51
|
Tracing Actin Filament Bundles in Three-Dimensional Electron Tomography Density Maps of Hair Cell Stereocilia. Molecules 2018; 23:molecules23040882. [PMID: 29641472 PMCID: PMC6017643 DOI: 10.3390/molecules23040882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
Cryo-electron tomography (cryo-ET) is a powerful method of visualizing the three-dimensional organization of supramolecular complexes, such as the cytoskeleton, in their native cell and tissue contexts. Due to its minimal electron dose and reconstruction artifacts arising from the missing wedge during data collection, cryo-ET typically results in noisy density maps that display anisotropic XY versus Z resolution. Molecular crowding further exacerbates the challenge of automatically detecting supramolecular complexes, such as the actin bundle in hair cell stereocilia. Stereocilia are pivotal to the mechanoelectrical transduction process in inner ear sensory epithelial hair cells. Given the complexity and dense arrangement of actin bundles, traditional approaches to filament detection and tracing have failed in these cases. In this study, we introduce BundleTrac, an effective method to trace hundreds of filaments in a bundle. A comparison between BundleTrac and manually tracing the actin filaments in a stereocilium showed that BundleTrac accurately built 326 of 330 filaments (98.8%), with an overall cross-distance of 1.3 voxels for the 330 filaments. BundleTrac is an effective semi-automatic modeling approach in which a seed point is provided for each filament and the rest of the filament is computationally identified. We also demonstrate the potential of a denoising method that uses a polynomial regression to address the resolution and high-noise anisotropic environment of the density map.
Collapse
|
52
|
Qiu X, Müller U. Mechanically Gated Ion Channels in Mammalian Hair Cells. Front Cell Neurosci 2018; 12:100. [PMID: 29755320 PMCID: PMC5932396 DOI: 10.3389/fncel.2018.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 01/05/2023] Open
Abstract
Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET) channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS)/LHFPL5, transmembrane inner ear (TMIE) and transmembrane channel-like proteins 1 and 2 (TMC1/2). However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.
Collapse
Affiliation(s)
- Xufeng Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ulrich Müller
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
53
|
Abstract
Several cell types experience repetitive mechanical stimuli, including vein endothelial cells during pulsating blood flow, inner ear hair cells upon sound exposure, and skin cells and their innervating dorsal root ganglion (DRG) neurons when sweeping across a textured surface or touching a vibrating object. While mechanosensitive Piezo ion channels have been clearly implicated in sensing static touch, their roles in transducing repetitive stimulations are less clear. Here, we perform electrophysiological recordings of heterologously expressed mouse Piezo1 and Piezo2 responding to repetitive mechanical stimulations. We find that both channels function as pronounced frequency filters whose transduction efficiencies vary with stimulus frequency, waveform, and duration. We then use numerical simulations and human disease-related point mutations to demonstrate that channel inactivation is the molecular mechanism underlying frequency filtering and further show that frequency filtering is conserved in rapidly adapting mouse DRG neurons. Our results give insight into the potential contributions of Piezos in transducing repetitive mechanical stimuli.
Collapse
|
54
|
Faber J, Bozovic D. Chaotic Dynamics of Inner Ear Hair Cells. Sci Rep 2018; 8:3366. [PMID: 29463841 PMCID: PMC5820366 DOI: 10.1038/s41598-018-21538-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
Experimental records of active bundle motility are used to demonstrate the presence of a low-dimensional chaotic attractor in hair cell dynamics. Dimensionality tests from dynamic systems theory are applied to estimate the number of independent variables sufficient for modelling the hair cell response. Poincaré maps are constructed to observe a quasiperiodic transition from chaos to order with increasing amplitudes of mechanical forcing. The onset of this transition is accompanied by a reduction of Kolmogorov entropy in the system and an increase in transfer entropy between the stimulus and the hair bundle, indicative of signal detection. A simple theoretical model is used to describe the observed chaotic dynamics. The model exhibits an enhancement of sensitivity to weak stimuli when the system is poised in the chaotic regime. We propose that chaos may play a role in the hair cell's ability to detect low-amplitude sounds.
Collapse
Affiliation(s)
- Justin Faber
- Department of Physics & Astronomy, University of California, Los Angeles, California, 90095, USA
| | - Dolores Bozovic
- Department of Physics & Astronomy, University of California, Los Angeles, California, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, California, 90095, USA.
| |
Collapse
|
55
|
Tan X, Fu Q, Yuan H, Ding L, Wang T. Improved Transient Response Estimations in Predicting 40 Hz Auditory Steady-State Response Using Deconvolution Methods. Front Neurosci 2018; 11:697. [PMID: 29311778 PMCID: PMC5732975 DOI: 10.3389/fnins.2017.00697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022] Open
Abstract
The auditory steady-state response (ASSR) is one of the main approaches in clinic for health screening and frequency-specific hearing assessment. However, its generation mechanism is still of much controversy. In the present study, the linear superposition hypothesis for the generation of ASSRs was investigated by comparing the relationships between the classical 40 Hz ASSR and three synthetic ASSRs obtained from three different templates for transient auditory evoked potential (AEP). These three AEPs are the traditional AEP at 5 Hz and two 40 Hz AEPs derived from two deconvolution algorithms using stimulus sequences, i.e., continuous loop averaging deconvolution (CLAD) and multi-rate steady-state average deconvolution (MSAD). CLAD requires irregular inter-stimulus intervals (ISIs) in the sequence while MSAD uses the same ISIs but evenly-spaced stimulus sequences which mimics the classical 40 Hz ASSR. It has been reported that these reconstructed templates show similar patterns but significant difference in morphology and distinct frequency characteristics in synthetic ASSRs. The prediction accuracies of ASSR using these templates show significant differences (p < 0.05) in 45.95, 36.28, and 10.84% of total time points within four cycles of ASSR for the traditional, CLAD, and MSAD templates, respectively, as compared with the classical 40 Hz ASSR, and the ASSR synthesized from the MSAD transient AEP suggests the best similarity. And such a similarity is also demonstrated at individuals only in MSAD showing no statistically significant difference (Hotelling's T2 test, T2 = 6.96, F = 0.80, p = 0.592) as compared with the classical 40 Hz ASSR. The present results indicate that both stimulation rate and sequencing factor (ISI variation) affect transient AEP reconstructions from steady-state stimulation protocols. Furthermore, both auditory brainstem response (ABR) and middle latency response (MLR) are observed in contributing to the composition of ASSR but with variable weights in three templates. The significantly improved prediction accuracy of ASSR achieved by MSAD strongly supports the linear superposition mechanism of ASSR if an accurate template of transient AEPs can be reconstructed. The capacity in obtaining both ASSR and its underlying transient components accurately and simultaneously has the potential to contribute significantly to diagnosis of patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaodan Tan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qiuyang Fu
- Department of Otolaryngology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Tao Wang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
56
|
Neal CA, Nelson-Brantley JG, Detamore MS, Staecker H, Mellott AJ. A Protocol for Decellularizing Mouse Cochleae for Inner Ear Tissue Engineering. J Vis Exp 2018. [PMID: 29364256 DOI: 10.3791/56523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In mammals, mechanosensory hair cells that facilitate hearing lack the ability to regenerate, which has limited treatments for hearing loss. Current regenerative medicine strategies have focused on transplanting stem cells or genetic manipulation of surrounding support cells in the inner ear to encourage replacement of damaged stem cells to correct hearing loss. Yet, the extracellular matrix (ECM) may play a vital role in inducing and maintaining function of hair cells, and has not been well investigated. Using the cochlear ECM as a scaffold to grow adult stem cells may provide unique insights into how the composition and architecture of the extracellular environment aids cells in sustaining hearing function. Here we present a method for isolating and decellularizing cochleae from mice to use as scaffolds accepting perfused adult stem cells. In the current protocol, cochleae are isolated from euthanized mice, decellularized, and decalcified. Afterward, human Wharton's jelly cells (hWJCs) that were isolated from the umbilical cord were carefully perfused into each cochlea. The cochleae were used as bioreactors, and cells were cultured for 30 days before undergoing processing for analysis. Decellularized cochleae retained identifiable extracellular structures, but did not reveal the presence of cells or noticeable fragments of DNA. Cells perfused into the cochlea invaded most of the interior and exterior of the cochlea and grew without incident over a duration of 30 days. Thus, the current method can be used to study how cochlear ECM affects cell development and behavior.
Collapse
Affiliation(s)
| | | | | | - Hinrich Staecker
- Department of Otolaryngology, University of Kansas Medical Center
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center;
| |
Collapse
|
57
|
Hanada Y, Nakamura Y, Ishida Y, Takimoto Y, Taniguchi M, Ozono Y, Koyama Y, Morihana T, Imai T, Ota Y, Sato T, Inohara H, Shimada S. Epiphycan is specifically expressed in cochlear supporting cells and is necessary for normal hearing. Biochem Biophys Res Commun 2017; 492:379-385. [DOI: 10.1016/j.bbrc.2017.08.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
|
58
|
A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 2017; 35:280-284. [PMID: 28165475 PMCID: PMC5340646 DOI: 10.1038/nbt.3781] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 01/04/2017] [Indexed: 01/01/2023]
Abstract
Efforts to develop gene therapies for hearing loss have been hampered by the lack of safe, efficient, and clinically relevant delivery modalities1, 2. Here we demonstrate the safety and efficiency of Anc80L65, a rationally designed synthetic vector3, for transgene delivery to the mouse cochlea. Cochlear explants incubated with Anc80L65 encoding eGFP demonstrated high level transduction of inner and outer hair cells (60–100%). Injection of Anc80L65 through the round window membrane resulted in highly efficient transduction of inner and outer hair cells, a substantial improvement over conventional adeno-associated virus (AAV) vectors. Anc80L65 round window injection was well tolerated, as indicated by sensory cell function, hearing and vestibular function, and immunologic parameters. The ability of Anc80L65 to target outer hair cells at high rates, a requirement for restoration of complex auditory function, may enable future gene therapies for hearing and balance disorders.
Collapse
|
59
|
|
60
|
Levy M, Molzon A, Lee JH, Kim JW, Cheon J, Bozovic D. High-order synchronization of hair cell bundles. Sci Rep 2016; 6:39116. [PMID: 27974743 PMCID: PMC5156917 DOI: 10.1038/srep39116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022] Open
Abstract
Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells.
Collapse
Affiliation(s)
- Michael Levy
- Department of Physics and Astronomy, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Adrian Molzon
- Department of Physics and Astronomy, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.,Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea.,Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Wook Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.,Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea.,Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.,Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea.,Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Dolores Bozovic
- Department of Physics and Astronomy, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
61
|
McGovern MM, Brancheck J, Grant AC, Graves KA, Cox BC. Quantitative Analysis of Supporting Cell Subtype Labeling Among CreER Lines in the Neonatal Mouse Cochlea. J Assoc Res Otolaryngol 2016; 18:227-245. [PMID: 27873085 DOI: 10.1007/s10162-016-0598-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/17/2016] [Indexed: 11/30/2022] Open
Abstract
Four CreER lines that are commonly used in the auditory field to label cochlear supporting cells (SCs) are expressed in multiple SC subtypes, with some lines also showing reporter expression in hair cells (HCs). We hypothesized that altering the tamoxifen dose would modify CreER expression and target subsets of SCs. We also used two different reporter lines, ROSA26 tdTomato and CAG-eGFP, to achieve the same goal. Our results confirm previous reports that Sox2 CreERT2 and Fgfr3-iCreER T2 are not only expressed in neonatal SCs but also in HCs. Decreasing the tamoxifen dose did not reduce HC expression for Sox2 CreERT2 , but changing to the CAG-eGFP reporter decreased reporter-positive HCs sevenfold. However, there was also a significant decrease in the number of reporter-positive SCs. In contrast, there was a large reduction in reporter-positive HCs in Fgfr3-iCreER T2 mice with the lowest tamoxifen dose tested yet only limited reduction in SC labeling. The targeting of reporter expression to inner phalangeal and border cells was increased when Plp-CreER T2 was paired with the CAG-eGFP reporter; however, the total number of labeled cells decreased. Changes to the tamoxifen dose or reporter line with Prox1 CreERT2 caused minimal changes. Our data demonstrate that modifications to the tamoxifen dose or the use of different reporter lines may be successful in narrowing the numbers and/or types of cells labeled, but each CreER line responded differently. When the ROSA26 tdTomato reporter was combined with any of the four CreER lines, there was no difference in the number of tdTomato-positive cells after one or two injections of tamoxifen given at birth. Thus, tamoxifen-mediated toxicity could be reduced by only giving one injection. While the CAG-eGFP reporter consistently labeled fewer cells, both reporter lines are valuable depending on the goal of the study.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Joseph Brancheck
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Auston C Grant
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA.
- Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA.
| |
Collapse
|
62
|
Ni G, Elliott SJ, Baumgart J. Finite-element model of the active organ of Corti. J R Soc Interface 2016; 13:20150913. [PMID: 26888950 DOI: 10.1098/rsif.2015.0913] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback.
Collapse
Affiliation(s)
- Guangjian Ni
- Institute of Sound and Vibration Research, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Stephen J Elliott
- Institute of Sound and Vibration Research, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Johannes Baumgart
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
63
|
Edri Y, Bozovic D, Yochelis A. Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing. EUROPHYSICS LETTERS 2016; 116:28002. [PMID: 33859450 PMCID: PMC8046175 DOI: 10.1209/0295-5075/116/28002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
- The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.
Collapse
Affiliation(s)
- Yuval Edri
- Department of Physics, Ben-Gurion University of the Negev - Beer-Sheva, Israel
- Physics Department, Nuclear Research Center Negev - P.O. Box 9001, Beer-Sheva 84190, Israel
| | - Dolores Bozovic
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles Los Angeles, CA, 90025, USA
| | - Arik Yochelis
- Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000 Midreshet Ben-Gurion, Israel
| |
Collapse
|
64
|
Kim JW, Lee JH, Ma JH, Chung E, Choi H, Bok J, Cheon J. Magnetic Force Nanoprobe for Direct Observation of Audio Frequency Tonotopy of Hair Cells. NANO LETTERS 2016; 16:3885-91. [PMID: 27215487 DOI: 10.1021/acs.nanolett.6b01392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sound perception via mechano-sensation is a remarkably sensitive and fast transmission process, converting sound as a mechanical input to neural signals in a living organism. Although knowledge of auditory hair cell functions has advanced over the past decades, challenges remain in understanding their biomechanics, partly because of their biophysical complexity and the lack of appropriate probing tools. Most current studies of hair cells have been conducted in a relatively low-frequency range (<1000 Hz); therefore, fast kinetic study of hair cells has been difficult, even though mammalians have sound perception of 20 kHz or higher. Here, we demonstrate that the magnetic force nanoprobe (MFN) has superb spatiotemporal capabilities to mechanically stimulate spatially-targeted individual hair cells with a temporal resolution of up to 9 μs, which is equivalent to approximately 50 kHz; therefore, it is possible to investigate avian hair cell biomechanics at different tonotopic regions of the cochlea covering a full hearing frequency range of 50 to 5000 Hz. We found that the variation of the stimulation frequency and amplitude of hair bundles creates distinct mechanical responsive features along the tonotopic axis, where the kinetics of the hair bundle recovery motion exhibits unique frequency-dependent characteristics: basal, middle, and apical hair bundles can effectively respond at their respective ranges of frequency. We revealed that such recovery kinetics possesses two different time constants that are closely related to the passive and active motilities of hair cells. The use of MFN is critical for the kinetics study of free-standing hair cells in a spatiotemporally distinct tonotopic organization.
Collapse
Affiliation(s)
- Ji-Wook Kim
- Center for Nanomedicine, Institute for Basic Science (IBS) , Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University , Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS) , Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University , Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| | | | - Eunna Chung
- Center for Nanomedicine, Institute for Basic Science (IBS) , Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University , Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| | - Hongsuh Choi
- Center for Nanomedicine, Institute for Basic Science (IBS) , Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University , Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| | | | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS) , Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University , Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University , Seoul 03722, Republic of Korea
| |
Collapse
|
65
|
Abstract
The hair bundle—the sensory organelle of inner-ear hair cells of vertebrates—exemplifies the ability of a cell to assemble complex, elegant structures. Proper construction of the bundle is required for proper mechanotransduction in response to external forces and to transmit information about sound and movement. Bundles contain tightly controlled numbers of actin-filled stereocilia, which are arranged in defined rows of precise heights. Indeed, many deafness mutations that disable hair-cell cytoskeletal proteins also disrupt bundles. Bundle assembly is a tractable problem in molecular and cellular systems biology; the sequence of structural changes in stereocilia is known, and a modest number of proteins may be involved.
Collapse
Affiliation(s)
- Peter-G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
66
|
Zhang QX, He XJ, Wong HC, Kindt KS. Functional calcium imaging in zebrafish lateral-line hair cells. Methods Cell Biol 2016; 133:229-52. [PMID: 27263415 DOI: 10.1016/bs.mcb.2015.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sensory hair-cell development, function, and regeneration are fundamental processes that are challenging to study in mammalian systems. Zebrafish are an excellent alternative model to study hair cells because they have an external auxiliary organ called the lateral line. The hair cells of the lateral line are easily accessible, which makes them suitable for live, function-based fluorescence imaging. In this chapter, we describe methods to perform functional calcium imaging in zebrafish lateral-line hair cells. We compare genetically encoded calcium indicators that have been used previously to measure calcium in lateral-line hair cells. We also outline equipment required for calcium imaging and compare different imaging systems. Lastly, we discuss how to set up optimal imaging parameters and how to process and visualize calcium signals. Overall, using these methods, in vivo calcium imaging is a powerful tool to examine sensory hair-cell function in an intact organism.
Collapse
Affiliation(s)
- Q X Zhang
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - X J He
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - H C Wong
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| | - K S Kindt
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, United States
| |
Collapse
|
67
|
Abstract
Hair cells of the vertebrate vestibular and auditory systems convert mechanical inputs into electrical signals that are relayed to the brain. This transduction involves mechanically gated ion channels that open following the deflection of mechanoreceptive hair bundles that reside on top of these cells. The mechano-electrical transduction includes one or more active feedback mechanisms to keep the mechanically gated ion channels in their most sensitive operating range. Coupling between the gating of the mechanosensitive ion channels and this adaptation mechanism leads to the occurrence of spontaneous limit-cycle oscillations, which indeed have been observed in vitro in hair cells from the frog sacculus and the turtle basilar papilla. We obtained simultaneous optical and electrophysiological recordings from bullfrog saccular hair cells with such spontaneously oscillating hair bundles. The spontaneous bundle oscillations allowed us to characterize several properties of mechano-electrical transduction without artificial loading the hair bundle with a mechanical stimulus probe. We show that the membrane potential of the hair cell can modulate or fully suppress innate oscillations, thus controlling the dynamic state of the bundle. We further demonstrate that this control is exerted by affecting the internal calcium concentration, which sets the resting open probability of the mechanosensitive channels. The auditory and vestibular systems could use the membrane potential of hair cells, possibly controlled via efferent innervation, to tune the dynamic states of the cells.
Collapse
|
68
|
Schneider ES, Schmitz A, Schmitz H. Concept of an Active Amplification Mechanism in the Infrared Organ of Pyrophilous Melanophila Beetles. Front Physiol 2015; 6:391. [PMID: 26733883 PMCID: PMC4685094 DOI: 10.3389/fphys.2015.00391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022] Open
Abstract
Jewel beetles of the genus Melanophila possess a pair of metathoracic infrared (IR) organs. These organs are used for forest fire detection because Melanophila larvae can only develop in fire killed trees. Several reports in the literature and a modeling of a historic oil tank fire suggest that beetles may be able to detect large fires by means of their IR organs from distances of more than 100 km. In contrast, the highest sensitivity of the IR organs, so far determined by behavioral and physiological experiments, allows a detection of large fires from distances up to 12 km only. Sensitivity thresholds, however, have always been determined in non-flying beetles. Therefore, the complete micromechanical environment of the IR organs in flying beetles has not been taken into consideration. Because the so-called photomechanic sensilla housed in the IR organs respond bimodally to mechanical as well as to IR stimuli, it is proposed that flying beetles make use of muscular energy coupled out of the flight motor to considerably increase the sensitivity of their IR sensilla during intermittent search flight sequences. In a search flight the beetle performs signal scanning with wing beat frequency while the inputs of the IR organs on both body sides are compared. By this procedure the detection of weak IR signals could be possible even if the signals are hidden in the thermal noise. If this proposed mechanism really exists in Melanophila beetles, their IR organs could even compete with cooled IR quantum detectors. The theoretical concept of an active amplification mechanism in a photon receptor innervated by highly sensitive mechanoreceptors is presented in this article.
Collapse
Affiliation(s)
| | - Anke Schmitz
- Institute of Zoology, University of Bonn Bonn, Germany
| | | |
Collapse
|
69
|
Synchronization of Spontaneous Active Motility of Hair Cell Bundles. PLoS One 2015; 10:e0141764. [PMID: 26540409 PMCID: PMC4634766 DOI: 10.1371/journal.pone.0141764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor.
Collapse
|
70
|
Tan XD, Peng X, Zhan CA, Wang T. Comparison of Auditory Middle-Latency Responses From Two Deconvolution Methods at 40 Hz. IEEE Trans Biomed Eng 2015; 63:1157-66. [PMID: 26441440 DOI: 10.1109/tbme.2015.2485273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GOAL Auditory middle-latency responses (MLRs) are reported to be particularly susceptible to stimulation rate. Deconvolution methods are necessary to unwrap the overlapping responses at a high rate under the linear superposition assumption. This study aims to investigate and compare the MLR characteristics at high and conventional stimulation rates. METHODS The characteristics were examined in healthy adults by using two closely related deconvolution paradigms, namely continuous-loop averaging deconvolution and multirate steady-state averaging deconvolution at a mean rate of 40 Hz, and a conventional low rate of 5 Hz. RESULTS The morphology and stability of the MLRs can benefit from a high-rate stimulation. It appears that stimulation sequencing strategies of deconvolution methods exerted divergent rate effects on MLR characteristics, which might be associated with different adaptation mechanisms. CONCLUSION MLRs obtained by two deconvolution methods and the conventional reference feature differently from one another. SIGNIFICANCE These findings have critical implications in our current understanding of the rate effects on MLR characteristics which may inspire further studies to explore the characteristics of evoked responses at high rates and deconvolution paradigms.
Collapse
|
71
|
Kim J. Unconventional mechanics of lipid membranes: a potential role for mechanotransduction of hair cell stereocilia. Biophys J 2015; 108:610-21. [PMID: 25650928 DOI: 10.1016/j.bpj.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/15/2014] [Accepted: 12/10/2014] [Indexed: 01/20/2023] Open
Abstract
A force-conveying role of the lipid membrane across various mechanoreceptors is now an accepted hypothesis. However, such a mechanism is still not fully understood for mechanotransduction in the hair bundle of auditory sensory hair cells. A major goal of this theoretical assessment was to investigate the role of the lipid membrane in auditory mechanotransduction, especially in generating nonlinear bundle force versus displacement measurements, one of the main features of auditory mechanotransduction. To this end, a hair bundle model that generates lipid membrane tented deformation in the stereocilia was developed. A computational analysis of the model not only reproduced nonlinear bundle force measurements but also generated membrane energy that is potentially sufficient to activate the mechanosensitive ion channel of the hair cell. In addition, the model provides biophysical insight into 1) the likelihood that the channel must be linked in some way to the tip link; 2) how the interplay of the bending and stretching of the lipid bilayer may be responsible for the nonlinear force versus displacement response; 3) how measurements of negative stiffness may be a function of the rotational stiffness of the rootlets; and 4) how the standing tension of the tip link is required to interpret migration of the nonlinear force versus displacement and activation curves. These are all features of hair cell mechanotransduction, but the underlying biophysical mechanism has proved elusive for the last three decades.
Collapse
Affiliation(s)
- Jichul Kim
- Department of Mechanical Engineering, Stanford University, Stanford, California.
| |
Collapse
|
72
|
Roongthumskul Y, Bozovic D. Mechanical amplification exhibited by quiescent saccular hair bundles. Biophys J 2015; 108:53-61. [PMID: 25564852 PMCID: PMC4286608 DOI: 10.1016/j.bpj.2014.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 12/02/2022] Open
Abstract
Spontaneous oscillations exhibited by free-standing hair bundles from the Bullfrog sacculus suggest the existence of an active process that might underlie the exquisite sensitivity of the sacculus to mechanical stimulation. However, this spontaneous activity is suppressed by coupling to an overlying membrane, which applies a large mechanical load on the bundle. How a quiescent hair bundle utilizes its active process is still unknown. We studied the dynamics of motion of individual hair bundles under different offsets in the bundle position, and observed the occurrence of spikes in hair-bundle motion, associated with the generation of active work. These mechanical spikes can be evoked by a sinusoidal stimulus, leading to an amplified movement of the bundle with respect to the passive response. Amplitude gain reached as high as 100-fold at small stimulus amplitudes. Amplification of motion decreased with increasing amplitude of stimulation, ceasing at ∼6–12 pN stimuli. Results from numerical simulations suggest that the adaptation process, mediated by myosin 1c, is not required for the production of mechanical spikes.
Collapse
Affiliation(s)
- Yuttana Roongthumskul
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California
| | - Dolores Bozovic
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
73
|
Zhao B, Müller U. The elusive mechanotransduction machinery of hair cells. Curr Opin Neurobiol 2015; 34:172-9. [PMID: 26342686 DOI: 10.1016/j.conb.2015.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 08/06/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022]
Abstract
Hair cells in the mammalian cochlea are specialized sensory cells that convert mechanical signals evoked by sound waves into electrochemical signals. Several integral membrane proteins have recently been identified that are closely linked to the mechanotransduction process. Efforts are under way to determine the extent to which they are subunits of the long thought-after mechanotransduction channel. Recent findings also suggest that mechanotransduction may have a role in fine tuning the length of the stereocilia and thus in the regulation of morphological features of hair cells that are inherently linked to the mechanotransduction process.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ulrich Müller
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
74
|
Thakur CS, Wang RM, Afshar S, Hamilton TJ, Tapson JC, Shamma SA, van Schaik A. Sound stream segregation: a neuromorphic approach to solve the "cocktail party problem" in real-time. Front Neurosci 2015; 9:309. [PMID: 26388721 PMCID: PMC4557082 DOI: 10.3389/fnins.2015.00309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/18/2015] [Indexed: 11/13/2022] Open
Abstract
The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the "cocktail party effect." It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation and speech recognition.
Collapse
Affiliation(s)
- Chetan Singh Thakur
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western SydneySydney, NSW, Australia
| | - Runchun M. Wang
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western SydneySydney, NSW, Australia
| | - Saeed Afshar
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western SydneySydney, NSW, Australia
| | - Tara J. Hamilton
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western SydneySydney, NSW, Australia
| | - Jonathan C. Tapson
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western SydneySydney, NSW, Australia
| | - Shihab A. Shamma
- Department of Electrical and Computer Engineering and Institute for Systems Research, University of MarylandCollege Park, MD, USA
| | - André van Schaik
- Biomedical Engineering and Neuroscience, The MARCS Institute, University of Western SydneySydney, NSW, Australia
| |
Collapse
|
75
|
Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. BIOMED RESEARCH INTERNATIONAL 2015; 2015:617207. [PMID: 25874222 PMCID: PMC4385658 DOI: 10.1155/2015/617207] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) production is involved in several apoptotic and necrotic cell death pathways in auditory tissues. These pathways are the major causes of most types of sensorineural hearing loss, including age-related hearing loss, hereditary hearing loss, ototoxic drug-induced hearing loss, and noise-induced hearing loss. ROS production can be triggered by dysfunctional mitochondrial oxidative phosphorylation and increases or decreases in ROS-related enzymes. Although apoptotic cell death pathways are mostly activated by ROS production, there are other pathways involved in hearing loss that do not depend on ROS production. Further studies of other pathways, such as endoplasmic reticulum stress and necrotic cell death, are required.
Collapse
|
76
|
Powers RJ, Kulason S, Atilgan E, Brownell WE, Sun SX, Barr-Gillespie PG, Spector AA. The local forces acting on the mechanotransduction channel in hair cell stereocilia. Biophys J 2015; 106:2519-28. [PMID: 24896132 DOI: 10.1016/j.bpj.2014.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 01/18/2023] Open
Abstract
In hair cells, mechanotransduction channels are located in the membrane of stereocilia tips, where the base of the tip link is attached. The tip-link force determines the system of other forces in the immediate channel environment, which change the channel open probability. This system of forces includes components that are out of plane and in plane relative to the membrane; the magnitude and direction of these components depend on the channel environment and arrangement. Using a computational model, we obtained the major forces involved as functions of the force applied via the tip link at the center of the membrane. We simulated factors related to channels and the membrane, including finite-sized channels located centrally or acentrally, stiffness of the hypothesized channel-cytoskeleton tether, and bending modulus of the membrane. Membrane forces are perpendicular to the directions of the principal curvatures of the deformed membrane. Our approach allows for a fine vectorial picture of the local forces gating the channel; membrane forces change with the membrane curvature and are themselves sufficient to affect the open probability of the channel.
Collapse
Affiliation(s)
- Richard J Powers
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sue Kulason
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Erdinc Atilgan
- Department of Microbiology, Columbia University, New York, New York
| | - William E Brownell
- Bobby R. Alford Department of Otolaryngology-Head & Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Sean X Sun
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Alexander A Spector
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
77
|
Otoferlin deficiency in zebrafish results in defects in balance and hearing: rescue of the balance and hearing phenotype with full-length and truncated forms of mouse otoferlin. Mol Cell Biol 2015; 35:1043-54. [PMID: 25582200 DOI: 10.1128/mcb.01439-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sensory hair cells convert mechanical motion into chemical signals. Otoferlin, a six-C2 domain transmembrane protein linked to deafness in humans, is hypothesized to play a role in exocytosis at hair cell ribbon synapses. To date, however, otoferlin has been studied almost exclusively in mouse models, and no rescue experiments have been reported. Here we describe the phenotype associated with morpholino-induced otoferlin knockdown in zebrafish and report the results of rescue experiments conducted with full-length and truncated forms of otoferlin. We found that expression of otoferlin occurs early in development and is restricted to hair cells and the midbrain. Immunofluorescence microscopy revealed localization to both apical and basolateral regions of hair cells. Knockdown of otoferlin resulted in hearing and balance defects, as well as locomotion deficiencies. Further, otoferlin morphants had uninflated swim bladders. Rescue experiments conducted with mouse otoferlin restored hearing, balance, and inflation of the swim bladder. Remarkably, truncated forms of otoferlin retaining the C-terminal C2F domain also rescued the otoferlin knockdown phenotype, while the individual N-terminal C2A domain did not. We conclude that otoferlin plays an evolutionarily conserved role in vertebrate hearing and that truncated forms of otoferlin can rescue hearing and balance.
Collapse
|
78
|
Fujioka M, Okano H, Ogawa K. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss. Front Pharmacol 2014; 5:287. [PMID: 25566079 PMCID: PMC4274906 DOI: 10.3389/fphar.2014.00287] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022] Open
Abstract
The inner ear was previously assumed to be an “immune-privileged” organ due to the existence of its tight junction-based blood-labyrinth barrier. However, studies performed during the past decade revealed that the mesenchymal region of the cochlea, including its lateral wall, is a common site of inflammation. Neutrophils do not enter this region, which is consistent with the old dogma; however, bone marrow-derived resident macrophages are always present in the spiral ligament of the lateral wall and are activated in response to various types of insults, including noise exposure, ischemia, mitochondrial damage, and surgical stress. Recent studies have also revealed another type of immune cell, called perivascular melanocyte-like macrophages (PVM/Ms), in the stria vascularis. These dedicated antigen-presenting cells also control vascular contraction and permeability. This review discusses a series of reports regarding inflammatory/immune cells in the cochlear lateral wall, the pathways involved in cochlear damage and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Keio University Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University Tokyo, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Keio University Tokyo, Japan
| |
Collapse
|
79
|
Abstract
The skin is our largest sensory organ, transmitting pain, temperature, itch, and touch information to the central nervous system. Touch sensations are conveyed by distinct combinations of mechanosensory end organs and the low-threshold mechanoreceptors (LTMRs) that innervate them. Here we explore the various structures underlying the diverse functions of cutaneous LTMR end organs. Beyond anchoring of LTMRs to the surrounding dermis and epidermis, recent evidence suggests that the non-neuronal components of end organs play an active role in signaling to LTMRs and may physically gate force-sensitive channels in these receptors. Combined with LTMR intrinsic properties, the balance of these factors comprises the response properties of mechanosensory neurons and, thus, the neural encoding of touch.
Collapse
Affiliation(s)
- Amanda Zimmerman
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
80
|
Mhatre N. Active amplification in insect ears: mechanics, models and molecules. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:19-37. [PMID: 25502323 DOI: 10.1007/s00359-014-0969-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/29/2022]
Abstract
Active amplification in auditory systems is a unique and sophisticated mechanism that expends energy in amplifying the mechanical input to the auditory system, to increase its sensitivity and acuity. Although known for decades from vertebrates, active auditory amplification was only discovered in insects relatively recently. It was first discovered from two dipterans, mosquitoes and flies, who hear with their light and compliant antennae; only recently has it been observed in the stiffer and heavier tympanal ears of an orthopteran. The discovery of active amplification in two distinct insect lineages with independently evolved ears, suggests that the trait may be ancestral, and other insects may possess it as well. This opens up extensive research possibilities in the field of acoustic communication, not just in auditory biophysics, but also in behaviour and neurobiology. The scope of this review is to establish benchmarks for identifying the presence of active amplification in an auditory system and to review the evidence we currently have from different insect ears. I also review some of the models that have been posited to explain the mechanism, both from vertebrates and insects and then review the current mechanical, neurobiological and genetic evidence for each of these models.
Collapse
Affiliation(s)
- Natasha Mhatre
- School of Biological Sciences, University of Bristol, Woodland road, Bristol, BS8 1UG, UK,
| |
Collapse
|
81
|
Shlomovitz R, Roongthumskul Y, Ji S, Bozovic D, Bruinsma R. Phase-locked spiking of inner ear hair cells and the driven noisy Adler equation. Interface Focus 2014; 4:20140022. [PMID: 25485081 DOI: 10.1098/rsfs.2014.0022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The inner ear constitutes a remarkably sensitive mechanical detector. This detection occurs in a noisy and highly viscous environment, as the sensory cells-the hair cells-are immersed in a fluid-filled compartment and operate at room or higher temperatures. We model the active motility of hair cell bundles of the vestibular system with the Adler equation, which describes the phase degree of freedom of bundle motion. We explore both analytically and numerically the response of the system to external signals, in the presence of white noise. The theoretical model predicts that hair bundles poised in the quiescent regime can exhibit sporadic spikes-sudden excursions in the position of the bundle. In this spiking regime, the system exhibits stochastic resonance, with the spiking rate peaking at an optimal level of noise. Upon the application of a very weak signal, the spikes occur at a preferential phase of the stimulus cycle. We compare the theoretical predictions of our model to experimental measurements obtained in vitro from individual hair cells. Finally, we show that an array of uncoupled hair cells could provide a sensitive detector that encodes the frequency of the applied signal.
Collapse
Affiliation(s)
- Roie Shlomovitz
- Department of Physics and Astronomy , University of Washington , Seattle, WA , USA
| | - Yuttana Roongthumskul
- Department of Physics and Astronomy , University of California , Los Angeles, CA , USA
| | - Seung Ji
- Department of Physics and Astronomy , University of California , Los Angeles, CA , USA
| | - Dolores Bozovic
- Department of Physics and Astronomy , University of California , Los Angeles, CA , USA ; California NanoSystems Institute , University of California , Los Angeles, CA , USA
| | - Robijn Bruinsma
- Department of Physics and Astronomy , University of California , Los Angeles, CA , USA ; Departments of Chemistry and Biochemistry , University of California , Los Angeles, CA , USA
| |
Collapse
|
82
|
Mathur P, Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta Mol Basis Dis 2014; 1852:406-20. [PMID: 25481835 DOI: 10.1016/j.bbadis.2014.11.020] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
Abstract
Usher syndrome (USH), clinically and genetically heterogeneous, is the leading genetic cause of combined hearing and vision loss. USH is classified into three types, based on the hearing and vestibular symptoms observed in patients. Sixteen loci have been reported to be involved in the occurrence of USH and atypical USH. Among them, twelve have been identified as causative genes and one as a modifier gene. Studies on the proteins encoded by these USH genes suggest that USH proteins interact among one another and function in multiprotein complexes in vivo. Although their exact functions remain enigmatic in the retina, USH proteins are required for the development, maintenance and function of hair bundles, which are the primary mechanosensitive structure of inner ear hair cells. Despite the unavailability of a cure, progress has been made to develop effective treatments for this disease. In this review, we focus on the most recent discoveries in the field with an emphasis on USH genes, protein complexes and functions in various tissues as well as progress toward therapeutic development for USH.
Collapse
Affiliation(s)
- Pranav Mathur
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA; Department of Otolaryngology Head and Neck Surgery, University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
83
|
Ni G, Elliott SJ, Ayat M, Teal PD. Modelling cochlear mechanics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:150637. [PMID: 25136555 PMCID: PMC4130145 DOI: 10.1155/2014/150637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/02/2014] [Indexed: 01/12/2023]
Abstract
The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM). Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling.
Collapse
Affiliation(s)
- Guangjian Ni
- Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen J. Elliott
- Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, UK
| | - Mohammad Ayat
- School of Engineering and Computer Science, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Paul D. Teal
- School of Engineering and Computer Science, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
84
|
Fujimoto C, Yamasoba T. Oxidative stresses and mitochondrial dysfunction in age-related hearing loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:582849. [PMID: 25110550 PMCID: PMC4106174 DOI: 10.1155/2014/582849] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022]
Abstract
Age-related hearing loss (ARHL), the progressive loss of hearing associated with aging, is the most common sensory disorder in the elderly population. The pathology of ARHL includes the hair cells of the organ of Corti, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. Many studies have suggested that the accumulation of mitochondrial DNA damage, the production of reactive oxygen species, and decreased antioxidant function are associated with subsequent cochlear senescence in response to aging stress. Mitochondria play a crucial role in the induction of intrinsic apoptosis in cochlear cells. ARHL can be prevented in laboratory animals by certain interventions, such as caloric restriction and supplementation with antioxidants. In this review, we will focus on previous research concerning the role of the oxidative stress and mitochondrial dysfunction in the pathology of ARHL in both animal models and humans and introduce concepts that have recently emerged regarding the mechanisms of the development of ARHL.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
85
|
Valderrama JT, de la Torre A, Alvarez I, Segura JC, Thornton ARD, Sainz M, Vargas JL. A study of adaptation mechanisms based on ABR recorded at high stimulation rate. Clin Neurophysiol 2014; 125:805-813. [DOI: 10.1016/j.clinph.2013.06.190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/09/2013] [Accepted: 06/08/2013] [Indexed: 10/26/2022]
|
86
|
Shlomovitz R, Fredrickson-Hemsing L, Kao A, Meenderink SWF, Bruinsma R, Bozovic D. Low frequency entrainment of oscillatory bursts in hair cells. Biophys J 2013; 104:1661-9. [PMID: 23601313 DOI: 10.1016/j.bpj.2013.02.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/19/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022] Open
Abstract
Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states.
Collapse
Affiliation(s)
- Roie Shlomovitz
- Department of Physics & Astronomy, University of California, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
87
|
Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 2013; 33:7513-25. [PMID: 23616556 DOI: 10.1523/jneurosci.4559-12.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracellular Ca(2+) is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca(2+) in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca(2+) dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca(2+) indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca(2+) dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca(2+) that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca(2+) elevation through either caged chelators or pharmacological inhibitors of Ca(2+) effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca(2+) by caged Ca(2+) release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca(2+) homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.
Collapse
|
88
|
Mechanical overstimulation of hair bundles: suppression and recovery of active motility. PLoS One 2013; 8:e58143. [PMID: 23505461 PMCID: PMC3591416 DOI: 10.1371/journal.pone.0058143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
We explore the effects of high-amplitude mechanical stimuli on hair bundles of the bullfrog sacculus. Under in vitro conditions, these bundles exhibit spontaneous limit cycle oscillations. Prolonged deflection exerted two effects. First, it induced an offset in the position of the bundle. Recovery to the original position displayed two distinct time scales, suggesting the existence of two adaptive mechanisms. Second, the stimulus suppressed spontaneous oscillations, indicating a change in the hair bundle’s dynamic state. After cessation of the stimulus, active bundle motility recovered with time. Both effects were dependent on the duration of the imposed stimulus. External calcium concentration also affected the recovery to the oscillatory state. Our results indicate that both offset in the bundle position and calcium concentration control the dynamic state of the bundle.
Collapse
|
89
|
Selvakumar D, Drescher MJ, Drescher DG. Cyclic nucleotide-gated channel α-3 (CNGA3) interacts with stereocilia tip-link cadherin 23 + exon 68 or alternatively with myosin VIIa, two proteins required for hair cell mechanotransduction. J Biol Chem 2013; 288:7215-29. [PMID: 23329832 DOI: 10.1074/jbc.m112.443226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we obtained evidence for a photoreceptor/olfactory type of CNGA3 transcript in a purified teleost vestibular hair cell preparation with immunolocalization of CNGA3 protein to stereocilia of teleost vestibular and mammalian cochlear hair cells. The carboxyl terminus of highly Ca(2+)-permeable CNGA3 expressed in the mammalian organ of Corti and saccular hair cells was found to interact with an intracellular domain of microfibril interface-located protein 1 (EMILIN 1), a member of the elastin superfamily, also immunolocalizd to hair cell stereocilia (Selvakumar, D., Drescher, M. J., Dowdall, J. R., Khan, K. M., Hatfield, J. S., Ramakrishnan, N. A., and Drescher, D. G. (2012) Biochem. J. 443, 463-476). Here, we provide evidence for organ of Corti proteins, of Ca(2+)-dependent binding of the amino terminus of CNGA3 specifically to the carboxyl terminus of stereocilia tip-link protein CDH23 +68 (cadherin 23 with expressed exon 68) by yeast two-hybrid mating and co-transformation protocols, pulldown assays, and surface plasmon resonance analysis. Myosin VIIa, required for adaptation of hair cell mechanotransduction (MET) channel(s), competed with CDH23 +68, with direct Ca(2+)-dependent binding to the amino terminus of CNGA3. Based upon the premise that hair cell stereocilia tip-link proteins are closely coupled with MET, these results are consistent with the possibility that CNGA3 participates in hair-cell MET. Together with the demonstration of protein-protein interaction between HCN1 and tip-link protein protocadherin 15 CD3 (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227-3238; Ramakrishnan, N. A., Drescher, M. J., Khan, K. M., Hatfield, J. S., and Drescher, D. G. (2012) J. Biol. Chem. 287, 37628-37646), a protein-protein interaction for CNGA3 and a second tip-link protein, CDH23 +68, further suggests possible association of two different channels with a single stereocilia tip link.
Collapse
Affiliation(s)
- Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
90
|
Abstract
How similar are the brains of listeners who hear the same content expressed in different languages? We directly compared the fMRI response time courses of English speakers and Russian speakers who listened to a real-life Russian narrative and its English translation. In the translation, we tried to preserve the content of the narrative while reducing the structural similarities across languages. The story evoked similar brain responses, invariant to the structural changes across languages, beginning just outside early auditory areas and extending through temporal, parietal, and frontal cerebral cortices. The similarity of responses across languages was nearly equal to the similarity of responses within each language group. The present results demonstrate that the human brain processes real-life information in a manner that is largely insensitive to the language in which that information is conveyed. The methods introduced here can potentially be used to quantify the transmission of meaning across cultural and linguistic boundaries.
Collapse
|
91
|
Fredrickson-Hemsing L, Strimbu CE, Roongthumskul Y, Bozovic D. Dynamics of freely oscillating and coupled hair cell bundles under mechanical deflection. Biophys J 2012; 102:1785-92. [PMID: 22768934 DOI: 10.1016/j.bpj.2012.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/21/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022] Open
Abstract
In vitro, attachment to the overlying membrane was found to affect the resting position of the hair cell bundles of the bullfrog sacculus. To assess the effects of such a deflection on mechanically decoupled hair bundles, comparable offsets were imposed on decoupled spontaneously oscillating bundles. Strong modulation was observed in their dynamic state under deflection, with qualitative changes in the oscillation profile, amplitude, and characteristic frequency of oscillation seen in response to stimulus. Large offsets were found to arrest spontaneous oscillation, with subsequent recovery upon reversal of the stimulus. The dynamic state of the hair bundle displayed hysteresis and a dependence on the direction of the imposed offset. The coupled system of hair bundles, with the overlying membrane left on top of the preparation, also exhibited a dependence on offset position, with an increase in the linear response function observed under deflections in the inhibitory direction.
Collapse
|
92
|
Van De Water TR. Historical Aspects of Inner Ear Anatomy and Biology that Underlie the Design of Hearing and Balance Prosthetic Devices. Anat Rec (Hoboken) 2012; 295:1741-59. [PMID: 23045252 DOI: 10.1002/ar.22598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/19/2022]
Abstract
This review presents some of the major historical events that advanced the body of knowledge of the anatomy of the inner ear and its sensory receptors as well as the biology of these receptors that underlies the sensory functions of hearing and balance. This knowledge base of the inner ear's structure/function has been an essential factor for the design and construction of prosthetic devices to aid patients with deficits in their senses of hearing and balance. Prosthetic devices are now available for severely hearing impaired and deaf patients to restore hearing and are known as cochlear implants and auditory brain stem implants. A prosthetic device for patients with balance disorders is being perfected and is in an animal model testing phase with another prosthetic device for controlling intractable dizziness in Meniere's patients currently being evaluated in clinical testing. None of this would have been possible without the pioneering studies and discoveries of the investigators mentioned in this review and with the work of many other talented investigators to numerous to be covered in this review.
Collapse
Affiliation(s)
- Thomas R Van De Water
- Cochlear Implant Research Program, University of Miami Ear Institute, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida 33136-1015, USA.
| |
Collapse
|
93
|
Haehnel M, Taguchi M, Liao JC. Heterogeneity and dynamics of lateral line afferent innervation during development in zebrafish (Danio rerio). J Comp Neurol 2012; 520:1376-86. [PMID: 22102005 DOI: 10.1002/cne.22798] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The lateral line system of larval zebrafish is emerging as a model to study a range of topics in neurobiology, from hair cell regeneration to sensory processing. However, despite numerous studies detailing the patterning and development of lateral line neuromasts, little is known about the organization of their connections to afferent neurons and targets in the hindbrain. We found that as fish grow and neuromasts proliferate over the body surface, the number of afferent neurons increases linearly. The number of afferents innervating certain neuromasts increases over time, while it decreases for other neuromasts. The ratio of afferent neurons to neuromasts differs between the anterior and posterior lateral line system, suggesting potential differences in sensitivity threshold or spatial resolution. A single afferent neuron routinely contacts a group of neuromasts, suggesting that different afferent neurons can convey information about receptive fields along the body. When afferent projections are traced into the hindbrain, where a distinct somatotopy has been previously described, we find that this general organization is absent at the Mauthner cell. We speculate that directional input from the lateral line is less important at an early age, whereas the speed of the escape response is paramount, and that directional responses arise later in development. By quantifying morphological connections in the lateral line system, this study provides a detailed foundation to understand how hydrodynamic information is processed and ultimately translated into appropriate motor behaviors.
Collapse
Affiliation(s)
- Melanie Haehnel
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, Florida 32080, USA
| | | | | |
Collapse
|
94
|
Fredrickson-Hemsing L, Ji S, Bruinsma R, Bozovic D. Mode-locking dynamics of hair cells of the inner ear. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021915. [PMID: 23005793 PMCID: PMC3458708 DOI: 10.1103/physreve.86.021915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Indexed: 05/06/2023]
Abstract
We explore mode locking of spontaneous oscillations of saccular hair cell bundles to periodic mechanical deflections. A simple dynamic systems framework is presented that captures the main features of the experimentally observed behavior in the form of an Arnold tongue. We propose that the phase-locking transition can proceed via different bifurcations. At low stimulus amplitudes F, the transition to mode locking as a function of the stimulus frequency ω has the character of a saddle-node bifurcation on an invariant circle. At higher stimulus amplitudes, the mode-locking transition has the character of a supercritical Andronov-Hopf bifurcation.
Collapse
Affiliation(s)
- Lea Fredrickson-Hemsing
- Department of Physics and Astronomy, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90024, USA
| | | | | | | |
Collapse
|
95
|
Johnson KR, Longo-Guess CM, Gagnon LH. Mutations of the mouse ELMO domain containing 1 gene (Elmod1) link small GTPase signaling to actin cytoskeleton dynamics in hair cell stereocilia. PLoS One 2012; 7:e36074. [PMID: 22558334 PMCID: PMC3338648 DOI: 10.1371/journal.pone.0036074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/25/2012] [Indexed: 11/18/2022] Open
Abstract
Stereocilia, the modified microvilli projecting from the apical surfaces of the sensory hair cells of the inner ear, are essential to the mechanoelectrical transduction process underlying hearing and balance. The actin-filled stereocilia on each hair cell are tethered together by fibrous links to form a highly patterned hair bundle. Although many structural components of hair bundles have been identified, little is known about the signaling mechanisms that regulate their development, morphology, and maintenance. Here, we describe two naturally occurring, allelic mutations that result in hearing and balance deficits in mice, named roundabout (rda) and roundabout-2J (rda(2J)). Positional cloning identified both as mutations of the mouse ELMO domain containing 1 gene (Elmod1), a poorly characterized gene with no previously reported mutant phenotypes. The rda mutation is a 138 kb deletion that includes exons 1-5 of Elmod1, and rda(2J) is an intragenic duplication of exons 3-8 of Elmod1. The deafness associated with these mutations is caused by cochlear hair cell dysfunction, as indicated by conspicuous elongations and fusions of inner hair cell stereocilia and progressive degeneration of outer hair cell stereocilia. Mammalian ELMO-family proteins are known to be involved in complexes that activate small GTPases to regulate the actin cytoskeleton during phagocytosis and cell migration. ELMOD1 and ELMOD2 recently were shown to function as GTPase-activating proteins (GAPs) for the Arf family of small G proteins. Our finding connecting ELMOD1 deficiencies with stereocilia dysmorphologies thus establishes a link between the Ras superfamily of small regulatory GTPases and the actin cytoskeleton dynamics of hair cell stereocilia.
Collapse
|
96
|
Strimbu CE, Fredrickson-Hemsing L, Bozovic D. Coupling and elastic loading affect the active response by the inner ear hair cell bundles. PLoS One 2012; 7:e33862. [PMID: 22479461 PMCID: PMC3313926 DOI: 10.1371/journal.pone.0033862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/18/2012] [Indexed: 11/19/2022] Open
Abstract
Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures.
Collapse
Affiliation(s)
- Clark Elliott Strimbu
- Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lea Fredrickson-Hemsing
- Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dolores Bozovic
- Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
97
|
Ramamoorthy S, Nuttall AL. Outer hair cell somatic electromotility in vivo and power transfer to the organ of Corti. Biophys J 2012; 102:388-98. [PMID: 22325260 DOI: 10.1016/j.bpj.2011.12.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/16/2011] [Accepted: 12/23/2011] [Indexed: 11/30/2022] Open
Abstract
The active amplification of sound-induced vibrations in the cochlea, known to be crucial for auditory sensitivity and frequency selectivity, is not well understood. The outer hair cell (OHC) somatic electromotility is a potential mechanism for such amplification. Its effectiveness in vivo is putatively limited by the electrical low-pass filtering of the cell's transmembrane potential. However, the transmembrane potential is an incomplete metric. We propose and estimate two metrics to evaluate the effectiveness of OHC electromotility in vivo. One metric is the OHC electromechanical ratio defined as the amplitude of the ratio of OHC displacement to the change in its transmembrane potential. The in vivo electromechanical ratio is derived from the recently measured in vivo displacements of the reticular lamina and the basilar membrane at the 19 kHz characteristic place in guinea pigs and using a model. The ratio, after accounting for the differences in OHC vibration in situ due to the impedances from the adjacent structures, is in agreement with the literature values of the in vitro electromechanical ratio measured by others. The second and more insightful metric is the OHC somatic power. Our analysis demonstrates that the organ of Corti is nearly optimized to receive maximum somatic power in vivo and that the estimated somatic power could account for the active amplification.
Collapse
Affiliation(s)
- Sripriya Ramamoorthy
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
98
|
Abstract
In vertebrate hair cells, the hair bundle is responsible for the conversion of mechanical vibrations into electrical signals. In a combined experimental and computational tour de force, a group of researchers now presents a quantitative model that explains how the bundle's specific microarchitecture gives rise to its exquisite mechanosensory properties.
Collapse
|
99
|
Multiple-timescale dynamics underlying spontaneous oscillations of saccular hair bundles. Biophys J 2011; 101:603-10. [PMID: 21806928 DOI: 10.1016/j.bpj.2011.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/03/2011] [Accepted: 06/15/2011] [Indexed: 11/24/2022] Open
Abstract
Spontaneous oscillations displayed by hair bundles of the bullfrog sacculus have complex temporal profiles, not fully captured by single limit-cycle descriptions. Quiescent intervals are typically interspersed with oscillations, leading to a bursting-type behavior. Temporal characteristics of the oscillation are strongly affected by imposing a mechanical load or by the application of a steady-state deflection to the resting position of the bundle. Separate spectral components of the spontaneous motility are differently affected by increases in the external calcium concentration. We use numerical modeling to explore the effects of internal parameters on the oscillatory profiles, and to reproduce the experimental modulation induced by mechanical or ionic manipulation.
Collapse
|
100
|
Kozlov AS, Risler T, Hinterwirth AJ, Hudspeth AJ. Relative stereociliary motion in a hair bundle opposes amplification at distortion frequencies. J Physiol 2011; 590:301-8. [PMID: 22124150 DOI: 10.1113/jphysiol.2011.218362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Direct gating of mechanoelectrical transduction channels by mechanical force is a basic feature of hair cells that assures fast transduction and underpins the mechanical amplification of acoustic inputs, but the associated non-linearity - the gating compliance - inevitably distorts signals. Because reducing distortion would make the ear a better detector, we sought mechanisms with that effect. Mimicking in vivo stimulation, we used stiff probes to displace individual hair bundles at physiological amplitudes and measured the coherence and phase of the relative stereociliary motions with a dual-beam differential interferometer. Although stereocilia moved coherently and in phase at the stimulus frequencies, large phase lags at the frequencies of the internally generated distortion products indicated dissipative relative motions. Tip links engaged these relative modes and decreased the coherence in both stimulated and free hair bundles. These results show that a hair bundle breaks into a highly dissipative serial arrangement of stereocilia at distortion frequencies, precluding their amplification.
Collapse
Affiliation(s)
- Andrei S Kozlov
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | | | | | | |
Collapse
|