory in Sprague Dawley Rats Possibly via Blockade of Adenosine A 2A Receptors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:375837. [PMID: 26649059 PMCID: PMC4655036 DOI: 10.1155/2015/375837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/26/2015] [Accepted: 09/27/2015] [Indexed: 11/17/2022]
Abstract
The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p < 0.001) change in recognition index (RI) at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory.
Collapse
|
79
|
Li P, Rial D, Canas PM, Yoo JH, Li W, Zhou X, Wang Y, van Westen GJ, Payen MP, Augusto E, Gonçalves N, Tomé AR, Li Z, Wu Z, Hou X, Zhou Y, IJzerman AP, Boyden ES, Cunha RA, Qu J, Chen JF. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Mol Psychiatry 2015; 20:1339-49. [PMID: 25687775 PMCID: PMC4539301 DOI: 10.1038/mp.2014.182] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/28/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
Abstract
Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors.
Collapse
Affiliation(s)
- Ping Li
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Daniel Rial
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Paula M. Canas
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ji-Hoon Yoo
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| | - Wei Li
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College Wenzhou, Zhejiang, China
| | - Yumei Wang
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| | | | - Marie-Pierre Payen
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| | - Elisabete Augusto
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Nélio Gonçalves
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Angelo R. Tomé
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Zhihui Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College Wenzhou, Zhejiang, China
| | - Zhongnan Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College Wenzhou, Zhejiang, China
| | - Xianhua Hou
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| | - Yuanguo Zhou
- Molecular Biology Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ad P. IJzerman
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Edward S. Boyden
- MIT Media Lab, MIT McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, MIT, Cambridge, MA 02139
| | - Rodrigo A. Cunha
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College Wenzhou, Zhejiang, China
| | - Jiang-Fan Chen
- Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
80
|
Burnstock G, Dale N. Purinergic signalling during development and ageing. Purinergic Signal 2015; 11:277-305. [PMID: 25989750 PMCID: PMC4529855 DOI: 10.1007/s11302-015-9452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023] Open
Abstract
Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
81
|
Peres TV, Eyng H, Lopes SC, Colle D, Gonçalves FM, Venske DKR, Lopes MW, Ben J, Bornhorst J, Schwerdtle T, Aschner M, Farina M, Prediger RD, Leal RB. Developmental exposure to manganese induces lasting motor and cognitive impairment in rats. Neurotoxicology 2015. [PMID: 26215118 DOI: 10.1016/j.neuro.2015.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum.
Collapse
Affiliation(s)
- Tanara V Peres
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Helena Eyng
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Samantha C Lopes
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Dirleise Colle
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe M Gonçalves
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora K R Venske
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Mark W Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Juliana Ben
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Julia Bornhorst
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rui D Prediger
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rodrigo B Leal
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
82
|
Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci U S A 2015; 112:7833-8. [PMID: 26056314 DOI: 10.1073/pnas.1423088112] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.
Collapse
|
83
|
Chen JF, Lee CF, Chern Y. Adenosine receptor neurobiology: overview. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 119:1-49. [PMID: 25175959 DOI: 10.1016/b978-0-12-801022-8.00001-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Chien-fei Lee
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
84
|
Daulatzai MA. Olfactory dysfunction: its early temporal relationship and neural correlates in the pathogenesis of Alzheimer’s disease. J Neural Transm (Vienna) 2015; 122:1475-97. [DOI: 10.1007/s00702-015-1404-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022]
|
85
|
Stasi MA, Minetti P, Lombardo K, Riccioni T, Caprioli A, Vertechy M, Di Serio S, Pace S, Borsini F. Animal models of Parkinson׳s disease: Effects of two adenosine A2A receptor antagonists ST4206 and ST3932, metabolites of 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine (ST1535). Eur J Pharmacol 2015; 761:353-61. [PMID: 25936513 DOI: 10.1016/j.ejphar.2015.03.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/10/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
Antagonism of the adenosine A2A receptor represents a promising strategy for non-dopaminergic treatment of Parkinson׳s disease (PD). Previously, the adenosine A2A receptor antagonist ST1535 was shown to possess potential beneficial effects in animal models of PD. Two metabolites of ST1535, namely ST3932 and ST4206, were tested in vitro to assess their affinity and activity on cloned human A2A adenosine receptors, and their metabolic profile. Additionally, ST3932 and ST4206 were investigated in vivo in animal models of PD following oral/intraperitoneal administration of 10, 20 and 40mg/kg using ST1535 as a reference compound. ST3932 and ST4206 displayed high affinity and antagonist behaviour for cloned human adenosine A2A receptors. The Ki values for ST1535, ST3932 and ST4206 were 8, 8 and 12nM, respectively, and their IC50 values on cyclic AMP were 427, 450 and 990nM, respectively. ST1535, ST3932 and ST4206 antagonized (orally) haloperidol-induced catalepsy in mice, potentiated (intraperitoneally) the number of contralateral rotations induced by l-3,4-dihydroxyphenylalanine (l-DOPA) (3mg/kg) plus benserazide (6mg/kg) in 6-Hydroxydopamine hydrobromide (6-OHDA)-lesioned rats, and increased mouse motor activity by oral route. Thus, ST3932 and ST4206, two ST1535 metabolites, show a pharmacological activity similar to ST1535, both in vitro and in vivo, and may be regarded as an interesting pharmacological alternative to ST1535.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Silvia Pace
- Research & Development Area, Sigma-tau, Italy
| | | |
Collapse
|
86
|
Rodrigues RJ, Tomé AR, Cunha RA. ATP as a multi-target danger signal in the brain. Front Neurosci 2015; 9:148. [PMID: 25972780 PMCID: PMC4412015 DOI: 10.3389/fnins.2015.00148] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022] Open
Abstract
ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, in astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR), which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection.
Collapse
Affiliation(s)
- Ricardo J Rodrigues
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Institute for Interdisciplinary Research, University of Coimbra Coimbra, Portugal
| | - Angelo R Tomé
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Faculty of Medicine, University of Coimbra Coimbra, Portugal
| |
Collapse
|
87
|
Li W, Silva HB, Real J, Wang YM, Rial D, Li P, Payen MP, Zhou Y, Muller CE, Tomé AR, Cunha RA, Chen JF. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Neurobiol Dis 2015; 79:70-80. [PMID: 25892655 DOI: 10.1016/j.nbd.2015.03.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 01/23/2023] Open
Abstract
Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Joana Real
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Yu-Mei Wang
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ping Li
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Marie-Pierce Payen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yuanguo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Christa E Muller
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Portugal
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
88
|
Panza F, Solfrizzi V, Barulli MR, Bonfiglio C, Guerra V, Osella A, Seripa D, Sabbà C, Pilotto A, Logroscino G. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. J Nutr Health Aging 2015; 19:313-28. [PMID: 25732217 DOI: 10.1007/s12603-014-0563-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A prolonged preclinical phase of more than two decades before the onset of dementia suggested that initial brain changes of Alzheimer's disease (AD) and the symptoms of advanced AD may represent a unique continuum. Given the very limited therapeutic value of drugs currently used in the treatment of AD and dementia, preventing or postponing the onset of AD and delaying or slowing its progression are becoming mandatory. Among possible reversible risk factors of dementia and AD, vascular, metabolic, and lifestyle-related factors were associated with the development of dementia and late-life cognitive disorders, opening new avenues for the prevention of these diseases. Among diet-associated factors, coffee is regularly consumed by millions of people around the world and owing to its caffeine content, it is the best known psychoactive stimulant resulting in heightened alertness and arousal and improvement of cognitive performance. Besides its short-term effect, some case-control and cross-sectional and longitudinal population-based studies evaluated the long-term effects on brain function and provided some evidence that coffee, tea, and caffeine consumption or higher plasma caffeine levels may be protective against cognitive impairment/decline and dementia. In particular, several cross-sectional and longitudinal population-based studies suggested a protective effect of coffee, tea, and caffeine use against late-life cognitive impairment/decline, although the association was not found in all cognitive domains investigated and there was a lack of a distinct dose-response association, with a stronger effect among women than men. The findings on the association of coffee, tea, and caffeine consumption or plasma caffeine levels with incident mild cognitive impairment and its progression to dementia were too limited to draw any conclusion. Furthermore, for dementia and AD prevention, some studies with baseline examination in midlife pointed to a lack of association, although other case-control and longitudinal population-based studies with briefer follow-up periods supported favourable effects of coffee, tea, and caffeine consumption against AD. Larger studies with longer follow-up periods should be encouraged, addressing other potential bias and confounding sources, so hopefully opening new ways for diet-related prevention of dementia and AD.
Collapse
Affiliation(s)
- F Panza
- Francesco Panza, MD, PhD, Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy and Department of Clinical Research in Neurology, University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Jacobs SA, Tsien JZ. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory. GENES BRAIN AND BEHAVIOR 2015; 13:376-84. [PMID: 24834524 DOI: 10.1111/gbb.12123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.
Collapse
|
90
|
Rodrigues LS, Targa ADS, Noseda ACD, Aurich MF, Da Cunha C, Lima MMS. Olfactory impairment in the rotenone model of Parkinson's disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation. Front Cell Neurosci 2014; 8:383. [PMID: 25520618 PMCID: PMC4249459 DOI: 10.3389/fncel.2014.00383] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022] Open
Abstract
Olfactory and rapid eye movement (REM) sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson's disease (PD). Additionally, different studies report declines in olfactory performance during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood, and impairment of dopamine (DA) neurotransmission in the olfactory bulb and the nigrostriatal pathway may have important roles in olfaction and REM sleep disturbances. Therefore, we hypothesized that modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and REM sleep deprivation (REMSD). We decided to investigate the olfactory, neurochemical, and histological alterations generated through the administration of piribedil (a selective D2 agonist) or raclopride (a selective D2 antagonist) within the glomerular layer of the olfactory bulb, in rats subjected to intranigral rotenone and REMSD. Our findings provide evidence of the occurrence of a negative correlation (r = -0.52, P = 0.04) between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham, groups. A significant positive correlation (r = 0.34, P = 0.03) was observed between nigrostriatal DA levels and olfactory discrimination index (DI) for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc) are associated with enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA were induced by piribedil in the rotenone control and rotenone REMSD groups, consistent with reductions in the DI. The present evidence reinforce the idea that DA produced by periglomerular neurons, particularly the bulbar dopaminergic D2 receptors, is an essential participant in olfactory discrimination processes, as the SNpc, and the striatum.
Collapse
Affiliation(s)
- Lais S Rodrigues
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Setor de Ciências Biológicas Curitiba, Brazil
| | - Adriano D S Targa
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Setor de Ciências Biológicas Curitiba, Brazil
| | - Ana Carolina D Noseda
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Setor de Ciências Biológicas Curitiba, Brazil
| | - Mariana F Aurich
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Setor de Ciências Biológicas Curitiba, Brazil
| | - Cláudio Da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Departamento de Farmacologia, Universidade Federal do Paraná Curitiba, Brazil
| | - Marcelo M S Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Universidade Federal do Paraná, Setor de Ciências Biológicas Curitiba, Brazil
| |
Collapse
|
91
|
Giunta S, Andriolo V, Castorina A. Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride. Int J Biochem Cell Biol 2014; 54:122-36. [PMID: 25058312 DOI: 10.1016/j.biocel.2014.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/25/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
In a previous work we have shown that exposure to aluminum (Al) chloride (AlCl3) enhanced the neurotoxicity of the amyloid beta(25-35) fragment (Abeta(25-35)) in neuroblastoma cells and affected the expression of Alzheimer's disease (AD)-related genes. Caffein, a compound endowed with beneficial effects against AD, exerts neuroprotection primarily through its antagonist activity on A2A adenosine receptors (A2AR), although it also inhibits A1Rs with similar potency. Still, studies on the specific involvement of these receptors in neuroprotection in a model of combined neurotoxicity (Abeta(25-35)+AlCl3) are missing. To address this issue, cultured SH-SY5Y cells exposed to Abeta(25-35)+AlCl3 were assessed for cell viability, morphology, intracellular ROS activity and expression of apoptosis-, stress- and AD-related proteins. To define the role of A1R and A2ARs, pretreatment with caffein, specific receptor antagonists (DPCPX or SCH58261) or siRNA-mediated gene knockdown were delivered. Results indicate that AlCl3 treatment exacerbated Abeta(25-35) toxicity, increased ROS production, lipid peroxidation, β-secretase-1 (BACE1) and amyloid precursor protein (APP). Interestingly, SCH58261 successfully prevented toxicity associated to Abeta(25-35) only, whereas pretreatment with both DPCPX and SCH58261 was required to fully avert Abeta(25-35)+AlCl3-induced damage, suggesting that A1Rs might also be critically involved in protection during combined toxicity. The effects of caffein were mimicked by both N-acetyl cysteine, an antioxidant, and desferrioxamine, likely acting through distinct mechanisms. Altogether, our data establish a novel protective function associated with A1R inhibition in the setting of combined Abeta(25-35)+AlCl3 neurotoxicity, and expand our current knowledge on the potential beneficial role of caffein to prevent AD progression in subjects environmentally exposed to aluminum.
Collapse
Affiliation(s)
- Salvatore Giunta
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Italy
| | - Violetta Andriolo
- Department of Pediatrics and Public Health Sciences, University of Turin, Italy
| | - Alessandro Castorina
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Italy.
| |
Collapse
|
92
|
Fritz BM, Companion M, Boehm SL. "Wired," yet intoxicated: modeling binge caffeine and alcohol co-consumption in the mouse. Alcohol Clin Exp Res 2014; 38:2269-78. [PMID: 24961658 DOI: 10.1111/acer.12472] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND The combination of highly caffeinated "energy drinks" with alcohol (ethanol [EtOH]) has become popular among young adults and intoxication via such beverages has been associated with an elevated risk for harmful behaviors. However, there are discrepancies in the human literature regarding the effect of caffeine on alcohol intoxication, perhaps due to confounding factors such as personality type, expectancy, and history of exposure. Animal models of co-exposure are resistant to such issues; however, the consequences of voluntary co-consumption have been largely ignored in the animal literature. The primary goal of this work was to characterize a mouse model of binge caffeine and EtOH co-consumption employing the limited access "Drinking-in-the-Dark" (DID) paradigm. METHODS Caffeine was added to a 20% alcohol solution via DID. Alcohol/caffeine intake, locomotor behavior, ataxia, anxiety-like behavior, and cognitive function were evaluated as a consequence of co-consumption in adult male C57BL/6J mice. RESULTS Caffeine did not substantially alter binge alcohol intake or resultant blood EtOH concentrations (BECs), nor did it alter alcohol's anxiolytic effects on the elevated plus maze or cognitive-interfering effects in a novel object-recognition task. However, no evidence of alcohol-induced sedation was observed in co-consumption groups that instead demonstrated a highly stimulated state similar to that of caffeine alone. The addition of caffeine was also found to mitigate alcohol-induced ataxia. CONCLUSIONS Taken together, our mouse model indicates that binge co-consumption of caffeine and alcohol produces a stimulated, less ataxic and anxious, as well as cognitively altered state; a state that could be of great public health concern. These results appear to resemble the colloquially identified "wide awake drunk" state that individuals seek via consumption of such beverages. This self-administration model therefore offers the capacity for translationally valid explorations of the neurobiological consequences of binge co-consumption to assess the public health risk of this drug combination.
Collapse
Affiliation(s)
- Brandon M Fritz
- Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, Indiana
| | | | | |
Collapse
|
93
|
Rodriguez RS, Haugen R, Rueber A, Huang CC. Reversible neuronal and muscular toxicity of caffeine in developing vertebrates. Comp Biochem Physiol C Toxicol Pharmacol 2014; 163:47-54. [PMID: 24667760 DOI: 10.1016/j.cbpc.2014.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
This study utilizes zebrafish embryos to understand the cellular and molecular mechanisms of caffeine toxicity in developing vertebrate embryos. By using a high concentration of caffeine, we observed almost all the phenotypes that have been described in humans and/or in other animal models, including neural tube closure defect, jittery, touch insensitivity, and growth retardation as well as a drastic coiled body phenotype. Zebrafish embryos exposed to 5mM caffeine exhibited high frequent movement, 10 moves/min comparing with around 3 moves/min in control embryos, within half an hour post exposure (HPE). They later showed twitching, uncoordinated movement, and eventually severe body curvature by 6HPE. Exposure at later stages resulted in the same phenotypes but more posteriorly. Surprisingly, when caffeine was removed before 6HPE, the embryos were capable of recovering but still exhibited mild curvature and shorter bodies. Longer exposure caused irreversible body curvature and lethality. These results suggest that caffeine likely targets the neuro-muscular physiology in developing embryos. Immunohistochemistry revealed that the motorneurons in treated embryos developed shorter axons, abnormal branching, and excessive synaptic vesicles. Developing skeletal muscles also appeared smaller and lacked the well-defined boundaries seen in control embryos. Finally, caffeine increases the expression of genes involved in synaptic vesicle migration. In summary, our results provide molecular understanding of caffeine toxicity on developing vertebrate embryos.
Collapse
Affiliation(s)
- Rufino S Rodriguez
- Biology Department, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Rebecca Haugen
- Biology Department, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Alexandra Rueber
- Biology Department, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Cheng-Chen Huang
- Biology Department, University of Wisconsin-River Falls, River Falls, WI 54022, USA.
| |
Collapse
|
94
|
Ardais A, Borges M, Rocha A, Sallaberry C, Cunha R, Porciúncula L. Caffeine triggers behavioral and neurochemical alterations in adolescent rats. Neuroscience 2014; 270:27-39. [DOI: 10.1016/j.neuroscience.2014.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/01/2022]
|
95
|
Mioranzza S, Nunes F, Marques DM, Fioreze GT, Rocha AS, Botton PHS, Costa MS, Porciúncula LO. Prenatal caffeine intake differently affects synaptic proteins during fetal brain development. Int J Dev Neurosci 2014; 36:45-52. [PMID: 24862851 DOI: 10.1016/j.ijdevneu.2014.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023] Open
Abstract
Caffeine is the psychostimulant most consumed worldwide. However, little is known about its effects during fetal brain development. In this study, adult female Wistar rats received caffeine in drinking water (0.1, 0.3 and 1.0 g/L) during the active cycle in weekdays, two weeks before mating and throughout pregnancy. Cerebral cortex and hippocampus from embryonic stages 18 or 20 (E18 or E20, respectively) were collected for immunodetection of the following synaptic proteins: brain-derived neurotrophic factor (BDNF), TrkB receptor, Sonic Hedgehog (Shh), Growth Associated Protein 43 (GAP-43) and Synaptosomal-associated Protein 25 (SNAP-25). Besides, the estimation of NeuN-stained nuclei (mature neurons) and non-neuronal nuclei was verified in both brain regions and embryonic periods. Caffeine (1.0 g/L) decreased the body weight of embryos at E20. Cortical BDNF at E18 was decreased by caffeine (1.0 g/L), while it increased at E20, with no major effects on TrkB receptors. In the hippocampus, caffeine decreased TrkB receptor only at E18, with no effects on BDNF. Moderate and high doses of caffeine promoted an increase in Shh in both brain regions at E18, and in the hippocampus at E20. Caffeine (0.3g/L) decreased GAP-43 only in the hippocampus at E18. The NeuN-stained nuclei increased in the cortex at E20 by lower dose and in the hippocampus at E18 by moderate dose. Our data revealed that caffeine transitorily affect synaptic proteins during fetal brain development. The increased number of NeuN-stained nuclei by prenatal caffeine suggests a possible acceleration of the telencephalon maturation. Although some modifications in the synaptic proteins were transient, our data suggest that caffeine even in lower doses may alter the fetal brain development.
Collapse
Affiliation(s)
- Sabrina Mioranzza
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Fernanda Nunes
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Daniela M Marques
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Gabriela T Fioreze
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Andréia S Rocha
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Paulo Henrique S Botton
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Marcelo S Costa
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil
| | - Lisiane O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico, Programa de Pós-Graduação em Ciências Biológicas/Bioquímica, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
96
|
Uchida SI, Kadowaki-Horita T, Kanda T. Effects of the adenosine A2A receptor antagonist on cognitive dysfunction in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:169-89. [PMID: 25175966 DOI: 10.1016/b978-0-12-801022-8.00008-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is primarily characterized by motor abnormalities, but cognitive changes also occur in the early and late stages of the disease process. In PD patients, cognitive dysfunction is associated with reduced quality of life, as well as increased morbidity and mortality, resulting in increases in caregiver burden, and health-related costs. Therefore, safe and effective approaches are needed to treat cognitive dysfunction in PD patients. The underlying pathophysiology of cognitive dysfunction is complex and not fully understood, however. α-Synuclein, amyloid-related proteins, and cholinergic deficits have been reported to partially contribute to cognitive dysfunction. Changes in cortical dopamine (DA) content may also be responsible for early cognitive changes in patients with PD. Certainly, dopaminergic afferents to the frontal cortex degenerate in PD, and there is a reduction of DA content in the prefrontal cortex (PFC). It has also been reported that PFC dopaminergic input plays an important role in working memory performance. Moreover, PFC DA levels and working memory performance are significantly reduced by a 6-hydroxydopamine lesion in the PFC of a rat. Recent findings in the areas of pharmacological manipulation and genetic ablation suggest that the adenosine A2A receptor is also related to cognitive functions, especially working memory. In addition, the blockade of adenosine A2A receptors reverses cognitive dysfunction in PFC-lesioned rats, and this blocking effect may be due to an increase in PFC DA content. Therefore, adenosine A2A receptor antagonists not only improve motor performance, but they may also lead to improved cognitive function in those with PD.
Collapse
Affiliation(s)
- Shin-ichi Uchida
- Central Nervous System Research Laboratories, Research & Development Division, Kyowa Hakko Kirin Co., Ltd., Sunto-gun, Shizuoka, Japan.
| | - Takako Kadowaki-Horita
- Central Nervous System Research Laboratories, Research & Development Division, Kyowa Hakko Kirin Co., Ltd., Sunto-gun, Shizuoka, Japan
| | - Tomoyuki Kanda
- Central Nervous System Research Laboratories, Research & Development Division, Kyowa Hakko Kirin Co., Ltd., Sunto-gun, Shizuoka, Japan
| |
Collapse
|
97
|
Chen JF. Adenosine receptor control of cognition in normal and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:257-307. [PMID: 25175970 DOI: 10.1016/b978-0-12-801022-8.00012-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles, additional animal and human studies to better understand the mechanism underlying the AR-mediated control of cognition under normal and disease conditions will provide the required rationale to stimulate the necessary clinical investigation to rapidly translate adenosine and AR drug as a novel strategy to control memory impairment in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA; The Molecular Medicine Institute, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
98
|
Varga J, Klausz B, Domokos Á, Kálmán S, Pákáski M, Szűcs S, Garab D, Zvara Á, Puskás L, Kálmán J, Tímár J, Bagdy G, Zelena D. Increase in Alzheimer's related markers preceeds memory disturbances: Studies in vasopressin-deficient Brattleboro rat. Brain Res Bull 2014; 100:6-13. [DOI: 10.1016/j.brainresbull.2013.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/25/2022]
|
99
|
Kadowaki Horita T, Kobayashi M, Mori A, Jenner P, Kanda T. Effects of the adenosine A2A antagonist istradefylline on cognitive performance in rats with a 6-OHDA lesion in prefrontal cortex. Psychopharmacology (Berl) 2013; 230:345-52. [PMID: 23748382 DOI: 10.1007/s00213-013-3158-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
RATIONALE Altered cognitive function is a common feature of both the early and later stages of Parkinson's disease (PD) that involves alterations in cortical dopamine content. Adenosine A2A antagonists, such as istradefylline, improve motor function in PD, but their effect on cognitive impairment has not been determined. OBJECTIVE The present study investigated whether impairment of working memory due to the loss of dopaminergic input into the prefrontal cortex (PFC) is reversed by administration of istradefylline. We also evaluated whether A2A antagonist administration modulates dopamine levels in the PFC. METHODS Bilateral lesions of the dopaminergic input to the PFC were produced in rats using 6-hydroxydopamine (6-OHDA). Cognitive performance was evaluated using an object recognition task and delayed alternation task. The effects of istradefylline, donepezil and methamphetamine on cognitive performance were examined. In addition, the effect of istradefylline on extracellular dopamine levels in the PFC was studied. RESULTS PFC dopamine levels and cognitive performance were significantly reduced by 6-OHDA lesioning. Istradefylline, donepezil and methamphetamine improved cognitive performance of PFC-lesioned rats. Istradefylline increased dopamine levels in the PFC in both normal and PFC-lesioned rats. CONCLUSIONS PFC dopaminergic input plays an important role in working memory performance. Blockade of A2A receptors using istradefylline reverses the changes in cognitive function, and this may be due to an increase in PFC dopamine content. Adenosine A2A receptor antagonists not only improve motor performance in PD but may also lead to improved cognition.
Collapse
Affiliation(s)
- Takako Kadowaki Horita
- Pharmacological Research Laboratories, Research Division, Kyowa Hakko Kirin Co., Ltd, 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8731, Japan
| | | | | | | | | |
Collapse
|
100
|
Hughes RN. Modification by Environmental Enrichment of Acute Caffeine's Behavioral Effects on Male and Female Rats. JOURNAL OF CAFFEINE RESEARCH 2013. [DOI: 10.1089/jcr.2013.0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Robert N. Hughes
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|