51
|
Jacoby J, Schwartz GW. Typology and Circuitry of Suppressed-by-Contrast Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:269. [PMID: 30210298 PMCID: PMC6119723 DOI: 10.3389/fncel.2018.00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
Retinal ganglion cells (RGCs) relay ~40 parallel and independent streams of visual information, each encoding a specific feature of a visual scene, to the brain for further processing. The polarity of a visual neuron’s response to a change in contrast is generally the first characteristic used for functional classification: ON cells increase their spike rate to positive contrast; OFF cells increase their spike rate for negative contrast; ON-OFF cells increase their spike rate for both contrast polarities. Suppressed-by-Contrast (SbC) neurons represent a less well-known fourth category; they decrease firing below a baseline rate for both positive and negative contrasts. SbC RGCs were discovered over 50 years ago, and SbC visual neurons have now been found in the thalamus and primary visual cortex of several mammalian species, including primates. Recent discoveries of SbC RGCs in mice have provided new opportunities for tracing upstream circuits in the retina responsible for the SbC computation and downstream targets in the brain where this information is used. We review and clarify recent work on the circuit mechanism of the SbC computation in these RGCs. Studies of mechanism rely on precisely defined cell types, and we argue that, like ON, OFF, and ON-OFF RGCs, SbC RGCs consist of more than one type. A new appreciation of the diversity of SbC RGCs will help guide future work on their targets in the brain and their roles in visual perception and behavior.
Collapse
Affiliation(s)
- Jason Jacoby
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
52
|
Chen Q, Wei W. Stimulus-dependent engagement of neural mechanisms for reliable motion detection in the mouse retina. J Neurophysiol 2018; 120:1153-1161. [PMID: 29897862 DOI: 10.1152/jn.00716.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direction selectivity is a fundamental computation in the visual system and is first computed by the direction-selective circuit in the mammalian retina. Although landmark discoveries on the neural basis of direction selectivity have been made in the rabbit, many technological advances designed for the mouse have emerged, making this organism a favored model for investigating the direction-selective circuit at the molecular, synaptic, and network levels. Studies using diverse motion stimuli in the mouse retina demonstrate that retinal direction selectivity is implemented by multilayered mechanisms. This review begins with a set of central mechanisms that are engaged under a wide range of visual conditions and then focuses on additional layers of mechanisms that are dynamically recruited under different visual stimulus conditions. Together, recent findings allude to an emerging theme: robust motion detection in the natural environment requires flexible neural mechanisms.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| | - Wei Wei
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| |
Collapse
|
53
|
Abstract
The long-held view that bipolar cells provide the exclusive excitatory drive to the mammalian inner retina has been challenged: new studies indicate that, instead, at least two cells that lack the dendrites characteristic for bipolar cells, and therefore resemble amacrine cells, excite inner retinal circuits using glutamate.
Collapse
|
54
|
Kim T, Kerschensteiner D. Inhibitory Control of Feature Selectivity in an Object Motion Sensitive Circuit of the Retina. Cell Rep 2018; 19:1343-1350. [PMID: 28514655 DOI: 10.1016/j.celrep.2017.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 11/26/2022] Open
Abstract
Object motion sensitive (OMS) W3-retinal ganglion cells (W3-RGCs) in mice respond to local movements in a visual scene but remain silent during self-generated global image motion. The excitatory inputs that drive responses of W3-RGCs to local motion were recently characterized, but which inhibitory neurons suppress W3-RGCs' responses to global motion, how these neurons encode motion information, and how their connections are organized along the excitatory circuit axis remains unknown. Here, we find that a genetically identified amacrine cell (AC) type, TH2-AC, exhibits fast responses to global motion and slow responses to local motion. Optogenetic stimulation shows that TH2-ACs provide strong GABAA receptor-mediated input to W3-RGCs but only weak input to upstream excitatory neurons. Cell-type-specific silencing reveals that temporally coded inhibition from TH2-ACs cancels W3-RGC spike responses to global but not local motion stimuli and, thus, controls the feature selectivity of OMS signals sent to the brain.
Collapse
Affiliation(s)
- Tahnbee Kim
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
55
|
Rivlin-Etzion M, Grimes WN, Rieke F. Flexible Neural Hardware Supports Dynamic Computations in Retina. Trends Neurosci 2018; 41:224-237. [PMID: 29454561 DOI: 10.1016/j.tins.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
The ability of the retina to adapt to changes in mean light intensity and contrast is well known. Classically, however, adaptation is thought to affect gain but not to change the visual modality encoded by a given type of retinal neuron. Recent findings reveal unexpected dynamic properties in mouse retinal neurons that challenge this view. Specifically, certain cell types change the visual modality they encode with variations in ambient illumination or following repetitive visual stimulation. These discoveries demonstrate that computations performed by retinal circuits with defined architecture can change with visual input. Moreover, they pose a major challenge for central circuits that must decode properties of the dynamic visual signal from retinal outputs.
Collapse
Affiliation(s)
- Michal Rivlin-Etzion
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
56
|
Deny S, Ferrari U, Macé E, Yger P, Caplette R, Picaud S, Tkačik G, Marre O. Multiplexed computations in retinal ganglion cells of a single type. Nat Commun 2017; 8:1964. [PMID: 29213097 PMCID: PMC5719075 DOI: 10.1038/s41467-017-02159-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/09/2017] [Indexed: 11/09/2022] Open
Abstract
In the early visual system, cells of the same type perform the same computation in different places of the visual field. How these cells code together a complex visual scene is unclear. A common assumption is that cells of a single-type extract a single-stimulus feature to form a feature map, but this has rarely been observed directly. Using large-scale recordings in the rat retina, we show that a homogeneous population of fast OFF ganglion cells simultaneously encodes two radically different features of a visual scene. Cells close to a moving object code quasilinearly for its position, while distant cells remain largely invariant to the object's position and, instead, respond nonlinearly to changes in the object's speed. We develop a quantitative model that accounts for this effect and identify a disinhibitory circuit that mediates it. Ganglion cells of a single type thus do not code for one, but two features simultaneously. This richer, flexible neural map might also be present in other sensory systems.
Collapse
Affiliation(s)
- Stéphane Deny
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France.,Neural Dynamics and Computation Lab, Stanford University, CA, 94305, USA
| | - Ulisse Ferrari
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France
| | - Emilie Macé
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France.,Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Pierre Yger
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France
| | - Romain Caplette
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France
| | - Serge Picaud
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France
| | - Gašper Tkačik
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Olivier Marre
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France.
| |
Collapse
|
57
|
Xu GZ, Cui LJ, Liu AL, Zhou W, Gong X, Zhong YM, Yang XL, Weng SJ. Transgene is specifically and functionally expressed in retinal inhibitory interneurons in the VGAT-ChR2-EYFP mouse. Neuroscience 2017; 363:107-119. [PMID: 28918256 DOI: 10.1016/j.neuroscience.2017.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
Ectopic transgene expression in the retina has been reported in various transgenic mice, indicating the importance of characterizing retinal phenotypes. We examined transgene expression in the VGAT-ChR2-EYFP mouse retina by fluorescent immunohistochemistry and electrophysiology, with special emphasis on enhanced yellow fluorescent protein (EYFP) localization in retinal neuronal subtypes identified by specific markers. Strong EYFP signals were detected in both the inner and outer plexiform layers. In addition, the ChR2-EYFP fusion protein was also expressed in somata of the great majority of inhibitory interneurons, including horizontal cells and GABAergic and glycinergic amacrine cells. However, a small population of amacrine cells residing in the ganglion cell layer were not labeled by EYFP, and a part of them were cholinergic ones. In contrast, no EYFP signal was detected in the somata of retinal excitatory neurons: photoreceptors, bipolar and ganglion cells, as well as Müller glial cells. When glutamatergic transmission was blocked, bright blue light stimulation elicited inward photocurrents from amacrine cells, as well as post-synaptic inhibitory currents from ganglion cells, suggesting a functional ChR2 expression. The VGAT-ChR2-EYFP mouse therefore could be a useful animal model for dissecting retinal microcircuits when targeted labeling and/or optogenetic manipulation of retinal inhibitory neurons are required.
Collapse
Affiliation(s)
- Guo-Zhong Xu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Ling-Jie Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ai-Lin Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Zhou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xue Gong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
58
|
Compartmentalized dendritic signaling in a multitasking retinal interneuron. Proc Natl Acad Sci U S A 2017; 114:11268-11270. [PMID: 29073042 DOI: 10.1073/pnas.1715503114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
59
|
Abstract
Amacrine cells are a diverse set of local circuit neurons of the inner retina, and they all release either GABA or glycine, amino acid neurotransmitters that are generally inhibitory. But some types of amacrine cells have another function besides inhibiting other neurons. One glycinergic amacrine cell, the Aii type, excites a subset of bipolar cells via extensive gap junctions while inhibiting others at chemical synapses. Many types of GABAergic amacrine cells also release monoamines, acetylcholine, or neuropeptides. There is now good evidence that another type of amacrine cell releases glycine at some of its synapses and releases the excitatory amino acid glutamate at others. The glutamatergic synapses are made onto a subset of retinal ganglion cells and amacrine cells and have the asymmetric postsynaptic densities characteristic of central excitatory synapses. The glycinergic synapses are made onto other types of ganglion cells and have the symmetric postsynaptic densities characteristic of central inhibitory synapses. These amacrine cells, which contain vesicular glutamate transporter 3, will be the focus of this brief review.
Collapse
|
60
|
Hsiang JC, Johnson KP, Madisen L, Zeng H, Kerschensteiner D. Local processing in neurites of VGluT3-expressing amacrine cells differentially organizes visual information. eLife 2017; 6:31307. [PMID: 29022876 PMCID: PMC5653236 DOI: 10.7554/elife.31307] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Neurons receive synaptic inputs on extensive neurite arbors. How information is organized across arbors and how local processing in neurites contributes to circuit function is mostly unknown. Here, we used two-photon Ca2+ imaging to study visual processing in VGluT3-expressing amacrine cells (VG3-ACs) in the mouse retina. Contrast preferences (ON vs. OFF) varied across VG3-AC arbors depending on the laminar position of neurites, with ON responses preferring larger stimuli than OFF responses. Although arbors of neighboring cells overlap extensively, imaging population activity revealed continuous topographic maps of visual space in the VG3-AC plexus. All VG3-AC neurites responded strongly to object motion, but remained silent during global image motion. Thus, VG3-AC arbors limit vertical and lateral integration of contrast and location information, respectively. We propose that this local processing enables the dense VG3-AC plexus to contribute precise object motion signals to diverse targets without distorting target-specific contrast preferences and spatial receptive fields.
Collapse
Affiliation(s)
- Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States.,Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, United States
| | - Keith P Johnson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States.,Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, United States
| | - Linda Madisen
- Allen Institute for Brain Science, Seattle, United States
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, United States
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, United States.,Department of Neuroscience, Washington University School of Medicine, Saint Louis, United States.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
61
|
Local synaptic integration enables ON-OFF asymmetric and layer-specific visual information processing in vGluT3 amacrine cell dendrites. Proc Natl Acad Sci U S A 2017; 114:11518-11523. [PMID: 28973895 DOI: 10.1073/pnas.1711622114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A basic scheme of neuronal organization in the mammalian retina is the segregation of ON and OFF pathways in the inner plexiform layer (IPL), where glutamate is released from ON and OFF bipolar cell terminals in separate inner (ON) and outer (OFF) sublayers in response to light intensity increments and decrements, respectively. However, recent studies have found that vGluT3-expressing glutamatergic amacrine cells (GACs) generate ON-OFF somatic responses and release glutamate onto both ON and OFF ganglion cell types, raising the possibility of crossover excitation in violation of the canonical ON-OFF segregation scheme. To test this possibility, we recorded light-evoked Ca2+ responses from dendrites of individual GACs infected with GCaMP6s in mouse. Under two-photon imaging, a single GAC generated rectified local dendritic responses, showing ON-dominant responses in ON sublayers and OFF-dominant responses in OFF sublayers. This unexpected ON-OFF segregation within a small-field amacrine cell arose from local synaptic processing, mediated predominantly by synaptic inhibition. Multiple forms of synaptic inhibition compartmentalized the GAC dendritic tree and endowed all dendritic varicosities with a small-center, strong-surround receptive field, which varied in receptive field size and degree of ON-OFF asymmetry with IPL depth. The results reveal a form of short-range dendritic autonomy that enables a small-field, dual-transmitter amacrine cell to process diverse dendritic functions in a stratification level- and postsynaptic target-specific manner, while preserving the fundamental ON-OFF segregation scheme for parallel visual processing and high spatial resolution for small object motion and uniformity detection.
Collapse
|
62
|
Affiliation(s)
- Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701
| |
Collapse
|
63
|
Rawson RL, Martin EA, Williams ME. Mechanisms of input and output synaptic specificity: finding partners, building synapses, and fine-tuning communication. Curr Opin Neurobiol 2017; 45:39-44. [PMID: 28388510 DOI: 10.1016/j.conb.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022]
Abstract
For most neurons to function properly, they need to develop synaptic specificity. This requires finding specific partner neurons, building the correct types of synapses, and fine-tuning these synapses in response to neural activity. Synaptic specificity is common at both a neuron's input and output synapses, whereby unique synapses are built depending on the partnering neuron. Neuroscientists have long appreciated the remarkable specificity of neural circuits but identifying molecular mechanisms mediating synaptic specificity has only recently accelerated. Here, we focus on recent progress in understanding input and output synaptic specificity in the mammalian brain. We review newly identified circuit examples for both and the latest research identifying molecular mediators including Kirrel3, FGFs, and DGLα. Lastly, we expect the pace of research on input and output specificity to continue to accelerate with the advent of new technologies in genomics, microscopy, and proteomics.
Collapse
Affiliation(s)
- Randi L Rawson
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 South 2030 East, Salt Lake City, UT 84112, United States
| | - E Anne Martin
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 South 2030 East, Salt Lake City, UT 84112, United States
| | - Megan E Williams
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 South 2030 East, Salt Lake City, UT 84112, United States.
| |
Collapse
|
64
|
Mani A, Schwartz GW. Circuit Mechanisms of a Retinal Ganglion Cell with Stimulus-Dependent Response Latency and Activation Beyond Its Dendrites. Curr Biol 2017; 27:471-482. [PMID: 28132812 DOI: 10.1016/j.cub.2016.12.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022]
Abstract
Center-surround antagonism has been used as the canonical model to describe receptive fields of retinal ganglion cells (RGCs) for decades. We describe a newly identified RGC type in the mouse, called the ON delayed (OND) RGC, with receptive field properties that deviate from center-surround organization. Responding with an unusually long latency to light stimulation, OND RGCs respond earlier as the visual stimulus increases in size. Furthermore, OND RGCs are excited by light falling far beyond their dendrites. We unravel details of the circuit mechanisms behind these phenomena, revealing new roles for inhibition in controlling both temporal and spatial receptive field properties. The non-canonical receptive field properties of the OND RGC-integration of long temporal and large spatial scales-suggest that unlike typical RGCs, it may encode a slowly varying, global property of the visual scene.
Collapse
Affiliation(s)
- Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
65
|
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences,Washington University School of Medicine,Saint Louis,Missouri 63110
| | - William Guido
- Department of Anatomical Sciences and Neurobiology,University of Louisville School of Medicine,Louisville,Kentucky 40292
| |
Collapse
|
66
|
Della Santina L, Kuo SP, Yoshimatsu T, Okawa H, Suzuki SC, Hoon M, Tsuboyama K, Rieke F, Wong ROL. Glutamatergic Monopolar Interneurons Provide a Novel Pathway of Excitation in the Mouse Retina. Curr Biol 2016; 26:2070-2077. [PMID: 27426514 DOI: 10.1016/j.cub.2016.06.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/05/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
Excitatory and inhibitory neurons in the CNS are distinguished by several features, including morphology, transmitter content, and synapse architecture [1]. Such distinctions are exemplified in the vertebrate retina. Retinal bipolar cells are polarized glutamatergic neurons receiving direct photoreceptor input, whereas amacrine cells are usually monopolar inhibitory interneurons with synapses almost exclusively in the inner retina [2]. Bipolar but not amacrine cell synapses have presynaptic ribbon-like structures at their transmitter release sites. We identified a monopolar interneuron in the mouse retina that resembles amacrine cells morphologically but is glutamatergic and, unexpectedly, makes ribbon synapses. These glutamatergic monopolar interneurons (GluMIs) do not receive direct photoreceptor input, and their light responses are strongly shaped by both ON and OFF pathway-derived inhibitory input. GluMIs contact and make almost as many synapses as type 2 OFF bipolar cells onto OFF-sustained A-type (AOFF-S) retinal ganglion cells (RGCs). However, GluMIs and type 2 OFF bipolar cells possess functionally distinct light-driven responses and may therefore mediate separate components of the excitatory synaptic input to AOFF-S RGCs. The identification of GluMIs thus unveils a novel cellular component of excitatory circuits in the vertebrate retina, underscoring the complexity in defining cell types even in this well-characterized region of the CNS.
Collapse
Affiliation(s)
- Luca Della Santina
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA; Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Sidney P Kuo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA; Howard Hughes Medical Institute, Seattle, WA 98195-7290, USA
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | - Kotaro Tsuboyama
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA; Howard Hughes Medical Institute, Seattle, WA 98195-7290, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA.
| |
Collapse
|
67
|
Tien NW, Kim T, Kerschensteiner D. Target-Specific Glycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina. Cell Rep 2016; 15:1369-1375. [PMID: 27160915 DOI: 10.1016/j.celrep.2016.04.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 10/21/2022] Open
Abstract
Neurons that release more than one transmitter exist throughout the CNS. Yet, how these neurons deploy multiple transmitters and shape the function of specific circuits is not well understood. VGluT3-expressing amacrine cells (VG3-ACs) provide glutamatergic input to ganglion cells activated by contrast and motion. Using optogenetics, we find that VG3-ACs provide selective glycinergic input to a retinal ganglion cell type suppressed by contrast and motion (SbC-RGCs). Firing of SbC-RGCs is suppressed at light ON and OFF over a broad range of stimulus sizes. Anatomical circuit reconstructions reveal that VG3-ACs form inhibitory synapses preferentially on processes that link ON and OFF arbors of SbC-RGC dendrites. Removal of VG3-ACs from mature circuits reduces inhibition and attenuates spike suppression of SbC-RGCs in a contrast- and size-selective manner, illustrating the modularity of retinal circuits. VG3-ACs thus use dual transmitters in a target-specific manner and shape suppressive contrast responses in the retina by glycinergic transmission.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tahnbee Kim
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|