51
|
Kimchi EY, Burgos-Robles A, Matthews GA, Chakoma T, Patarino M, Weddington JC, Siciliano C, Yang W, Foutch S, Simons R, Fong MF, Jing M, Li Y, Polley DB, Tye KM. Reward contingency gates selective cholinergic suppression of amygdala neurons. eLife 2024; 12:RP89093. [PMID: 38376907 PMCID: PMC10942609 DOI: 10.7554/elife.89093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Basal forebrain cholinergic neurons modulate how organisms process and respond to environmental stimuli through impacts on arousal, attention, and memory. It is unknown, however, whether basal forebrain cholinergic neurons are directly involved in conditioned behavior, independent of secondary roles in the processing of external stimuli. Using fluorescent imaging, we found that cholinergic neurons are active during behavioral responding for a reward - even prior to reward delivery and in the absence of discrete stimuli. Photostimulation of basal forebrain cholinergic neurons, or their terminals in the basolateral amygdala (BLA), selectively promoted conditioned responding (licking), but not unconditioned behavior nor innate motor outputs. In vivo electrophysiological recordings during cholinergic photostimulation revealed reward-contingency-dependent suppression of BLA neural activity, but not prefrontal cortex. Finally, ex vivo experiments demonstrated that photostimulation of cholinergic terminals suppressed BLA projection neuron activity via monosynaptic muscarinic receptor signaling, while also facilitating firing in BLA GABAergic interneurons. Taken together, we show that the neural and behavioral effects of basal forebrain cholinergic activation are modulated by reward contingency in a target-specific manner.
Collapse
Affiliation(s)
- Eyal Y Kimchi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Neurology, Northwestern UniversityChicagoUnited States
| | - Anthony Burgos-Robles
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- The Department of Neuroscience, Developmental, and Regenerative Biology, Neuroscience Institute & Brain Health Consortium, University of Texas at San AntonioSan AntonioUnited States
| | - Gillian A Matthews
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tatenda Chakoma
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Makenzie Patarino
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Javier C Weddington
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Cody Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Vanderbilt Center for Addiction Research, Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Wannan Yang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Shaun Foutch
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Renee Simons
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ming-fai Fong
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Coulter Department of Biomedical Engineering, Georgia Tech & Emory UniversityAtlantaUnited States
| | - Miao Jing
- Chinese Institute for Brain ResearchBeijingChina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences; PKUIDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life SciencesBeijingChina
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and EarBostonUnited States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical SchoolBostonUnited States
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- HHMI Investigator, Member of the Kavli Institute for Brain and Mind, and Wylie Vale Professor at the Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
52
|
Cai J, Jiang Y, Xu Y, Jiang Z, Young C, Li H, Ortiz-Guzman J, Zhuo Y, Li Y, Xu Y, Arenkiel BR, Tong Q. An excitatory projection from the basal forebrain to the ventral tegmental area that underlies anorexia-like phenotypes. Neuron 2024; 112:458-472.e6. [PMID: 38056455 PMCID: PMC10922337 DOI: 10.1016/j.neuron.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Maladaptation in balancing internal energy needs and external threat cues may result in eating disorders. However, brain mechanisms underlying such maladaptations remain elusive. Here, we identified that the basal forebrain (BF) sends glutamatergic projections to glutamatergic neurons in the ventral tegmental area (VTA) in mice. Glutamatergic neurons in both regions displayed correlated responses to various stressors. Notably, in vivo manipulation of BF terminals in the VTA revealed that the glutamatergic BF → VTA circuit reduces appetite, increases locomotion, and elicits avoidance. Consistently, activation of VTA glutamatergic neurons reduced body weight, blunted food motivation, and caused hyperactivity with behavioral signs of anxiety, all hallmarks of typical anorexia symptoms. Importantly, activation of BF glutamatergic terminals in the VTA reduced dopamine release in the nucleus accumbens. Collectively, our results point to overactivation of the glutamatergic BF → VTA circuit as a potential cause of anorexia-like phenotypes involving reduced dopamine release.
Collapse
Affiliation(s)
- Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Claire Young
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongli Li
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX 77030, USA; Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
53
|
Barbano MF, Zhang S, Chen E, Espinoza O, Mohammad U, Alvarez-Bagnarol Y, Liu B, Hahn S, Morales M. Lateral hypothalamic glutamatergic inputs to VTA glutamatergic neurons mediate prioritization of innate defensive behavior over feeding. Nat Commun 2024; 15:403. [PMID: 38195566 PMCID: PMC10776608 DOI: 10.1038/s41467-023-44633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The lateral hypothalamus (LH) is involved in feeding behavior and defense responses by interacting with different brain structures, including the Ventral Tegmental Area (VTA). Emerging evidence indicates that LH-glutamatergic neurons infrequently synapse on VTA-dopamine neurons but preferentially establish multiple synapses on VTA-glutamatergic neurons. Here, we demonstrated that LH-glutamatergic inputs to VTA promoted active avoidance, long-term aversion, and escape attempts. By testing feeding in the presence of a predator, we observed that ongoing feeding was decreased, and that this predator-induced decrease in feeding was abolished by photoinhibition of the LH-glutamatergic inputs to VTA. By VTA specific neuronal ablation, we established that predator-induced decreases in feeding were mediated by VTA-glutamatergic neurons but not by dopamine or GABA neurons. Thus, we provided evidence for an unanticipated neuronal circuitry between LH-glutamatergic inputs to VTA-glutamatergic neurons that plays a role in prioritizing escape, and in the switch from feeding to escape in mice.
Collapse
Affiliation(s)
- M Flavia Barbano
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Emma Chen
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Orlando Espinoza
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Uzma Mohammad
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yocasta Alvarez-Bagnarol
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA
| | - Bing Liu
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Suyun Hahn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marisela Morales
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
54
|
Sharpe MJ. The cognitive (lateral) hypothalamus. Trends Cogn Sci 2024; 28:18-29. [PMID: 37758590 PMCID: PMC10841673 DOI: 10.1016/j.tics.2023.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Despite the physiological complexity of the hypothalamus, its role is typically restricted to initiation or cessation of innate behaviors. For example, theories of lateral hypothalamus argue that it is a switch to turn feeding 'on' and 'off' as dictated by higher-order structures that render when feeding is appropriate. However, recent data demonstrate that the lateral hypothalamus is critical for learning about food-related cues. Furthermore, the lateral hypothalamus opposes learning about information that is neutral or distal to food. This reveals the lateral hypothalamus as a unique arbitrator of learning capable of shifting behavior toward or away from important events. This has relevance for disorders characterized by changes in this balance, including addiction and schizophrenia. Generally, this suggests that hypothalamic function is more complex than increasing or decreasing innate behaviors.
Collapse
Affiliation(s)
- Melissa J Sharpe
- Department of Psychology, University of Sydney, Camperdown, NSW 2006, Australia; Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
55
|
Barbier M, Thirtamara Rajamani K, Netser S, Wagner S, Harony-Nicolas H. Altered neural activity in the mesoaccumbens pathway underlies impaired social reward processing in Shank3-deficient rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570134. [PMID: 38106179 PMCID: PMC10723340 DOI: 10.1101/2023.12.05.570134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Social behaviors are crucial for human connection and belonging, often impacted in conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (VTA and NAc) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions and have difficulty adjusting behavior based on reward values, associated with modified neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, we demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward and behavior, and identify a potential neural pathway for intervention.
Collapse
Affiliation(s)
- Marie Barbier
- Department of Psychiatry, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Seaver Autism Center for Research and Treatment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Neuroscience, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Friedman Brain Institute, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Keerthi Thirtamara Rajamani
- Department of Psychiatry, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Seaver Autism Center for Research and Treatment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Neuroscience, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Friedman Brain Institute, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hala Harony-Nicolas
- Department of Psychiatry, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Seaver Autism Center for Research and Treatment, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Department of Neuroscience, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Friedman Brain Institute, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
56
|
Shan Q, Tian Y, Chen H, Lin X, Tian Y. Reduction in the activity of VTA/SNc dopaminergic neurons underlies aging-related decline in novelty seeking. Commun Biol 2023; 6:1224. [PMID: 38042964 PMCID: PMC10693597 DOI: 10.1038/s42003-023-05571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023] Open
Abstract
Curiosity, or novelty seeking, is a fundamental mechanism motivating animals to explore and exploit environments to improve survival, and is also positively associated with cognitive, intrapersonal and interpersonal well-being in humans. However, curiosity declines as humans age, and the decline even positively predicts the extent of cognitive decline in Alzheimer's disease patients. Therefore, determining the underlying mechanism, which is currently unknown, is an urgent task for the present aging society that is growing at an unprecedented rate. This study finds that seeking behaviors for both social and inanimate novelties are compromised in aged mice, suggesting that the aging-related decline in curiosity and novelty-seeking is a biological process. This study further identifies an aging-related reduction in the activity (manifesting as a reduction in spontaneous firing) of dopaminergic neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Finally, this study establishes that this reduction in activity causally underlies the aging-related decline in novelty-seeking behaviors. This study potentially provides an interventional strategy for maintaining high curiosity in the aged population, i.e., compensating for the reduced activity of VTA/SNc dopaminergic neurons, enabling the aged population to cope more smoothly with the present growing aging society, physically, cognitively and socioeconomically.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Ye Tian
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Hang Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Xiaoli Lin
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, 300071, Tianjin, China
| |
Collapse
|
57
|
Welsch L, Colantonio E, Falconnier C, Champagnol-DiLiberti C, Allain F, Ben Hamida S, Darcq E, Lutz PE, Kieffer BL. Mu Opioid Receptor-Positive Neurons in the Dorsal Raphe Nucleus Are Impaired by Morphine Abstinence. Biol Psychiatry 2023; 94:852-862. [PMID: 37393045 PMCID: PMC10851617 DOI: 10.1016/j.biopsych.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Chronic opioid exposure leads to hedonic deficits and enhanced vulnerability to addiction, which are observed and even strengthen after a period of abstinence, but the underlying circuit mechanisms are poorly understood. In this study, using both molecular and behavioral approaches, we tested the hypothesis that neurons expressing mu opioid receptors (MORs) in the dorsal raphe nucleus (DRN) are involved in addiction vulnerability associated with morphine abstinence. METHODS MOR-Cre mice were exposed to chronic morphine and then went through spontaneous withdrawal for 4 weeks, a well-established mouse model of morphine abstinence. We studied DRN-MOR neurons of abstinent mice using 1) viral translating ribosome affinity for transcriptome profiling, 2) fiber photometry to measure neuronal activity, and 3) an opto-intracranial self-stimulation paradigm applied to DRN-MOR neurons to assess responses related to addiction vulnerability including persistence to respond, motivation to obtain the stimulation, self-stimulation despite punishment, and cue-induced reinstatement. RESULTS DRN-MOR neurons of abstinent animals showed a downregulation of genes involved in ion conductance and MOR-mediated signaling, as well as altered responding to acute morphine. Opto-intracranial self-stimulation data showed that abstinent animals executed more impulsive-like and persistent responses during acquisition and scored higher on addiction-like criteria. CONCLUSIONS Our data suggest that protracted abstinence to chronic morphine leads to reduced MOR function in DRN-MOR neurons and abnormal self-stimulation of these neurons. We propose that DRN-MOR neurons have partially lost their reward-facilitating properties, which in turn may lead to increased propensity to perform addiction-related behaviors.
Collapse
Affiliation(s)
- Lola Welsch
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, University of Strasbourg, Strasbourg, France
| | | | - Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | | | - Florence Allain
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, University of Strasbourg, Strasbourg, France
| | - Sami Ben Hamida
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM UMR 1247, Research Group on Alcohol & Pharmacodependences, Université de Picardie Jules Verne, Amiens, France
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, University of Strasbourg, Strasbourg, France
| | - Pierre-Eric Lutz
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
58
|
Prévost ED, Phillips A, Lauridsen K, Enserro G, Rubinstein B, Alas D, McGovern DJ, Ly A, Banks M, McNulty C, Kim YS, Fenno LE, Ramakrishnan C, Deisseroth K, Root DH. Monosynaptic inputs to ventral tegmental area glutamate and GABA co-transmitting neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535959. [PMID: 37066408 PMCID: PMC10104150 DOI: 10.1101/2023.04.06.535959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
A unique population of ventral tegmental area (VTA) neurons co-transmits glutamate and GABA as well as functionally signals rewarding and aversive outcomes. However, the circuit inputs to VTA VGluT2+VGaT+ neurons are unknown, limiting our understanding of the functional capabilities of these neurons. To identify the inputs to VTA VGluT2+VGaT+ neurons, we coupled monosynaptic rabies tracing with intersectional genetic targeting of VTA VGluT2+VGaT+ neurons in mice. We found that VTA VGluT2+VGaT+ neurons received diverse brain-wide inputs. The largest numbers of monosynaptic inputs to VTA VGluT2+VGaT+ neurons were from superior colliculus, lateral hypothalamus, midbrain reticular nucleus, and periaqueductal gray, whereas the densest inputs relative to brain region volume were from dorsal raphe nucleus, lateral habenula, and ventral tegmental area. Based on these and prior data, we hypothesized that lateral hypothalamus and superior colliculus inputs were glutamatergic neurons. Optical activation of glutamatergic lateral hypothalamus neurons robustly activated VTA VGluT2+VGaT+ neurons regardless of stimulation frequency and resulted in flee-like ambulatory behavior. In contrast, optical activation of glutamatergic superior colliculus neurons activated VTA VGluT2+VGaT+ neurons for a brief period of time at high stimulation frequency and resulted in head rotation and arrested ambulatory behavior (freezing). For both pathways, behaviors induced by stimulation were uncorrelated with VTA VGluT2+VGaT+ neuron activity. However, stimulation of glutamatergic lateral hypothalamus neurons, but not glutamatergic superior colliculus neurons, was associated with VTA VGluT2+VGaT+ footshock-induced activity. We interpret these results such that inputs to VTA VGluT2+VGaT+ neurons may integrate diverse signals related to the detection and processing of motivationally-salient outcomes. Further, VTA VGluT2+VGaT+ neurons may signal threat-related outcomes, possibly via input from lateral hypothalamus glutamate neurons, but not threat-induced behavioral kinematics.
Collapse
Affiliation(s)
- Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Alysabeth Phillips
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Kristoffer Lauridsen
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Gunnar Enserro
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Bodhi Rubinstein
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Daniel Alas
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Dillon J. McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Makaila Banks
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Connor McNulty
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Yoon Seok Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Lief E. Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Current address: Department of Neuroscience, Dell Medical School, The University of Texas at Austin 78712
| | - Charu Ramakrishnan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
59
|
Li SY, Cao JJ, Tan K, Fan L, Wang YQ, Shen ZX, Li SS, Wu C, Zhou H, Xu HT. CRH neurons in the lateral hypothalamic area regulate feeding behavior of mice. Curr Biol 2023; 33:4827-4843.e7. [PMID: 37848038 DOI: 10.1016/j.cub.2023.09.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/15/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Food cues serve as pivotal triggers for eliciting physiological responses that subsequently influence food consumption. The magnitude of response induced by these cues stands as a critical determinant in the context of obesity risk. Nonetheless, the underlying neural mechanism that underpins how cues associated with edible food potentiate feeding behaviors remains uncertain. In this study, we revealed that corticotropin-releasing hormone (CRH)-expressing neurons in the lateral hypothalamic area played a crucial role in promoting consummatory behaviors in mice, shedding light on this intricate process. By employing an array of diverse assays, we initially established the activation of these neurons during feeding. Manipulations using optogenetic and chemogenetic assays revealed that their activation amplified appetite and promoted feeding behaviors, whereas inhibition decreased them. Additionally, our investigation identified downstream targets, including the ventral tegmental area, and underscored the pivotal involvement of the CRH neuropeptide itself in orchestrating this regulatory network. This research casts a clarifying light on the neural mechanism underlying the augmentation of appetite and the facilitation of feeding behaviors in response to food cues. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Song-Yun Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Juan Cao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Tan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Fan
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China
| | - Ya-Qian Wang
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China
| | - Zi-Xuan Shen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai-Shuai Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhou
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China
| | - Hua-Tai Xu
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 555 Qiangye Road, Shanghai 201210, China.
| |
Collapse
|
60
|
Martianova E, Sadretdinova R, Pageau A, Pausic N, Gentiletti TD, Leblanc D, Rivera AM, Labonté B, Proulx CD. Hypothalamic neuronal outputs transmit sensorimotor signals at the onset of locomotor initiation. iScience 2023; 26:108328. [PMID: 38026162 PMCID: PMC10665817 DOI: 10.1016/j.isci.2023.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The lateral hypothalamus (LH) plays a critical role in sensory integration to organize behavior responses. However, how projection-defined LH neuronal outputs dynamically transmit sensorimotor signals to major downstream targets to organize behavior is unknown. Here, using multi-fiber photometry, we show that three major LH neuronal outputs projecting to the dorsal raphe nucleus (DRN), ventral tegmental area (VTA), and lateral habenula (LHb) exhibit significant coherent activity in mice engaging sensory-evoked or self-initiated motor responses. Increased activity at LH axon terminals precedes movement initiation during active coping responses and the activity of serotonin neurons and dopamine neurons. The optogenetic activation of LH axon terminals in either of the DRN, VTA, or LHb was sufficient to increase motor initiation but had different effects on passive avoidance and sucrose consumption. Our findings support the complementary role of three projection-defined LH neuronal outputs in the transmission of sensorimotor signals to major downstream regions at movement onset.
Collapse
Affiliation(s)
- Ekaterina Martianova
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Renata Sadretdinova
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Alicia Pageau
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Nikola Pausic
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Tommy Doucet Gentiletti
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Danahé Leblanc
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Arturo Marroquin Rivera
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Benoît Labonté
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| | - Christophe D. Proulx
- CERVO Brain Research Center, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
61
|
Amo R, Uchida N, Watabe-Uchida M. Glutamate inputs send prediction error of reward but not negative value of aversive stimuli to dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566472. [PMID: 37986868 PMCID: PMC10659341 DOI: 10.1101/2023.11.09.566472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Midbrain dopamine neurons are thought to signal reward prediction errors (RPEs) but the mechanisms underlying RPE computation, particularly contributions of different neurotransmitters, remain poorly understood. Here we used a genetically-encoded glutamate sensor to examine the pattern of glutamate inputs to dopamine neurons. We found that glutamate inputs exhibit virtually all of the characteristics of RPE, rather than conveying a specific component of RPE computation such as reward or expectation. Notably, while glutamate inputs were transiently inhibited by reward omission, they were excited by aversive stimuli. Opioid analgesics altered dopamine negative responses to aversive stimuli toward more positive responses, while excitatory responses of glutamate inputs remained unchanged. Our findings uncover previously unknown synaptic mechanisms underlying RPE computations; dopamine responses are shaped by both synergistic and competitive interactions between glutamatergic and GABAergic inputs to dopamine neurons depending on valences, with competitive interactions playing a role in responses to aversive stimuli.
Collapse
Affiliation(s)
- Ryunosuke Amo
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
62
|
Noh YW, Kim Y, Lee S, Kim Y, Shin JJ, Kang H, Kim IH, Kim E. The PFC-LH-VTA pathway contributes to social deficits in IRSp53-mutant mice. Mol Psychiatry 2023; 28:4642-4654. [PMID: 37730842 PMCID: PMC10914623 DOI: 10.1038/s41380-023-02257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) promote social brain functions by releasing DA onto nucleus accumbens neurons, but it remains unclear how VTA neurons communicate with cortical neurons. Here, we report that the medial prefrontal cortex (mPFC)-lateral hypothalamus (LH)-VTA pathway contributes to social deficits in mice with IRSp53 deletion restricted to cortical excitatory neurons (Emx1-Cre;Irsp53fl/fl mice). LH-projecting mutant mPFC neurons display abnormally increased excitability involving decreased potassium channel gene expression, leading to excessive excitatory synaptic input to LH-GABA neurons. A circuit-specific IRSp53 deletion in LH-projecting mPFC neurons also increases neuronal excitability and induces social deficits. LH-GABA neurons with excessive mPFC excitatory synaptic input show a compensatory decrease in excitability, weakening the inhibitory LHGABA-VTAGABA pathway and subsequently over-activating VTA-GABA neurons and over-inhibiting VTA-DA neurons. Accordingly, optogenetic activation of the LHGABA-VTAGABA pathway improves social deficits in Emx1-Cre;Irsp53fl/fl mice. Therefore, the mPFC-LHGABA-VTAGABA-VTADA pathway contributes to the social deficits in Emx1-Cre;Irsp53fl/fl mice.
Collapse
Affiliation(s)
- Young Woo Noh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yangsik Kim
- Department of Psychiatry, Inha University Hospital, Incheon, 22332, Korea
| | - Soowon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Yeonghyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jae Jin Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, 34141, Korea
| | - Il Hwan Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, 34141, Korea.
| |
Collapse
|
63
|
Rojek-Sito K, Meyza K, Ziegart-Sadowska K, Nazaruk K, Puścian A, Hamed A, Kiełbiński M, Solecki W, Knapska E. Optogenetic and chemogenetic approaches reveal differences in neuronal circuits that mediate initiation and maintenance of social interaction. PLoS Biol 2023; 21:e3002343. [PMID: 38029342 PMCID: PMC10686636 DOI: 10.1371/journal.pbio.3002343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
For social interaction to be successful, two conditions must be met: the motivation to initiate it and the ability to maintain it. This study uses both optogenetic and chemogenetic approaches to reveal the specific neural pathways that selectively influence those two social interaction components.
Collapse
Affiliation(s)
- Karolina Rojek-Sito
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ksenia Meyza
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Ziegart-Sadowska
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Kinga Nazaruk
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Puścian
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kiełbiński
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY—Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
64
|
Gustison ML, Muñoz-Castañeda R, Osten P, Phelps SM. Sexual coordination in a whole-brain map of prairie vole pair bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550685. [PMID: 37546974 PMCID: PMC10402037 DOI: 10.1101/2023.07.26.550685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Sexual bonds are central to the social lives of many species, including humans, and monogamous prairie voles have become the predominant model for investigating such attachments. We developed an automated whole-brain mapping pipeline to identify brain circuits underlying pair-bonding behavior. We identified bonding-related c-Fos induction in 68 brain regions clustered in seven major brain-wide neuronal circuits. These circuits include known regulators of bonding, such as the bed nucleus of the stria terminalis, paraventricular hypothalamus, ventral pallidum, and prefrontal cortex. They also include brain regions previously unknown to shape bonding, such as ventromedial hypothalamus, medial preoptic area and the medial amygdala, but that play essential roles in bonding-relevant processes, such as sexual behavior, social reward and territorial aggression. Contrary to some hypotheses, we found that circuits active during mating and bonding were largely sexually monomorphic. Moreover, c-Fos induction across regions was strikingly consistent between members of a pair, with activity best predicted by rates of ejaculation. A novel cluster of regions centered in the amygdala remained coordinated after bonds had formed, suggesting novel substrates for bond maintenance. Our tools and results provide an unprecedented resource for elucidating the networks that translate sexual experience into an enduring bond.
Collapse
Affiliation(s)
- Morgan L. Gustison
- Department of Integrative Biology, The University of Texas at Austin; Austin, TX, USA
- Department of Psychology, Western University, ON, Canada
| | - Rodrigo Muñoz-Castañeda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Steven M. Phelps
- Department of Integrative Biology, The University of Texas at Austin; Austin, TX, USA
- Institute for Neuroscience, The University of Texas at Austin; Austin, TX, USA
| |
Collapse
|
65
|
You IJ, Bae Y, Beck AR, Shin S. Lateral hypothalamic proenkephalin neurons drive threat-induced overeating associated with a negative emotional state. Nat Commun 2023; 14:6875. [PMID: 37898655 PMCID: PMC10613253 DOI: 10.1038/s41467-023-42623-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Psychological stressors, like the nearby presence of a predator, can be strong enough to induce physiological/hormonal alterations, leading to appetite changes. However, little is known about how threats can alter feeding-related hypothalamic circuit functions. Here, we found that proenkephalin (Penk)-expressing lateral hypothalamic (LHPenk) neurons of mice exposed to predator scent stimulus (PSS) show sensitized responses to high-fat diet (HFD) eating, whereas silencing of the same neurons normalizes PSS-induced HFD overconsumption associated with a negative emotional state. Downregulation of endogenous enkephalin peptides in the LH is crucial for inhibiting the neuronal and behavioral changes developed after PSS exposure. Furthermore, elevated corticosterone after PSS contributes to enhance the reactivity of glucocorticoid receptor (GR)-containing LHPenk neurons to HFD, whereas pharmacological inhibition of GR in the LH suppresses PSS-induced maladaptive behavioral responses. We have thus identified the LHPenk neurons as a critical component in the threat-induced neuronal adaptation that leads to emotional overconsumption.
Collapse
Affiliation(s)
- In-Jee You
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- FBRI Center for Neurobiology Research, Roanoke, VA, USA
| | - Yeeun Bae
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- FBRI Center for Neurobiology Research, Roanoke, VA, USA
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alec R Beck
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- FBRI Center for Neurobiology Research, Roanoke, VA, USA
| | - Sora Shin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.
- FBRI Center for Neurobiology Research, Roanoke, VA, USA.
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
66
|
Abstract
The nervous system coordinates various motivated behaviors such as feeding, drinking, and escape to promote survival and evolutionary fitness. Although the precise behavioral repertoires required for distinct motivated behaviors are diverse, common features such as approach or avoidance suggest that common brain substrates are required for a wide range of motivated behaviors. In this Review, I describe a framework by which neural circuits specified for some innate drives regulate the activity of ventral tegmental area (VTA) dopamine neurons to reinforce ongoing or planned actions to fulfill motivational demands. This framework may explain why signaling from VTA dopamine neurons is ubiquitously involved in many types of diverse volitional motivated actions, as well as how sensory and interoceptive cues can initiate specific goal-directed actions.
Collapse
Affiliation(s)
- Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
67
|
Adamantidis AR, de Lecea L. Sleep and the hypothalamus. Science 2023; 382:405-412. [PMID: 37883555 DOI: 10.1126/science.adh8285] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Neural substrates of wakefulness, rapid eye movement sleep (REMS), and non-REMS (NREMS) in the mammalian hypothalamus overlap both anatomically and functionally with cellular networks that support physiological and behavioral homeostasis. Here, we review the roles of sleep neurons of the hypothalamus in the homeostatic control of thermoregulation or goal-oriented behaviors during wakefulness. We address how hypothalamic circuits involved in opposing behaviors such as core body temperature and sleep compute conflicting information and provide a coherent vigilance state. Finally, we highlight some of the key unresolved questions and challenges, and the promise of a more granular view of the cellular and molecular diversity underlying the integrative role of the hypothalamus in physiological and behavioral homeostasis.
Collapse
Affiliation(s)
- Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Luis de Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford, CA, USA
- Wu Tsai Neurosciences Institute Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
68
|
Bai F, Huang L, Deng J, Long Z, Hao X, Chen P, Wu G, Wen H, Deng Q, Bao X, Huang J, Yang M, Li D, Ren Y, Zhang M, Xiong Y, Li H. Prelimbic area to lateral hypothalamus circuit drives social aggression. iScience 2023; 26:107718. [PMID: 37810230 PMCID: PMC10551839 DOI: 10.1016/j.isci.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/06/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Controlling aggression is a vital skill in social species such as rodents and humans and has been associated with the medial prefrontal cortex (mPFC). In this study, we showed that during aggressive behavior, the activity of GABAergic neurons in the prelimbic area (PL) of the mPFC was significantly suppressed. Specific activation of GABAergic PL neurons significantly curbed male-to-male aggression and inhibited conditioned place preference (CPP) for aggression-paired contexts, whereas specific inhibition of GABAergic PL neurons brought about the opposite effect. Moreover, GABAergic projections from PL neurons to the lateral hypothalamus (LH) orexinergic neurons mediated aggressive behavior. Finally, directly modulated LH-orexinergic neurons influence aggressive behavior. These results suggest that GABAergic PL-orexinergic LH projection is an important control circuit for intermale aggressive behavior, both of which could be targets for curbing aggression.
Collapse
Affiliation(s)
- Fuhai Bai
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lu Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Zonghong Long
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xianglin Hao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Penghui Chen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Guangyan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Huizhong Wen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Qiangting Deng
- Editorial Office of Journal of Army Medical University, Chongqing 400038, China
| | - Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ming Yang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Defeng Li
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yukun Ren
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Zhang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
69
|
Teng PN, Barakat W, Tran SM, Tran ZM, Bateman NW, Conrads KA, Wilson KN, Oliver J, Gist G, Hood BL, Zhou M, Maxwell GL, Leggio L, Conrads TP, Lee MR. Brain proteomic atlas of alcohol use disorder in adult males. Transl Psychiatry 2023; 13:318. [PMID: 37833300 PMCID: PMC10575941 DOI: 10.1038/s41398-023-02605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Alcohol use disorder (AUD) affects transcriptomic, epigenetic and proteomic expression in several organs, including the brain. There has not been a comprehensive analysis of altered protein abundance focusing on the multiple brain regions that undergo neuroadaptations occurring in AUD. We performed a quantitative proteomic analysis using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of human postmortem tissue from brain regions that play key roles in the development and maintenance of AUD, the amygdala (AMG), hippocampus (HIPP), hypothalamus (HYP), nucleus accumbens (NAc), prefrontal cortex (PFC) and ventral tegmental area (VTA). Brain tissues were from adult males with AUD (n = 11) and matched controls (n = 16). Across the two groups, there were >6000 proteins quantified with differential protein abundance in AUD compared to controls in each of the six brain regions. The region with the greatest number of differentially expressed proteins was the AMG, followed by the HYP. Pathways associated with differentially expressed proteins between groups (fold change > 1.5 and LIMMA p < 0.01) were analyzed by Ingenuity Pathway Analysis (IPA). In the AMG, adrenergic, opioid, oxytocin, GABA receptor and cytokine pathways were among the most enriched. In the HYP, dopaminergic signaling pathways were the most enriched. Proteins with differential abundance in AUD highlight potential therapeutic targets such as oxytocin, CSNK1D (PF-670462), GABAB receptor and opioid receptors and may lead to the identification of other potential targets. These results improve our understanding of the molecular alterations of AUD across brain regions that are associated with the development and maintenance of AUD. Proteomic data from this study is publicly available at www.lmdomics.org/AUDBrainProteomeAtlas/ .
Collapse
Affiliation(s)
- Pang-Ning Teng
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Waleed Barakat
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Sophie M Tran
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Zoe M Tran
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Nicholas W Bateman
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kelly A Conrads
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Katlin N Wilson
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Julie Oliver
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Glenn Gist
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Brian L Hood
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Bethesda, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA.
| | - Mary R Lee
- Veterans Affairs Medical Center, Washington, DC, USA.
| |
Collapse
|
70
|
Du Y, Zhou S, Ma C, Chen H, Du A, Deng G, Liu Y, Tose AJ, Sun L, Liu Y, Wu H, Lou H, Yu YQ, Zhao T, Lammel S, Duan S, Yang H. Dopamine release and negative valence gated by inhibitory neurons in the laterodorsal tegmental nucleus. Neuron 2023; 111:3102-3118.e7. [PMID: 37499661 DOI: 10.1016/j.neuron.2023.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/25/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
GABAergic neurons in the laterodorsal tegmental nucleus (LDTGABA) encode aversion by directly inhibiting mesolimbic dopamine (DA). Yet, the detailed cellular and circuit mechanisms by which these cells relay unpleasant stimuli to DA neurons and regulate behavioral output remain largely unclear. Here, we show that LDTGABA neurons bidirectionally respond to rewarding and aversive stimuli in mice. Activation of LDTGABA neurons promotes aversion and reduces DA release in the lateral nucleus accumbens. Furthermore, we identified two molecularly distinct LDTGABA cell populations. Somatostatin-expressing (Sst+) LDTGABA neurons indirectly regulate the mesolimbic DA system by disinhibiting excitatory hypothalamic neurons. In contrast, Reelin-expressing LDTGABA neurons directly inhibit downstream DA neurons. The identification of separate GABAergic subpopulations in a single brainstem nucleus that relay unpleasant stimuli to the mesolimbic DA system through direct and indirect projections is critical for establishing a circuit-level understanding of how negative valence is encoded in the mammalian brain.
Collapse
Affiliation(s)
- Yonglan Du
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Siyao Zhou
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chenyan Ma
- Division of Neurobiology, Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hui Chen
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Ana Du
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Guochuang Deng
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yige Liu
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Amanda J Tose
- Division of Neurobiology, Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Li Sun
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yijun Liu
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Wu
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou 310058, China
| | - Huifang Lou
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yan-Qin Yu
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Ting Zhao
- PKU-Nanjing Joint Institute of Translational Medicine, Nanjing 211800, China
| | - Stephan Lammel
- Division of Neurobiology, Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Shumin Duan
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Yang
- Department of Affiliated Mental Health Center of Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
71
|
Liou CW, Cheng SJ, Yao TH, Lai TT, Tsai YH, Chien CW, Kuo YL, Chou SH, Hsu CC, Wu WL. Microbial metabolites regulate social novelty via CaMKII neurons in the BNST. Brain Behav Immun 2023; 113:104-123. [PMID: 37393058 DOI: 10.1016/j.bbi.2023.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior. Herein, we demonstrate that the delivery of SCFAs directly into the brain disrupts social novelty through distinct neuronal populations. We are the first to observe that infusion of SCFAs into the lateral ventricle disrupted social novelty in microbiome-depleted mice without affecting brain inflammatory responses. The deficit in social novelty can be recapitulated by activating calcium/calmodulin-dependent protein kinase II (CaMKII)-labeled neurons in the bed nucleus of the stria terminalis (BNST). Conversely, chemogenetic silencing of the CaMKII-labeled neurons and pharmacological inhibition of fatty acid oxidation in the BNST reversed the SCFAs-induced deficit in social novelty. Our findings suggest that microbial metabolites impact social novelty through a distinct neuron population in the BNST.
Collapse
Affiliation(s)
- Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Che-Wei Chien
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan
| | - Yu-Lun Kuo
- Biotools Co. Ltd, New Taipei City 22175, Taiwan
| | - Shih-Hsuan Chou
- Biotools Co. Ltd, New Taipei City 22175, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Cheng-Chih Hsu
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| |
Collapse
|
72
|
Aso Y, Yamada D, Bushey D, Hibbard KL, Sammons M, Otsuna H, Shuai Y, Hige T. Neural circuit mechanisms for transforming learned olfactory valences into wind-oriented movement. eLife 2023; 12:e85756. [PMID: 37721371 PMCID: PMC10588983 DOI: 10.7554/elife.85756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign a valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After formation of appetitive memory, UpWiNs acquire enhanced response to reward-predicting odors as the response of the inhibitory presynaptic MBON undergoes depression. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was terminated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daichi Yamada
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel HillChapel HillUnited States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
73
|
Rossi MA. Control of energy homeostasis by the lateral hypothalamic area. Trends Neurosci 2023; 46:738-749. [PMID: 37353461 PMCID: PMC10524917 DOI: 10.1016/j.tins.2023.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.
Collapse
Affiliation(s)
- Mark A Rossi
- Child Health Institute of New Jersey, New Brunswick, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
74
|
Gordon-Fennell A, Barbakh JM, Utley MT, Singh S, Bazzino P, Gowrishankar R, Bruchas MR, Roitman MF, Stuber GD. An open-source platform for head-fixed operant and consummatory behavior. eLife 2023; 12:e86183. [PMID: 37555578 PMCID: PMC10499376 DOI: 10.7554/elife.86183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023] Open
Abstract
Head-fixed behavioral experiments in rodents permit unparalleled experimental control, precise measurement of behavior, and concurrent modulation and measurement of neural activity. Here, we present OHRBETS (Open-Source Head-fixed Rodent Behavioral Experimental Training System; pronounced 'Orbitz'), a low-cost, open-source platform of hardware and software to flexibly pursue the neural basis of a variety of motivated behaviors. Head-fixed mice tested with OHRBETS displayed operant conditioning for caloric reward that replicates core behavioral phenotypes observed during freely moving conditions. OHRBETS also permits optogenetic intracranial self-stimulation under positive or negative operant conditioning procedures and real-time place preference behavior, like that observed in freely moving assays. In a multi-spout brief-access consumption task, mice displayed licking as a function of concentration of sucrose, quinine, and sodium chloride, with licking modulated by homeostatic or circadian influences. Finally, to highlight the functionality of OHRBETS, we measured mesolimbic dopamine signals during the multi-spout brief-access task that display strong correlations with relative solution value and magnitude of consumption. All designs, programs, and instructions are provided freely online. This customizable platform enables replicable operant and consummatory behaviors and can be incorporated with methods to perturb and record neural dynamics in vivo.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Joumana M Barbakh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - MacKenzie T Utley
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Shreya Singh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Paula Bazzino
- Department of Psychology, University of Illinois at ChicagoChicagoUnited States
- Graduate Program in Neuroscience, University of Illinois at ChicagoChicagoUnited States
| | - Raajaram Gowrishankar
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at ChicagoChicagoUnited States
- Graduate Program in Neuroscience, University of Illinois at ChicagoChicagoUnited States
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| |
Collapse
|
75
|
Noritake A, Ninomiya T, Kobayashi K, Isoda M. Chemogenetic dissection of a prefrontal-hypothalamic circuit for socially subjective reward valuation in macaques. Nat Commun 2023; 14:4372. [PMID: 37474519 PMCID: PMC10359292 DOI: 10.1038/s41467-023-40143-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
The value of one's own reward is affected by the reward of others, serving as a source for envy. However, it is not known which neural circuits mediate such socially subjective value modulation. Here, we chemogenetically dissected the circuit from the medial prefrontal cortex (MPFC) to the lateral hypothalamus (LH) while male macaques were presented with visual stimuli that concurrently signaled the prospects of one's own and others' rewards. We found that functional disconnection between the MPFC and LH rendered animals significantly less susceptible to others' but not one's own reward prospects. In parallel with this behavioral change, inter-areal coordination, as indexed by coherence and Granger causality, decreased primarily in the delta and theta bands. These findings demonstrate that the MPFC-to-LH circuit plays a crucial role in carrying information about upcoming other-rewards for subjective reward valuation in social contexts.
Collapse
Affiliation(s)
- Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Taihei Ninomiya
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Kenta Kobayashi
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
- Section of Viral Vector Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan.
| |
Collapse
|
76
|
Soden ME, Yee JX, Zweifel LS. Circuit coordination of opposing neuropeptide and neurotransmitter signals. Nature 2023; 619:332-337. [PMID: 37380765 PMCID: PMC10947507 DOI: 10.1038/s41586-023-06246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/22/2023] [Indexed: 06/30/2023]
Abstract
Fast-acting neurotransmitters and slow, modulatory neuropeptides are co-released from neurons in the central nervous system, albeit from distinct synaptic vesicles1. The mechanisms of how co-released neurotransmitters and neuropeptides that have opposing actions-for example, stimulatory versus inhibitory-work together to exert control of neural circuit output remain unclear. This has been difficult to resolve owing to the inability to selectively isolate these signalling pathways in a cell- and circuit-specific manner. Here we developed a genetic-based anatomical disconnect procedure that utilizes distinct DNA recombinases to independently facilitate CRISPR-Cas9 mutagenesis2 of neurotransmitter- and neuropeptide-related genes in distinct cell types in two different brain regions simultaneously. We demonstrate that neurons within the lateral hypothalamus that produce the stimulatory neuropeptide neurotensin and the inhibitory neurotransmitter GABA (γ-aminobutyric acid) utilize these signals to coordinately activate dopamine-producing neurons of the ventral tegmental area. We show that GABA release from lateral hypothalamus neurotensin neurons inhibits GABA neurons within the ventral tegmental area, disinhibiting dopamine neurons and causing a rapid rise in calcium, whereas neurotensin directly generates a slow inactivating calcium signal in dopamine neurons that is dependent on the expression of neurotensin receptor 1 (Ntsr1). We further show that these two signals work together to regulate dopamine neuron responses to maximize behavioural responding. Thus, a neurotransmitter and a neuropeptide with opposing signals can act on distinct timescales through different cell types to enhance circuit output and optimize behaviour.
Collapse
Affiliation(s)
- Marta E Soden
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| | - Joshua X Yee
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
77
|
Calvigioni D, Fuzik J, Le Merre P, Slashcheva M, Jung F, Ortiz C, Lentini A, Csillag V, Graziano M, Nikolakopoulou I, Weglage M, Lazaridis I, Kim H, Lenzi I, Park H, Reinius B, Carlén M, Meletis K. Esr1 + hypothalamic-habenula neurons shape aversive states. Nat Neurosci 2023:10.1038/s41593-023-01367-8. [PMID: 37349481 DOI: 10.1038/s41593-023-01367-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023]
Abstract
Excitatory projections from the lateral hypothalamic area (LHA) to the lateral habenula (LHb) drive aversive responses. We used patch-sequencing (Patch-seq) guided multimodal classification to define the structural and functional heterogeneity of the LHA-LHb pathway. Our classification identified six glutamatergic neuron types with unique electrophysiological properties, molecular profiles and projection patterns. We found that genetically defined LHA-LHb neurons signal distinct aspects of emotional or naturalistic behaviors, such as estrogen receptor 1-expressing (Esr1+) LHA-LHb neurons induce aversion, whereas neuropeptide Y-expressing (Npy+) LHA-LHb neurons control rearing behavior. Repeated optogenetic drive of Esr1+ LHA-LHb neurons induces a behaviorally persistent aversive state, and large-scale recordings showed a region-specific neural representation of the aversive signals in the prelimbic region of the prefrontal cortex. We further found that exposure to unpredictable mild shocks induced a sex-specific sensitivity to develop a stress state in female mice, which was associated with a specific shift in the intrinsic properties of bursting-type Esr1+ LHA-LHb neurons. In summary, we describe the diversity of LHA-LHb neuron types and provide evidence for the role of Esr1+ neurons in aversion and sexually dimorphic stress sensitivity.
Collapse
Affiliation(s)
| | - Janos Fuzik
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Le Merre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marina Slashcheva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Felix Jung
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Cantin Ortiz
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Veronika Csillag
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marta Graziano
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Moritz Weglage
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Iakovos Lazaridis
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hoseok Kim
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Irene Lenzi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hyunsoo Park
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
78
|
Gu HW, Zhang GF, Liu PM, Pan WT, Tao YX, Zhou ZQ, Yang JJ. Contribution of activating lateral hypothalamus-lateral habenula circuit to nerve trauma-induced neuropathic pain in mice. Neurobiol Dis 2023; 182:106155. [PMID: 37182721 DOI: 10.1016/j.nbd.2023.106155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023] Open
Abstract
Neuropathic pain, a severe clinical symptom, significantly affects the quality of life in the patients. The molecular mechanisms underlying neuropathic pain have been the focus of research in recent decades; however, the neuronal circuit-mediated mechanisms associated with this disorder remain poorly understood. Here, we report that a projection from the lateral hypothalamus (LH) glutamatergic neurons to the lateral habenula (LHb), an excitatory LH-LHb neuronal circuit, participates in nerve injury-induced nociceptive hypersensitivity. LH glutamatergic neurons are activated and display enhanced responses to normally non-noxious stimuli following chronic constriction injury. Chemogenetic inhibition of LH glutamatergic neurons or excitatory LH-LHb circuit blocked CCI-induced nociceptive hypersensitivity. Activation of the LH-LHb circuit led to augmented responses to mechanical and thermal stimuli in mice without nerve injury. These findings suggest that LH neurons and their triggered LH-LHb circuit participate in central mechanisms underlying neuropathic pain and may be targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Han-Wen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pan-Miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Wei-Tong Pan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, United States
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.
| |
Collapse
|
79
|
Fan BQ, Xia JM, Chen DD, Feng LL, Ding JH, Li SS, Li WX, Han Y. Medial septum glutamatergic neurons modulate nociception in chronic neuropathic pain via projections to lateral hypothalamus. Front Pharmacol 2023; 14:1171665. [PMID: 37266154 PMCID: PMC10229799 DOI: 10.3389/fphar.2023.1171665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
The medial septum (MS) contributes in pain processing and regulation, especially concerning persistent nociception. However, the role of MS glutamatergic neurons in pain and the underlying neural circuit mechanisms in pain remain poorly understood. In this study, chronic constrictive injury of the sciatic nerve (CCI) surgery was performed to induce thermal and mechanical hyperalgesia in mice. The chemogenetic activation of MS glutamatergic neurons decreased pain thresholds in naïve mice. In contrast, inhibition or ablation of these neurons has improved nociception thresholds in naïve mice and relieved thermal and mechanical hyperalgesia in CCI mice. Anterograde viral tracing revealed that MS glutamatergic neurons had projections to the lateral hypothalamus (LH) and supramammillary nucleus (SuM). We further demonstrated that MS glutamatergic neurons regulate pain thresholds by projecting to LH but not SuM, because the inhibition of MS-LH glutamatergic projections suppressed pain thresholds in CCI and naïve mice, yet, optogenetic activation or inhibition of MS-SuM glutamatergic projections had no effect on pain thresholds in naïve mice. In conclusion, our results reveal that MS glutamatergic neurons play a significant role in regulating pain perception and decipher that MS glutamatergic neurons modulate nociception via projections to LH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan Han
- *Correspondence: Yuan Han, ; Wen-Xian Li,
| |
Collapse
|
80
|
Shrivastava K, Swaminathan T, Barlotta A, Athreya V, Choudhry H, Rossi MA. Maternal overnutrition is associated with altered synaptic input to lateral hypothalamic area. Mol Metab 2023; 71:101702. [PMID: 36898526 PMCID: PMC10025284 DOI: 10.1016/j.molmet.2023.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE Maternal overnutrition is associated with adverse outcomes in offspring, including increased risk for obesity and diabetes. Here, we aim to test the effects of maternal obesity on lateral hypothalamic feeding circuit function and determine the relationship with body weight regulation. METHODS Using a mouse model of maternal obesity, we assessed how perinatal overnutrition affected food intake and body weight regulation in adult offspring. We then used channelrhodopsin-assisted circuit mapping and electrophysiological recordings to assess the synaptic connectivity within an extended amygdala-lateral hypothalamic pathway. RESULTS We show that maternal overnutrition during gestation and throughout lactation produces offspring that are heavier than controls prior to weaning. When weaned onto chow, the body weights of over-nourished offspring normalize to control levels. However, when presented with highly palatable food as adults, both male and female maternally over-nourished offspring are highly susceptible to diet-induced obesity. This is associated with altered synaptic strength in an extended amygdala-lateral hypothalamic pathway, which is predicted by developmental growth rate. Additionally, lateral hypothalamic neurons receiving synaptic input from the bed nucleus of the stria terminalis have enhanced excitatory input following maternal overnutrition which is predicted by early life growth rate. CONCLUSIONS Together, these results demonstrate one way in which maternal obesity rewires hypothalamic feeding circuits to predispose offspring to metabolic dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark A Rossi
- Child Health Institute of New Jersey, USA; Department of Psychiatry, Robert Wood Johnson Medical School, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
81
|
Nikbakhtzadeh M, Ashabi G, Saadatyar R, Doostmohammadi J, Nekoonam S, Keshavarz M, Riahi E. Restoring the firing activity of ventral tegmental area neurons by lateral hypothalamic deep brain stimulation following morphine administration in rats: LH DBS and the spiking activity of VTA neurons. Physiol Behav 2023; 267:114209. [PMID: 37105347 DOI: 10.1016/j.physbeh.2023.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
We have previously shown that high-frequency deep brain stimulation (DBS) of the lateral hypothalamus (LH) compromises morphine-induced addiction-like behavior in rats. The exact mechanism underlying this effect is not known. Here, we investigated the assumption that DBS in the LH influences the firing activity of neurons in the ventral tegmental area (VTA). To that end, male Wistar rats received morphine (5 mg/kg; s.c.) for three days and underwent extracellular single unit recording under general anesthesia one day later. During the recording, the rats received an intraoperative injection of morphine (5 mg/kg; s.c.) plus DBS in the LH (130 Hz pulse frequency, 150 μA amplitude, and 100 μs pulse width). One group of animals also received preoperative DBS after each morphine injection before the recording. The spiking frequency of VTA neurons was measured at three successive phases: (1) baseline (5-15 min); (2) DBS-on (morphine + DBS for 30 min); and (3) After-DBS (over 30 min after termination of DBS). Results showed that morphine suppressed the firing activity of a large population of non-DA neurons, whereas it activated most DA neurons. Intraoperative DBS reversed morphine suppression of non-DA firing, but did not alter the excitatory effect of morphine on DA neurons firing. With repeated preoperative application of DBS, non-DA neurons returned to the morphine-induced suppressive state, but DA neurons released from the excitatory effect of morphine. It is concluded that the development of morphine reward is associated with a hypoactivity of VTA non-DA neurons and a hyperactivity of DA neurons, and that DBS modulation of the spiking activity may contribute to the blockade of morphine addiction-like behavior.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saadatyar
- Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Doostmohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoor Keshavarz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
82
|
Noritake A, Nakamura K. Rewarding-unrewarding prediction signals under a bivalent context in the primate lateral hypothalamus. Sci Rep 2023; 13:5926. [PMID: 37045876 PMCID: PMC10097697 DOI: 10.1038/s41598-023-33026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Animals can expect rewards under equivocal situations. The lateral hypothalamus (LH) is thought to process motivational information by producing valence signals of reward and punishment. Despite rich studies using rodents and non-human primates, these signals have been assessed separately in appetitive and aversive contexts; therefore, it remains unclear what information the LH encodes in equivocal situations. To address this issue, macaque monkeys were conditioned under a bivalent context in which reward and punishment were probabilistically delivered, in addition to appetitive and aversive contexts. The monkeys increased approaching behavior similarly in the bivalent and appetitive contexts as the reward probability increased. They increased avoiding behavior under the bivalent and aversive contexts as the punishment probability increased, but the mean frequency was lower under the bivalent context than under the aversive context. The population activity correlated with these mean behaviors. Moreover, the LH produced fine prediction signals of reward expectation, uncertainty, and predictability consistently in the bivalent and appetitive contexts by recruiting context-independent and context-dependent subpopulations of neurons, while it less produced punishment signals in the aversive and bivalent contexts. Further, neural ensembles encoded context information and "rewarding-unrewarding" and "reward-punishment" valence. These signals may motivate individuals robustly in equivocal environments.
Collapse
Affiliation(s)
- Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
83
|
Perisse E, Miranda M, Trouche S. Modulation of aversive value coding in the vertebrate and invertebrate brain. Curr Opin Neurobiol 2023; 79:102696. [PMID: 36871400 DOI: 10.1016/j.conb.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Avoiding potentially dangerous situations is key for the survival of any organism. Throughout life, animals learn to avoid environments, stimuli or actions that can lead to bodily harm. While the neural bases for appetitive learning, evaluation and value-based decision-making have received much attention, recent studies have revealed more complex computations for aversive signals during learning and decision-making than previously thought. Furthermore, previous experience, internal state and systems level appetitive-aversive interactions seem crucial for learning specific aversive value signals and making appropriate choices. The emergence of novel methodologies (computation analysis coupled with large-scale neuronal recordings, neuronal manipulations at unprecedented resolution offered by genetics, viral strategies and connectomics) has helped to provide novel circuit-based models for aversive (and appetitive) valuation. In this review, we focus on recent vertebrate and invertebrate studies yielding strong evidence that aversive value information can be computed by a multitude of interacting brain regions, and that past experience can modulate future aversive learning and therefore influence value-based decisions.
Collapse
Affiliation(s)
- Emmanuel Perisse
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | - Magdalena Miranda
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | - Stéphanie Trouche
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| |
Collapse
|
84
|
Lee YH, Kim YB, Kim KS, Jang M, Song HY, Jung SH, Ha DS, Park JS, Lee J, Kim KM, Cheon DH, Baek I, Shin MG, Lee EJ, Kim SJ, Choi HJ. Lateral hypothalamic leptin receptor neurons drive hunger-gated food-seeking and consummatory behaviours in male mice. Nat Commun 2023; 14:1486. [PMID: 36932069 PMCID: PMC10023672 DOI: 10.1038/s41467-023-37044-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
For survival, it is crucial for eating behaviours to be sequenced through two distinct seeking and consummatory phases. Heterogeneous lateral hypothalamus (LH) neurons are known to regulate motivated behaviours, yet which subpopulation drives food seeking and consummatory behaviours have not been fully addressed. Here, in male mice, fibre photometry recordings demonstrated that LH leptin receptor (LepR) neurons are correlated explicitly in both voluntary seeking and consummatory behaviours. Further, micro-endoscope recording of the LHLepR neurons demonstrated that one subpopulation is time-locked to seeking behaviours and the other subpopulation time-locked to consummatory behaviours. Seeking or consummatory phase specific paradigm revealed that activation of LHLepR neurons promotes seeking or consummatory behaviours and inhibition of LHLepR neurons reduces consummatory behaviours. The activity of LHLepR neurons was increased via Neuropeptide Y (NPY) which acted as a tonic permissive gate signal. Our results identify neural populations that mediate seeking and consummatory behaviours and may lead to therapeutic targets for maladaptive food seeking and consummatory behaviours.
Collapse
Affiliation(s)
- Young Hee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yu-Been Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Mirae Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ha Young Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sang-Ho Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong-Soo Ha
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Joon Seok Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jaegeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyung Min Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Deok-Hyeon Cheon
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Inhyeok Baek
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Min-Gi Shin
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do, 25159, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do, 25159, Republic of Korea.
| |
Collapse
|
85
|
Liu Q, Yang X, Luo M, Su J, Zhong J, Li X, Chan RHM, Wang L. An iterative neural processing sequence orchestrates feeding. Neuron 2023; 111:1651-1665.e5. [PMID: 36924773 DOI: 10.1016/j.neuron.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
Feeding requires sophisticated orchestration of neural processes to satiate appetite in natural, capricious settings. However, the complementary roles of discrete neural populations in orchestrating distinct behaviors and motivations throughout the feeding process are largely unknown. Here, we delineate the behavioral repertoire of mice by developing a machine-learning-assisted behavior tracking system and show that feeding is fragmented and divergent motivations for food consumption or environment exploration compete throughout the feeding process. An iterative activation sequence of agouti-related peptide (AgRP)-expressing neurons in arcuate (ARC) nucleus, GABAergic neurons in the lateral hypothalamus (LH), and in dorsal raphe (DR) orchestrate the preparation, initiation, and maintenance of feeding segments, respectively, via the resolution of motivational conflicts. The iterative neural processing sequence underlying the competition of divergent motivations further suggests a general rule for optimizing goal-directed behaviors.
Collapse
Affiliation(s)
- Qingqing Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xing Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Moxuan Luo
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China; University of Science and Technology of China, Hefei 230026, China
| | - Junying Su
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinling Zhong
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofen Li
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rosa H M Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Science and Technology of China, Hefei 230026, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
86
|
Lavoie O, Michael NJ, Caron A. A critical update on the leptin-melanocortin system. J Neurochem 2023; 165:467-486. [PMID: 36648204 DOI: 10.1111/jnc.15765] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The discovery of leptin in 1994 was an "eureka moment" in the field of neurometabolism that provided new opportunities to better understand the central control of energy balance and glucose metabolism. Rapidly, a prevalent model in the field emerged that pro-opiomelanocortin (POMC) neurons were key in promoting leptin's anorexigenic effects and that the arcuate nucleus of the hypothalamus (ARC) was a key region for the regulation of energy homeostasis. While this model inspired many important discoveries, a growing body of literature indicates that this model is now outdated. In this review, we re-evaluate the hypothalamic leptin-melanocortin model in light of recent advances that directly tackle previous assumptions, with a particular focus on the ARC. We discuss how segregated and heterogeneous these neurons are, and examine how the development of modern approaches allowing spatiotemporal, intersectional, and chemogenetic manipulations of melanocortin neurons has allowed a better definition of the complexity of the leptin-melanocortin system. We review the importance of leptin in regulating glucose homeostasis, but not food intake, through direct actions on ARC POMC neurons. We further highlight how non-POMC, GABAergic neurons mediate leptin's direct effects on energy balance and influence POMC neurons.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, Quebec, Canada.,Quebec Heart and Lung Institute, Quebec City, Quebec, Canada.,Montreal Diabetes Research Center, Montreal, Quebec, Canada
| |
Collapse
|
87
|
Gordon-Fennell A, Barbakh JM, Utley M, Singh S, Bazzino P, Gowrishankar R, Bruchas MR, Roitman MF, Stuber GD. An Open-Source Platform for Head-Fixed Operant and Consummatory Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523828. [PMID: 36712040 PMCID: PMC9882199 DOI: 10.1101/2023.01.13.523828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Head-fixed behavioral experiments in rodents permit unparalleled experimental control, precise measurement of behavior, and concurrent modulation and measurement of neural activity. Here we present OHRBETS (Open-Source Head-fixed Rodent Behavioral Experimental Training System; pronounced 'Orbitz'), a low-cost, open-source ecosystem of hardware and software to flexibly pursue the neural basis of a variety of motivated behaviors. Head-fixed mice tested with OHRBETS displayed operant conditioning for caloric reward that replicates core behavioral phenotypes observed during freely moving conditions. OHRBETS also permits for optogenetic intracranial self-stimulation under positive or negative operant conditioning procedures and real-time place preference behavior, like that observed in freely moving assays. In a multi-spout brief-access consumption task, mice displayed licking as a function of concentration of sucrose, quinine, and sodium chloride, with licking modulated by homeostatic or circadian influences. Finally, to highlight the functionality of OHRBETS, we measured mesolimbic dopamine signals during the multi-spout brief-access task that display strong correlations with relative solution value and magnitude of consumption. All designs, programs, and instructions are provided freely online. This customizable ecosystem enables replicable operant and consummatory behaviors and can be incorporated with methods to perturb and record neural dynamics in vivo . Impact Statement A customizable open-source hardware and software ecosystem for conducting diverse head-fixed behavioral experiments in mice.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Joumana M. Barbakh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - MacKenzie Utley
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Shreya Singh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Paula Bazzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60607
| | - Raajaram Gowrishankar
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Michael R. Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Mitchell F. Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60607
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| |
Collapse
|
88
|
Sankhe AS, Bordeleau D, Alfonso DIM, Wittman G, Chee MJ. Loss of glutamatergic signalling from MCH neurons reduced anxiety-like behaviours in novel environments. J Neuroendocrinol 2023; 35:e13222. [PMID: 36529144 DOI: 10.1111/jne.13222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Melanin-concentrating hormone (MCH) neurons within the hypothalamus are heterogeneous and can coexpress additional neuropeptides and transmitters. The majority of MCH neurons express vesicular transporters to package glutamate for synaptic release, and MCH neurons can directly innervate downstream neurons via glutamate release. Although glutamatergic signalling from MCH neurons may support physiological and behavioural roles that are independent of MCH (e.g., in glucose homeostasis and nutrient-sensing), it can also mediate similar roles to MCH in the regulation of energy balance. In addition to energy balance, the MCH system has also been implicated in mood disorders, as MCH receptor antagonists have anxiolytic and anti-depressive effects. However, the contribution of glutamatergic signalling from MCH neurons to mood-related functions have not been investigated. We crossed Mch-cre mice with floxed-Vglut2 mice to delete the expression of the vesicular glutamate transporter 2 (Vglut2) and disable glutamatergic signalling specifically from MCH neurons. The resulting Mch-Vglut2-KO mice showed Vglut2 deletion from over 75% of MCH neurons, and although we did not observe changes in depressive-like behaviours, we found that Mch-Vglut2-KO mice displayed anxiety-like behaviours. Mch-Vglut2-KO mice showed reduced exploratory activity when placed in a new cage and were quicker to consume food placed in the centre of a novel open arena. These findings showed that Vglut2 deletion from MCH neurons resulted in anxiolytic actions and suggested that the anxiogenic effects of glutamate are similar to those of the MCH peptide. Taken together, these findings suggest that glutamate and MCH may synergize to regulate and promote anxiety-like behaviour.
Collapse
Affiliation(s)
- Aditi S Sankhe
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Dillon Bordeleau
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | - Gábor Wittman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA, USA
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
89
|
Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion. Nat Commun 2022; 13:7708. [PMID: 36550097 PMCID: PMC9780347 DOI: 10.1038/s41467-022-35346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.
Collapse
|
90
|
Vila-Solés L, García-Brito S, Aldavert-Vera L, Kádár E, Huguet G, Morgado-Bernal I, Segura-Torres P. Protocol to assess rewarding brain stimulation as a learning and memory modulating treatment: Comparison between self-administration and experimenter-administration. Front Behav Neurosci 2022; 16:1046259. [PMID: 36590922 PMCID: PMC9798322 DOI: 10.3389/fnbeh.2022.1046259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Intracranial electrical self-stimulation (ICSS) is a useful procedure in animal research. This form of administration ensures that areas of the brain reward system (BRS) are being functionally activated, since the animals must perform an operant response to self-administer an electrical stimulus. Rewarding post-training ICSS of the medial forebrain bundle (MFB), an important system of the BRS, has been shown to consistently improve rats' acquisition and retention in several learning tasks. In the clinical setting, deep brain stimulation (DBS) of different targets is currently being used to palliate the memory impairment that occurs in some neurodegenerative diseases. However, the stimulation of the MFB has only been used to treat emotional alterations, not memory disorders. Since DBS stimulation treatments in humans are exclusively administered by external sources, studies comparing the efficacy of that form of application to a self-administered stimulation are key to the translationality of ICSS. This protocol compares self-administered (ICSS) and experimenter-administered (EAS) stimulation of the MFB on the spatial Morris Water Maze task (MWM). c-Fos immunohistochemistry procedure was carried out to evaluate neural activation after retention. Results show that the stimulation of the MFB improves the MWM task regardless of the form of administration, although some differences in c-Fos expression were found. Present results suggest that MFB-ICSS is a valid animal model to study the effects of MFB electrical stimulation on memory, which could guide clinical applications of DBS. The present protocol is a useful guide for establishing ICSS behavior in rats, which could be used as a learning and memory-modulating treatment.
Collapse
Affiliation(s)
- Laia Vila-Solés
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soleil García-Brito
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Soleil García-Brito,
| | - Laura Aldavert-Vera
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabet Kádár
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Gemma Huguet
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Ignacio Morgado-Bernal
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar Segura-Torres
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
91
|
Linders LE, Patrikiou L, Soiza-Reilly M, Schut EHS, van Schaffelaar BF, Böger L, Wolterink-Donselaar IG, Luijendijk MCM, Adan RAH, Meye FJ. Stress-driven potentiation of lateral hypothalamic synapses onto ventral tegmental area dopamine neurons causes increased consumption of palatable food. Nat Commun 2022; 13:6898. [PMID: 36371405 PMCID: PMC9653441 DOI: 10.1038/s41467-022-34625-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Stress can cause overconsumption of palatable high caloric food. Despite the important role of stress eating in obesity and (binge) eating disorders, its underlying neural mechanisms remain unclear. Here we demonstrate in mice that stress alters lateral hypothalamic area (LHA) control over the ventral tegmental area (VTA), thereby promoting overconsumption of palatable food. Specifically, we show that glutamatergic LHA neurons projecting to the VTA are activated by social stress, after which their synapses onto dopamine neurons are potentiated via AMPA receptor subunit alterations. We find that stress-driven strengthening of these specific synapses increases LHA control over dopamine output in key target areas like the prefrontal cortex. Finally, we demonstrate that while inducing LHA-VTA glutamatergic potentiation increases palatable fat intake, reducing stress-driven potentiation of this connection prevents such stress eating. Overall, this study provides insights in the neural circuit adaptations caused by stress that drive overconsumption of palatable food.
Collapse
Affiliation(s)
- Louisa E. Linders
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lefkothea Patrikiou
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mariano Soiza-Reilly
- grid.7345.50000 0001 0056 1981Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Evelien H. S. Schut
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bram F. van Schaffelaar
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard Böger
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inge G. Wolterink-Donselaar
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mieneke C. M. Luijendijk
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roger A. H. Adan
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frank J. Meye
- grid.5477.10000000120346234Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
92
|
de Figueiredo RM, Falconi-Sobrinho LL, Leite-Panissi CRA, Huston JP, Mattern C, de Carvalho MC, Coimbra NC. D 2-like receptor activation by intranasal dopamine attenuates fear responses induced by electrical stimulation of the dorsal periaqueductal grey matter, but fails to reduce aversion to pit vipers and T-maze performance. J Psychopharmacol 2022; 36:1257-1272. [PMID: 36239034 DOI: 10.1177/02698811221128018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Panic-like reactions elicited by electrical stimulation of the dorsal periaqueductal grey matter (ES-dPAG) seem to be regulated by dopamine (DA). We showed that DA applied intranasally (IN) increased escape-behaviour thresholds induced by ES-dPAG of rats, indicating a panicolytic-like effect. AIMS We investigated whether IN-DA increases escape-response thresholds induced by ES-dPAG by acting on D2-like receptors, and whether IN-DA affects escape responses elicited by the presence of a potential predator and by open space and height of the elevated T-maze (ETM) as well as motor performance in the open field (OF) test. METHODS Wistar rats exposed to ES-dPAG were treated with Sulpiride (SUL, 40 mg/kg, D2-like receptor antagonist) previously IN-DA (2 mg/kg). Independent groups of rats treated with IN-DA were submitted to prey versus snake paradigm (PSP), ETM and OF. RESULTS Anti-aversive effects of the IN-DA were reduced by SUL pretreatment in the ES-dPAG test. IN-DA did not affect the escape number in the PSP nor the escape latencies in the ETM as well as motor performance in the OF. CONCLUSIONS/INTERPRETATION The IN-DA effects in reducing unconditioned fear responses elicited by ES-dPAG seem to be mediated by D2-like receptors. The lack of effects on panic-related responses in the ETM and PSP may be related to the possibility of avoiding the danger inherent to these models, a defence strategy not available during ES-dPAG. These findings cannot be attributed to motor performance. The decision-making responses to avoid dangerous situations can be orchestrated by supra-mesencephalic structures connected by non-dopaminergic inputs.
Collapse
Affiliation(s)
- Rebeca Machado de Figueiredo
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Department of Psychology, Ribeirão Preto School of Philosophy, Science and Literature of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Joseph P Huston
- Centre for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Germany
| | - Claudia Mattern
- MetP Pharma AG, Emmetten, Switzerland, and Oceanographic Centre, Nova Southeastern University, Fl, USA
| | - Milene Cristina de Carvalho
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| |
Collapse
|
93
|
Voigt K, Andrews ZB, Harding IH, Razi A, Verdejo-García A. Hypothalamic effective connectivity at rest is associated with body weight and energy homeostasis. Netw Neurosci 2022; 6:1316-1333. [PMID: 38800453 PMCID: PMC11117096 DOI: 10.1162/netn_a_00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/27/2022] [Indexed: 05/29/2024] Open
Abstract
Hunger and satiety drive eating behaviours via changes in brain function. The hypothalamus is a central component of the brain networks that regulate food intake. Animal research parsed the roles of the lateral hypothalamus (LH) and medial hypothalamus (MH) in hunger and satiety, respectively. Here, we examined how hunger and satiety change information flow between human LH and MH brain networks, and how these interactions are influenced by body mass index (BMI). Forty participants (16 overweight/obese) underwent two resting-state functional MRI scans while being fasted and sated. The excitatory/inhibitory influence of information flow between the MH and LH was modelled using spectral dynamic causal modelling. Our results revealed two core networks interacting across homeostatic state and weight: subcortical bidirectional connections between the LH, MH and the substantia nigra pars compacta (prSN), and cortical top-down inhibition from fronto-parietal and temporal areas. During fasting, we found higher inhibition between the LH and prSN, whereas the prSN received greater top-down inhibition from across the cortex. Individuals with higher BMI showed that these network dynamics occur irrespective of homeostatic state. Our findings reveal fasting affects brain dynamics over a distributed hypothalamic-midbrain-cortical network. This network is less sensitive to state-related fluctuations among people with obesity.
Collapse
Affiliation(s)
- Katharina Voigt
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| | - Zane B. Andrews
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Victoria, Australia
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Adeel Razi
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
- The Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Antonio Verdejo-García
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| |
Collapse
|
94
|
Jiang H. Hypothalamic GABAergic neurocircuitry in the regulation of energy homeostasis and sleep/wake control. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:531-540. [PMID: 37724165 PMCID: PMC10388747 DOI: 10.1515/mr-2022-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 09/20/2023]
Abstract
Gamma-aminobutyric acid (GABAergic) neuron, as one of important cell types in synaptic transmission, has been widely involved in central nervous system (CNS) regulation of organismal physiologies including cognition, emotion, arousal and reward. However, upon their distribution in various brain regions, effects of GABAergic neurons in the brain are very diverse. In current report, we will present an overview of the role of GABAergic mediated inhibitory neurocircuitry in the hypothalamus, underlying mechanism of feeding and sleep homeostasis as well as the characteristics of latest transcriptome profile in order to call attention to the GABAergic system as potentially a promising pharmaceutical intervention or a deep brain stimulation target in eating and sleep disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| |
Collapse
|
95
|
Bingul A, Merlin S, Carrive P, Killcross S, Furlong TM. Targeting the lateral hypothalamus with short hairpin RNAs reduces habitual behaviour following extended instrumental training in rats. Neurobiol Learn Mem 2022; 193:107657. [DOI: 10.1016/j.nlm.2022.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
96
|
Wei JA, Han Q, Luo Z, Liu L, Cui J, Tan J, Chow BKC, So KF, Zhang L. Amygdala neural ensemble mediates mouse social investigation behaviors. Natl Sci Rev 2022; 10:nwac179. [PMID: 36845323 PMCID: PMC9952061 DOI: 10.1093/nsr/nwac179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Innate social investigation behaviors are critical for animal survival and are regulated by both neural circuits and neuroendocrine factors. Our understanding of how neuropeptides regulate social interest, however, is incomplete at the current stage. In this study, we identified the expression of secretin (SCT) in a subpopulation of excitatory neurons in the basolateral amygdala. With distinct molecular and physiological features, BLASCT+ cells projected to the medial prefrontal cortex and were necessary and sufficient for promoting social investigation behaviors, whilst other basolateral amygdala neurons were anxiogenic and antagonized social behaviors. Moreover, the exogenous application of secretin effectively promoted social interest in both healthy and autism spectrum disorder model mice. These results collectively demonstrate a previously unrecognized group of amygdala neurons for mediating social behaviors and suggest promising strategies for social deficits.
Collapse
Affiliation(s)
| | | | | | - Linglin Liu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jing Cui
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jiahui Tan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China,State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510030, China,BiolandLaboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510006, China,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 220619, China,Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266113, China,Institute of Clinical Research for Mental Health, Jinan University, Guangzhou 510632, China
| | | |
Collapse
|
97
|
López-Muciño LA, García-García F, Cueto-Escobedo J, Acosta-Hernández M, Venebra-Muñoz A, Rodríguez-Alba JC. Sleep loss and addiction. Neurosci Biobehav Rev 2022; 141:104832. [PMID: 35988803 DOI: 10.1016/j.neubiorev.2022.104832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Reducing sleep hours is a risk factor for developing cardiovascular, metabolic, and psychiatric disorders. Furthermore, previous studies have shown that reduction in sleep time is a factor that favors relapse in addicted patients. Additionally, animal models have demonstrated that both sleep restriction and sleep deprivation increase the preference for alcohol, methylphenidate, and the self-administration of cocaine. Therefore, the present review discusses current knowledge about the influence of sleep hours reduction on addictivebehaviors; likewise, we discuss the neuronal basis underlying the sleep reduction-addiction relationship, like the role of the orexin and dopaminergic system and neuronal plasticity (i.e., delta FosB expression). Potentially, chronic sleep restriction could increase brain vulnerability and promote addictive behavior.
Collapse
Affiliation(s)
- Luis Angel López-Muciño
- Health Sciences Ph.D. Program, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Fabio García-García
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Jonathan Cueto-Escobedo
- Department of Clinical and Translational Research, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Mario Acosta-Hernández
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| | - Arturo Venebra-Muñoz
- Laboratory of Neurobiology of Addiction and Brain Plasticity, Faculty of Science, Autonomous University of Mexico State, Edomex 50295, Mexico.
| | - Juan Carlos Rodríguez-Alba
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Xalapa, VER 91190, Mexico.
| |
Collapse
|
98
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
99
|
Grove JCR, Gray LA, La Santa Medina N, Sivakumar N, Ahn JS, Corpuz TV, Berke JD, Kreitzer AC, Knight ZA. Dopamine subsystems that track internal states. Nature 2022; 608:374-380. [PMID: 35831501 PMCID: PMC9365689 DOI: 10.1038/s41586-022-04954-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
Food and water are rewarding in part because they satisfy our internal needs1,2. Dopaminergic neurons in the ventral tegmental area (VTA) are activated by gustatory rewards3-5, but how animals learn to associate these oral cues with the delayed physiological effects of ingestion is unknown. Here we show that individual dopaminergic neurons in the VTA respond to detection of nutrients or water at specific stages of ingestion. A major subset of dopaminergic neurons tracks changes in systemic hydration that occur tens of minutes after thirsty mice drink water, whereas different dopaminergic neurons respond to nutrients in the gastrointestinal tract. We show that information about fluid balance is transmitted to the VTA by a hypothalamic pathway and then re-routed to downstream circuits that track the oral, gastrointestinal and post-absorptive stages of ingestion. To investigate the function of these signals, we used a paradigm in which a fluid's oral and post-absorptive effects can be independently manipulated and temporally separated. We show that mice rapidly learn to prefer one fluid over another based solely on its rehydrating ability and that this post-ingestive learning is prevented if dopaminergic neurons in the VTA are selectively silenced after consumption. These findings reveal that the midbrain dopamine system contains subsystems that track different modalities and stages of ingestion, on timescales from seconds to tens of minutes, and that this information is used to drive learning about the consequences of ingestion.
Collapse
Affiliation(s)
- James C R Grove
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Jamie S Ahn
- Howard Hughes Medical Institute, San Francisco, CA, USA
| | | | - Joshua D Berke
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Anatol C Kreitzer
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
100
|
Tang Q, Assali DR, Güler AD, Steele AD. Dopamine systems and biological rhythms: Let's get a move on. Front Integr Neurosci 2022; 16:957193. [PMID: 35965599 PMCID: PMC9364481 DOI: 10.3389/fnint.2022.957193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
How dopamine signaling regulates biological rhythms is an area of emerging interest. Here we review experiments focused on delineating dopamine signaling in the suprachiasmatic nucleus, nucleus accumbens, and dorsal striatum to mediate a range of biological rhythms including photoentrainment, activity cycles, rest phase eating of palatable food, diet-induced obesity, and food anticipatory activity. Enthusiasm for causal roles for dopamine in the regulation of circadian rhythms, particularly those associated with food and other rewarding events, is warranted. However, determining that there is rhythmic gene expression in dopamine neurons and target structures does not mean that they are bona fide circadian pacemakers. Given that dopamine has such a profound role in promoting voluntary movements, interpretation of circadian phenotypes associated with locomotor activity must be differentiated at the molecular and behavioral levels. Here we review our current understanding of dopamine signaling in relation to biological rhythms and suggest future experiments that are aimed at teasing apart the roles of dopamine subpopulations and dopamine receptor expressing neurons in causally mediating biological rhythms, particularly in relation to feeding, reward, and activity.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Dina R. Assali
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Andrew D. Steele
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| |
Collapse
|