51
|
Sittewelle M, Royle SJ. Passive diffusion accounts for the majority of intracellular nanovesicle transport. Life Sci Alliance 2024; 7:e202302406. [PMID: 37857498 PMCID: PMC10587482 DOI: 10.26508/lsa.202302406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
During membrane trafficking, a vesicle formed at the donor compartment must travel to the acceptor membrane before fusing. For large carriers, it is established that this transport is motor-driven; however, the mode by which small vesicles, which outnumber larger carriers, are transported is poorly characterized. Here, we show that intracellular nanovesicles (INVs), a substantial class of small vesicles, are highly mobile within cells and that this mobility depends almost entirely on passive diffusion (0.1-0.3 μm2 s-1). Using single particle tracking, we describe how other small trafficking vesicles have a similar diffusive mode of transport that contrasts with the motor-dependent movement of larger endolysosomal carriers. We also demonstrate that a subset of INVs is involved in exocytosis and that delivery of cargo to the plasma membrane during exocytosis is decreased when diffusion of INVs is specifically restricted. Our results suggest that passive diffusion is sufficient to explain the majority of small vesicle transport.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
52
|
Volkov VA, Akhmanova A. Phase separation on microtubules: from droplet formation to cellular function? Trends Cell Biol 2024; 34:18-30. [PMID: 37453878 DOI: 10.1016/j.tcb.2023.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Microtubules are cytoskeletal polymers that play important roles in numerous cellular processes, ranging from the control of cell shape and polarity to cell division and intracellular transport. Many of these roles rely on proteins that bind to microtubule ends and shafts, carry intrinsically disordered regions, and form complex multivalent interaction networks. A flurry of recent studies demonstrated that these properties allow diverse microtubule-binding proteins to undergo liquid-liquid phase separation (LLPS) in vitro. It is proposed that LLPS could potentially affect multiple microtubule-related processes, such as microtubule nucleation, control of microtubule dynamics and organization, and microtubule-based transport. Here, we discuss the evidence in favor and against the occurrence of LLPS and its functional significance for microtubule-based processes in cells.
Collapse
Affiliation(s)
- Vladimir A Volkov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
53
|
Kitaoka Y, Sase K. Molecular aspects of optic nerve autophagy in glaucoma. Mol Aspects Med 2023; 94:101217. [PMID: 37839231 DOI: 10.1016/j.mam.2023.101217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
The optic nerve consists of the glia, vessels, and axons including myelin and axoplasm. Since axonal degeneration precedes retinal ganglion cell death in glaucoma, the preceding axonal degeneration model may be helpful for understanding the molecular mechanisms of optic nerve degeneration. Optic nerve samples from these models can provide information on several aspects of autophagy. Autophagosomes, the most typical organelles expressing autophagy, are found much more frequently inside axons than around the glia. Thus, immunoblot findings from the optic nerve can reflect the autophagy state in axons. Autophagic flux impairment may occur in degenerating optic nerve axons, as in other central nervous system neurodegenerative diseases. Several molecular candidates are involved in autophagy enhancement, leading to axonal protection. This concept is an attractive approach to the prevention of further retinal ganglion cell death. In this review, we describe the factors affecting autophagy, including nicotinamide riboside, p38, ULK, AMPK, ROCK, and SIRT1, in the optic nerve and propose potential methods of axonal protection via enhancement of autophagy.
Collapse
Affiliation(s)
- Yasushi Kitaoka
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan; Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
54
|
Yang X, Zhang Y, Liu Y, Wang Y, Zhou N. Fluorescence imaging of peripheral nerve function and structure. J Mater Chem B 2023; 11:10052-10071. [PMID: 37846619 DOI: 10.1039/d3tb01927f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Peripheral nerve injuries are common and can cause catastrophic consequences. Although peripheral nerves have notable regenerative capacity, full functional recovery is often challenging due to a number of factors, including age, the type of injury, and delayed healing, resulting in chronic disorders that cause lifelong miseries and significant financial burdens. Fluorescence imaging, among the various techniques, may be the key to overcome these restrictions and improve the prognosis because of its feasibility and dynamic real-time imaging. Intraoperative dynamic fluorescence imaging allows the visualization of the morphological structure of the nerve so that surgeons can reduce the incidence of medically induced injury. Axoplasmic transport-based neuroimaging allows the visualization of the internal transport function of the nerve, facilitating early, objective, and accurate assessment of the degree of regenerative repair, allowing early intervention in patients with poor recovery, thereby improving prognosis. This review briefly discusses peripheral nerve fluorescent dyes that have been reported or could potentially be employed, with a focus on their role in visualizing the nerve's function and anatomy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| | - Yumin Zhang
- Department of Geriatric Endocrinology, The First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P. R. China
| | - Yadong Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
55
|
Tresse E, Marturia-Navarro J, Sew WQG, Cisquella-Serra M, Jaberi E, Riera-Ponsati L, Fauerby N, Hu E, Kretz O, Aznar S, Issazadeh-Navikas S. Mitochondrial DNA damage triggers spread of Parkinson's disease-like pathology. Mol Psychiatry 2023; 28:4902-4914. [PMID: 37779111 PMCID: PMC10914608 DOI: 10.1038/s41380-023-02251-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
In the field of neurodegenerative diseases, especially sporadic Parkinson's disease (sPD) with dementia (sPDD), the question of how the disease starts and spreads in the brain remains central. While prion-like proteins have been designated as a culprit, recent studies suggest the involvement of additional factors. We found that oxidative stress, damaged DNA binding, cytosolic DNA sensing, and Toll-Like Receptor (TLR)4/9 activation pathways are strongly associated with the sPDD transcriptome, which has dysregulated type I Interferon (IFN) signaling. In sPD patients, we confirmed deletions of mitochondrial (mt)DNA in the medial frontal gyrus, suggesting a potential role of damaged mtDNA in the disease pathophysiology. To explore its contribution to pathology, we used spontaneous models of sPDD caused by deletion of type I IFN signaling (Ifnb-/-/Ifnar-/- mice). We found that the lack of neuronal IFNβ/IFNAR leads to oxidization, mutation, and deletion in mtDNA, which is subsequently released outside the neurons. Injecting damaged mtDNA into mouse brain induced PDD-like behavioral symptoms, including neuropsychiatric, motor, and cognitive impairments. Furthermore, it caused neurodegeneration in brain regions distant from the injection site, suggesting that damaged mtDNA triggers spread of PDD characteristics in an "infectious-like" manner. We also discovered that the mechanism through which damaged mtDNA causes pathology in healthy neurons is independent of Cyclic GMP-AMP synthase and IFNβ/IFNAR, but rather involves the dual activation of TLR9/4 pathways, resulting in increased oxidative stress and neuronal cell death, respectively. Our proteomic analysis of extracellular vesicles containing damaged mtDNA identified the TLR4 activator, Ribosomal Protein S3 as a key protein involved in recognizing and extruding damaged mtDNA. These findings might shed light on new molecular pathways through which damaged mtDNA initiates and spreads PD-like disease, potentially opening new avenues for therapeutic interventions or disease monitoring.
Collapse
Affiliation(s)
- Emilie Tresse
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Joana Marturia-Navarro
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Wei Qi Guinevere Sew
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Marina Cisquella-Serra
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Elham Jaberi
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Lluis Riera-Ponsati
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Natasha Fauerby
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Erling Hu
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Oliver Kretz
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susana Aznar
- Centre for Neuroscience and Stereology, University Hospital Bispebjerg-Frederiksberg, 2400, Copenhagen, Denmark
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
56
|
Genin EC, Abou-Ali M, Paquis-Flucklinger V. Mitochondria, a Key Target in Amyotrophic Lateral Sclerosis Pathogenesis. Genes (Basel) 2023; 14:1981. [PMID: 38002924 PMCID: PMC10671245 DOI: 10.3390/genes14111981] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.
Collapse
Affiliation(s)
- Emmanuelle C. Genin
- Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR7284, Centre Hospitalier Universitaire (CHU) de Nice, 06200 Nice, France; (M.A.-A.); (V.P.-F.)
| | | | | |
Collapse
|
57
|
Kemfack AM, Hernández-Morato I, Moayedi Y, Pitman MJ. Transcriptome analysis of left versus right intrinsic laryngeal muscles associated with innervation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554869. [PMID: 37873132 PMCID: PMC10592802 DOI: 10.1101/2023.08.25.554869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objectives/Hypothesis Recurrent laryngeal nerve injury diagnosed as idiopathic or due to short-term surgery-related intubation exhibits a higher incidence of left-sided paralysis. While this is often attributed to nerve length, it is hypothesized there are asymmetric differences in the expression of genes related to neuromuscular function that may impact reinnervation and contribute to this laterality phenomenon. To test this hypothesis, this study analyzes the transcriptome profiles of the intrinsic laryngeal muscles (ILMs), comparing gene expression in the left versus right, with particular attention to genetic pathways associated with neuromuscular function. Study Design Laboratory experiment. Methods RNA was extracted from the left and right sides of the rat posterior cricoarytenoid (PCA), lateral thyroarytenoid (LTA), and medial thyroarytenoid (MTA), respectively. After high-throughput RNA-Sequencing (RNA-Seq), 88 samples were organized into 12 datasets according to their age (P15/adult), sex (male/female), and muscle type (PCA/LTA/MTA). A comprehensive bioinformatics analysis was conducted to compare the left-right ILMs across different conditions. Results 774 differentially expressed genes (DEGs) were identified across the 12 experimental groups, revealing age, sex, and muscle-specific differences between the left versus right ILMs. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways implicated several genes with a left-right laryngeal muscle asymmetry. These genes are associated with neuronal and muscular physiology, immune/inflammatory response, and hormone control. Conclusion Bioinformatics analysis confirmed divergent transcriptome profiles between the left-right ILMs. This preliminary study identifies putative gene targets that will characterize ILM laterality. Level of Evidence N/A. LAY SUMMARY Vocal fold paralysis is more common on the left. This study shows left versus right differences in gene expression related to innervation, suggesting the increased rate of left recurrent laryngeal nerve paralysis may be associated with genetic differences, not just nerve length.
Collapse
|
58
|
Fredrikson JP, Domanico LF, Pratt SL, Loveday EK, Taylor MP, Chang CB. Single-cell Herpes Simplex Virus type-1 infection of neurons using drop-based microfluidics reveals heterogeneous replication kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558333. [PMID: 37790515 PMCID: PMC10542126 DOI: 10.1101/2023.09.18.558333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Single-cell analyses of viral infections often reveal heterogeneity that is not detected by traditional population-level studies. This study applies drop-based microfluidics to investigate the dynamics of HSV-1 infection of neurons at the single-cell level. We used micron-scale Matrigel beads, termed microgels, to culture individual murine Superior Cervical ganglia (SCG) neurons or epithelial cells. Microgel-cultured cells are subsequently enclosed in individual media-in-oil droplets with a dual fluorescent-reporter HSV-1, enabling real-time observation of viral gene expression and replication. Infection within drops revealed that the kinetics of initial viral gene expression and replication were dependent on the inoculating dose. Notably, increasing inoculating doses led to earlier onset of viral gene expression and more frequent productive viral replication. These observations provide crucial insights into the complexity of HSV-1 infection in neurons and emphasize the importance of studying single-cell outcomes of viral infection. The innovative techniques presented here for cell culture and infection in drops provide a foundation for future virology and neurobiology investigations.
Collapse
Affiliation(s)
- Jacob P. Fredrikson
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Luke F. Domanico
- Department of Microbiology & Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Shawna L. Pratt
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Emma K. Loveday
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Matthew P. Taylor
- Department of Microbiology & Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Connie B. Chang
- Department of Chemical & Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
59
|
Minckley TF, Salvagio LA, Fudge DH, Verhey K, Markus SM, Qin Y. Zn2+ decoration of microtubules arrests axonal transport and displaces tau, doublecortin, and MAP2C. J Cell Biol 2023; 222:e202208121. [PMID: 37326602 PMCID: PMC10276529 DOI: 10.1083/jcb.202208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Intracellular Zn2+ concentrations increase via depolarization-mediated influx or intracellular release, but the immediate effects of Zn2+ signals on neuron function are not fully understood. By simultaneous recording of cytosolic Zn2+ and organelle motility, we find that elevated Zn2+ (IC50 ≈ 5-10 nM) reduces both lysosomal and mitochondrial motility in primary rat hippocampal neurons and HeLa cells. Using live-cell confocal microscopy and in vitro single-molecule TIRF imaging, we reveal that Zn2+ inhibits activity of motor proteins (kinesin and dynein) without disrupting their microtubule binding. Instead, Zn2+ directly binds to microtubules and selectively promotes detachment of tau, DCX, and MAP2C, but not MAP1B, MAP4, MAP7, MAP9, or p150glued. Bioinformatic predictions and structural modeling show that the Zn2+ binding sites on microtubules partially overlap with the microtubule binding sites of tau, DCX, dynein, and kinesin. Our results reveal that intraneuronal Zn2+ regulates axonal transport and microtubule-based processes by interacting with microtubules.
Collapse
Affiliation(s)
- Taylor F. Minckley
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | | | - Dylan H. Fudge
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kristen Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
60
|
Puri D, Barry BJ, Engle EC. TUBB3 and KIF21A in neurodevelopment and disease. Front Neurosci 2023; 17:1226181. [PMID: 37600020 PMCID: PMC10436312 DOI: 10.3389/fnins.2023.1226181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neuronal migration and axon growth and guidance require precise control of microtubule dynamics and microtubule-based cargo transport. TUBB3 encodes the neuronal-specific β-tubulin isotype III, TUBB3, a component of neuronal microtubules expressed throughout the life of central and peripheral neurons. Human pathogenic TUBB3 missense variants result in altered TUBB3 function and cause errors either in the growth and guidance of cranial and, to a lesser extent, central axons, or in cortical neuronal migration and organization, and rarely in both. Moreover, human pathogenic missense variants in KIF21A, which encodes an anterograde kinesin motor protein that interacts directly with microtubules, alter KIF21A function and cause errors in cranial axon growth and guidance that can phenocopy TUBB3 variants. Here, we review reported TUBB3 and KIF21A variants, resulting phenotypes, and corresponding functional studies of both wildtype and mutant proteins. We summarize the evidence that, in vitro and in mouse models, loss-of-function and missense variants can alter microtubule dynamics and microtubule-kinesin interactions. Lastly, we highlight additional studies that might contribute to our understanding of the relationship between specific tubulin isotypes and specific kinesin motor proteins in health and disease.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
61
|
Calogero AM, Basellini MJ, Isilgan HB, Longhena F, Bellucci A, Mazzetti S, Rolando C, Pezzoli G, Cappelletti G. Acetylated α-Tubulin and α-Synuclein: Physiological Interplay and Contribution to α-Synuclein Oligomerization. Int J Mol Sci 2023; 24:12287. [PMID: 37569662 PMCID: PMC10418364 DOI: 10.3390/ijms241512287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Emerging evidence supports that altered α-tubulin acetylation occurs in Parkinson's disease (PD), a neurodegenerative disorder characterized by the deposition of α-synuclein fibrillary aggregates within Lewy bodies and nigrostriatal neuron degeneration. Nevertheless, studies addressing the interplay between α-tubulin acetylation and α-synuclein are lacking. Here, we investigated the relationship between α-synuclein and microtubules in primary midbrain murine neurons and the substantia nigra of post-mortem human brains. Taking advantage of immunofluorescence and Proximity Ligation Assay (PLA), a method allowing us to visualize protein-protein interactions in situ, combined with confocal and super-resolution microscopy, we found that α-synuclein and acetylated α-tubulin colocalized and were in close proximity. Next, we employed an α-synuclein overexpressing cellular model and tested the role of α-tubulin acetylation in α-synuclein oligomer formation. We used the α-tubulin deacetylase HDAC6 inhibitor Tubacin to modulate α-tubulin acetylation, and we evaluated the presence of α-synuclein oligomers by PLA. We found that the increase in acetylated α-tubulin significantly induced α-synuclein oligomerization. In conclusion, we unraveled the link between acetylated α-tubulin and α-synuclein and demonstrated that α-tubulin acetylation could trigger the early step of α-synuclein aggregation. These data suggest that the proper regulation of α-tubulin acetylation might be considered a therapeutic strategy to take on PD.
Collapse
Affiliation(s)
- Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
| | - Milo Jarno Basellini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Huseyin Berkcan Isilgan
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (F.L.); (A.B.)
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (F.L.); (A.B.)
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
| | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy;
- Parkinson Institute, ASST-Pini-CTO, 20126 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (H.B.I.); (S.M.); (C.R.)
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
62
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
63
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
64
|
Kuznetsov IA, Kuznetsov AV. Dynein Dysfunction Prevents Maintenance of High Concentrations of Slow Axonal Transport Cargos at the Axon Terminal: A Computational Study. J Biomech Eng 2023; 145:071001. [PMID: 36795013 PMCID: PMC10158974 DOI: 10.1115/1.4056915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Here, we report computational studies of bidirectional transport in an axon, specifically focusing on predictions when the retrograde motor becomes dysfunctional. We are motivated by reports that mutations in dynein-encoding genes can cause diseases associated with peripheral motor and sensory neurons, such as type 2O Charcot-Marie-Tooth disease. We use two different models to simulate bidirectional transport in an axon: an anterograde-retrograde model, which neglects passive transport by diffusion in the cytosol, and a full slow transport model, which includes passive transport by diffusion in the cytosol. As dynein is a retrograde motor, its dysfunction should not directly influence anterograde transport. However, our modeling results unexpectedly predict that slow axonal transport fails to transport cargos against their concentration gradient without dynein. The reason is the lack of a physical mechanism for the reverse information flow from the axon terminal, which is required so that the cargo concentration at the terminal could influence the cargo concentration distribution in the axon. Mathematically speaking, to achieve a prescribed concentration at the terminal, equations governing cargo transport must allow for the imposition of a boundary condition postulating the cargo concentration at the terminal. Perturbation analysis for the case when the retrograde motor velocity becomes close to zero predicts uniform cargo distributions along the axon. The obtained results explain why slow axonal transport must be bidirectional to allow for the maintenance of concentration gradients along the axon length. Our result is limited to small cargo diffusivity, which is a reasonable assumption for many slow axonal transport cargos (such as cytosolic and cytoskeletal proteins, neurofilaments, actin, and microtubules) which are transported as large multiprotein complexes or polymers.
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrey V. Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910
| |
Collapse
|
65
|
Ionescu A, Altman T, Perlson E. Looking for answers far away from the soma-the (un)known axonal functions of TDP-43, and their contribution to early NMJ disruption in ALS. Mol Neurodegener 2023; 18:35. [PMID: 37259156 DOI: 10.1186/s13024-023-00623-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/01/2023] [Indexed: 06/02/2023] Open
Abstract
Axon degeneration and Neuromuscular Junction (NMJ) disruption are key pathologies in the fatal neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). Despite accumulating evidence that axons and NMJs are impacted at a very early stage of the disease, current knowledge about the mechanisms leading to their degeneration remains elusive. Cytoplasmic mislocalization and accumulation of the protein TDP-43 are considered key pathological hallmarks of ALS, as they occur in ~ 97% of ALS patients, both sporadic and familial. Recent studies have identified pathological accumulation of TDP-43 in intramuscular nerves of muscle biopsies collected from pre-diagnosed, early symptomatic ALS patients. These findings suggest a gain of function for TDP-43 in axons, which might facilitate early NMJ disruption. In this review, we dissect the process leading to axonal TDP-43 accumulation and phosphorylation, discuss the known and hypothesized roles TDP-43 plays in healthy axons, and review possible mechanisms that connect TDP-43 pathology to the axon and NMJ degeneration in ALS.
Collapse
Affiliation(s)
- Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Room 605, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Room 605, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Room 605, Ramat Aviv, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
66
|
Gorski K, Jackson CB, Nyman TA, Rezov V, Battersby BJ, Lehesjoki AE. Progressive mitochondrial dysfunction in cerebellar synaptosomes of cystatin B-deficient mice. Front Mol Neurosci 2023; 16:1175851. [PMID: 37251643 PMCID: PMC10213208 DOI: 10.3389/fnmol.2023.1175851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The involvement of mitochondrial dysfunction in cystatin B (CSTB) deficiency has been suggested, but its role in the onset of neurodegeneration, myoclonus, and ataxia in the CSTB-deficient mouse model (Cstb-/-) is yet unknown. CSTB is an inhibitor of lysosomal and nuclear cysteine cathepsins. In humans, partial loss-of-function mutations cause the progressive myoclonus epilepsy neurodegenerative disorder, EPM1. Here we applied proteome analysis and respirometry on cerebellar synaptosomes from early symptomatic (Cstb-/-) mice to identify the molecular mechanisms involved in the onset of CSTB-deficiency associated neural pathogenesis. Proteome analysis showed that CSTB deficiency is associated with differential expression of mitochondrial and synaptic proteins, and respirometry revealed a progressive impairment in mitochondrial function coinciding with the onset of myoclonus and neurodegeneration in (Cstb-/-) mice. This mitochondrial dysfunction was not associated with alterations in mitochondrial DNA copy number or membrane ultrastructure. Collectively, our results show that CSTB deficiency generates a defect in synaptic mitochondrial bioenergetics that coincides with the onset and progression of the clinical phenotypes, and thus is likely a contributor to the pathogenesis of EPM1.
Collapse
Affiliation(s)
- Katarin Gorski
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Veronika Rezov
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
67
|
Hafner AS, Triesch J. Synaptic logistics: Competing over shared resources. Mol Cell Neurosci 2023; 125:103858. [PMID: 37172922 DOI: 10.1016/j.mcn.2023.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
High turnover rates of synaptic proteins imply that synapses constantly need to replace their constituent building blocks. This requires sophisticated supply chains and potentially exposes synapses to shortages as they compete for limited resources. Interestingly, competition in neurons has been observed at different scales. Whether it is competition of receptors for binding sites inside a single synapse or synapses fighting for resources to grow. Here we review the implications of such competition for synaptic function and plasticity. We identify multiple mechanisms that synapses use to safeguard themselves against supply shortages and identify a fundamental neurologistic trade-off governing the sizes of reserve pools of essential synaptic building blocks.
Collapse
Affiliation(s)
- Anne-Sophie Hafner
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany; Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
68
|
Lee SH, Lee EJ, Kim TW. Discrepancy between peripapillary retinal and choroidal microvasculature and the rate of localized retinal nerve fiber layer thinning in glaucoma. Sci Rep 2023; 13:6513. [PMID: 37085554 PMCID: PMC10121720 DOI: 10.1038/s41598-023-33637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023] Open
Abstract
This observational case series study is conducted to compare the extent of microvasculature impairment in the peripapillary retina and choroid in eyes with primary open-angle glaucoma (POAG), and to investigate the association of the discrepancy between the microvasculature impairments of each layer with the rate of progressive retinal nerve fiber layer (RNFL) thinning. A total of 88 POAG eyes with a localized RNFL defect were enrolled, including 67 eyes with and 21 eyes without choroidal microvasculature dropout (CMvD). Circumferential widths of retinal microvascular impairment (RMvI) and CMvD were measured, and eyes were classified based on the relative width of CMvD to RMvI (CMvD/RMvI ratio). The rate of RNFL thinning was determined by linear regression based on ≥ 5 serial OCT examinations. Thinner global RNFL and worse visual field mean deviation at baseline were associated with a larger circumferential width of the RMvI, whereas the presence of cold extremities, lower mean arterial pressure and thinner juxtapapillary choroid were associated with a larger circumferential width of the CMvD. The rate of global RNFL thinning was faster in eyes with larger relative CMvD width than in eyes with equal CMvD and RMvI widths and in eyes without CMvD (P = 0.001). Lower mean arterial pressure (P = 0.041), larger CMvD width (P = 0.046), larger CMvD/RMvI ratio (P = 0.041), and detection of disc hemorrhage during the follow-up (P = 0.013) were significant factors associated with faster global RNFL thinning. Larger CMvD width relative to RMvI width may be indicative of an increased risk of faster RNFL thinning in POAG with localized RNFL defect. Comparing the microvasculature impairment in individual layers may help predict more rapid glaucoma progression.
Collapse
Affiliation(s)
- Seung Hyen Lee
- Department of Ophthalmology, Nowon Eulji University Hospital, Eulji University College of Medicine, Seoul, Korea
| | - Eun Ji Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620, Gyeonggi, Korea.
| | - Tae-Woo Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620, Gyeonggi, Korea
| |
Collapse
|
69
|
Kikuchi S, Kohno T, Kojima T, Tatsumi H, Ohsaki Y, Ninomiya T. Oxygen-Glucose Deprivation Decreases the Motility and Length of Axonal Mitochondria in Cultured Dorsal Root Ganglion Cells of Rats. Cell Mol Neurobiol 2023; 43:1267-1280. [PMID: 35771293 PMCID: PMC11414435 DOI: 10.1007/s10571-022-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Controlling axonal mitochondria is important for maintaining normal function of the neural network. Oxygen-glucose deprivation (OGD), a model used for mimicking ischemia, eventually induces neuronal cell death similar to axonal degeneration. Axonal mitochondria are disrupted during OGD-induced neural degeneration; however, the mechanism underlying mitochondrial dysfunction has not been completely understood. We focused on the dynamics of mitochondria in axons exposed to OGD; we observed that the number of motile mitochondria significantly reduced in 1 h following OGD exposure. In our observation, the decreased length of stationary mitochondria was affected by the following factors: first, the halt of motile mitochondria; second, the fission of longer stationary mitochondria; and third, a transformation from tubular to spherical shape in OGD-exposed axons. Motile mitochondria reduction preceded stationary mitochondria fragmentation in OGD exposure; these conditions induced the decrease of stationary mitochondria in three different ways. Our results suggest that mitochondrial morphological changes precede the axonal degeneration while ischemia-induced neurodegeneration.
Collapse
Affiliation(s)
- Shin Kikuchi
- Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Takayuki Kohno
- Department of Cell Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Haruyuki Tatsumi
- Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yuki Ohsaki
- Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takafumi Ninomiya
- Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
70
|
Yao C, Pan S, Xu Y, Lu M, Zhao Y, Huo J, Hao B, Huang J. Bombyx mori Nucleopolyhedrovirus Hijacks Multivesicular Body as an Alternative Envelopment Platform for Budded Virus Egress. J Virol 2023; 97:e0004123. [PMID: 36916914 PMCID: PMC10062136 DOI: 10.1128/jvi.00041-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Baculovirus budded virus (BV) acquires its envelope and viral membrane fusion proteins from the plasma membrane (PM) of the host cell during the budding process. However, this classical BV egress pathway has been questioned because an intracellularly localized membrane fusion protein, SPΔnGP64 (glycoprotein 64 [GP64] lacking the signal peptide [SP] n region), was assembled into the envelope to generate infective BVs in our recent studies. Here, we identify an additional pathway for Bombyx mori nucleopolyhedrovirus (BmNPV) BV assembly and release that differs, in part, from the currently accepted model for the egress pathway of baculovirus. Electron microscopy showed that during infection, BmNPV-infected cells contained many newly formed multivesicular body (MVB)-like compartments that included mature virions at 30 h postinfection (p.i.). Immunoelectron microscopy demonstrated that the MVBs contained CD63, an MVB endosome marker, and GP64, a BmNPV fusion glycoprotein. MVB fusion with the PM and the release of mature virions, together with naked nucleocapsids, were observed at the cell surface. Furthermore, MVB egress mediated the translocation of SPΔnGP64 to the PM, which induced cell-cell fusion until 36 h p.i. This BV egress pathway can be partially inhibited by U18666A incubation and RNA interference targeting MVB biogenesis genes. Our findings indicate that BmNPV BVs are enveloped and released through MVBs via the cellular exosomal pathway, which is a subordinate BV egress pathway that produces virions with relatively inferior infectivity. This scenario has significant implications for the elucidation of the BmNPV BV envelopment pathway. IMPORTANCE BmNPV is a severe pathogen that infects mainly Bombyx mori, a domesticated insect of economic importance, and accounts for approximately 15% of economic losses in sericulture. BV production plays a key role in systemic BmNPV infection of larvae. Despite the progress made in the functional gene studies of BmNPV, BmNPV BV egress is ill-understood. This study reports a previously unreported MVB envelopment pathway in BmNPV BV egress. To our knowledge, this is the first report of a baculovirus using dual BV egress pathways. This specific BV egress mechanism explains the cause of the non-PM-localized SPΔnGP64-rescued gp64-null bacmid infectivity, elucidating the reason underlying the retention of SP by BmNPV GP64. The data obtained elucidate an alternate molecular mechanism of baculovirus BV egress.
Collapse
Affiliation(s)
- Congyue Yao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Shijia Pan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Ying Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Mengze Lu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Yating Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jiayao Huo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
| | - Bifang Hao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jinshan Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, People’s Republic of China
- Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
71
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
72
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
73
|
Chaiamarit T, Verhelle A, Chassefeyre R, Shukla N, Novak SW, Andrade LR, Manor U, Encalada SE. Mutant Prion Protein Endoggresomes are Hubs for Local Axonal Organelle-Cytoskeletal Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533383. [PMID: 36993610 PMCID: PMC10055262 DOI: 10.1101/2023.03.19.533383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Dystrophic axons comprising misfolded mutant prion protein (PrP) aggregates are a characteristic pathological feature in the prionopathies. These aggregates form inside endolysosomes -called endoggresomes-, within swellings that line up the length of axons of degenerating neurons. The pathways impaired by endoggresomes that result in failed axonal and consequently neuronal health, remain undefined. Here, we dissect the local subcellular impairments that occur within individual mutant PrP endoggresome swelling sites in axons. Quantitative high-resolution light and electron microscopy revealed the selective impairment of the acetylated vs tyrosinated microtubule cytoskeleton, while micro-domain image analysis of live organelle dynamics within swelling sites revealed deficits uniquely to the MT-based active transport system that translocates mitochondria and endosomes toward the synapse. Cytoskeletal and defective transport results in the retention of mitochondria, endosomes, and molecular motors at swelling sites, enhancing mitochondria-Rab7 late endosome contacts that induce mitochondrial fission via the activity of Rab7, and render mitochondria dysfunctional. Our findings point to mutant Pr Pendoggresome swelling sites as selective hubs of cytoskeletal deficits and organelle retention that drive the remodeling of organelles along axons. We propose that the dysfunction imparted locally within these axonal micro-domains spreads throughout the axon over time, leading to axonal dysfunction in prionopathies.
Collapse
|
74
|
Kounoupa Z, Tivodar S, Theodorakis K, Kyriakis D, Denaxa M, Karagogeos D. Rac1 and Rac3 GTPases and TPC2 are required for axonal outgrowth and migration of cortical interneurons. J Cell Sci 2023; 136:286920. [PMID: 36744839 DOI: 10.1242/jcs.260373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
Rho GTPases, among them Rac1 and Rac3, are major transducers of extracellular signals and are involved in multiple cellular processes. In cortical interneurons, the neurons that control the balance between excitation and inhibition of cortical circuits, Rac1 and Rac3 are essential for their development. Ablation of both leads to a severe reduction in the numbers of mature interneurons found in the murine cortex, which is partially due to abnormal cell cycle progression of interneuron precursors and defective formation of growth cones in young neurons. Here, we present new evidence that upon Rac1 and Rac3 ablation, centrosome, Golgi complex and lysosome positioning is significantly perturbed, thus affecting both interneuron migration and axon growth. Moreover, for the first time, we provide evidence of altered expression and localization of the two-pore channel 2 (TPC2) voltage-gated ion channel that mediates Ca2+ release. Pharmacological inhibition of TPC2 negatively affected axonal growth and migration of interneurons. Our data, taken together, suggest that TPC2 contributes to the severe phenotype in axon growth initiation, extension and interneuron migration in the absence of Rac1 and Rac3.
Collapse
Affiliation(s)
- Zouzana Kounoupa
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| | - Simona Tivodar
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| | - Kostas Theodorakis
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| | - Dimitrios Kyriakis
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Myrto Denaxa
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre 'Al. Fleming', Vari, 16672, Greece
| | - Domna Karagogeos
- Institute of Molecular Biology and Biotechnology (IMBB, FORTH), Heraklion 71110, Greece.,Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion 71110, Greece
| |
Collapse
|
75
|
Potential Role of Fenestrated Septa in Axonal Transport of Golgi Cisternae and Gap Junction Formation/Function. Int J Mol Sci 2023; 24:ijms24065385. [PMID: 36982457 PMCID: PMC10049177 DOI: 10.3390/ijms24065385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Crayfish axons contain a system of parallel membranous cisternae spaced by ~2 μm and oriented perpendicularly to the axon’s long axis. Each cisterna is composed of two roughly parallel membranes, separated by a 150–400 Å wide space. The cisternae are interrupted by 500–600 Å pores, each occupied by a microtubule. Significantly, filaments, likely made of kinesin, often bridge the gap between the microtubule and the edge of the pore. Neighboring cisternae are linked by longitudinal membranous tubules. In small axons, the cisternae seem to be continuous across the axon, while in large axons they are intact only at the axon’s periphery. Due to the presence of pores, we have named these structures “Fenestrated Septa” (FS). Similar structures are also present in vertebrates, including mammals, proving that they are widely expressed in the animal kingdom. We propose that FS are components of the “anterograde transport” mechanism that moves cisternae of the Golgi apparatus (GA) toward the nerve ending by means of motor proteins, likely to be kinesins. In crayfish lateral giant axons, we believe that vesicles that bud off FS at the nerve ending contain gap junction hemichannels (innexons) for gap junction channel and hemichannel formation and function.
Collapse
|
76
|
Elhaj R, Reynolds JM. Chemical exposures and suspected impact on Gulf War Veterans. Mil Med Res 2023; 10:11. [PMID: 36882803 PMCID: PMC9993698 DOI: 10.1186/s40779-023-00449-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Gulf War Illness (GWI) encompass a spectrum of maladies specific to troops deployed during the Persian Gulf War (1990-1991). There are several hypothesized factors believed to contribute to GWI, including (but not limited to) exposures to chemical agents and a foreign environment (e.g., dust, pollens, insects, and microbes). Moreover, the inherent stress associated with deployment and combat has been associated with GWI. While the etiology of GWI remains uncertain, several studies have provided strong evidence that chemical exposures, especially neurotoxicants, may be underlying factors for the development of GWI. This mini style perspective article will focus on some of the major evidence linking chemical exposures to GWI development and persistence decades after exposure.
Collapse
Affiliation(s)
- Rami Elhaj
- Center for Cancer Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joseph M Reynolds
- Center for Cancer Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
77
|
Wijegunawardana D, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43, drive ribonucleoprotein condensate transport dysfunction and suppress local translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526372. [PMID: 36778347 PMCID: PMC9915502 DOI: 10.1101/2023.01.30.526372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Altered RNA metabolism is a common pathogenic mechanism linked to familial and sporadic Amyotrophic lateral sclerosis (ALS). ALS is characterized by mislocalization and aggregation of TDP-43, an RNA-binding protein (RBP) with multiple roles in post-transcriptional RNA processing. Recent studies have identified genetic interactions between TDP-43 and Ataxin-2, a polyglutamine (polyQ) RBP in which intermediate length polyQ expansions confer increased ALS risk. Here, we used live-cell confocal imaging, photobleaching and translation reporter assays to study the localization, transport dynamics and mRNA regulatory functions of TDP-43/Ataxin-2 in rodent primary cortical neurons. We show that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within ribonucleoprotein (RNP) condensates, and disrupt both its motility along the axon and liquid-like properties. Our data suggest that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, these results indicate Ataxin-2 polyQ expansions have detrimental effects on stability, localization, and translation of transcripts critical for axonal and cytoskeletal integrity, particularly important for motor neurons.
Collapse
|
78
|
Shpakov AO, Zorina II, Derkach KV. Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 2023; 24:3278. [PMID: 36834685 PMCID: PMC9962062 DOI: 10.3390/ijms24043278] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
A decrease in the activity of the insulin signaling system of the brain, due to both central insulin resistance and insulin deficiency, leads to neurodegeneration and impaired regulation of appetite, metabolism, endocrine functions. This is due to the neuroprotective properties of brain insulin and its leading role in maintaining glucose homeostasis in the brain, as well as in the regulation of the brain signaling network responsible for the functioning of the nervous, endocrine, and other systems. One of the approaches to restore the activity of the insulin system of the brain is the use of intranasally administered insulin (INI). Currently, INI is being considered as a promising drug to treat Alzheimer's disease and mild cognitive impairment. The clinical application of INI is being developed for the treatment of other neurodegenerative diseases and improve cognitive abilities in stress, overwork, and depression. At the same time, much attention has recently been paid to the prospects of using INI for the treatment of cerebral ischemia, traumatic brain injuries, and postoperative delirium (after anesthesia), as well as diabetes mellitus and its complications, including dysfunctions in the gonadal and thyroid axes. This review is devoted to the prospects and current trends in the use of INI for the treatment of these diseases, which, although differing in etiology and pathogenesis, are characterized by impaired insulin signaling in the brain.
Collapse
Affiliation(s)
- Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
79
|
Watson ET, Pauers MM, Seibert MJ, Vevea JD, Chapman ER. Synaptic vesicle proteins are selectively delivered to axons in mammalian neurons. eLife 2023; 12:e82568. [PMID: 36729040 PMCID: PMC9894587 DOI: 10.7554/elife.82568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Neurotransmitter-filled synaptic vesicles (SVs) mediate synaptic transmission and are a hallmark specialization in neuronal axons. Yet, how SV proteins are sorted to presynaptic nerve terminals remains the subject of debate. The leading model posits that these proteins are randomly trafficked throughout neurons and are selectively retained in presynaptic boutons. Here, we used the RUSH (retention using selective hooks) system, in conjunction with HaloTag labeling approaches, to study the egress of two distinct transmembrane SV proteins, synaptotagmin 1 and synaptobrevin 2, from the soma of mature cultured rat and mouse neurons. For these studies, the SV reporter constructs were expressed at carefully controlled, very low levels. In sharp contrast to the selective retention model, both proteins selectively and specifically entered axons with minimal entry into dendrites. However, even moderate overexpression resulted in the spillover of SV proteins into dendrites, potentially explaining the origin of previous non-polarized transport models, revealing the limited, saturable nature of the direct axonal trafficking pathway. Moreover, we observed that SV constituents were first delivered to the presynaptic plasma membrane before incorporation into SVs. These experiments reveal a new-found membrane trafficking pathway, for SV proteins, in classically polarized mammalian neurons and provide a glimpse at the first steps of SV biogenesis.
Collapse
Affiliation(s)
- Emma T Watson
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Michaela M Pauers
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Michael J Seibert
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Jason D Vevea
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| |
Collapse
|
80
|
Roşianu F, Mihaylov SR, Eder N, Martiniuc A, Claxton S, Flynn HR, Jalal S, Domart MC, Collinson L, Skehel M, Snijders AP, Krause M, Tooze SA, Ultanir SK. Loss of NDR1/2 kinases impairs endomembrane trafficking and autophagy leading to neurodegeneration. Life Sci Alliance 2023; 6:6/2/e202201712. [PMID: 36446521 PMCID: PMC9711861 DOI: 10.26508/lsa.202201712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.
Collapse
Affiliation(s)
- Flavia Roşianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Antonie Martiniuc
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Helen R Flynn
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shamsinar Jalal
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Mark Skehel
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
81
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
82
|
Low-Dose Taxol Promotes Neuronal Axons Extension and Functional Recovery after Spinal Cord Injury. Mediators Inflamm 2023; 2023:5604103. [PMID: 36741075 PMCID: PMC9897914 DOI: 10.1155/2023/5604103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 02/07/2023] Open
Abstract
Axonal regeneration has been the research focus in the field of clinical treatment for spinal cord injury (SCI). The growth and extension of neuronal axons is a dynamic biological process mediated by the cytoskeleton, and microtubule plays an important role in axonal growth. Moderate stabilization of microtubule promotes axonal growth and eliminates various intra- and extracellular mechanisms that impede axonal regeneration. After SCI, the damaged axons rapidly form a growth cone, wherein the stability of tubulin decreases, impairing axonal regeneration. Taxol with proven clinical safety is commonly used as a broad-spectrum antitumor drug. Importantly, Taxol can promote axonal extension by enhancing and stabilizing the microtubule assembly. In our study, we systematically investigated the differentiation of neural stem cells (NSCs) in vitro and functional recovery in injured rats in vivo following Taxol treatment. Low-dose Taxol promoted differentiation of NSCs to neurons and significantly extended the axons in vitro. In vivo, Taxol promoted the expression of βIII-tubulin in the injured areas and motor function recovery after SCI. Low-dose Taxol is a promising clinical agent to promote axonal regeneration after SCI.
Collapse
|
83
|
Maloney MT, Wang W, Bhowmick S, Millan I, Kapur M, Herrera N, Frost E, Zhang EY, Song S, Wang M, Park AB, Yao AY, Yang Y. Failure to Thrive: Impaired BDNF Transport along the Cortical-Striatal Axis in Mouse Q140 Neurons of Huntington's Disease. BIOLOGY 2023; 12:biology12020157. [PMID: 36829435 PMCID: PMC9952218 DOI: 10.3390/biology12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Boosting trophic support to striatal neurons by increasing levels of brain-derived neurotrophic factor (BDNF) has been considered as a target for therapeutic intervention for several neurodegenerative diseases, including Huntington's disease (HD). To aid in the implementation of such a strategy, a thorough understanding of BDNF cortical-striatal transport is critical to help guide its strategic delivery. In this manuscript, we investigate the dynamic behavior of BDNF transport along the cortical-striatal axis in Q140 primary neurons, a mouse model for HD. We examine this by using single-molecule labeling of BDNF conjugated with quantum dots (QD-BDNF) to follow the transport along the cortical-striatal axis in a microfluidic chamber system specifically designed for the co-culture of cortical and striatal primary neurons. Using this approach, we observe a defect of QD-BDNF transport in Q140 neurons. Our study demonstrates that QD-BDNF transport along the cortical-striatal axis involves the impairment of anterograde transport within axons of cortical neurons, and of retrograde transport within dendrites of striatal neurons. One prominent feature we observe is the extended pause time of QD-BDNF retrograde transport within Q140 striatal dendrites. Taken together, these finding support the hypothesis that delinquent spatiotemporal trophic support of BDNF to striatal neurons, driven by impaired transport, may contribute to the pathogenesis of HD, providing us with insight into how a BDNF supplementation therapeutic strategy may best be applied for HD.
Collapse
|
84
|
In vivo imaging of axonal transport in peripheral nerves of rodent forelimbs. Neuronal Signal 2023; 7:NS20220098. [PMID: 36743438 PMCID: PMC9867938 DOI: 10.1042/ns20220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
Axonal transport is the essential process by which neurons actively traffic a variety of cargoes between the cell soma and axon terminals. Accordingly, dysfunctional axonal transport is linked to many nervous system conditions. Therefore, being able to image and quantify this dynamic process in live neurons of animal disease models is beneficial for understanding neuropathology and testing new therapies at the preclinical level. As such, intravital approaches have been developed to assess cargo movement in the hindlimb sciatic nerves of live, anaesthetised mice. Here, we describe an adapted method for in vivo imaging of axonal transport in intact median and ulnar nerves of the rodent forelimb. Injection of a fluorescently labelled and non-toxic fragment of tetanus neurotoxin (HCT) into the mouse forepaw permits the identification of signalling endosomes in intact axons of median and ulnar nerves. Through immunofluorescent analysis of forelimb lumbrical muscles and median/ulnar nerves, we confirmed that HCT is taken up at motor nerve terminals and predominantly locates to motor axons. We then showed that the baseline trafficking of signalling endosomes is similar between the median/ulnar nerves and the sciatic nerve in adult wild-type mice. Importantly, this adapted method can be readily tailored for assessment of additional cargoes, such as mitochondria. By measuring transport in forelimb and hindlimb nerves, comparative anatomical and functional analyses can be performed in rodent disease models to aid our understanding of peripheral nerve disease pathogenesis and response to injury.
Collapse
|
85
|
Maiya R, Dey S, Ray K, Menon GI. The interplay of active and passive mechanisms in slow axonal transport. Biophys J 2023; 122:333-345. [PMID: 36502274 PMCID: PMC9892612 DOI: 10.1016/j.bpj.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/24/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A combination of intermittent active movement of transient aggregates and a paused state that intervenes between periods of active transport has been proposed to underlie the slow, directed transport of soluble proteins in axons. A component of passive diffusion in the axoplasm may also contribute to slow axonal transport, although quantitative estimates of the relative contributions of diffusive and active movement in the slow transport of a soluble protein, and in particular how they might vary across developmental stages, are lacking. Here, we propose and study a model for slow axonal transport, addressing data from bleach recovery measurements on a small, soluble, protein, choline acetyltransferase, in thin axons of the lateral chordotonal (lch5) sensory neurons of Drosophila. Choline acetyltransferase is mainly present in soluble form in the axon and catalyzes the acetylation of choline at the synapse. It does not form particulate structures in axons and moves at rates characteristic of slow component b (≈ 1-10 mm/day or 0.01-0.1 μm/s). Using our model, which incorporates active transport with paused and/or diffusive states, we predict bleach recovery, transport rates, and cargo trajectories obtained through kymographs, comparing these with experimental observations at different developmental stages. We show that changes in the diffusive fraction of cargo during these developmental stages dominate bleach recovery and that a combination of active motion with a paused state alone cannot reproduce the data. We compared predictions of the model with results from photoactivation experiments. The importance of the diffusive state in reproducing the bleach recovery signal in the slow axonal transport of small soluble proteins is our central result.
Collapse
Affiliation(s)
- Reshma Maiya
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Swagata Dey
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, India; Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Krishanu Ray
- National Brain Research Centre, NH-8, Manesar, Gurgaon, Haryana, India; Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.
| | - Gautam I Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Department of Physics, Ashoka University, Sonepat, India; Department of Biology, Ashoka University, Sonepat, India.
| |
Collapse
|
86
|
McKinnon R, Lupinski I, Liang A. Security breach: peripheral nerves provide unrestricted access for toxin delivery into the central nervous system. Neural Regen Res 2023; 18:64-67. [PMID: 35799510 PMCID: PMC9241397 DOI: 10.4103/1673-5374.345472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We explore the hypothesis that a potential explanation for the initiation of motor neuron disease is an unappreciated vulnerability in central nervous system defense, the direct delivery of neurotoxins into motor neurons via peripheral nerve retrograde transport. This further suggests a mechanism for focal initiation of neuro-degenerative diseases in general, with subsequent spread by network degeneration as suggested by the Frost-Diamond hypothesis. We propose this vulnerability may be a byproduct of vertebrate evolution in a benign aquatic environment, where external surfaces were not exposed to concentrated neurotoxins.
Collapse
|
87
|
Dhasmana S, Dhasmana A, Kotnala S, Mangtani V, Narula AS, Haque S, Jaggi M, Yallapu MM, Chauhan SC. Boosting Mitochondrial Potential: An Imperative Therapeutic Intervention in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:1117-1138. [PMID: 36111770 PMCID: PMC10286590 DOI: 10.2174/1570159x20666220915092703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a progressive and terminal neurodegenerative disorder. Mitochondrial dysfunction, imbalance of cellular bioenergetics, electron chain transportation and calcium homeostasis are deeply associated with the progression of this disease. Impaired mitochondrial functions are crucial in rapid neurodegeneration. The mitochondria of ALS patients are associated with deregulated Ca2+ homeostasis and elevated levels of reactive oxygen species (ROS), leading to oxidative stress. Overload of mitochondrial calcium and ROS production leads to glutamatereceptor mediated neurotoxicity. This implies mitochondria are an attractive therapeutic target. OBJECTIVE The aim of this review is to brief the latest developments in the understanding of mitochondrial pathogenesis in ALS and emphasize the restorative capacity of therapeutic candidates. RESULTS In ALS, mitochondrial dysfunction is a well-known phenomenon. Various therapies targeted towards mitochondrial dysfunction aim at decreasing ROS generation, increasing mitochondrial biogenesis, and inhibiting apoptotic pathways. Some of the therapies briefed in this review may be categorized as synthetic, natural compounds, genetic materials, and cellular therapies. CONCLUSION The overarching goals of mitochondrial therapies in ALS are to benefit ALS patients by slowing down the disease progression and prolonging overall survival. Despite various therapeutic approaches, there are many hurdles in the development of a successful therapy due to the multifaceted nature of mitochondrial dysfunction and ALS progression. Intensive research is required to precisely elucidate the molecular pathways involved in the progression of mitochondrial dysfunctions that ultimately lead to ALS. Because of the multifactorial nature of ALS, a combination therapy approach may hold the key to cure and treat ALS in the future.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sudhir Kotnala
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Varsha Mangtani
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
| | - Acharan S. Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, North Carolina, NC 27516, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Meena Jaggi
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
88
|
Frixione E, Ruiz-Zamarripa L. Proteins turn "Proteans" - The over 40-year delayed paradigm shift in structural biology: From "native proteins in uniquely defined configurations" to "intrinsically disordered proteins". Biomol Concepts 2023; 14:bmc-2022-0030. [PMID: 37326425 DOI: 10.1515/bmc-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
The current millennium brought up a revolutionary paradigm shift in molecular biology: many operative proteins, rather than being quasi-rigid polypeptide chains folded into unique configurations - as believed throughout most of the past century - are now known to be intrinsically disordered, dynamic, pleomorphic, and multifunctional structures with stochastic behaviors. Yet, part of this knowledge, including suggestions about possible mechanisms and plenty of evidence for the same, became available by the 1950s and 1960s to remain then nearly forgotten for over 40 years. Here, we review the main steps toward the classic notions about protein structures, as well as the neglected precedents of present views, discuss possible explanations for such long oblivion, and offer a sketch of the current panorama in this field.
Collapse
Affiliation(s)
- Eugenio Frixione
- Department of Cell Biology, Center for Research and Advanced Studies IPN (Cinvestav), Mexico City 07360, Mexico
| | - Lourdes Ruiz-Zamarripa
- Department of Cell Biology, Center for Research and Advanced Studies IPN (Cinvestav), Mexico City 07360, Mexico
| |
Collapse
|
89
|
Diot C, Cosentino G, Rameix-Welti MA. Ribonucleoprotein transport in Negative Strand RNA viruses. Biol Cell 2023; 115:e2200059. [PMID: 36192136 DOI: 10.1111/boc.202200059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
Negative-sense, single-stranded RNA (-ssRNA) viruses comprise some of the deadliest human pathogens (Ebola, rabies, influenza A viruses etc.). Developing therapeutic tools relies on a better understanding of their multiplication cycle. For these viruses, the genome replication and transcription activities most-often segregate in membrane-less environments called inclusion bodies (IBs) or viral factories. These "organelles" usually locate far from the cell surface from where new virions are released, and -ssRNA viruses do not encode for transport factors. The efficient trafficking of the genome progeny toward the cell surface is most often ensured by mechanisms co-opting the cellular machineries. In this review, for each -ssRNA viral family, we cover the methods employed to characterize these host-virus interactions, the strategies used by the viruses to promote the virus genome transport, and the current gaps in the literature. Finally, we highlight how Rab11 has emerged as a target of choice for the intracellular transport of -ssRNA virus genomes.
Collapse
Affiliation(s)
- Cédric Diot
- Université Paris-Saclay - Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
| | - Gina Cosentino
- Université Paris-Saclay - Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay - Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Montigny-le-Bretonneux, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Versailles, France
| |
Collapse
|
90
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
91
|
Cohen LD, Ziv T, Ziv NE. Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points. Front Mol Neurosci 2022; 15:1038614. [PMID: 36583084 PMCID: PMC9792512 DOI: 10.3389/fnmol.2022.1038614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic integrity and function depend on myriad proteins - labile molecules with finite lifetimes that need to be continually replaced with freshly synthesized copies. Here we describe experiments designed to expose synaptic (and neuronal) properties and functions that are particularly sensitive to disruptions in protein supply, identify proteins lost early upon such disruptions, and uncover potential, yet currently underappreciated failure points. We report here that acute suppressions of protein synthesis are followed within hours by reductions in spontaneous network activity levels, impaired oxidative phosphorylation and mitochondrial function, and, importantly, destabilization and loss of both excitatory and inhibitory postsynaptic specializations. Conversely, gross impairments in presynaptic vesicle recycling occur over longer time scales (days), as does overt cell death. Proteomic analysis identified groups of potentially essential 'early-lost' proteins including regulators of synapse stability, proteins related to bioenergetics, fatty acid and lipid metabolism, and, unexpectedly, numerous proteins involved in Alzheimer's disease pathology and amyloid beta processing. Collectively, these findings point to neuronal excitability, energy supply and synaptic stability as early-occurring failure points under conditions of compromised supply of newly synthesized protein copies.
Collapse
Affiliation(s)
- Laurie D. Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion, Haifa, Israel
| | - Noam E. Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel,*Correspondence: Noam E. Ziv,
| |
Collapse
|
92
|
Osonoi S, Mizukami H, Takeuchi Y, Sugawa H, Ogasawara S, Takaku S, Sasaki T, Kudoh K, Ito K, Sango K, Nagai R, Yamamoto Y, Daimon M, Yamamoto H, Yagihashi S. RAGE activation in macrophages and development of experimental diabetic polyneuropathy. JCI Insight 2022; 7:160555. [PMID: 36477360 PMCID: PMC9746912 DOI: 10.1172/jci.insight.160555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
It is suggested that activation of receptor for advanced glycation end products (RAGE) induces proinflammatory response in diabetic nerve tissues. Macrophage infiltration is invoked in the pathogenesis of diabetic polyneuropathy (DPN), while the association between macrophage and RAGE activation and the downstream effects of macrophages remain to be fully clarified in DPN. This study explored the role of RAGE in the pathogenesis of DPN through the modified macrophages. Infiltrating proinflammatory macrophages impaired insulin sensitivity, atrophied the neurons in dorsal root ganglion, and slowed retrograde axonal transport (RAT) in the sciatic nerve of type 1 diabetic mice. RAGE-null mice showed an increase in the population of antiinflammatory macrophages, accompanied by intact insulin sensitivity, normalized ganglion cells, and RAT. BM transplantation from RAGE-null mice to diabetic mice protected the peripheral nerve deficits, suggesting that RAGE is a major determinant for the polarity of macrophages in DPN. In vitro coculture analyses revealed proinflammatory macrophage-elicited insulin resistance in the primary neuronal cells isolated from dorsal root ganglia. Applying time-lapse recording disclosed a direct impact of proinflammatory macrophage and insulin resistance on the RAT deficits in primary neuronal cultures. These results provide a potentially novel insight into the development of RAGE-related DPN.
Collapse
Affiliation(s)
- Sho Osonoi
- Department of Pathology and Molecular Medicine and,Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine and,Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Higashi-ku, Kumamoto, Japan
| | | | - Shizuka Takaku
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | | | | | - Koichi Ito
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Department of Bioscience, School of Agriculture, Tokai University, Higashi-ku, Kumamoto, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | |
Collapse
|
93
|
Badal KK, Puthanveettil SV. Axonal transport deficits in neuropsychiatric disorders. Mol Cell Neurosci 2022; 123:103786. [PMID: 36252719 DOI: 10.1016/j.mcn.2022.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Axonal transport is a major cellular process that mediates bidirectional signaling between the soma and synapse, enabling both intracellular and intercellular communications. Cellular materials, such as proteins, RNAs, and organelles, are transported by molecular motor proteins along cytoskeletal highways in a highly regulated manner. Several studies have demonstrated that axonal transport is central to normal neuronal function, plasticity, and memory storage. Importantly, disruptions in axonal transport result in neuronal dysfunction and are associated with several neurodegenerative disorders. However, we do not know much about axonal transport deficits in neuropsychiatric disorders. Here, we briefly discuss our current understanding of the role of axonal transport in schizophrenia, bipolar and autism.
Collapse
Affiliation(s)
- Kerriann K Badal
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | | |
Collapse
|
94
|
Garbouchian A, Montgomery AC, Gilbert SP, Bentley M. KAP is the neuronal organelle adaptor for Kinesin-2 KIF3AB and KIF3AC. Mol Biol Cell 2022; 33:ar133. [PMID: 36200888 PMCID: PMC9727798 DOI: 10.1091/mbc.e22-08-0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kinesin-driven organelle transport is crucial for neuron development and maintenance, yet the mechanisms by which kinesins specifically bind their organelle cargoes remain undefined. In contrast to other transport kinesins, the neuronal function and specific organelle adaptors of heterodimeric Kinesin-2 family members KIF3AB and KIF3AC remain unknown. We developed a novel microscopy-based assay to define protein-protein interactions in intact neurons. The experiments found that both KIF3AB and KIF3AC bind kinesin-associated protein (KAP). These interactions are mediated by the distal C-terminal tail regions and not the coiled-coil domain. We used live-cell imaging in cultured hippocampal neurons to define the localization and trafficking parameters of KIF3AB and KIF3AC organelle populations. We discovered that KIF3AB/KAP and KIF3AC/KAP bind the same organelle populations and defined their transport parameters in axons and dendrites. The results also show that ∼12% of KIF3 organelles contain the RNA-binding protein adenomatous polyposis coli. These data point toward a model in which KIF3AB and KIF3AC use KAP as their neuronal organelle adaptor and that these kinesins mediate transport of a range of organelles.
Collapse
Affiliation(s)
- Alex Garbouchian
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andrew C. Montgomery
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Susan P. Gilbert
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Marvin Bentley
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180,*Address correspondence to: Marvin Bentley ()
| |
Collapse
|
95
|
Conze C, Trushina NI, Holtmannspötter M, Rierola M, Attanasio S, Bakota L, Piehler J, Brandt R. Super-resolution imaging and quantitative analysis of microtubule arrays in model neurons show that epothilone D increases the density but decreases the length and straightness of microtubules in axon-like processes. Brain Res Bull 2022; 190:234-243. [PMID: 36244582 PMCID: PMC9634454 DOI: 10.1016/j.brainresbull.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Microtubules are essential for the development of neurons and the regulation of their structural plasticity. Microtubules also provide the structural basis for the long-distance transport of cargo. Various factors influence the organization and dynamics of neuronal microtubules, and disturbance of microtubule regulation is thought to play a central role in neurodegenerative diseases. However, imaging and quantitative assessment of the microtubule organization in the densely packed neuronal processes is challenging. The development of super-resolution techniques combined with the use of nanobodies offers new possibilities to visualize microtubules in neurites in high resolution. In combination with recently developed computational analysis tools, this allows automated quantification of neuronal microtubule organization with high precision. Here we have implemented three-dimensional DNA-PAINT (Point Accumulation in Nanoscale Topography), a single-molecule localization microscopy (SMLM) technique, which allows us to acquire 3D arrays of the microtubule lattice in axons of model neurons (neuronally differentiated PC12 cells) and dendrites of primary neurons. For the quantitative analysis of the microtubule organization, we used the open-source software package SMLM image filament extractor (SIFNE). We found that treatment with nanomolar concentrations of the microtubule-targeting drug epothilone D (EpoD) increased microtubule density in axon-like processes of model neurons and shifted the microtubule length distribution to shorter ones, with a mean microtubule length of 2.39 µm (without EpoD) and 1.98 µm (with EpoD). We also observed a significant decrease in microtubule straightness after EpoD treatment. The changes in microtubule density were consistent with live-cell imaging measurements of ensemble microtubule dynamics using a previously established Fluorescence Decay After Photoactivation (FDAP) assay. For comparison, we determined the organization of the microtubule array in dendrites of primary hippocampal neurons. We observed that dendritic microtubules have a very similar length distribution and straightness compared to microtubules in axon-like processes of a neuronal cell line. Our data show that super-resolution imaging of microtubules followed by algorithm-based image analysis represents a powerful tool to quantitatively assess changes in microtubule organization in neuronal processes, useful to determine the effect of microtubule-modulating conditions. We also provide evidence that the approach is robust and can be applied to neuronal cell lines or primary neurons, both after incorporation of labeled tubulin and by anti-tubulin antibody staining.
Collapse
Affiliation(s)
- Christian Conze
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | | | | | - Marina Rierola
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Simone Attanasio
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany; Division of Biophysics, Osnabrück University, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, Osnabrück University, Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany; Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
96
|
Hewitt VL, Miller-Fleming L, Twyning MJ, Andreazza S, Mattedi F, Prudent J, Polleux F, Vagnoni A, Whitworth AJ. Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Aβ 42 toxicity. Life Sci Alliance 2022; 5:5/11/e202201531. [PMID: 35831024 PMCID: PMC9279675 DOI: 10.26508/lsa.202201531] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid β42 (Aβ42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Leonor Miller-Fleming
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Madeleine J Twyning
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Simonetta Andreazza
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Francesca Mattedi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Julien Prudent
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA
| | - Alessio Vagnoni
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Alexander J Whitworth
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
97
|
Frank M, Nabb AT, Gilbert SP, Bentley M. Propofol attenuates kinesin-mediated axonal vesicle transport and fusion. Mol Biol Cell 2022; 33:ar119. [PMID: 36103253 PMCID: PMC9634964 DOI: 10.1091/mbc.e22-07-0276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Propofol is a widely used general anesthetic, yet the understanding of its cellular effects is fragmentary. General anesthetics are not as innocuous as once believed and have a wide range of molecular targets that include kinesin motors. Propofol, ketamine, and etomidate reduce the distances that Kinesin-1 KIF5 and Kinesin-2 KIF3 travel along microtubules in vitro. These transport kinesins are highly expressed in the CNS, and their dysfunction leads to a range of human pathologies including neurodevelopmental and neurodegenerative diseases. While in vitro data suggest that general anesthetics may disrupt kinesin transport in neurons, this hypothesis remains untested. Here we find that propofol treatment of hippocampal neurons decreased vesicle transport mediated by Kinesin-1 KIF5 and Kinesin-3 KIF1A ∼25-60%. Propofol treatment delayed delivery of the KIF5 cargo NgCAM to the distal axon. Because KIF1A participates in axonal transport of presynaptic vesicles, we tested whether prolonged propofol treatment affects synaptic vesicle fusion mediated by VAMP2. The data show that propofol-induced transport delay causes a significant decrease in vesicle fusion in distal axons. These results are the first to link a propofol-induced delay in neuronal trafficking to a decrease in axonal vesicle fusion, which may alter physiological function during and after anesthesia.
Collapse
Affiliation(s)
- Madeline Frank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Alec T. Nabb
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Susan P. Gilbert
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Marvin Bentley
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180,*Address correspondence to: Marvin Bentley ()
| |
Collapse
|
98
|
Liao P, Yuan Y, Liu Z, Hou X, Li W, Wen J, Zhang K, Jiao B, Shen L, Jiang H, Guo J, Tang B, Zhang Z, Hu Z, Wang J. Association of variants in the KIF1A gene with amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:46. [PMID: 36284339 PMCID: PMC9597953 DOI: 10.1186/s40035-022-00320-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord. As in many other neurodegenerative disorders, the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport. Notably, sensory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2 (HSAN2) and spastic paraplegia 30 (SPG30) share several causative genes with ALS, as well as having common clinical phenotypes. KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors (SVPs) and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30. METHODS Here, we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS. RESULTS We identified rare damage variants (RDVs) in the KIF1A gene associated with ALS and delineated the clinical characteristics of ALS patients with KIF1A RDVs. Clinically, these patients tended to exhibit sensory disturbance. Interestingly, the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein. Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A, VAMP2, and synaptophysin. Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor. CONCLUSIONS Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS, indicating KIF1A as an important player in the oligogenic scenario of ALS.
Collapse
Affiliation(s)
- Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, China.
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
| |
Collapse
|
99
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
100
|
Han SW, Ryu KY. Increased clearance of non-biodegradable polystyrene nanoplastics by exocytosis through inhibition of retrograde intracellular transport. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129576. [PMID: 35850071 DOI: 10.1016/j.jhazmat.2022.129576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics (NPs) are derived from microplastics and may cause health problems. We previously showed that 100 nm polystyrene (PS)-NPs enter cells, including mouse embryonic fibroblasts (MEFs), and their intracellular accumulation induces inflammatory and oxidative stress. Moreover, PS-NP uptake was found to occur via endocytosis, and they accumulated mostly at the juxtanuclear position, but never within the nucleus. We speculated that PS-NPs were cleared from cells when they were no longer exposed to PS-NPs. However, the effects of PS-NPs on the cellular machinery remain unknown. The accumulation of PS-NPs at the juxtanuclear position may be due to retrograde transport along microtubules. To confirm this, we treated PS-NP-exposed MEFs with inhibitors of histone deacetylase 6 (HDAC6), dynein, or microtubule polymerization and found greatly diminished intracellular and juxtanuclear accumulation. Moreover, rapid clearance of PS-NPs was observed when MEFs were treated with an HDAC6 inhibitor. PS-NPs were removed by exocytosis, as confirmed by treatment with an exocytosis inhibitor. Furthermore, inhibiting the retrograde transport of PS-NPs alleviated the activation of the antioxidant response pathway, inflammatory and oxidative stress, and reactive oxygen species generation. In summary, inhibition of the retrograde transport of non-biodegradable PS-NPs leads to their rapid export by exocytosis, which may reduce their cytotoxicity.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|