51
|
Hegarty SV, Sullivan AM, O'Keeffe GW. Zeb2: A multifunctional regulator of nervous system development. Prog Neurobiol 2015; 132:81-95. [PMID: 26193487 DOI: 10.1016/j.pneurobio.2015.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
Zinc finger E-box binding homeobox (Zeb) 2 is a transcription factor, identified due its ability to bind Smad proteins, and consists of multiple functional domains which interact with a variety of transcriptional co-effectors. The complex nature of the Zeb2, both at its genetic and protein levels, underlie its multifunctional properties, with Zeb2 capable of acting individually or as part of a transcriptional complex to repress, and occasionally activate, target gene expression. This review introduces Zeb2 as an essential regulator of nervous system development. Zeb2 is expressed in the nervous system throughout its development, indicating its importance in neurogenic and gliogenic processes. Indeed, mutation of Zeb2 has dramatic neurological consequences both in animal models, and in humans with Mowat-Wilson syndrome, which results from heterozygous ZEB2 mutations. The mechanisms by which Zeb2 regulates the induction of the neuroectoderm (CNS primordium) and the neural crest (PNS primordium) are reviewed herein. We then describe how Zeb2 acts to direct the formation, delamination, migration and specification of neural crest cells. Zeb2 regulation of the development of a number of cerebral regions, including the neocortex and hippocampus, are then described. The diverse molecular mechanisms mediating Zeb2-directed development of various neuronal and glial populations are reviewed. The role of Zeb2 in spinal cord and enteric nervous system development is outlined, while its essential function in CNS myelination is also described. Finally, this review discusses how the neurodevelopmental defects of Zeb2 mutant mice delineate the developmental dysfunctions underpinning the multiple neurological defects observed in Mowat-Wilson syndrome patients.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
52
|
Mulloy B, Rider CC. The Bone Morphogenetic Proteins and Their Antagonists. VITAMINS AND HORMONES 2015; 99:63-90. [PMID: 26279373 DOI: 10.1016/bs.vh.2015.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic proteins (BMPs) and the growth and differentiation factors comprise a single family of some 20 homologous, dimeric cytokines which share the cystine-knot domain typical of the TGF-β superfamily. They control the differentiation and activity of a range of cell types, including many outside bone and cartilage. They serve as developmental morphogens, but are also important in chronic pathologies, including tissue fibrosis and cancer. One mechanism for enabling tight spatiotemporal control of their activities is through a number of antagonist proteins, including Noggin, Follistatin, Chordin, Twisted gastrulation (TSG), and the seven members of the Cerberus and Dan family. These antagonists are secreted proteins that bind selectively to particular BMPs with high affinity, thereby blocking receptor engagement and signaling. Most of these antagonists also possess a TGF-β cystine-knot domain. Here, we discuss current knowledge and understanding of the structures and activities of the BMPs and their antagonists, with a particular focus on the latter proteins. Recent advances in structural biology of BMP antagonists have begun the process of elucidating the molecular basis of their activity, displaying a surprising variety between the modes of action of these closely related proteins. We also discuss the interactions of the antagonists with the glycosaminoglycan heparan sulfate, which is found ubiquitously on cell surfaces and in the extracellular matrix.
Collapse
Affiliation(s)
- Barbara Mulloy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Chris C Rider
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom.
| |
Collapse
|
53
|
Functional synergy between cholecystokinin receptors CCKAR and CCKBR in mammalian brain development. PLoS One 2015; 10:e0124295. [PMID: 25875176 PMCID: PMC4398320 DOI: 10.1371/journal.pone.0124295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/11/2015] [Indexed: 12/11/2022] Open
Abstract
Cholecystokinin (CCK), a peptide hormone and one of the most abundant neuropeptides in vertebrate brain, mediates its actions via two G-protein coupled receptors, CCKAR and CCKBR, respectively active in peripheral organs and the central nervous system. Here, we demonstrate that the CCK receptors have a dynamic and largely reciprocal expression in embryonic and postnatal brain. Using compound homozygous mutant mice lacking the activity of both CCK receptors, we uncover their additive, functionally synergistic effects in brain development and demonstrate that CCK receptor loss leads to abnormalities of cortical development, including defects in the formation of the midline and corpus callosum, and cortical interneuron migration. Using comparative transcriptome analysis of embryonic neocortex, we define the molecular mechanisms underlying these defects. Thus we demonstrate a developmental, hitherto unappreciated, role of the two CCK receptors in mammalian neocortical development.
Collapse
|
54
|
Somaa FA, Bye CR, Thompson LH, Parish CL. Meningeal cells influence midbrain development and the engraftment of dopamine progenitors in Parkinsonian mice. Exp Neurol 2015; 267:30-41. [PMID: 25708989 DOI: 10.1016/j.expneurol.2015.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 01/09/2023]
Abstract
Dopaminergic neuroblasts, isolated from ventral midbrain fetal tissue, have been shown to structurally and functionally integrate, and alleviate Parkinsonian symptoms following transplantation. The use of donor tissue isolated at an age younger than conventionally employed can result in larger grafts - a consequence of improved cell survival and neuroblast proliferation at the time of implantation. However studies have paid little attention to removal of the meninges from younger tissue, due to its age-dependent tight attachment to the underlying brain. Beyond the protection of the central nervous system, the meninges act as a signaling center, secreting a variety of trophins to influence neural development and additionally impact on neural repair. However it remains to be elucidated what influence these cells have on ventral midbrain development and grafted dopaminergic neuroblasts. Here we examined the temporal role of meningeal cells in graft integration in Parkinsonian mice and, using in vitro approaches, identified the mechanisms underlying the roles of meningeal cells in midbrain development. We demonstrate that young (embryonic day 10), but not older (E12), meningeal cells promote dopaminergic differentiation as well as neurite growth and guidance within grafts and during development. Furthermore we identify stromal derived factor 1 (SDF1), secreted by the meninges and acting on the CXCR4 receptor present on dopaminergic progenitors, as a contributory mediator in these effects. These findings identify new and important roles for the meningeal cells, and SDF1/CXCR4 signaling, in ventral midbrain development as well as neural repair following cell transplantation into the Parkinsonian brain.
Collapse
Affiliation(s)
- Fahad A Somaa
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher R Bye
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
55
|
Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor β family proteins during corticogenesis. J Neurosci 2015; 34:14973-83. [PMID: 25378163 DOI: 10.1523/jneurosci.1156-14.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During embryonic development oligodendrocyte precursor cells (OPCs) are generated first in the ventral forebrain and migrate dorsally to occupy the cortex. The molecular cues that guide this migratory route are currently completely unknown. Here, we show that bone morphogenetic protein-4 (Bmp4), Bmp7, and Tgfβ1 produced by the meninges and pericytes repelled ventral OPCs into the cortex at mouse embryonic stages. Ectopic activation of Bmp or Tgfβ1 signaling before the entrance of OPCs into the cortex hindered OPC migration into the cortical areas. OPCs without Smad4 signaling molecules also failed to migrate into the cortex efficiently and formed heterotopia in ventral areas. OPC migration into the cortex was also dramatically reduced by conditional inhibition of Tgfβ1 or Bmp expression from mesenchymal cells. The data suggest that mesenchymal Tgfβ family proteins promote migration of ventral OPCs into the cortex during corticogenesis.
Collapse
|
56
|
You L, Zou J, Zhao H, Bertos NR, Park M, Wang E, Yang XJ. Deficiency of the chromatin regulator BRPF1 causes abnormal brain development. J Biol Chem 2015; 290:7114-29. [PMID: 25568313 DOI: 10.1074/jbc.m114.635250] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms are important in different neurological disorders, and one such mechanism is histone acetylation. The multivalent chromatin regulator BRPF1 (bromodomain- and plant homeodomain-linked (PHD) zinc finger-containing protein 1) recognizes different epigenetic marks and activates three histone acetyltransferases, so it is both a reader and a co-writer of the epigenetic language. The three histone acetyltransferases are MOZ, MORF, and HBO1, which are also known as lysine acetyltransferase 6A (KAT6A), KAT6B, and KAT7, respectively. The MORF gene is mutated in four neurodevelopmental disorders sharing the characteristic of intellectual disability and frequently displaying callosal agenesis. Here, we report that forebrain-specific inactivation of the mouse Brpf1 gene caused early postnatal lethality, neocortical abnormalities, and partial callosal agenesis. With respect to the control, the mutant forebrain contained fewer Tbr2-positive intermediate neuronal progenitors and displayed aberrant neurogenesis. Molecularly, Brpf1 loss led to decreased transcription of multiple genes, such as Robo3 and Otx1, important for neocortical development. Surprisingly, elevated expression of different Hox genes and various other transcription factors, such as Lhx4, Foxa1, Tbx5, and Twist1, was also observed. These results thus identify an important role of Brpf1 in regulating forebrain development and suggest that it acts as both an activator and a silencer of gene expression in vivo.
Collapse
Affiliation(s)
- Linya You
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3
| | - Jinfeng Zou
- the National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Hong Zhao
- From the Rosalind & Morris Goodman Cancer Research Center
| | | | - Morag Park
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3, the Department of Biochemistry, McGill University and McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| | - Edwin Wang
- the National Research Council Canada, Montreal, Quebec H4P 2R2, and
| | - Xiang-Jiao Yang
- From the Rosalind & Morris Goodman Cancer Research Center, Department of Medicine, McGill University, Quebec H3A 1A3, the Department of Biochemistry, McGill University and McGill University Health Center, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
57
|
BMP5 expression in the adult rat brain. Neuroscience 2014; 284:972-987. [PMID: 25110111 DOI: 10.1016/j.neuroscience.2014.07.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/27/2023]
Abstract
Bone morphogenetic protein-5 (BMP5), a member of the transforming growth factor-β (TGF-β) superfamily, has many effects in several biological events. Although BMP5 expression has been well reported in the early development of the central nervous system (CNS), there is little information about its expression in the adult CNS. Thus, we analyzed BMP5 expression in the adult rat CNS by immunohistochemistry. Abundant BMP5 expression was observed in most neurons, and their dendrites and axons. Furthermore, strong BMP5 expression was also detected in the neuropil of the gray matters with high plasticity, such as the molecular layer of the cerebellum, locus coeruleus, and nucleus of the solitary tract. In addition, we showed BMP5 expression also in astrocytes, ependymal cells and meninges. Our data suggest that BMP5 is widely expressed throughout the adult CNS, and this abundant expression in the adult brain strongly supports the idea that BMP5 plays important roles not only in the developing brain but also in the adult brain.
Collapse
|
58
|
Squier W, Jansen A. Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathol Commun 2014; 2:80. [PMID: 25047116 PMCID: PMC4149230 DOI: 10.1186/s40478-014-0080-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 01/28/2023] Open
Abstract
Polymicrogyria (PMG) is a complex cortical malformation which has so far defied any mechanistic or genetic explanation. Adopting a broad definition of an abnormally folded or festooned cerebral cortical neuronal ribbon, this review addresses the literature on PMG and the mechanisms of its development, as derived from the neuropathological study of many cases of human PMG, a large proportion in fetal life. This reveals the several processes which appear to be involved in the early stages of formation of polymicrogyric cortex. The most consistent feature of developing PMG is disruption of the brain surface with pial defects, over-migration of cells, thickening and reduplication of the pial collagen layers and increased leptomeningeal vascularity. Evidence from animal models is consistent with our observations and supports the notion that disturbance in the formation of the leptomeninges or loss of their normal signalling functions are potent contributors to cortical malformation. Other mechanisms which may lead to PMG include premature folding of the neuronal band, abnormal fusion of adjacent gyri and laminar necrosis of the developing cortex. The observation of PMG in association with other and better understood forms of brain malformation, such as cobblestone cortex, suggests mechanistic pathways for some forms of PMG. The role of altered physical properties of the thickened leptomeninges in exerting mechanical constraints on the developing cortex is also considered.
Collapse
|
59
|
Kirischuk S, Luhmann HJ, Kilb W. Cajal-Retzius cells: update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience 2014; 275:33-46. [PMID: 24931764 DOI: 10.1016/j.neuroscience.2014.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 02/02/2023]
Abstract
Cajal-Retzius cells (CRc) represent a mostly transient neuronal cell type localized in the uppermost layer of the developing neocortex. The observation that CRc are a major source of the extracellular matrix protein reelin, which is essential for the laminar development of the cerebral cortex, attracted the interest in this unique cell type. In this review we will (i) describe the morphological and molecular properties of neocortical CRc, with a special emphasize on the question which markers can be used to identify CRc, (ii) summarize reports that identified the different developmental origins of CRc, (iii) discuss the fate of CRc, including recent evidence for apoptotic cell death and a possible persistence of some CRc, (iv) provide a detailed description of the electrical membrane properties and transmitter receptors of CRc, and (v) address the role of CRc in early neuronal circuits and cortical development. Finally, we speculate whether CRc may provide a link between early network activity and the structural maturation of neocortical circuits.
Collapse
Affiliation(s)
- S Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - H J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - W Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
60
|
Heparan sulfotransferases Hs6st1 and Hs2st keep Erk in check for mouse corpus callosum development. J Neurosci 2014; 34:2389-401. [PMID: 24501377 DOI: 10.1523/jneurosci.3157-13.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The corpus callosum (CC) connects the left and right cerebral hemispheres in mammals and its development requires intercellular communication at the telencephalic midline mediated by signaling proteins. Heparan sulfate (HS) is a sulfated polysaccharide that decorates cell surface and extracellular matrix proteins and regulates the biological activity of numerous signaling proteins via sugar-protein interactions. HS is subject to regulated enzymatic sulfation and desulfation and an attractive, although not proven, hypothesis is that the biological activity of HS is regulated by a sugar sulfate code. Mutant mouse embryos lacking the heparan sulfotransferases Hs2st or Hs6st1 have severe CC phenotypes and form Probst bundles of noncrossing axons flanking large tangles of midline glial processes. Here, we identify a precocious accumulation of Sox9-expressing glial cells in the indusium griseum region and a corresponding depletion at the glial wedge associated with the formation of Probst bundles along the rostrocaudal axis in both mutants. Molecularly, we found a surprising hyperactivation of Erk signaling in Hs2st(-/-) (2-fold) and Hs6st1(-/-) (6-fold) embryonic telencephalon that was most striking at the midline, where Erk signaling is lowest in wild-types, and a 2-fold increase in Fgf8 protein levels in Hs6st1(-/-) embryos that could underpin Erk hyperactivation and excessive glial movement to the indusium griseum. The tightly linked Hs6st1(-/-) CC glial and axonal phenotypes can be rescued by genetic or pharmacological suppression of Fgf8/Erk axis components. Overall, our data fit a model in which Hs2st and Hs6st1 normally generate conditions conducive to CC development by generating an HS-containing environment that keeps Erk signaling in check.
Collapse
|
61
|
Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline. PLoS One 2014; 9:e86025. [PMID: 24516524 PMCID: PMC3916303 DOI: 10.1371/journal.pone.0086025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.
Collapse
|
62
|
Niquille M, Minocha S, Hornung JP, Rufer N, Valloton D, Kessaris N, Alfonsi F, Vitalis T, Yanagawa Y, Devenoges C, Dayer A, Lebrand C. Two specific populations of GABAergic neurons originating from the medial and the caudal ganglionic eminences aid in proper navigation of callosal axons. Dev Neurobiol 2013; 73:647-72. [PMID: 23420573 DOI: 10.1002/dneu.22075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/22/2022]
Abstract
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE- and CGE-derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT-PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE- and CGE-derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways.
Collapse
Affiliation(s)
- Mathieu Niquille
- Département des neurosciences fondamentales, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
To understand life-long neurogenesis in the dentate gyrus (DG), characterizing dentate neural stem cells and the signals controlling their development are crucial. In the present study, we show that bone morphogenic protein (Bmp) signaling is a critical regulator of embryonic dentate development, required for initiating neurogenesis in embryonic DG progenitors and required for the establishment of dentate neural stem cells postnatally. We tested the hypothesis that Bmp signaling regulates dentate development in part by controlling the expression of Lef1, a Wnt responsive transcription factor expressed in dentate stem cells and absolutely required for dentate granule cell production. Bmp activation through the Acvr1 receptor induced Lef1 expression and neurogenesis in the embryonic DG. Ectopic expression of Bmp7 in the embryonic midline increased DG neurogenesis and inhibition of local Bmp signaling decreased embryonic DG neurogenesis. Mice with selective loss of Bmp expression due to defective meningeal development or with selective conditional deletion of meningeal Bmp7 also have dentate developmental defects. Conditional deletion of Activin receptor type I (Acvr1) or Smad4 (a downstream target nuclear effector of Bmp signaling) in DG neural stem cells resulted in defects in the postnatal subgranular zone and reduced neurogenesis. These results suggest that Acvr1-mediated meningeal Bmp signaling regulates Lef1 expression in the dentate, regulating embryonic DG neurogenesis, DG neural stem cell niche formation, and maintenance.
Collapse
|
64
|
Gámez B, Rodriguez-Carballo E, Ventura F. BMP signaling in telencephalic neural cell specification and maturation. Front Cell Neurosci 2013; 7:87. [PMID: 23761735 PMCID: PMC3671186 DOI: 10.3389/fncel.2013.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) make up a family of morphogens that are critical for patterning, development, and function of the central and peripheral nervous system. Their effects on neural cells are pleiotropic and highly dynamic depending on the stage of development and the local niche. Neural cells display a broad expression profile of BMP ligands, receptors, and transducer molecules. Moreover, interactions of BMP signaling with other incoming morphogens and signaling pathways are crucial for most of these processes. The key role of BMP signaling suggests that it includes many regulatory mechanisms that restrict BMP activity both temporally and spatially. BMPs affect neural cell fate specification in a dynamic fashion. Initially they inhibit proliferation of neural precursors and promote the first steps in neuronal differentiation. Later on, BMP signaling effects switch from neuronal induction to promotion of astroglial identity and inhibition of neuronal or oligodendroglial lineage commitment. Furthermore, in postmitotic cells, BMPs regulate cell survival and death, to modulate neuronal subtype specification, promote dendritic and axonal growth and induce synapse formation and stabilization. In this review, we examine the canonical and non-canonical mechanisms of BMP signal transduction. Moreover, we focus on the specific role of BMPs in the nervous system including their ability to regulate neural stem cell proliferation, self-renewal, lineage specification, and neuronal function.
Collapse
Affiliation(s)
- Beatriz Gámez
- Departament de Ciències Fisiològiques II, Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat Spain
| | | | | |
Collapse
|
65
|
Abstract
Commissural circuits are brain and spinal cord connections which interconnect the two sides of the central nervous system (CNS). They play essential roles in brain and spinal cord processing, ensuring left-right coordination and synchronization of information and commands. During the formation of neuronal circuits, all commissural neurons of the central nervous system must accomplish a common task, which is to project their axon onto the other side of the nervous system, across the midline that delineates the two halves of the CNS. How this task is accomplished has been the topic of extensive studies over the last past 20 years and remains one of the best models to investigate axon guidance mechanisms. In the first part of this review, I will introduce the commissural circuits, their general role in the physiology of the nervous system, and their recognized or suspected pathogenic properties in human diseases. In the second part of the review, I will concentrate on two commissural circuits, the spinal commissures and the corpus callosum, to detail the cellular and molecular mechanisms governing their formation, mostly during their navigation at the midline.
Collapse
|
66
|
Siegenthaler JA, Choe Y, Patterson KP, Hsieh I, Li D, Jaminet SC, Daneman R, Kume T, Huang EJ, Pleasure SJ. Foxc1 is required by pericytes during fetal brain angiogenesis. Biol Open 2013; 2:647-59. [PMID: 23862012 PMCID: PMC3711032 DOI: 10.1242/bio.20135009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 02/02/2023] Open
Abstract
Brain pericytes play a critical role in blood vessel stability and blood-brain barrier maturation. Despite this, how brain pericytes function in these different capacities is only beginning to be understood. Here we show that the forkhead transcription factor Foxc1 is expressed by brain pericytes during development and is critical for pericyte regulation of vascular development in the fetal brain. Conditional deletion of Foxc1 from pericytes and vascular smooth muscle cells leads to late-gestation cerebral micro-hemorrhages as well as pericyte and endothelial cell hyperplasia due to increased proliferation of both cell types. Conditional Foxc1 mutants do not have widespread defects in BBB maturation, though focal breakdown of BBB integrity is observed in large, dysplastic vessels. qPCR profiling of brain microvessels isolated from conditional mutants showed alterations in pericyte-expressed proteoglycans while other genes previously implicated in pericyte-endothelial cell interactions were unchanged. Collectively these data point towards an important role for Foxc1 in certain brain pericyte functions (e.g. vessel morphogenesis) but not others (e.g. barriergenesis).
Collapse
Affiliation(s)
- Julie A Siegenthaler
- Department of Neurology, Programs in Neuroscience and Developmental Biology, Institute for Regenerative Medicine, UC San Francisco , San Francisco, CA 94158 , USA ; Present address: Department of Pediatrics, Denver-Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
CoupTFI interacts with retinoic acid signaling during cortical development. PLoS One 2013; 8:e58219. [PMID: 23472160 PMCID: PMC3589372 DOI: 10.1371/journal.pone.0058219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 02/01/2013] [Indexed: 02/05/2023] Open
Abstract
We examined the role of the orphan nuclear hormone receptor CoupTFI in mediating cortical development downstream of meningeal retinoic acid signaling. CoupTFI is a regulator of cortical development known to collaborate with retinoic acid (RA) signaling in other systems. To examine the interaction of CoupTFI and cortical RA signaling we utilized Foxc1-mutant mice in which defects in meningeal development lead to alterations in cortical development due to a reduction of RA signaling. By analyzing CoupTFI−/−;Foxc1H/L double mutant mice we provide evidence that CoupTFI is required for RA rescue of the ventricular zone and the neurogenic phenotypes in Foxc1-mutants. We also found that overexpression of CoupTFI in Foxc1-mutants is sufficient to rescue the Foxc1-mutant cortical phenotype in part. These results suggest that CoupTFI collaborates with RA signaling to regulate both cortical ventricular zone progenitor cell behavior and cortical neurogenesis.
Collapse
|
68
|
Axon guidance mechanisms for establishment of callosal connections. Neural Plast 2013; 2013:149060. [PMID: 23533817 PMCID: PMC3595665 DOI: 10.1155/2013/149060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 12/30/2012] [Accepted: 01/21/2013] [Indexed: 01/03/2023] Open
Abstract
Numerous studies have investigated the formation of interhemispheric connections which are involved in high-ordered functions of the cerebral cortex in eutherian animals, including humans. The development of callosal axons, which transfer and integrate information between the right/left hemispheres and represent the most prominent commissural system, must be strictly regulated. From the beginning of their growth, until reaching their targets in the contralateral cortex, the callosal axons are guided mainly by two environmental cues: (1) the midline structures and (2) neighboring? axons. Recent studies have shown the importance of axona guidance by such cues and the underlying molecular mechanisms. In this paper, we review these guidance mechanisms during the development of the callosal neurons. Midline populations express and secrete guidance molecules, and "pioneer" axons as well as interactions between the medial and lateral axons are also involved in the axon pathfinding of the callosal neurons. Finally, we describe callosal dysgenesis in humans and mice, that results from a disruption of these navigational mechanisms.
Collapse
|
69
|
Abstract
Hypothalamic neural circuits are known to regulate energy homeostasis and feeding behavior, but how these circuits are established during development is not well understood. Here we report that embryonic neural progenitors that express the transcription factor OLIG1 contribute neurons to the ventral hypothalamus including the arcuate nucleus (ARH), a center that regulates feeding behavior. Ablation of bone morphogenetic protein receptor 1a (BMPR1A) in the OLIG1 lineage resulted in hypophagia, hypoglycemia, and weight loss after the second postnatal week with death by week 4. Differentiation and specification of inhibitory hypothalamic neurons contributing to melanocortin and dopaminergic systems were abnormal in the BMPR1A-deficient ARH. Although the hypophagia promoted expression of the orexigenic neuropeptide agouti related protein (AgRP) in the BMPR1A-deficient ARH, there was a profound decrease of AgRP(+) axonal terminals in the mutant ARH targets including dorsomedial and paraventricular hypothalamic nuclei. Projection of AgRP(+) neurons to these nuclei is known to be regulated by leptin. Leptin injection in neonatal mice increased bone morphogenic protein (BMP) signaling in the ventral hypothalamus, and blocking BMP signaling prevented leptin-induced neurite outgrowth in ARH explant cultures. These findings suggest that BMPR1A signaling is critical for postnatal establishment of leptin-responsive orexigenic fibers from ARH to multiple hypothalamic nuclei. More generally these observations indicate that BMPR1A signaling regulates postnatal establishment of OLIG1 lineage-derived ARH neuronal circuits that are critical for leptin-mediated feeding behavior.
Collapse
|
70
|
Nakasone K, Nagahama Y, Okubo K. hebp3, a novel member of the heme-binding protein gene family, is expressed in the medaka meninges with higher abundance in females due to a direct stimulating action of ovarian estrogens. Endocrinology 2013; 154:920-30. [PMID: 23284102 DOI: 10.1210/en.2012-2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The brains of teleost fish exhibit remarkable sexual plasticity throughout their life span. To dissect the molecular basis for the development and reversal of sex differences in the teleost brain, we screened for genes differentially expressed between sexes in the brain of medaka (Oryzias latipes). One of the genes identified in the screen as being preferentially expressed in females was found to be a new member of the heme-binding protein gene family that includes hebp1 and hebp2 and was designated here as hebp3. The medaka hebp3 is expressed in the meninges with higher abundance in females, whereas there is no expression within the brain parenchyma. This female-biased expression of hebp3 is not attributable to the direct action of sex chromosome genes but results from the transient and reversible action of estrogens derived from the ovary. Moreover, estrogens directly activate the transcription of hebp3 via a palindromic estrogen-responsive element in the hebp3 promoter. Taken together, our findings demonstrate that hebp3 is a novel transcriptional target of estrogens, with female-biased expression in the meninges. The definite but reversible sexual dimorphism of the meningeal hebp3 expression may contribute to the development and reversal of sex differences in the teleost brain.
Collapse
Affiliation(s)
- Kiyoshi Nakasone
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
71
|
Choe Y, Pleasure SJ. Wnt signaling regulates intermediate precursor production in the postnatal dentate gyrus by regulating CXCR4 expression. Dev Neurosci 2012; 34:502-14. [PMID: 23257686 PMCID: PMC7962862 DOI: 10.1159/000345353] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/15/2012] [Indexed: 01/31/2023] Open
Abstract
Previous studies have examined the role of diverse signaling pathways in dentate neurogenesis, but how these signaling pathways are integrated remains unknown. Using mice that allow genetic manipulation of type 1 radial progenitors in the dentate, we show that forced induction of Wnt signaling leads to expansion of the intermediate progenitor cell (IPC) pool while selective activation of Sonic hedgehog (Shh) signaling drives neurogenesis without significant expansion of IPCs. Thus, both Wnt and Shh signaling are proneurogenic, but they act in distinct manners when their signaling is forced in subgranular zone radial progenitors. We examined potential targets of the Wnt pathway in these cells and found that Cxcr4 is a direct target of Lef1 in dentate gyrus progenitors and that loss of Cxcr4 in postnatal neurogenesis decreases the production of IPCs. This suggests that Wnt activation of dentate gyrus progenitors induces Cxcl12 signaling by regulating receptor expression. This study provides evidence that distinct morphogenic pathways have notably different roles in regulating ongoing dentate neurogenesis.
Collapse
Affiliation(s)
- Youngshik Choe
- Department of Neurology, University of California, San Francisco, Calif., USA
| | - Samuel J. Pleasure
- Department of Neurology, University of California, San Francisco, Calif., USA
- Programs in Neuroscience, University of California, San Francisco, Calif., USA
- Programs in Developmental Stem Cell Biology, University of California, San Francisco, Calif., USA
- Programs in Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, Calif., USA
| |
Collapse
|
72
|
Magnani D, Hasenpusch-Theil K, Benadiba C, Yu T, Basson MA, Price DJ, Lebrand C, Theil T. Gli3 controls corpus callosum formation by positioning midline guideposts during telencephalic patterning. ACTA ACUST UNITED AC 2012; 24:186-98. [PMID: 23042737 DOI: 10.1093/cercor/bhs303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The corpus callosum (CC) represents the major forebrain commissure connecting the 2 cerebral hemispheres. Midline crossing of callosal axons is controlled by several glial and neuronal guideposts specifically located along the callosal path, but it remains unknown how these cells acquire their position. Here, we show that the Gli3 hypomorphic mouse mutant Polydactyly Nagoya (Pdn) displays agenesis of the CC and mislocation of the glial and neuronal guidepost cells. Using transplantation experiments, we demonstrate that agenesis of the CC is primarily caused by midline defects. These defects originate during telencephalic patterning and involve an up-regulation of Slit2 expression and altered Fgf and Wnt/β-catenin signaling. Mutations in sprouty1/2 which mimic the changes in these signaling pathways cause a disorganization of midline guideposts and CC agenesis. Moreover, a partial recovery of midline abnormalities in Pdn/Pdn;Slit2(-/-) embryos mutants confirms the functional importance of correct Slit2 expression levels for callosal development. Hence, Gli3 controlled restriction of Fgf and Wnt/β-catenin signaling and of Slit2 expression is crucial for positioning midline guideposts and callosal development.
Collapse
Affiliation(s)
- Dario Magnani
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Decimo I, Fumagalli G, Berton V, Krampera M, Bifari F. Meninges: from protective membrane to stem cell niche. AMERICAN JOURNAL OF STEM CELLS 2012; 1:92-105. [PMID: 23671802 PMCID: PMC3636743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 06/02/2023]
Abstract
Meninges are a three tissue membrane primarily known as coverings of the brain. More in depth studies on meningeal function and ultrastructure have recently changed the view of meninges as a merely protective membrane. Accurate evaluation of the anatomical distribution in the CNS reveals that meninges largely penetrate inside the neural tissue. Meninges enter the CNS by projecting between structures, in the stroma of choroid plexus and form the perivascular space (Virchow-Robin) of every parenchymal vessel. Thus, meninges may modulate most of the physiological and pathological events of the CNS throughout the life. Meninges are present since the very early embryonic stages of cortical development and appear to be necessary for normal corticogenesis and brain structures formation. In adulthood meninges contribute to neural tissue homeostasis by secreting several trophic factors including FGF2 and SDF-1. Recently, for the first time, we have identified the presence of a stem cell population with neural differentiation potential in meninges. In addition, we and other groups have further described the presence in meninges of injury responsive neural precursors. In this review we will give a comprehensive view of meninges and their multiple roles in the context of a functional network with the neural tissue. We will highlight the current literature on the developmental feature of meninges and their role in cortical development. Moreover, we will elucidate the anatomical distribution of the meninges and their trophic properties in adult CNS. Finally, we will emphasize recent evidences suggesting the potential role of meninges as stem cell niche harbouring endogenous precursors that can be activated by injury and are able to contribute to CNS parenchymal reaction.
Collapse
Affiliation(s)
- Ilaria Decimo
- Department of Public Health and Community Medicine, Section of Pharmacology, University of VeronaItaly
| | - Guido Fumagalli
- Department of Public Health and Community Medicine, Section of Pharmacology, University of VeronaItaly
| | - Valeria Berton
- Department of Public Health and Community Medicine, Section of Pharmacology, University of VeronaItaly
| | - Mauro Krampera
- Department of Medicine, Stem Cell Laboratory, Section of Hematology, University of VeronaItaly
| | - Francesco Bifari
- Department of Medicine, Stem Cell Laboratory, Section of Hematology, University of VeronaItaly
| |
Collapse
|