51
|
Tu N, Liang D, Zhang P. Whole-exome sequencing and genome-wide evolutionary analyses identify novel candidate genes associated with infrared perception in pit vipers. Sci Rep 2020; 10:13033. [PMID: 32747674 PMCID: PMC7400743 DOI: 10.1038/s41598-020-69843-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pit vipers possess a unique thermal sensory system consisting of facial pits that allow them to detect minute temperature fluctuations within their environments. Biologists have long attempted to elucidate the genetic basis underlying the infrared perception of pit vipers. Early studies have shown that the TRPA1 gene is the thermal sensor associated with infrared detection in pit vipers. However, whether genes other than TRPA1 are also involved in the infrared perception of pit vipers remains unknown. Here, we sequenced the whole exomes of ten snake species and performed genome-wide evolutionary analyses to search for novel candidate genes that might be involved in the infrared perception of pit vipers. We applied both branch-length-comparison and selection-pressure-alteration analyses to identify genes that specifically underwent accelerated evolution in the ancestral lineage of pit vipers. A total of 47 genes were identified. These genes were significantly enriched in the ion transmembrane transporter, stabilization of membrane potential, and temperature gating activity functional categories. The expression levels of these candidate genes in relevant nerve tissues (trigeminal ganglion, dorsal root ganglion, midbrain, and cerebrum) were also investigated in this study. We further chose one of our candidate genes, the potassium channel gene KCNK4, as an example to discuss its possible role in the infrared perception of pit vipers. Our study provides the first genome-wide survey of infrared perception-related genes in pit vipers via comparative evolutionary analyses and reveals valuable candidate genes for future functional studies.
Collapse
Affiliation(s)
- Na Tu
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Higher Education Mega Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Higher Education Mega Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Higher Education Mega Center, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
52
|
Mathie A, Veale EL, Cunningham KP, Holden RG, Wright PD. Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annu Rev Pharmacol Toxicol 2020; 61:401-420. [PMID: 32679007 DOI: 10.1146/annurev-pharmtox-030920-111536] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two-pore domain potassium (K2P) channels stabilize the resting membrane potential of both excitable and nonexcitable cells and, as such, are important regulators of cell activity. There are many conditions where pharmacological regulation of K2P channel activity would be of therapeutic benefit, including, but not limited to, atrial fibrillation, respiratory depression, pulmonary hypertension, neuropathic pain, migraine, depression, and some forms of cancer. Up until now, few if any selective pharmacological regulators of K2P channels have been available. However, recent publications of solved structures with small-molecule activators and inhibitors bound to TREK-1, TREK-2, and TASK-1 K2P channels have given insight into the pharmacophore requirements for compound binding to these sites. Together with the increasing availability of a number of novel, active, small-molecule compounds from K2P channel screening programs, these advances have opened up the possibility of rational activator and inhibitor design to selectively target K2P channels.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Emma L Veale
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Kevin P Cunningham
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Robyn G Holden
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | | |
Collapse
|
53
|
Lee AG. Interfacial Binding Sites for Cholesterol on Kir, Kv, K 2P, and Related Potassium Channels. Biophys J 2020; 119:35-47. [PMID: 32553129 PMCID: PMC7335934 DOI: 10.1016/j.bpj.2020.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022] Open
Abstract
Inwardly rectifying, voltage-gated, two-pore domain, and related K+ channels are located in eukaryotic membranes rich in cholesterol. Here, molecular docking is used to detect specific binding sites ("hot spots") for cholesterol on K+ channels with characteristics that match those of known cholesterol binding sites. The transmembrane surfaces of all available high-resolution structures for K+ channels were swept for potential binding sites. Cholesterol poses were found to be located largely in hollows between protein ridges. A comparison between cholesterol poses and resolved phospholipids suggests that not all cholesterol molecules binding to the transmembrane surface of a K+ channel will result in displacement of a phospholipid molecule from the surface. Competition between cholesterol binding and binding of anionic phospholipids essential for activity could explain some of the effects of cholesterol on channel function.
Collapse
Affiliation(s)
- Anthony G Lee
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
54
|
Lewis A, McCrossan ZA, Manville RW, Popa MO, Cuello LG, Goldstein SAN. TOK channels use the two gates in classical K + channels to achieve outward rectification. FASEB J 2020; 34:8902-8919. [PMID: 32519783 DOI: 10.1096/fj.202000545r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/11/2022]
Abstract
TOKs are outwardly rectifying K+ channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K+ channels. ScTOK, AfTOK1 (Aspergillus fumigatus), and H99TOK (Cryptococcus neoformans grubii) are K+ -selective and pass current above the K+ reversal potential. CaTOK (Candida albicans) and CnTOK (Cryptococcus neoformans neoformans) pass both K+ and Na+ and conduct above a reversal potential reflecting the mixed permeability of their selectivity filter. Mutations in CaTOK and ScTOK at sites homologous to those that open the internal gates in classical K+ channels are shown to produce inward TOK currents. A favored model for outward rectification is proposed whereby the reversal potential determines ion occupancy, and thus, conductivity, of the selectivity filter gate that is coupled to an imperfectly restrictive internal gate, permitting the filter to sample ion concentrations on both sides of the membrane.
Collapse
Affiliation(s)
- Anthony Lewis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Zoe A McCrossan
- NIHR Evaluation, Trials and Studies Coordinating Centre (NETSCC), University of Southampton, Southampton, UK
| | - Rían W Manville
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - M Oana Popa
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Steve A N Goldstein
- Departments of Physiology & Biophysics and Pediatrics, School of Medicine, Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
55
|
Pope L, Lolicato M, Minor DL. Polynuclear Ruthenium Amines Inhibit K 2P Channels via a "Finger in the Dam" Mechanism. Cell Chem Biol 2020; 27:511-524.e4. [PMID: 32059793 PMCID: PMC7245552 DOI: 10.1016/j.chembiol.2020.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
The trinuclear ruthenium amine ruthenium red (RuR) inhibits diverse ion channels, including K2P potassium channels, TRPs, the calcium uniporter, CALHMs, ryanodine receptors, and Piezos. Despite this extraordinary array, there is limited information for how RuR engages targets. Here, using X-ray crystallographic and electrophysiological studies of an RuR-sensitive K2P, K2P2.1 (TREK-1) I110D, we show that RuR acts by binding an acidic residue pair comprising the "Keystone inhibitor site" under the K2P CAP domain archway above the channel pore. We further establish that Ru360, a dinuclear ruthenium amine not known to affect K2Ps, inhibits RuR-sensitive K2Ps using the same mechanism. Structural knowledge enabled a generalizable design strategy for creating K2P RuR "super-responders" having nanomolar sensitivity. Together, the data define a "finger in the dam" inhibition mechanism acting at a novel K2P inhibitor binding site. These findings highlight the polysite nature of K2P pharmacology and provide a new framework for K2P inhibitor development.
Collapse
Affiliation(s)
- Lianne Pope
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 93858-2330, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 93858-2330, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 93858-2330, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
56
|
Qiu Y, Huang L, Fu J, Han C, Fang J, Liao P, Chen Z, Mo Y, Sun P, Liao D, Yang L, Wang J, Zhang Q, Liu J, Liu F, Liu T, Huang W, Yang H, Jiang R. TREK Channel Family Activator with a Well-Defined Structure–Activation Relationship for Pain and Neurogenic Inflammation. J Med Chem 2020; 63:3665-3677. [PMID: 32162512 DOI: 10.1021/acs.jmedchem.9b02163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yunguang Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Jie Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chenxia Han
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jing Fang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Zhuo Chen
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Yiqing Mo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peihua Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Daqing Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Jing Wang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| |
Collapse
|
57
|
Jin P, Jan LY, Jan YN. Mechanosensitive Ion Channels: Structural Features Relevant to Mechanotransduction Mechanisms. Annu Rev Neurosci 2020; 43:207-229. [PMID: 32084327 DOI: 10.1146/annurev-neuro-070918-050509] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of mechanosensitive ion channels underlies a variety of fundamental physiological processes that require sensation of mechanical force. Different mechanosensitive channels adapt distinctive structures and mechanotransduction mechanisms to fit their biological roles. How mechanosensitive channels work, especially in animals, has been extensively studied in the past decade. Here we review key findings in the functional and structural characterizations of these channels and highlight the structural features relevant to the mechanotransduction mechanism of each specific channel.
Collapse
Affiliation(s)
- Peng Jin
- Department of Physiology, University of California, San Francisco, California 94158, USA;
| | - Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, California 94158, USA; .,Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| | - Yuh-Nung Jan
- Department of Physiology, University of California, San Francisco, California 94158, USA; .,Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA
| |
Collapse
|
58
|
Bhairosing-Kok D, Groothuizen FS, Fish A, Dharadhar S, Winterwerp HHK, Sixma TK. Sharp kinking of a coiled-coil in MutS allows DNA binding and release. Nucleic Acids Res 2019; 47:8888-8898. [PMID: 31372631 PMCID: PMC6895276 DOI: 10.1093/nar/gkz649] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/13/2023] Open
Abstract
DNA mismatch repair (MMR) corrects mismatches, small insertions and deletions in DNA during DNA replication. While scanning for mismatches, dimers of MutS embrace the DNA helix with their lever and clamp domains. Previous studies indicated generic flexibility of the lever and clamp domains of MutS prior to DNA binding, but whether this was important for MutS function was unknown. Here, we present a novel crystal structure of DNA-free Escherichia coli MutS. In this apo-structure, the clamp domains are repositioned due to kinking at specific sites in the coiled-coil region in the lever domains, suggesting a defined hinge point. We made mutations at the coiled-coil hinge point. The mutants made to disrupt the helical fold at the kink site diminish DNA binding, whereas those made to increase stability of coiled-coil result in stronger DNA binding. These data suggest that the site-specific kinking of the coiled-coil in the lever domain is important for loading of this ABC-ATPase on DNA.
Collapse
Affiliation(s)
- Doreth Bhairosing-Kok
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Flora S Groothuizen
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Alexander Fish
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Shreya Dharadhar
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
59
|
Ratte A, Wiedmann F, Kraft M, Katus HA, Schmidt C. Antiarrhythmic Properties of Ranolazine: Inhibition of Atrial Fibrillation Associated TASK-1 Potassium Channels. Front Pharmacol 2019; 10:1367. [PMID: 32038227 PMCID: PMC6988797 DOI: 10.3389/fphar.2019.01367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and one of the major causes of cardiovascular morbidity and mortality. Despite good progress within the past years, safe and effective treatment of AF remains an unmet clinical need. The anti-anginal agent ranolazine has been shown to exhibit antiarrhythmic properties via mainly late INa and IKr blockade. This results in prolongation of the atrial action potential duration (APD) and effective refractory period (ERP) with lower effect on ventricular electrophysiology. Furthermore, ranolazine has been shown to be effective in the treatment of AF. TASK-1 is a two-pore domain potassium (K2P) channel that shows nearly atrial specific expression within the human heart and has been found to be upregulated in AF, resulting in shortening the atrial APD in patients suffering from AF. We hypothesized that inhibition TASK-1 contributes to the observed electrophysiological and clinical effects of ranolazine. Methods: We used Xenopus laevis oocytes and CHO-cells as heterologous expression systems for the study of TASK-1 inhibition by ranolazine and molecular drug docking simulations to investigate the ranolazine binding site and binding characteristics. Results: Ranolazine acts as an inhibitor of TASK-1 potassium channels that inhibits TASK-1 currents with an IC50 of 30.6 ± 3.7 µM in mammalian cells and 198.4 ± 1.1 µM in X. laevis oocytes. TASK-1 inhibition by ranolazine is not frequency dependent but shows voltage dependency with a higher inhibitory potency at more depolarized membrane potentials. Ranolazine binds within the central cavity of the TASK-1 inner pore, at the bottom of the selectivity filter. Conclusions: In this study, we show that ranolazine inhibits TASK-1 channels. We suggest that inhibition of TASK-1 may contribute to the observed antiarrhythmic effects of Ranolazine. This puts forward ranolazine as a prototype drug for the treatment of atrial arrhythmia because of its combined efficacy on atrial electrophysiology and lower risk for ventricular side effects.
Collapse
Affiliation(s)
- Antonius Ratte
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,HCR, Heidelberg Centre for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
60
|
Mammalian Mechanoelectrical Transduction: Structure and Function of Force-Gated Ion Channels. Cell 2019; 179:340-354. [PMID: 31585078 DOI: 10.1016/j.cell.2019.08.049] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
The conversion of force into an electrical cellular signal is mediated by the opening of different types of mechanosensitive ion channels (MSCs), including TREK/TRAAK K2P channels, Piezo1/2, TMEM63/OSCA, and TMC1/2. Mechanoelectrical transduction plays a key role in hearing, balance, touch, and proprioception and is also implicated in the autonomic regulation of blood pressure and breathing. Thus, dysfunction of MSCs is associated with a variety of inherited and acquired disease states. Significant progress has recently been made in identifying these channels, solving their structure, and understanding the gating of both hyperpolarizing and depolarizing MSCs. Besides prototypical activation by membrane tension, additional gating mechanisms involving channel curvature and/or tethered elements are at play.
Collapse
|
61
|
Anderson EO, Schneider ER, Matson JD, Gracheva EO, Bagriantsev SN. TMEM150C/Tentonin3 Is a Regulator of Mechano-gated Ion Channels. Cell Rep 2019; 23:701-708. [PMID: 29669276 PMCID: PMC5929159 DOI: 10.1016/j.celrep.2018.03.094] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 11/24/2022] Open
Abstract
Neuronal mechano-sensitivity relies on mechano-gated ion channels, but pathways regulating their activity remain poorly understood. TMEM150C was proposed to mediate mechano-activated current in proprioceptive neurons. Here, we studied functional interaction of TMEM150C with mechano-gated ion channels from different classes (Piezo2, Piezo1, and the potassium channel TREK-1) using two independent methods of mechanical stimulation. We found that TMEM150C significantly prolongs the duration of the mechano-current produced by all three channels, decreases apparent activation threshold in Piezo2, and induces persistent current in Piezo1. We also show that TMEM150C is co-expressed with Piezo2 in trigeminal neurons, expanding its role beyond proprioceptors. Finally, we cloned TMEM150C from the trigeminal neurons of the tactile-foraging domestic duck and showed that it functions similarly to the mouse ortholog, demonstrating evolutionary conservation among vertebrates. Our studies reveal TMEM150C as a general regulator of mechano-gated ion channels from different classes.
Collapse
Affiliation(s)
- Evan O Anderson
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eve R Schneider
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jon D Matson
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elena O Gracheva
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
62
|
Al-Moubarak E, Veale EL, Mathie A. Pharmacologically reversible, loss of function mutations in the TM2 and TM4 inner pore helices of TREK-1 K2P channels. Sci Rep 2019; 9:12394. [PMID: 31455781 PMCID: PMC6712037 DOI: 10.1038/s41598-019-48855-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/09/2019] [Indexed: 01/21/2023] Open
Abstract
A better understanding of the gating of TREK two pore domain potassium (K2P) channels and their activation by compounds such as the negatively charged activator, flufenamic acid (FFA) is critical in the search for more potent and selective activators of these channels. Currents through wild-type and mutated human K2P channels expressed in tsA201 cells were measured using whole-cell patch-clamp recordings in the presence and absence of FFA. Mutation of the TM2.6 residue of TREK-1 to a phenylalanine (G171F) and a similar mutation of TM4.6 (A286F) substantially reduced current through TREK-1 channels. In complementary experiments, replacing the natural F residues at the equivalent position in TRESK channels, significantly enhanced current. Known, gain of function mutations of TREK-1 (G137I, Y284A) recovered current through these mutated channels. This reduction in current could be also be reversed pharmacologically, by FFA. However, an appropriate length MTS (MethaneThioSulfonate) cross-linking reagent (MTS14) restricted the activation of TREK-1_A286C channels by repeated application of FFA. This suggests that the cross-linker stabilises the channel in a conformation which blunts FFA activation. Pharmacologically reversible mutations of TREK channels will help to clarify the importance of these channels in pathophysiological conditions such as pain and depression.
Collapse
Affiliation(s)
- Ehab Al-Moubarak
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
63
|
Discovery of Novel TASK-3 Channel Blockers Using a Pharmacophore-Based Virtual Screening. Int J Mol Sci 2019; 20:ijms20164014. [PMID: 31426491 PMCID: PMC6720600 DOI: 10.3390/ijms20164014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
TASK-3 is a two-pore domain potassium (K2P) channel highly expressed in the hippocampus, cerebellum, and cortex. TASK-3 has been identified as an oncogenic potassium channel and it is overexpressed in different cancer types. For this reason, the development of new TASK-3 blockers could influence the pharmacological treatment of cancer and several neurological conditions. In the present work, we searched for novel TASK-3 blockers by using a virtual screening protocol that includes pharmacophore modeling, molecular docking, and free energy calculations. With this protocol, 19 potential TASK-3 blockers were identified. These molecules were tested in TASK-3 using patch clamp, and one blocker (DR16) was identified with an IC50 = 56.8 ± 3.9 μM. Using DR16 as a scaffold, we designed DR16.1, a novel TASK-3 inhibitor, with an IC50 = 14.2 ± 3.4 μM. Our finding takes on greater relevance considering that not many inhibitory TASK-3 modulators have been reported in the scientific literature until today. These two novel TASK-3 channel inhibitors (DR16 and DR16.1) are the first compounds found using a pharmacophore-based virtual screening and rational drug design protocol.
Collapse
|
64
|
Şterbuleac D. Molecular determinants of chemical modulation of two-pore domain potassium channels. Chem Biol Drug Des 2019; 94:1596-1614. [PMID: 31124599 DOI: 10.1111/cbdd.13571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
The K+ ion channels comprising the two-pore domain (K2P) family have specific biophysical roles in generating the critical regulatory K+ current. Ion flow through K2P channels and, implicitly, channel regulation is mediated by diverse metabolic and physical inputs such as mechanical stimulation, interaction with lipids or endogenous regulators, intra- or extracellular pH, and phosphorylation, while their function can be finely tuned by chemical compounds. In the latter category, some drug-channel interactions can lead to side effects or have clinical action, while identifying novel chemical modulators of K2Ps is an area of intense research. Due to their cellular and therapeutic importance, much attention was turned to these channels in recent years and several experimental approaches have pinpointed the molecular determinants of K2P chemical modulation. Given their unique structural features and properties, chemical modulators act on K2P channels in multiple and diverse ways. In this review, the particularities of K2P modulation by chemical compounds, such as binding modality, affinity, or position, are identified, synthesized, and linked to structural and functional properties in order to refer to how activators and blockers modify channel function and vice versa, focusing on specificity related to protein structure (and its modification) and cross-linking information among different subfamilies.
Collapse
Affiliation(s)
- Daniel Şterbuleac
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| |
Collapse
|
65
|
Ramírez D, Bedoya M, Kiper AK, Rinné S, Morales-Navarro S, Hernández-Rodríguez EW, Sepúlveda FV, Decher N, González W. Structure/Activity Analysis of TASK-3 Channel Antagonists Based on a 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine. Int J Mol Sci 2019; 20:ijms20092252. [PMID: 31067753 PMCID: PMC6539479 DOI: 10.3390/ijms20092252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/16/2022] Open
Abstract
TASK-3 potassium (K+) channels are highly expressed in the central nervous system, regulating the membrane potential of excitable cells. TASK-3 is involved in neurotransmitter action and has been identified as an oncogenic K+ channel. For this reason, the understanding of the action mechanism of pharmacological modulators of these channels is essential to obtain new therapeutic strategies. In this study we describe the binding mode of the potent antagonist PK-THPP into the TASK-3 channel. PK-THPP blocks TASK-1, the closest relative channel of TASK-3, with almost nine-times less potency. Our results confirm that the binding is influenced by the fenestrations state of TASK-3 channels and occurs when they are open. The binding is mainly governed by hydrophobic contacts between the blocker and the residues of the binding site. These interactions occur not only for PK-THPP, but also for the antagonist series based on 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine scaffold (THPP series). However, the marked difference in the potency of THPP series compounds such as 20b, 21, 22 and 23 (PK-THPP) respect to compounds such as 17b, inhibiting TASK-3 channels in the micromolar range is due to the presence of a hydrogen bond acceptor group that can establish interactions with the threonines of the selectivity filter.
Collapse
Affiliation(s)
- David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile. El Llano Subercaseaux 2801-Piso 6, 7500912 Santiago, Chile.
| | - Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany.
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany.
| | - Samuel Morales-Navarro
- Bachillerato en Ciencias, Facultad de Ciencias, Universidad Santo Tomás, Av. Circunvalación Poniente #1855, 3460000 Talca, Chile.
| | - Erix W Hernández-Rodríguez
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
- Escuela de Química y Farmacia. Facultad de Medicina. Universidad Católica del Maule, 3460000 Talca, Chile.
| | | | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 2, 35037 Marburg, Germany.
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
66
|
Brennecke JT, de Groot BL. Mechanism of Mechanosensitive Gating of the TREK-2 Potassium Channel. Biophys J 2019; 114:1336-1343. [PMID: 29590591 DOI: 10.1016/j.bpj.2018.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
The mechanism of mechanosensitive gating of ion channels underlies many physiological processes, including the sensations of touch, hearing, and pain perception. TREK-2 is the best-studied mechanosensitive member of the two-pore domain potassium channel family. Apart from pressure sensing, it responds to a diverse range of stimuli. Two states, termed "up" and "down," are known from x-ray structural crystallographic studies and have been suggested to differ in conductance. However, the structural details of the gating behavior are largely unknown. In this work, we used molecular dynamics simulations to study the conductance of the states as well as the effect of mechanical membrane stretch on the channel. We find that the down state is less conductive than the up state. The introduction of membrane stretch in the simulations shifts the state of the channel toward an up configuration, independent of the starting configuration, and also increases its conductance. The correlation of the selectivity filter state and the conductance supports a model in which the selectivity filter gates by a carbonyl flip. This gate is stabilized by the pore helices. We suggest a modulation of these helices by an interface to the transmembrane helices. Membrane pressure changes the conformation of the transmembrane helices directly and consequently also influences the channel conductance.
Collapse
Affiliation(s)
- Julian T Brennecke
- Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
67
|
Ben Soussia I, El Mouridi S, Kang D, Leclercq-Blondel A, Khoubza L, Tardy P, Zariohi N, Gendrel M, Lesage F, Kim EJ, Bichet D, Andrini O, Boulin T. Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels. Nat Commun 2019; 10:787. [PMID: 30770809 PMCID: PMC6377628 DOI: 10.1038/s41467-019-08710-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/23/2019] [Indexed: 01/28/2023] Open
Abstract
Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here, we reveal the conserved role played by a single amino acid position (TM2.6) located in the second transmembrane domain of two-pore domain potassium (K2P) channels. Mutations of TM2.6 to aspartate or asparagine increase channel activity for all vertebrate K2P channels. Using two-electrode voltage-clamp and single-channel recording techniques, we find that mutation of TM2.6 promotes channel gating via the selectivity filter gate and increases single channel open probability. Furthermore, channel gating can be progressively tuned by using different amino acid substitutions. Finally, we show that the role of TM2.6 was conserved during evolution by rationally designing gain-of-function mutations in four Caenorhabditis elegans K2P channels using CRISPR/Cas9 gene editing. This study thus describes a simple and powerful strategy to systematically manipulate the activity of an entire family of potassium channels. Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here authors reveal the role played by a single residue in the second transmembrane domain of vertebrate and invertebrate two-pore domain potassium channels.
Collapse
Affiliation(s)
- Ismail Ben Soussia
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Sonia El Mouridi
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Dawon Kang
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, South Korea
| | - Alice Leclercq-Blondel
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Lamyaa Khoubza
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, CNRS UMR 7275, Université de Nice Sophia Antipolis, Valbonne, 06560, France
| | - Philippe Tardy
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Nora Zariohi
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Marie Gendrel
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France
| | - Florian Lesage
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, CNRS UMR 7275, Université de Nice Sophia Antipolis, Valbonne, 06560, France
| | - Eun-Jin Kim
- Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, South Korea
| | - Delphine Bichet
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, CNRS UMR 7275, Université de Nice Sophia Antipolis, Valbonne, 06560, France
| | - Olga Andrini
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France.
| | - Thomas Boulin
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, 69008, France.
| |
Collapse
|
68
|
Pope L, Arrigoni C, Lou H, Bryant C, Gallardo-Godoy A, Renslo AR, Minor DL. Protein and Chemical Determinants of BL-1249 Action and Selectivity for K 2P Channels. ACS Chem Neurosci 2018; 9:3153-3165. [PMID: 30089357 PMCID: PMC6302903 DOI: 10.1021/acschemneuro.8b00337] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
K2P potassium channels generate leak currents that stabilize the resting membrane potential of excitable cells. Various K2P channels are implicated in pain, ischemia, depression, migraine, and anesthetic responses, making this family an attractive target for small molecule modulator development efforts. BL-1249, a compound from the fenamate class of nonsteroidal anti-inflammatory drugs is known to activate K2P2.1(TREK-1), the founding member of the thermo- and mechanosensitive TREK subfamily; however, its mechanism of action and effects on other K2P channels are not well-defined. Here, we demonstrate that BL-1249 extracellular application activates all TREK subfamily members but has no effect on other K2P subfamilies. Patch clamp experiments demonstrate that, similar to the diverse range of other chemical and physical TREK subfamily gating cues, BL-1249 stimulates the selectivity filter "C-type" gate that controls K2P function. BL-1249 displays selectivity among the TREK subfamily, activating K2P2.1(TREK-1) and K2P10.1(TREK-2) ∼10-fold more potently than K2P4.1(TRAAK). Investigation of mutants and K2P2.1(TREK-1)/K2P4.1(TRAAK) chimeras highlight the key roles of the C-terminal tail in BL-1249 action and identify the M2/M3 transmembrane helix interface as a key site of BL-1249 selectivity. Synthesis and characterization of a set of BL-1249 analogs demonstrates that both the tetrazole and opposing tetralin moieties are critical for function, whereas the conformational mobility between the two ring systems impacts selectivity. Together, our findings underscore the landscape of modes by which small molecules can affect K2P channels and provide crucial information for the development of better and more selective K2P modulators of the TREK subfamily.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel L. Minor
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| |
Collapse
|
69
|
Mutations in KCNK4 that Affect Gating Cause a Recognizable Neurodevelopmental Syndrome. Am J Hum Genet 2018; 103:621-630. [PMID: 30290154 DOI: 10.1016/j.ajhg.2018.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation or inhibition of potassium (K+) currents across the plasma membrane of cells has been causally linked to altered neurotransmission, cardiac arrhythmias, endocrine dysfunction, and (more rarely) perturbed developmental processes. The K+ channel subfamily K member 4 (KCNK4), also known as TRAAK (TWIK-related arachidonic acid-stimulated K+ channel), belongs to the mechano-gated ion channels of the TRAAK/TREK subfamily of two-pore-domain (K2P) K+ channels. While K2P channels are well known to contribute to the resting membrane potential and cellular excitability, their involvement in pathophysiological processes remains largely uncharacterized. We report that de novo missense mutations in KCNK4 cause a recognizable syndrome with a distinctive facial gestalt, for which we propose the acronym FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth). Patch-clamp analyses documented a significant gain of function of the identified KCNK4 channel mutants basally and impaired sensitivity to mechanical stimulation and arachidonic acid. Co-expression experiments indicated a dominant behavior of the disease-causing mutations. Molecular dynamics simulations consistently indicated that mutations favor sealing of the lateral intramembrane fenestration that has been proposed to negatively control K+ flow by allowing lipid access to the central cavity of the channel. Overall, our findings illustrate the pleiotropic effect of dysregulated KCNK4 function and provide support to the hypothesis of a gating mechanism based on the lateral fenestrations of K2P channels.
Collapse
|
70
|
Soussia IB, Choveau FS, Blin S, Kim EJ, Feliciangeli S, Chatelain FC, Kang D, Bichet D, Lesage F. Antagonistic Effect of a Cytoplasmic Domain on the Basal Activity of Polymodal Potassium Channels. Front Mol Neurosci 2018; 11:301. [PMID: 30233308 PMCID: PMC6131555 DOI: 10.3389/fnmol.2018.00301] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023] Open
Abstract
TREK/TRAAK channels are polymodal K+ channels that convert very diverse stimuli, including bioactive lipids, mechanical stretch and temperature, into electrical signals. The nature of the structural changes that regulate their activity remains an open question. Here, we show that a cytoplasmic domain (the proximal C-ter domain, pCt) exerts antagonistic effects in TREK1 and TRAAK. In basal conditions, pCt favors activity in TREK1 whereas it impairs TRAAK activity. Using the conformation-dependent binding of fluoxetine, we show that TREK1 and TRAAK conformations at rest are different, and under the influence of pCt. Finally, we show that depleting PIP2 in live cells has a more pronounced inhibitory effect on TREK1 than on TRAAK. This differential regulation of TREK1 and TRAAK is related to a previously unrecognized PIP2-binding site (R329, R330, and R331) present within TREK1 pCt, but not in TRAAK pCt. Collectively, these new data point out pCt as a major regulatory domain of these channels and suggest that the binding of PIP2 to the pCt of TREK1 results in the stabilization of the conductive conformation in basal conditions.
Collapse
Affiliation(s)
- Ismail Ben Soussia
- Université Côte d'Azur, INSERM, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Frank S Choveau
- Université Côte d'Azur, INSERM, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Sandy Blin
- Université Côte d'Azur, INSERM, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Eun-Jin Kim
- Department of Physiology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Sylvain Feliciangeli
- Université Côte d'Azur, INSERM, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Franck C Chatelain
- Université Côte d'Azur, INSERM, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Dawon Kang
- Department of Physiology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Delphine Bichet
- Université Côte d'Azur, INSERM, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Florian Lesage
- Université Côte d'Azur, INSERM, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| |
Collapse
|
71
|
Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Arch 2018; 470:745-759. [PMID: 29484488 PMCID: PMC5945325 DOI: 10.1007/s00424-018-2120-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/03/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
Abstract
The ability to sense temperature is crucial for the survival of an organism. Temperature influences all biological operations, from rates of metabolic reactions to protein folding, and broad behavioral functions, from feeding to breeding, and other seasonal activities. The evolution of specialized thermosensory adaptations has enabled animals to inhabit extreme temperature niches and to perform specific temperature-dependent behaviors. The function of sensory neurons depends on the participation of various types of ion channels. Each of the channels involved in neuronal excitability, whether through the generation of receptor potential, action potential, or the maintenance of the resting potential have temperature-dependent properties that can tune the neuron's response to temperature stimuli. Since the function of all proteins is affected by temperature, animals need adaptations not only for detecting different temperatures, but also for maintaining sensory ability at different temperatures. A full understanding of the molecular mechanism of thermosensation requires an investigation of all channel types at each step of thermosensory transduction. A fruitful avenue of investigation into how different molecules can contribute to the fine-tuning of temperature sensitivity is to study the specialized adaptations of various species. Given the diversity of molecular participants at each stage of sensory transduction, animals have a toolkit of channels at their disposal to adapt their thermosensitivity to their particular habitats or behavioral circumstances.
Collapse
Affiliation(s)
- Lydia J Hoffstaetter
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8026, USA.
| |
Collapse
|
72
|
Cabanos C, Wang M, Han X, Hansen SB. A Soluble Fluorescent Binding Assay Reveals PIP 2 Antagonism of TREK-1 Channels. Cell Rep 2018; 20:1287-1294. [PMID: 28793254 PMCID: PMC5586213 DOI: 10.1016/j.celrep.2017.07.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Lipid regulation of ion channels by low-abundance signaling lipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid (PA) has emerged as a central cellular mechanism for controlling ion channels and the excitability of nerves. A lack of robust assays suitable for facile detection of a lipid bound to a channel has hampered the probing of the lipid binding sites and measuring the pharmacology of putative lipid agonists for ion channels. Here, we show a fluorescent PIP2 competition assay for detergent-purified potassium channels, including TWIK-1-related K+-channel (TREK-1). Anionic lipids PA and phosphatidylglycerol (PG) bind dose dependently (9.1 and 96 mM, respectively) and agonize the channel. Our assay shows PIP2 binds with high affinity (0.87 mM) but surprisingly can directly antagonize TREK-1 in liposomes. We propose a model for TREK-1 lipid regulation where PIP2 can compete with PA and PG agonism based on the affinity of the lipid for a site within the channel.
Collapse
Affiliation(s)
- Cerrone Cabanos
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Miao Wang
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Scott B Hansen
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
73
|
McClenaghan C, Schewe M, Aryal P, Carpenter EP, Baukrowitz T, Tucker SJ. Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states. J Gen Physiol 2017; 147:497-505. [PMID: 27241700 PMCID: PMC4886281 DOI: 10.1085/jgp.201611601] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/09/2016] [Indexed: 01/08/2023] Open
Abstract
TREK channels, which are gated open by a wide range of stimuli, exist in at least two conformations known as “up” and “down.” McClenaghan et al. show that the channel can be open in both of these conformations and that gating is primarily achieved by the channel’s selectivity filter. The TREK subfamily of two-pore domain (K2P) K+ channels exhibit polymodal gating by a wide range of physical and chemical stimuli. Crystal structures now exist for these channels in two main states referred to as the “up” and “down” conformations. However, recent studies have resulted in contradictory and mutually exclusive conclusions about the functional (i.e., conductive) status of these two conformations. To address this problem, we have used the state-dependent TREK-2 inhibitor norfluoxetine that can only bind to the down state, thereby allowing us to distinguish between these two conformations when activated by different stimuli. Our results reconcile these previously contradictory gating models by demonstrating that activation by pressure, temperature, voltage, and pH produce more than one structurally distinct open state and reveal that channel activation does not simply involve switching between the up and down conformations. These results also highlight the diversity of structural mechanisms that K2P channels use to integrate polymodal gating signals.
Collapse
Affiliation(s)
- Conor McClenaghan
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, England, UK OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PU, England, UK
| | - Marcus Schewe
- Department of Physiology, University of Kiel, 24118 Kiel, Germany
| | - Prafulla Aryal
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, England, UK OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PU, England, UK
| | - Elisabeth P Carpenter
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PU, England, UK Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, England, UK
| | | | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, England, UK OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PU, England, UK
| |
Collapse
|
74
|
Luo Q, Chen L, Cheng X, Ma Y, Li X, Zhang B, Li L, Zhang S, Guo F, Li Y, Yang H. An allosteric ligand-binding site in the extracellular cap of K2P channels. Nat Commun 2017; 8:378. [PMID: 28851868 PMCID: PMC5575254 DOI: 10.1038/s41467-017-00499-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
Two-pore domain potassium (K2P) channels generate leak currents that are responsible for the maintenance of the resting membrane potential, and they are thus potential drug targets for treating diseases. Here, we identify N-(4-cholorphenyl)-N-(2-(3,4-dihydrosioquinolin-2(1H)-yl)-2-oxoethyl)methanesulfonamide (TKDC) as an inhibitor of the TREK subfamily, including TREK-1, TREK-2 and TRAAK channels. Using TKDC as a chemical probe, a study combining computations, mutagenesis and electrophysiology reveals a K2P allosteric ligand-binding site located in the extracellular cap of the channels. Molecular dynamics simulations suggest that ligand-induced allosteric conformational transitions lead to blockage of the ion conductive pathway. Using virtual screening approach, we identify other inhibitors targeting the extracellular allosteric ligand-binding site of these channels. Overall, our results suggest that the allosteric site at the extracellular cap of the K2P channels might be a promising drug target for these membrane proteins. TREKs are members of the two-pore domain potassium (K2P) channels, being important clinical targets. Here the authors identify inhibitors of K2P that bind to an allosteric site located in their extracellular cap, suggesting that it might be a promising drug target for these channels.
Collapse
Affiliation(s)
- Qichao Luo
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Liping Chen
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xi Cheng
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yuqin Ma
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaona Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Bing Zhang
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Li Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Shilei Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases & Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Fei Guo
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yang Li
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Huaiyu Yang
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China. .,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
75
|
The glycine hinge of transmembrane segment 2 modulates the subcellular localization and gating properties in TREK channels. Biochem Biophys Res Commun 2017; 490:1125-1131. [DOI: 10.1016/j.bbrc.2017.06.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023]
|
76
|
Nematian-Ardestani E, Jarerattanachat V, Aryal P, Sansom MSP, Tucker SJ. The effects of stretch activation on ionic selectivity of the TREK-2 K2P K + channel. Channels (Austin) 2017; 11:482-486. [PMID: 28723241 PMCID: PMC5626358 DOI: 10.1080/19336950.2017.1356955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The TREK-2 (KCNK10) K2P potassium channel can be regulated by variety of polymodal stimuli including pressure. In a recent study, we demonstrated that this mechanosensitive K+ channel responds to changes in membrane tension by undergoing a major structural change from its ‘down’ state to the more expanded ‘up’ state conformation. These changes are mostly restricted to the lower part of the protein within the bilayer, but are allosterically coupled to the primary gating mechanism located within the selectivity filter. However, any such structural changes within the filter also have the potential to alter ionic selectivity and there are reports that some K2Ps, including TREK channels, exhibit a dynamic ionic selectivity. In this addendum to our previous study we have therefore examined whether the selectivity of TREK-2 is altered by stretch activation. Our results reveal that the filter remains stable and highly selective for K+ over Na+ during stretch activation, and that permeability to a range of other cations (Rb+, Cs+ and NH4+) also does not change. The asymmetric structural changes that occur during stretch activation therefore allow the channel to respond to changes in membrane tension without a loss of K+ selectivity.
Collapse
Affiliation(s)
- Ehsan Nematian-Ardestani
- a Clarendon Laboratory, Department of Physics and OXION Initiative in Ion Channels and Disease , University of Oxford , Oxford , UK
| | - Viwan Jarerattanachat
- a Clarendon Laboratory, Department of Physics and OXION Initiative in Ion Channels and Disease , University of Oxford , Oxford , UK
| | - Prafulla Aryal
- a Clarendon Laboratory, Department of Physics and OXION Initiative in Ion Channels and Disease , University of Oxford , Oxford , UK
| | - Mark S P Sansom
- a Clarendon Laboratory, Department of Physics and OXION Initiative in Ion Channels and Disease , University of Oxford , Oxford , UK
| | - Stephen J Tucker
- a Clarendon Laboratory, Department of Physics and OXION Initiative in Ion Channels and Disease , University of Oxford , Oxford , UK
| |
Collapse
|
77
|
Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C, Clark KA, Minor DL. K 2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Nature 2017; 547:364-368. [PMID: 28693035 PMCID: PMC5778891 DOI: 10.1038/nature22988] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022]
Abstract
Polymodal K2P (KCNK) thermo- and mechanosensitive TREK1 potassium channels, generate ‘leak’ currents that regulate neuronal excitability, respond to lipids, temperature, and mechanical stretch, and influence pain, temperature perception, and anesthetic responses1–3. These dimeric voltage-gated ion channel (VGIC) superfamily members have a unique topology comprising two pore forming regions per subunit4–6. Contrasting other potassium channels, K2Ps use a selectivity filter ‘C-type’ gate7–10 as the principal gating site. Despite recent advances3,11,12, K2Ps suffer from a poor pharmacologic profile limiting mechanistic and biological studies. Here, we describe a new small molecule TREK activator class that directly stimulates the C-type gate by acting as molecular wedges that restrict interdomain interface movement behind the selectivity filter. Structures of K2P2.1(TREK-1) alone with two selective K2P2.1(TREK-1) and K2P10.1(TREK-2) activators, an N-aryl-sulfonamide, ML335, and a thiophene-carboxamide, ML402, define a cryptic binding pocket unlike other ion channel small molecule binding sites and, together with functional studies, identify a cation-π interaction that controls selectivity. Together, our data unveil a previously unknown, druggable K2P site that stabilizes the C-type gate ‘leak mode’ and provide direct evidence for K2P selectivity filter gating.
Collapse
Affiliation(s)
- Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, California 941158-9001, USA
| | - Cristina Arrigoni
- Cardiovascular Research Institute, University of California, San Francisco, California 941158-9001, USA
| | - Takahiro Mori
- Ono Pharmaceutical Co. Ltd, Mishima-Gun, Osaka 618-8585, Japan
| | - Yoko Sekioka
- Ono Pharmaceutical Co. Ltd, Mishima-Gun, Osaka 618-8585, Japan
| | - Clifford Bryant
- Small Molecule Discovery Center, University of California, San Francisco, California 93858-2330, USA
| | - Kimberly A Clark
- Cardiovascular Research Institute, University of California, San Francisco, California 941158-9001, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, California 941158-9001, USA.,Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, California 941158-9001, USA.,California Institute for Quantitative Biomedical Research, University of California, San Francisco, California 941158-9001, USA.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 941158-9001, USA.,Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
78
|
Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 2017; 547:118-122. [PMID: 28658211 DOI: 10.1038/nature22981] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Mechanosensory transduction for senses such as proprioception, touch, balance, acceleration, hearing and pain relies on mechanotransduction channels, which convert mechanical stimuli into electrical signals in specialized sensory cells. How force gates mechanotransduction channels is a central question in the field, for which there are two major models. One is the membrane-tension model: force applied to the membrane generates a change in membrane tension that is sufficient to gate the channel, as in the bacterial MscL channel and certain eukaryotic potassium channels. The other is the tether model: force is transmitted via a tether to gate the channel. The transient receptor potential (TRP) channel NOMPC is important for mechanosensation-related behaviours such as locomotion, touch and sound sensation across different species including Caenorhabditis elegans, Drosophila and zebrafish. NOMPC is the founding member of the TRPN subfamily, and is thought to be gated by tethering of its ankyrin repeat domain to microtubules of the cytoskeleton. Thus, a goal of studying NOMPC is to reveal the underlying mechanism of force-induced gating, which could serve as a paradigm of the tether model. NOMPC fulfils all the criteria that apply to mechanotransduction channels and has 29 ankyrin repeats, the largest number among TRP channels. A key question is how the long ankyrin repeat domain is organized as a tether that can trigger channel gating. Here we present a de novo atomic structure of Drosophila NOMPC determined by single-particle electron cryo-microscopy. Structural analysis suggests that the ankyrin repeat domain of NOMPC resembles a helical spring, suggesting its role of linking mechanical displacement of the cytoskeleton to the opening of the channel. The NOMPC architecture underscores the basis of translating mechanical force into an electrical signal within a cell.
Collapse
|
79
|
Chang WL, Lai WW, Kuo IY, Lin CY, Lu PJ, Sheu BS, Wang YC. A six-CpG panel with DNA methylation biomarkers predicting treatment response of chemoradiation in esophageal squamous cell carcinoma. J Gastroenterol 2017; 52:705-714. [PMID: 27671002 DOI: 10.1007/s00535-016-1265-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/13/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Prognosis of esophageal squamous cell carcinoma (ESCC) patients remains poor, and the chemoradiotherapy (CRT) applied to ESCC patients often failed. Therefore, development of biomarkers to predict CRT response is immensely important for choosing the best treatment strategy of an individual patient. METHODS The methylation array and pyrosequencing methylation assay were performed in pre-treatment endoscopic biopsies to identify probes with differential CpG methylation levels between good and poor CRT responders in a cohort of 12 ESCC patients. Receiver operating characteristic curves and multivariate logistic regressions were conducted to build the risk score equation of selected CpG probes in another cohort of 91 ESCC patients to predict CRT response. Kaplan-Meier analysis was used to estimate progression-free survival or time-to-progression of patients predicted with good and poor CRT responses. RESULTS Nine differentially methylated CpG probes were identified to be associated with CRT response. A risk score equation comprising six CpG probes located in IFNGR2, KCNK4, NOTCH4, NPY, PAX6, and SOX17 genes were built. The risk score was derived from the sum of each probe multiplied by its corresponding coefficient. Such a risk score has a good prediction performance in discriminating poor CRT responders from good responders (AUC: 0.930). Moreover, poor CRT responders predicted by risk score significantly had poorer prognosis in terms of shorter progression-free survival and time-to-progression (p = 0.004-0.008). CONCLUSION We established a proof-of-concept CRT response prediction panel consisting of six-CpG methylation biomarkers in identifying ESCC patients who are at high risk of CRT failure and need intensive care.
Collapse
Affiliation(s)
- Wei-Lun Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - I-Ying Kuo
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chien-Yu Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, 700, Taiwan.
| | - Yi-Ching Wang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
80
|
Luethy A, Boghosian JD, Srikantha R, Cotten JF. Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism. Mol Pharmacol 2017; 91:620-629. [PMID: 28325748 PMCID: PMC5438130 DOI: 10.1124/mol.117.108290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/20/2017] [Indexed: 01/10/2023] Open
Abstract
The TWIK-related acid-sensitive potassium channel 3 (TASK-3; KCNK9) tandem pore potassium channel function is activated by halogenated anesthetics through binding at a putative anesthetic-binding cavity. To understand the pharmacologic requirements for TASK-3 activation, we studied the concentration-response of TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, halothane, α-chloralose, 2,2,2-trichloroethanol [TCE], and chloral hydrate), to ethanol, and to a panel of halogenated methanes and alcohols. We used mutagenesis to probe the anesthetic-binding cavity as observed in a TASK-3 homology model. TASK-3 activation was quantified by Ussing chamber voltage clamp analysis. We mutagenized the residue Val-136, which lines the anesthetic-binding cavity, its flanking residues (132 to 140), and Leu-122, a pore-gating residue. The 2-halogenated ethanols activate wild-type TASK-3 with the following rank order efficacy (normalized current [95% confidence interval]): 2,2,2-tribromo-(267% [240-294]) > 2,2,2-trichloro-(215% [196-234]) > chloral hydrate (165% [161-176]) > 2,2-dichloro- > 2-chloro ≈ 2,2,2-trifluoroethanol > ethanol. Similarly, carbon tetrabromide (296% [245-346]), carbon tetrachloride (180% [163-196]), and 1,1,1,3,3,3-hexafluoropropanol (200% [194-206]) activate TASK-3, whereas the larger carbon tetraiodide and α-chloralose inhibit. Clinical agents activate TASK-3 with the following rank order efficacy: halothane (207% [202-212]) > isoflurane (169% [161-176]) > sevoflurane (164% [150-177]) > desflurane (119% [109-129]). Mutations at and near residue-136 modify TCE activation of TASK-3, and interestingly M159W, V136E, and L122D were resistant to both isoflurane and TCE activation. TASK-3 function is activated by a multiple agents and requires a halogenated substituent between ∼30 and 232 cm3/mol volume with potency increased by halogen polarizeability. Val-136 and adjacent residues may mediate anesthetic binding and stabilize an open state regulated by pore residue Leu-122. Isoflurane and TCE likely share commonalities in their mechanism of TASK-3 activation.
Collapse
Affiliation(s)
- Anita Luethy
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.)
| | - James D Boghosian
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.)
| | - Rithu Srikantha
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.)
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.)
| |
Collapse
|
81
|
Ramírez D, Arévalo B, Martínez G, Rinné S, Sepúlveda FV, Decher N, González W. Side Fenestrations Provide an "Anchor" for a Stable Binding of A1899 to the Pore of TASK-1 Potassium Channels. Mol Pharm 2017; 14:2197-2208. [PMID: 28494157 DOI: 10.1021/acs.molpharmaceut.7b00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A1899 is a potent and selective inhibitor of the two-pore domain potassium (K2P) channel TASK-1. It was previously reported that A1899 acts as an open-channel blocker and binds to residues of the P1 and P2 regions, the M2 and M4 segments, and the halothane response element. The recently described crystal structures of K2P channels together with the newly identified side fenestrations indicate that residues relevant for TASK-1 inhibition are not purely facing the central cavity as initially proposed. Accordingly, the TASK-1 binding site and the mechanism of inhibition might need a re-evaluation. We have used TASK-1 homology models based on recently crystallized K2P channels and molecular dynamics simulation to demonstrate that the highly potent TASK-1 blocker A1899 requires binding to residues located in the side fenestrations. Unexpectedly, most of the previously described residues that interfere with TASK-1 blockade by A1899 project their side chains toward the fenestration lumina, underlining the relevance of these structures for drug binding in K2P channels. Despite its hydrophobicity, A1899 does not seem to use the fenestrations to gain access to the central cavity from the lipid bilayer. In contrast, binding of A1899 to residues of the side fenestrations might provide a physical "anchor", reflecting an energetically favorable binding mode that after pore occlusion stabilizes the closed state of the channels.
Collapse
Affiliation(s)
- David Ramírez
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca , 1 poniente No. 1141, 3460000 Talca, Chile.,Instituto de Ciencias Biomédicas, Universidad Autonoma de Chile , 5 Poniente No. 1670, 3460000 Talca, Chile
| | - Bárbara Arévalo
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca , 1 poniente No. 1141, 3460000 Talca, Chile
| | - Gonzalo Martínez
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca , 1 poniente No. 1141, 3460000 Talca, Chile
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology Group, University of Marburg , 35037 Marburg, Germany
| | | | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology Group, University of Marburg , 35037 Marburg, Germany
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca , 1 poniente No. 1141, 3460000 Talca, Chile
| |
Collapse
|
82
|
Aryal P, Jarerattanachat V, Clausen MV, Schewe M, McClenaghan C, Argent L, Conrad LJ, Dong YY, Pike ACW, Carpenter EP, Baukrowitz T, Sansom MSP, Tucker SJ. Bilayer-Mediated Structural Transitions Control Mechanosensitivity of the TREK-2 K2P Channel. Structure 2017; 25:708-718.e2. [PMID: 28392258 PMCID: PMC5415359 DOI: 10.1016/j.str.2017.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/01/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022]
Abstract
The mechanosensitive two-pore domain (K2P) K+ channels (TREK-1, TREK-2, and TRAAK) are important for mechanical and thermal nociception. However, the mechanisms underlying their gating by membrane stretch remain controversial. Here we use molecular dynamics simulations to examine their behavior in a lipid bilayer. We show that TREK-2 moves from the “down” to “up” conformation in direct response to membrane stretch, and examine the role of the transmembrane pressure profile in this process. Furthermore, we show how state-dependent interactions with lipids affect the movement of TREK-2, and how stretch influences both the inner pore and selectivity filter. Finally, we present functional studies that demonstrate why direct pore block by lipid tails does not represent the principal mechanism of mechanogating. Overall, this study provides a dynamic structural insight into K2P channel mechanosensitivity and illustrates how the structure of a eukaryotic mechanosensitive ion channel responds to changes in forces within the bilayer. Mechanogating of TREK-2 involves movement from the down to up conformation Simulations sample a wide range of mechanosensitive K2P channel structures Changes in the pressure profile and state-dependent lipid interactions play a key role Lipid block of the inner pore does not mediate stretch activation
Collapse
Affiliation(s)
- Prafulla Aryal
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, UK
| | - Viwan Jarerattanachat
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Michael V Clausen
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Marcus Schewe
- Department of Physiology, University of Kiel, 24118 Kiel, Germany
| | - Conor McClenaghan
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, UK
| | - Liam Argent
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, UK
| | - Linus J Conrad
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, UK
| | - Yin Y Dong
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | - Elisabeth P Carpenter
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, UK; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
83
|
Morley SJ, Qi Y, Iovino L, Andolfi L, Guo D, Kalebic N, Castaldi L, Tischer C, Portulano C, Bolasco G, Shirlekar K, Fusco CM, Asaro A, Fermani F, Sundukova M, Matti U, Reymond L, De Ninno A, Businaro L, Johnsson K, Lazzarino M, Ries J, Schwab Y, Hu J, Heppenstall PA. Acetylated tubulin is essential for touch sensation in mice. eLife 2016; 5. [PMID: 27976998 PMCID: PMC5158137 DOI: 10.7554/elife.20813] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch. DOI:http://dx.doi.org/10.7554/eLife.20813.001
Collapse
Affiliation(s)
- Shane J Morley
- EMBL Mouse Biology Unit, Monterotondo, Italy.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Yanmei Qi
- Centre for Integrative Neuroscience, Tuebingen, Germany
| | - Loredana Iovino
- EMBL Mouse Biology Unit, Monterotondo, Italy.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | | | - Da Guo
- Centre for Integrative Neuroscience, Tuebingen, Germany
| | - Nereo Kalebic
- EMBL Mouse Biology Unit, Monterotondo, Italy.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | - Ulf Matti
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luc Reymond
- Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | | | - Kai Johnsson
- Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | - Jonas Ries
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jing Hu
- Centre for Integrative Neuroscience, Tuebingen, Germany
| | - Paul A Heppenstall
- EMBL Mouse Biology Unit, Monterotondo, Italy.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| |
Collapse
|
84
|
Masetti M, Berti C, Ocello R, Di Martino GP, Recanatini M, Fiegna C, Cavalli A. Multiscale Simulations of a Two-Pore Potassium Channel. J Chem Theory Comput 2016; 12:5681-5687. [DOI: 10.1021/acs.jctc.6b00972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − Università di Bologna, via Belmeloro
6, 40126 Bologna, Italy
| | - Claudio Berti
- Department of Molecular Biophysics and
Physiology, Rush University Medical Center, Chicago 60612, Illinois, United States
| | - Riccardo Ocello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − Università di Bologna, via Belmeloro
6, 40126 Bologna, Italy
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | - Maurizio Recanatini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − Università di Bologna, via Belmeloro
6, 40126 Bologna, Italy
| | - Claudio Fiegna
- DEI, ARCES, University of Bologna and IUNET, via Venezia 260, 47521 Cesena, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − Università di Bologna, via Belmeloro
6, 40126 Bologna, Italy
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| |
Collapse
|
85
|
Cox CD, Bavi N, Martinac B. Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels. CURRENT TOPICS IN MEMBRANES 2016; 79:59-96. [PMID: 28728824 DOI: 10.1016/bs.ctm.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K+ (K2P) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level.
Collapse
Affiliation(s)
- C D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
86
|
Wu J, Lewis AH, Grandl J. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels. Trends Biochem Sci 2016; 42:57-71. [PMID: 27743844 DOI: 10.1016/j.tibs.2016.09.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 02/03/2023]
Abstract
In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past 6 years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function.
Collapse
Affiliation(s)
- Jason Wu
- Duke University Medical Center, Department of Neurobiology, Durham, NC 27710, USA
| | - Amanda H Lewis
- Duke University Medical Center, Department of Neurobiology, Durham, NC 27710, USA
| | - Jörg Grandl
- Duke University Medical Center, Department of Neurobiology, Durham, NC 27710, USA.
| |
Collapse
|
87
|
Niemeyer MI, Cid LP, González W, Sepúlveda FV. Gating, Regulation, and Structure in K2P K+ Channels: In Varietate Concordia? Mol Pharmacol 2016; 90:309-17. [PMID: 27268784 DOI: 10.1124/mol.116.103895] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/31/2016] [Indexed: 02/14/2025] Open
Abstract
K2P K(+) channels with two pore domains in tandem associate as dimers to produce so-called background conductances that are regulated by a variety of stimuli. Whereas gating in K2P channels has been poorly understood, recent developments have provided important clues regarding the gating mechanism for this family of proteins. Two modes of gating present in other K(+) channels have been considered. The first is the so-called activation gating that occurs by bundle crossing and the splaying apart of pore-lining helices commanding ion passage. The second mode involves a change in conformation at the selectivity filter (SF), which impedes ion flow at this narrow portion of the conduction pathway and accounts for extracellular pH modulation of several K2P channels. Although some evidence supports the existence of an activation gate in K2P channels, recent results suggest that perhaps all stimuli, even those sensed at a distant location in the protein, are also mediated by SF gating. Recently resolved crystal structures of K2P channels in conductive and nonconductive conformations revealed that the nonconductive state is reached by blockade by a lipid acyl chain that gains access to the channel cavity through intramembrane fenestrations. Here we discuss whether this novel type of gating, proposed so far only for membrane tension gating, might mediate gating in response to other stimuli or whether SF gating is the only type of opening/closing mechanism present in K2P channels.
Collapse
Affiliation(s)
- María Isabel Niemeyer
- Centro de Estudios Científicos (CECs), Valdivia, Chile (M.I.N., L.P.C., F.V.S.), Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile (W.G.)
| | - L Pablo Cid
- Centro de Estudios Científicos (CECs), Valdivia, Chile (M.I.N., L.P.C., F.V.S.), Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile (W.G.)
| | - Wendy González
- Centro de Estudios Científicos (CECs), Valdivia, Chile (M.I.N., L.P.C., F.V.S.), Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile (W.G.)
| | - Francisco V Sepúlveda
- Centro de Estudios Científicos (CECs), Valdivia, Chile (M.I.N., L.P.C., F.V.S.), Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile (W.G.)
| |
Collapse
|
88
|
Arrigoni C, Rohaim A, Shaya D, Findeisen F, Stein RA, Nurva SR, Mishra S, Mchaourab HS, Minor DL. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation. Cell 2016; 164:922-36. [PMID: 26919429 DOI: 10.1016/j.cell.2016.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/22/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel.
Collapse
Affiliation(s)
- Cristina Arrigoni
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ahmed Rohaim
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - David Shaya
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Felix Findeisen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Shailika Reddy Nurva
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
89
|
Schewe M, Nematian-Ardestani E, Sun H, Musinszki M, Cordeiro S, Bucci G, de Groot BL, Tucker SJ, Rapedius M, Baukrowitz T. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. Cell 2016; 164:937-49. [PMID: 26919430 PMCID: PMC4771873 DOI: 10.1016/j.cell.2016.02.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/23/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage.
Collapse
Affiliation(s)
- Marcus Schewe
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | | | - Han Sun
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Marianne Musinszki
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Giovanna Bucci
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative, University of Oxford, Oxford OX1 3PU, UK
| | - Markus Rapedius
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany; Nanion Technologies GmbH, 80636 Munich, Germany
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany.
| |
Collapse
|
90
|
The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nat Commun 2016; 7:11984. [PMID: 27329693 PMCID: PMC4917966 DOI: 10.1038/ncomms11984] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/18/2016] [Indexed: 12/24/2022] Open
Abstract
The bacterial mechanosensitive channel MscL gates in response to membrane tension as a result of mechanical force transmitted directly to the channel from the lipid bilayer. MscL represents an excellent model system to study the basic biophysical principles of mechanosensory transduction. However, understanding of the essential structural components that transduce bilayer tension into channel gating remains incomplete. Here using multiple experimental and computational approaches, we demonstrate that the amphipathic N-terminal helix of MscL acts as a crucial structural element during tension-induced gating, both stabilizing the closed state and coupling the channel to the membrane. We propose that this may also represent a common principle in the gating cycle of unrelated mechanosensitive ion channels, allowing the coupling of channel conformation to membrane dynamics.
Collapse
|
91
|
Jentsch TJ. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol 2016; 17:293-307. [PMID: 27033257 DOI: 10.1038/nrm.2016.29] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells need to regulate their volume to counteract osmotic swelling or shrinkage, as well as during cell division, growth, migration and cell death. Mammalian cells adjust their volume by transporting potassium, sodium, chloride and small organic osmolytes using plasma membrane channels and transporters. This generates osmotic gradients, which drive water in and out of cells. Key players in this process are volume-regulated anion channels (VRACs), the composition of which has recently been identified and shown to encompass LRRC8 heteromers. VRACs also transport metabolites and drugs and function in extracellular signal transduction, apoptosis and anticancer drug resistance.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
92
|
Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci Rep 2016; 6:21248. [PMID: 26879043 PMCID: PMC4754649 DOI: 10.1038/srep21248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
TREK-2, a member of two-pore-domain potassium channel family, regulates cellular excitability in response to diverse stimuli. However, how such stimuli control channel function remains unclear. Here, by characterizing the responses of cytosolic proximal C-terminus deletant (ΔpCt) and transmembrane segment 4 (M4)-glycine hinge mutant (G312A) to 2-Aminoethoxydiphenyl borate (2-APB), an activator of TREK-2, we show that the transduction initiated from pCt domain is allosterically coupled with the conformation of selectivity filter (SF) via the movements of M4, without depending on the original status of SF. Moreover, ΔpCt and G312A also exhibited blunted responses to extracellular alkalization, a model to induce SF conformational transition. These results suggest that the coupling between pCt domain and SF is bidirectional, and M4 movements are involved in both processes. Further mechanistic exploration reveals that the function of Phe316, a residue close to the C-terminus of M4, is associated with such communications. However, unlike TREK-2, M4-hinge of TREK-1 only controls the transmission from pCt to SF, rather than SF conformational changes triggered by pHo changes. Together, our findings uncover the unique gating properties of TREK-2, and elucidate the mechanisms for how the extracellular and intracellular stimuli harness the pore gating allosterically.
Collapse
|
93
|
|
94
|
Abstract
Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels.
Collapse
Affiliation(s)
- Sanjeev S Ranade
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ruhma Syeda
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
95
|
Hartley TN, Maathuis FJM. Allelic variation in the vacuolar TPK1 channel affects its calcium dependence and may impact on stomatal conductance. FEBS Lett 2015; 590:110-7. [DOI: 10.1002/1873-3468.12035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/30/2015] [Accepted: 11/28/2015] [Indexed: 11/05/2022]
|
96
|
Ankyrin Repeats Convey Force to Gate the NOMPC Mechanotransduction Channel. Cell 2015; 162:1391-403. [PMID: 26359990 DOI: 10.1016/j.cell.2015.08.024] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/26/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022]
Abstract
How metazoan mechanotransduction channels sense mechanical stimuli is not well understood. The NOMPC channel in the transient receptor potential (TRP) family, a mechanotransduction channel for Drosophila touch sensation and hearing, contains 29 Ankyrin repeats (ARs) that associate with microtubules. These ARs have been postulated to act as a tether that conveys force to the channel. Here, we report that these N-terminal ARs form a cytoplasmic domain essential for NOMPC mechanogating in vitro, mechanosensitivity of touch receptor neurons in vivo, and touch-induced behaviors of Drosophila larvae. Duplicating the ARs elongates the filaments that tether NOMPC to microtubules in mechanosensory neurons. Moreover, microtubule association is required for NOMPC mechanogating. Importantly, transferring the NOMPC ARs to mechanoinsensitive voltage-gated potassium channels confers mechanosensitivity to the chimeric channels. These experiments strongly support a tether mechanism of mechanogating for the NOMPC channel, providing insights into the basis of mechanosensitivity of mechanotransduction channels.
Collapse
|
97
|
Vivier D, Bennis K, Lesage F, Ducki S. Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target? J Med Chem 2015; 59:5149-57. [PMID: 26588045 DOI: 10.1021/acs.jmedchem.5b00671] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Potassium (K(+)) channels are membrane proteins expressed in most living cells that selectively control the flow of K(+) ions. More than 80 genes encode the K(+) channel subunits in the human genome. The TWIK-related K(+) channel (TREK-1) belongs to the two-pore domain K(+) channels (K2P) and displays various properties including sensitivity to physical (membrane stretch, acidosis, temperature) and chemical stimuli (signaling lipids, volatile anesthetics). The distribution of TREK-1 in the central nervous system, coupled with the physiological consequences of its opening and closing, leads to the emergence of this channel as an attractive therapeutic target. We review the TREK-1 channel, its structural and functional properties, and the pharmacological agents (agonists and antagonists) able to modulate its gating.
Collapse
Affiliation(s)
- Delphine Vivier
- Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Khalil Bennis
- Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| | - Florian Lesage
- Labex ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université de Nice Sophia Antipolis, F-06560 Valbonne, France
| | - Sylvie Ducki
- Université Clermont Auvergne, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS, UMR6296, ICCF, F-63171 Aubiere, France
| |
Collapse
|
98
|
Chokshi RH, Larsen AT, Bhayana B, Cotten JF. Breathing Stimulant Compounds Inhibit TASK-3 Potassium Channel Function Likely by Binding at a Common Site in the Channel Pore. Mol Pharmacol 2015; 88:926-34. [PMID: 26268529 PMCID: PMC4613942 DOI: 10.1124/mol.115.100107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022] Open
Abstract
Compounds PKTHPP (1-{1-[6-(biphenyl-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]-pyrimidin-4-yl]piperidin-4-yl}propan-1-one), A1899 (2''-[(4-methoxybenzoylamino)methyl]biphenyl-2-carboxylic acid 2,4-difluorobenzylamide), and doxapram inhibit TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore (K2P) potassium channel function and stimulate breathing. To better understand the molecular mechanism(s) of action of these drugs, we undertook studies to identify amino acid residues in the TASK-3 protein that mediate this inhibition. Guided by homology modeling and molecular docking, we hypothesized that PKTHPP and A1899 bind in the TASK-3 intracellular pore. To test our hypothesis, we mutated each residue in or near the predicted PKTHPP and A1899 binding site (residues 118-128 and 228-248), individually, to a negatively charged aspartate. We quantified each mutation's effect on TASK-3 potassium channel concentration response to PKTHPP. Studies were conducted on TASK-3 transiently expressed in Fischer rat thyroid epithelial monolayers; channel function was measured in an Ussing chamber. TASK-3 pore mutations at residues 122 (L122D, E, or K) and 236 (G236D) caused the IC50 of PKTHPP to increase more than 1000-fold. TASK-3 mutants L122D, G236D, L239D, and V242D were resistant to block by PKTHPP, A1899, and doxapram. Our data are consistent with a model in which breathing stimulant compounds PKTHPP, A1899, and doxapram inhibit TASK-3 function by binding at a common site within the channel intracellular pore region, although binding outside the channel pore cannot yet be excluded.
Collapse
Affiliation(s)
- Rikki H Chokshi
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - Aaron T Larsen
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - Brijesh Bhayana
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| | - Joseph F Cotten
- Department of Anesthesia, Critical Care, and Pain Medicine (R.H.C., J.F.C.), Center for Computational and Integrative Biology, and Department of Molecular Biology (A.T.L.), and Department of Dermatology (B.B.), Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
99
|
Brohawn SG. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 2015; 1352:20-32. [PMID: 26332952 DOI: 10.1111/nyas.12874] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to sense and respond to mechanical forces is essential for life and cells have evolved a variety of systems to convert physical forces into cellular signals. Within this repertoire are the mechanosensitive ion channels, proteins that play critical roles in mechanosensation by transducing forces into ionic currents across cellular membranes. Understanding how these channels work, particularly in animals, remains a major focus of study. Here, I review the current understanding of force gating for a family of metazoan mechanosensitive ion channels, the two-pore domain K(+) channels (K2Ps) TRAAK, TREK1, and TREK2. Structural and functional insights have led to a physical model for mechanical activation of these channels. This model of force sensation by K2Ps is compared to force sensation by bacterial mechanosensitive ion channels MscL and MscS to highlight principles shared among these evolutionarily unrelated channels, as well as differences of potential functional relevance. Recent advances address fundamental questions and stimulate new ideas about these unique mechanosensors.
Collapse
Affiliation(s)
- Stephen G Brohawn
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| |
Collapse
|
100
|
Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci 2015; 72:3677-93. [PMID: 26070303 PMCID: PMC4565861 DOI: 10.1007/s00018-015-1948-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/09/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022]
Abstract
Potassium channels ubiquitously exist in nearly all kingdoms of life and perform diverse but important functions. Since the first atomic structure of a prokaryotic potassium channel (KcsA, a channel from Streptomyces lividans) was determined, tremendous progress has been made in understanding the mechanism of potassium channels and channels conducting other ions. In this review, we discuss the structure of various kinds of potassium channels, including the potassium channel with the pore-forming domain only (KcsA), voltage-gated, inwardly rectifying, tandem pore domain, and ligand-gated ones. The general properties shared by all potassium channels are introduced first, followed by specific features in each class. Our purpose is to help readers to grasp the basic concepts, to be familiar with the property of the different domains, and to understand the structure and function of the potassium channels better.
Collapse
Affiliation(s)
- Qie Kuang
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14183, Huddinge, Sweden.
- School of Technology and Health, KTH Royal Institute of Technology, Novum, 14183, Huddinge, Sweden.
| | - Pasi Purhonen
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14183, Huddinge, Sweden
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 14183, Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, Novum, 14183, Huddinge, Sweden
| |
Collapse
|