51
|
Nagao S. Ocular Reflex Adaptation as an Experimental Model of Cerebellar Learning -- In Memory of Masao Ito -. Neuroscience 2020; 462:191-204. [PMID: 32710914 DOI: 10.1016/j.neuroscience.2020.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/26/2023]
Abstract
Masao Ito proposed a cerebellar learning hypothesis with Marr and Albus in the early 1970s. He suggested that cerebellar flocculus (FL) Purkinje cells (PCs), which directly inhibit the vestibular nuclear neurons driving extraocular muscle motor neurons, adaptively control the horizontal vestibulo-ocular reflex (HVOR) through the modification of mossy and parallel fiber-mediated vestibular responsiveness by visual climbing fiber (CF) inputs. Later, it was suggested that the same FL PCs adaptively control the horizontal optokinetic response (HOKR) in the same manner through the modification of optokinetic responsiveness in rodents and rabbits. In 1982, Ito and his colleagues discovered the plasticity of long-term depression (LTD) at parallel fiber (PF)-PC synapses after conjunctive stimulation of mossy or parallel fibers with CFs. Long-term potentiation (LTP) at PF-PC synapses by weak PF stimulation alone was found later. Many lines of experimental evidence have supported their hypothesis using various experimental methods and materials for the past 50 years by many research groups. Although several controversial findings were presented regarding their hypothesis, the reasons underlying many of them were clarified. Today, their hypothesis is considered as a fundamental mechanism of cerebellar learning. Furthermore, it was found that the memory of adaptation is transferred from the FL to vestibular nuclei for consolidation by repetition of adaptation through the plasticity of vestibular nuclear neurons. In this article, after overviewing their cerebellar learning hypothesis, I discuss possible roles of LTD and LTP in gain-up and gain-down HVOR/HOKR adaptations and refer to the expansion of their hypothesis to cognitive functions.
Collapse
Affiliation(s)
- Soichi Nagao
- Laboratory for Integrative Brain Function, Nozomi Hospital, Komuro 3170, Ina, Kitaadachi-gun, Saitama 362-0806, Japan; Laboratory for Memory Neuroscience, Tokyo Metropolotan Institute for Gerontology, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
52
|
Fundamental Mechanisms of Autoantibody-Induced Impairments on Ion Channels and Synapses in Immune-Mediated Cerebellar Ataxias. Int J Mol Sci 2020; 21:ijms21144936. [PMID: 32668612 PMCID: PMC7404345 DOI: 10.3390/ijms21144936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
In the last years, different kinds of limbic encephalitis associated with autoantibodies against ion channels and synaptic receptors have been described. Many studies have demonstrated that such autoantibodies induce channel or receptor dysfunction. The same mechanism is discussed in immune-mediated cerebellar ataxias (IMCAs), but the pathogenesis has been less investigated. The aim of the present review is to evaluate what kind of cerebellar ion channels, their related proteins, and the synaptic machinery proteins that are preferably impaired by autoantibodies so as to develop cerebellar ataxias (CAs). The cerebellum predictively coordinates motor and cognitive functions through a continuous update of an internal model. These controls are relayed by cerebellum-specific functions such as precise neuronal discharges with potassium channels, synaptic plasticity through calcium signaling pathways coupled with voltage-gated calcium channels (VGCC) and metabotropic glutamate receptors 1 (mGluR1), a synaptic organization with glutamate receptor delta (GluRδ), and output signal formation through chained GABAergic neurons. Consistently, the association of CAs with anti-potassium channel-related proteins, anti-VGCC, anti-mGluR1, and GluRδ, and anti-glutamate decarboxylase 65 antibodies is observed in IMCAs. Despite ample distributions of AMPA and GABA receptors, however, CAs are rare in conditions with autoantibodies against these receptors. Notably, when the autoantibodies impair synaptic transmission, the autoimmune targets are commonly classified into three categories: release machinery proteins, synaptic adhesion molecules, and receptors. This physiopathological categorization impacts on both our understanding of the pathophysiology and clinical prognosis.
Collapse
|
53
|
Kim YG, Woo J, Park J, Kim S, Lee YS, Kim Y, Kim SJ. Quantitative Proteomics Reveals Distinct Molecular Signatures of Different Cerebellum-Dependent Learning Paradigms. J Proteome Res 2020; 19:2011-2025. [PMID: 32181667 DOI: 10.1021/acs.jproteome.9b00826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cerebellum improves motor performance by adjusting motor gain appropriately. As de novo protein synthesis is essential for the formation and retention of memories, we hypothesized that motor learning in the opposite direction would induce a distinct pattern of protein expression in the cerebellum. We conducted quantitative proteomic profiling to compare the level of protein expression in the cerebellum at 1 and 24 h after training from mice that underwent different paradigms of cerebellum-dependent oculomotor learning from specific directional changes in motor gain. We quantified a total of 43 proteins that were significantly regulated in each of the three learning paradigms in the cerebellum at 1 and 24 h after learning. In addition, functional enrichment analysis identified protein groups that were differentially enriched or depleted in the cerebellum at 24 h after the three oculomotor learnings, suggesting that distinct biological pathways may be engaged in the formation of three oculomotor memories. Weighted correlation network analysis discovered groups of proteins significantly correlated with oculomotor memory. Finally, four proteins (Snca, Sncb, Cttn, and Stmn1) from the protein group correlated with the learning amount after oculomotor training were validated by Western blot. This study provides a comprehensive and unbiased list of proteins related to three cerebellum-dependent motor learning paradigms, suggesting the distinct nature of protein expression in the cerebellum for each learning paradigm. The proteomics data have been deposited to the ProteomeXchange Consortium with identifiers <PXD008433>.
Collapse
Affiliation(s)
- Yong Gyu Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jongmin Woo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Joonho Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Korea
| | - Sooyong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yong-Seok Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
54
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
55
|
Grasselli G, Boele HJ, Titley HK, Bradford N, van Beers L, Jay L, Beekhof GC, Busch SE, De Zeeuw CI, Schonewille M, Hansel C. SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning-specific memory traces. PLoS Biol 2020; 18:e3000596. [PMID: 31905212 PMCID: PMC6964916 DOI: 10.1371/journal.pbio.3000596] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/16/2020] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such "intrinsic plasticity" in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell-specific knockout (KO) of the calcium-activated K+ channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning.
Collapse
Affiliation(s)
- Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Heather K. Titley
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Nora Bradford
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Lisa van Beers
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lindsey Jay
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Gerco C. Beekhof
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Silas E. Busch
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands
| | | | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
56
|
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV. Consensus Paper: Experimental Neurostimulation of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1064-1097. [PMID: 31165428 PMCID: PMC6867990 DOI: 10.1007/s12311-019-01041-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kenneth B Baker
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jaclyn Beckinghausen
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Lynley V Bradnam
- Department of Exercise Science, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Jessica Cooperrider
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mahlon R DeLong
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN, 38163, USA
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
- NIDOD Department, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Department of Chronic Disease Epidemiology, Yale School of Public Health, Center for Neuroepidemiology and Clinical Research, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Andre Machado
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium
| | - Alana B McCambridge
- Graduate School of Health, Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael A Nitsche
- Department of Psychology and Neurosiences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Traian Popa
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
- R281 Department of Neurosurgery, Stanfod University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eric H Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, MC 2030, Chicago, IL, 60637-1470, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
57
|
Zang Y, De Schutter E. Climbing Fibers Provide Graded Error Signals in Cerebellar Learning. Front Syst Neurosci 2019; 13:46. [PMID: 31572132 PMCID: PMC6749063 DOI: 10.3389/fnsys.2019.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
The cerebellum plays a critical role in coordinating and learning complex movements. Although its importance has been well recognized, the mechanisms of learning remain hotly debated. According to the classical cerebellar learning theory, depression of parallel fiber synapses instructed by error signals from climbing fibers, drives cerebellar learning. The uniqueness of long-term depression (LTD) in cerebellar learning has been challenged by evidence showing multi-site synaptic plasticity. In Purkinje cells, long-term potentiation (LTP) of parallel fiber synapses is now well established and it can be achieved with or without climbing fiber signals, making the role of climbing fiber input more puzzling. The central question is how individual Purkinje cells extract global errors based on climbing fiber input. Previous data seemed to demonstrate that climbing fibers are inefficient instructors, because they were thought to carry “binary” error signals to individual Purkinje cells, which significantly constrains the efficiency of cerebellar learning in several regards. In recent years, new evidence has challenged the traditional view of “binary” climbing fiber responses, suggesting that climbing fibers can provide graded information to efficiently instruct individual Purkinje cells to learn. Here we review recent experimental and theoretical progress regarding modulated climbing fiber responses in Purkinje cells. Analog error signals are generated by the interaction of varying climbing fibers inputs with simultaneous other synaptic input and with firing states of targeted Purkinje cells. Accordingly, the calcium signals which trigger synaptic plasticity can be graded in both amplitude and spatial range to affect the learning rate and even learning direction. We briefly discuss how these new findings complement the learning theory and help to further our understanding of how the cerebellum works.
Collapse
Affiliation(s)
- Yunliang Zang
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
58
|
Diering GH, Huganir RL. The AMPA Receptor Code of Synaptic Plasticity. Neuron 2019; 100:314-329. [PMID: 30359599 DOI: 10.1016/j.neuron.2018.10.018] [Citation(s) in RCA: 591] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
Changes in the properties and postsynaptic abundance of AMPA-type glutamate receptors (AMPARs) are major mechanisms underlying various forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic scaling. The function and the trafficking of AMPARs to and from synapses is modulated by specific AMPAR GluA1-GluA4 subunits, subunit-specific protein interactors, auxiliary subunits, and posttranslational modifications. Layers of regulation are added to AMPAR tetramers through these different interactions and modifications, increasing the computational power of synapses. Here we review the reliance of synaptic plasticity on AMPAR variants and propose "the AMPAR code" as a conceptual framework. The AMPAR code suggests that AMPAR variants will be predictive of the types and extent of synaptic plasticity that can occur and that a hierarchy exists such that certain AMPARs will be disproportionally recruited to synapses during LTP/homeostatic scaling up, or removed during LTD/homeostatic scaling down.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Cell Biology and Physiology, and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
59
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 406] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
60
|
Vaden JH, Banumurthy G, Gusarevich ES, Overstreet-Wadiche L, Wadiche JI. The readily-releasable pool dynamically regulates multivesicular release. eLife 2019; 8:47434. [PMID: 31364987 PMCID: PMC6716946 DOI: 10.7554/elife.47434] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023] Open
Abstract
The number of neurotransmitter-filled vesicles released into the synaptic cleft with each action potential dictates the reliability of synaptic transmission. Variability of this fundamental property provides diversity of synaptic function across brain regions, but the source of this variability is unclear. The prevailing view is that release of a single (univesicular release, UVR) or multiple vesicles (multivesicular release, MVR) reflects variability in vesicle release probability, a notion that is well-supported by the calcium-dependence of release mode. However, using mouse brain slices, we now demonstrate that the number of vesicles released is regulated by the size of the readily-releasable pool, upstream of vesicle release probability. Our results point to a model wherein protein kinase A and its vesicle-associated target, synapsin, dynamically control release site occupancy to dictate the number of vesicles released without altering release probability. Together these findings define molecular mechanisms that control MVR and functional diversity of synaptic signaling. Our nervous system allows us to rapidly sense and respond to the world around us via cells called neurons that relay electrical signals around the brain and body. When an electrical impulse travelling along one neuron reaches a junction – called a synapse – with a neighboring neuron, it stimulates small containers known as vesicles from the first cell to release their contents into the synapse. These contents then travel across to the neighboring cell and may generate a new electrical impulse. The number of vesicles at a synapse that are ready to be released varies from one to ten. The more vesicles the neuron releases, the more likely the second cell will produce an electrical signal of its own. However, not all electrical signals reaching a synapse stimulate vesicles to be released and some signals only release a single vesicle. What determines how many vesicles are released by a single electrical signal? Some vesicles have a higher likelihood of being released than others, but this “eagerness” does not always predict how many vesicles an individual synapse will actually discharge. Now, Vaden et al. have used brain tissue from mice to test an alternative possibility: the simple idea that the number of vesicles available at the synapse affects how many vesicles are released without altering their eagerness for release. Vaden et al. found that activating an enzyme called protein kinase A increased the number of vesicles released from synapses without changing how likely individual vesicles were to be released. Inhibiting protein kinase A also did not change individual vesicle’s eagerness to be released, but did decrease the number of vesicles that were discharged. Further experiments found that protein kinase A modifies a molecule on the surface of vesicles, known as synapsin, which controls the number of vesicles that are available for release. These findings show that the number of vesicles released at a synapse is controlled by two independently regulated parameters: the number of vesicles that are available, as well as how eager individual vesicles are to be released. The ability of neurons to communicate with each other is disrupted in autism spectrum disorders, Alzheimer’s disease and many other diseases. Learning how neurons communicate in healthy brains will help us understand what happens in the neurons of individuals with these conditions.
Collapse
Affiliation(s)
- Jada H Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | | | - Eugeny S Gusarevich
- Department of Fundamental and Applied Physics, Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| | | | - Jacques I Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
61
|
Kim CY, Luo L, Yu Q, Mirallave A, Saunders-Pullman R, Lipton RB, Louis ED, Pullman SL. Repeated Spiral Drawings in Essential Tremor: a Possible Limb-Based Measure of Motor Learning. THE CEREBELLUM 2019; 18:178-187. [PMID: 30206795 DOI: 10.1007/s12311-018-0974-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate changes in tremor severity over repeated spiral drawings to assess whether learning deficits can be evaluated directly in a limb in essential tremor (ET). A motor learning deficit in ET, possibly mediated by cerebellar pathways, has been established in eye-blink conditioning studies, but not paradigms measuring from an affected, tremulous limb. Computerized spiral analysis captures multiple characteristics of Archimedean spirals and quantifies performance through calculated indices. Sequential spiral drawing has recently been suggested to demonstrate improvement across trials among ET subjects. One hundred and sixty-one ET and 80 age-matched control subjects drew 10 consecutive spirals on a digitizing tablet. Degree of severity (DoS), a weighted, computational score of spiral execution that takes into account spiral shape and line smoothness, previously validated against a clinical rating scale, was calculated in both groups. Tremor amplitude (Ampl), an independent index of tremor size, measured in centimeters, was also calculated. Changes in DoS and Ampl across trials were assessed using linear regression with slope evaluations. Both groups demonstrated improvement in DoS across trials, but with less improvement in the ET group compared to controls. Ampl demonstrated a tendency to worsen across trials in ET subjects. ET subjects demonstrated less improvement than controls when drawing sequential spirals, suggesting a possible motor learning deficit in ET, here captured in an affected limb. DoS improved independently of Ampl, showing that DoS and Ampl are separable motor physiologic components in ET that may be independently mediated.
Collapse
Affiliation(s)
- Christine Y Kim
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Lan Luo
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Qiping Yu
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Ana Mirallave
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine Mount Sinai, New York, NY, USA
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA.,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Seth L Pullman
- Department of Neurology, Clinical Motor Physiology Laboratory, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
62
|
Brandwein NJ, Nguyen PV. Noradrenergic stabilization of heterosynaptic LTP requires activation of Epac in the hippocampus. ACTA ACUST UNITED AC 2019; 26:31-38. [PMID: 30651375 PMCID: PMC6340117 DOI: 10.1101/lm.048660.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/30/2018] [Indexed: 01/05/2023]
Abstract
Beta-adrenergic receptor (β-AR) activation by norepinephrine (NE) enhances memory and stabilizes long-term potentiation (LTP), a form of synaptic plasticity believed to underlie some forms of hippocampal memory. LTP can occur at multiple synaptic pathways as a result of strong stimulation to one pathway preceding milder stimulation of an adjacent, independent pathway. Synaptic tagging allows LTP to be transferred, or captured, at heterosynaptic pathways. Previous research has shown that β-AR activation promotes heterosynaptic LTP by engaging various signaling cascades. In particular, cyclic adenosine monophosphate (cAMP) activates cAMP-dependent protein kinase A (PKA) and guanine nucleotide exchange protein activated by cAMP (Epac), to enhance LTP. Epac activation can occlude subsequent induction of stable homosynaptic LTP after β-AR activation, but it is unclear whether Epac activation is required for heterosynaptic LTP following pairing of the natural transmitter, NE, with one 100 Hz train of stimulation ("NE-LTP"). Using electrophysiologic recordings of CA1 field excitatory postsynaptic potentials during stimulation of two independent synaptic pathways in murine hippocampal slices, we show that distinct inhibitors of Epac blocked stabilization of homo- and heterosynaptic NE-LTP. PKA inhibition also attenuated heterosynaptic transfer of NE-LTP, but only when a PKA inhibitor was applied during tetanization of a second, heterosynaptic pathway that was not treated with NE. Our data suggest that NE, paired with 100 Hz, activates Epac to stabilize homo- and heterosynaptic LTP. Epac may regulate the production of plasticity-related proteins and subsequent synaptic capture of NE-LTP at a heterosynaptic pathway. Epac activation under these conditions may enable behavioral experiences that engage noradrenergic inputs to hippocampal circuits to be transformed into stable long-term memories.
Collapse
Affiliation(s)
- Nathan J Brandwein
- Department of Physiology and Institute of Neuroscience and Mental Health, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - Peter V Nguyen
- Department of Physiology and Institute of Neuroscience and Mental Health, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
63
|
Romano V, De Propris L, Bosman LW, Warnaar P, Ten Brinke MM, Lindeman S, Ju C, Velauthapillai A, Spanke JK, Middendorp Guerra E, Hoogland TM, Negrello M, D'Angelo E, De Zeeuw CI. Potentiation of cerebellar Purkinje cells facilitates whisker reflex adaptation through increased simple spike activity. eLife 2018; 7:38852. [PMID: 30561331 PMCID: PMC6326726 DOI: 10.7554/elife.38852] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
Cerebellar plasticity underlies motor learning. However, how the cerebellum operates to enable learned changes in motor output is largely unknown. We developed a sensory-driven adaptation protocol for reflexive whisker protraction and recorded Purkinje cell activity from crus 1 and 2 of awake mice. Before training, simple spikes of individual Purkinje cells correlated during reflexive protraction with the whisker position without lead or lag. After training, simple spikes and whisker protractions were both enhanced with the spiking activity now leading behavioral responses. Neuronal and behavioral changes did not occur in two cell-specific mouse models with impaired long-term potentiation at their parallel fiber to Purkinje cell synapses. Consistent with cerebellar plasticity rules, increased simple spike activity was prominent in cells with low complex spike response probability. Thus, potentiation at parallel fiber to Purkinje cell synapses may contribute to reflex adaptation and enable expression of cerebellar learning through increases in simple spike activity. Rodents use their whiskers to explore the world around them. When the whiskers touch an object, it triggers involuntary movements of the whiskers called whisker reflexes. Experiencing the same sensory stimulus multiple times enables rodents to fine-tune these reflexes, e.g., by making their movements larger or smaller. This type of learning is often referred to as motor learning. A part of the brain called cerebellum controls motor learning. It contains some of the largest neurons in the nervous system, the Purkinje cells. Each Purkinje cell receives input from thousands of extensions of small neurons, known as parallel fibers. It is thought that decreasing the strength of the connections between parallel fibers and Purkinje cells can help mammals learn new movements. This is the case in a type of learning called Pavlovian conditioning. It takes its name from the Russian scientist, Pavlov, who showed that dogs can learn to salivate in response to a bell signaling food. Pavlovian conditioning enables animals to optimize their responses to sensory stimuli. But Romano et al. now show that increasing the strength of connections between parallel fibers and Purkinje cells can also support learning. To trigger reflexive whisker movements, a machine blew puffs of air onto the whiskers of awake mice. After repeated exposure to the air puffs, the mice increased the size of their whisker reflexes. At the same time, their Purkinje cells became more active and the connections between Purkinje cells and parallel fibers grew stronger. Artificially increasing Purkinje cell activity triggered the same changes in whisker reflexes as the air puffs themselves. Textbooks still report that only weakening of connections within the cerebellum enables animals to learn and modify movements. The data obtained by Romano al. thus paint a new picture of how the cerebellum works in the context of whisker learning. They show that strengthening these connections can also support movement-related learning.
Collapse
Affiliation(s)
- Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Licia De Propris
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Pascal Warnaar
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Chiheng Ju
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jochen K Spanke
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Tycho M Hoogland
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, Instituto Fondazione C Mondino, Pavia, Italy
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
64
|
Watanave M, Matsuzaki Y, Nakajima Y, Ozawa A, Yamada M, Hirai H. Contribution of Thyrotropin-Releasing Hormone to Cerebellar Long-Term Depression and Motor Learning. Front Cell Neurosci 2018; 12:490. [PMID: 30618637 PMCID: PMC6299015 DOI: 10.3389/fncel.2018.00490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) regulates various physiological activities through activation of receptors expressed in a broad range of cells in the central nervous system. The cerebellum expresses TRH receptors in granule cells and molecular layer interneurons. However, the function of TRH in the cerebellum remains to be clarified. Here, using TRH knockout (KO) mice we studied the role of TRH in the cerebellum. Immunohistochemistry showed no gross morphological differences between KO mice and wild-type (WT) littermates in the cerebellum. In the rotarod test, the initial performance of KO mice was comparable to that of WT littermates, but the learning speed of KO mice was significantly lower than that of WT littermates, suggesting impaired motor learning. The motor learning deficit in KO mice was rescued by intraperitoneal injection of TRH. Electrophysiology revealed absence of long-term depression (LTD) at parallel fiber-Purkinje cell synapses in KO mice, which was rescued by bath-application of TRH. TRH was shown to increase cyclic guanosine monophosphate (cGMP) content in the cerebellum. Since nitric oxide (NO) stimulates cGMP synthesis in the cerebellum, we examined whether NO-cGMP pathway was involved in TRH-mediated LTD rescue in KO mice. Pharmacological blockade of NO synthase and subsequent cGMP production prevented TRH-induced LTD expression in KO mice, whereas increase in cGMP signal in Purkinje cells by 8-bromoguanosine cyclic 3',5'-monophosphate, a membrane-permeable cGMP analog, restored LTD without TRH application. These results suggest that TRH is involved in cerebellar LTD presumably by upregulating the basal cGMP level in Purkinje cells, and, consequently, in motor learning.
Collapse
Affiliation(s)
- Masashi Watanave
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuyo Nakajima
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Atsushi Ozawa
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
- Research Program for Neural Signalling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| |
Collapse
|
65
|
Lee JY, Krieger J, Herguedas B, García-Nafría J, Dutta A, Shaikh SA, Greger IH, Bahar I. Druggability Simulations and X-Ray Crystallography Reveal a Ligand-Binding Site in the GluA3 AMPA Receptor N-Terminal Domain. Structure 2018; 27:241-252.e3. [PMID: 30528594 DOI: 10.1016/j.str.2018.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/25/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission in the brain. Their dysfunction is implicated in many neurological disorders, rendering iGluRs potential drug targets. Here, we performed a systematic analysis of the druggability of two major iGluR subfamilies, using molecular dynamics simulations in the presence of drug-like molecules. We demonstrate the applicability of druggability simulations by faithfully identifying known agonist and modulator sites on AMPA receptors (AMPARs) and NMDA receptors. Simulations produced the expected allosteric changes of the AMPAR ligand-binding domain in response to agonist. We also identified a novel ligand-binding site specific to the GluA3 AMPAR N-terminal domain (NTD), resulting from its unique conformational flexibility that we explored further with crystal structures trapped in vastly different states. In addition to providing an in-depth analysis into iGluR NTD dynamics, our approach identifies druggable sites and permits the determination of pharmacophoric features toward novel iGluR modulators.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Beatriz Herguedas
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Javier García-Nafría
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anindita Dutta
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Saher A Shaikh
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Suite 3064 BST3, Pittsburgh, PA 15260, USA.
| |
Collapse
|
66
|
Kono M, Kakegawa W, Yoshida K, Yuzaki M. Interneuronal NMDA receptors regulate long-term depression and motor learning in the cerebellum. J Physiol 2018; 597:903-920. [PMID: 30382582 DOI: 10.1113/jp276794] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS NMDA receptors (NMDARs) are required for long-term depression (LTD) at parallel fibre-Purkinje cell synapses, but their cellular localization and physiological functions in vivo are unclear. NMDARs in molecular-layer interneurons (MLIs), but not granule cells or Purkinje cells, are required for LTD, but not long-term potentiation induced by low-frequency stimulation of parallel fibres. Nitric oxide produced by NMDAR activation in MLIs probably mediates LTD induction. NMDARs in granule cells or Purkinje cells are dispensable for motor learning during adaptation of horizontal optokinetic responses. ABSTRACT Long-term potentiation (LTP) and depression (LTD), which serve as cellular synaptic plasticity models for learning and memory, are crucially regulated by N-methyl-d-aspartate receptors (NMDARs) in various brain regions. In the cerebellum, LTP and LTD at parallel fibre (PF)-Purkinje cell (PC) synapses are thought to mediate certain forms of motor learning. However, while NMDARs are essential for LTD in vitro, their cellular localization remains controversial. In addition, whether and how NMDARs mediate motor learning in vivo remains unclear. Here, we examined the contribution of NMDARs expressed in granule cells (GCs), PCs and molecular-layer interneurons (MLIs) to LTD/LTP and motor learning by generating GC-, PC- and MLI/PC-specific knockouts of Grin1, a gene encoding an obligatory GluN1 subunit of NMDARs. While robust LTD and LTP were induced at PF-PC synapses in GC- and PC-specific Grin1 (GC-Grin1 and PC-Grin1, respectively) conditional knockout (cKO) mice, only LTD was impaired in MLI/PC-specific Grin1 (MLI/PC-Grin1) cKO mice. Application of diethylamine nitric oxide (NO) sodium, a potent NO donor, to the cerebellar slices restored LTD in MLI/PC-Grin1 cKO mice, suggesting that NO is probably downstream to NMDARs. Furthermore, the adaptation of horizontal optokinetic responses (hOKR), a cerebellar motor learning task, was normally observed in GC-Grin1 cKO and PC-Grin1 cKO mice, but not in MLI/PC-Grin1 cKO mice. These results indicate that it is the NMDARs expressed in MLIs, but not in PCs or GCs, that play important roles in LTD in vitro and motor learning in vivo.
Collapse
Affiliation(s)
- Maya Kono
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
67
|
Bouvier G, Aljadeff J, Clopath C, Bimbard C, Ranft J, Blot A, Nadal JP, Brunel N, Hakim V, Barbour B. Cerebellar learning using perturbations. eLife 2018; 7:e31599. [PMID: 30418871 PMCID: PMC6231762 DOI: 10.7554/elife.31599] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/06/2018] [Indexed: 12/24/2022] Open
Abstract
The cerebellum aids the learning of fast, coordinated movements. According to current consensus, erroneously active parallel fibre synapses are depressed by complex spikes signalling movement errors. However, this theory cannot solve the credit assignment problem of processing a global movement evaluation into multiple cell-specific error signals. We identify a possible implementation of an algorithm solving this problem, whereby spontaneous complex spikes perturb ongoing movements, create eligibility traces and signal error changes guiding plasticity. Error changes are extracted by adaptively cancelling the average error. This framework, stochastic gradient descent with estimated global errors (SGDEGE), predicts synaptic plasticity rules that apparently contradict the current consensus but were supported by plasticity experiments in slices from mice under conditions designed to be physiological, highlighting the sensitivity of plasticity studies to experimental conditions. We analyse the algorithm's convergence and capacity. Finally, we suggest SGDEGE may also operate in the basal ganglia.
Collapse
Affiliation(s)
- Guy Bouvier
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| | - Johnatan Aljadeff
- Departments of Statistics and NeurobiologyUniversity of ChicagoChicagoUnited States
| | - Claudia Clopath
- Department of BioengineeringImperial College LondonLondonUnited Kingdom
| | - Célian Bimbard
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| | - Jonas Ranft
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| | - Antonin Blot
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| | - Jean-Pierre Nadal
- Laboratoire de Physique StatistiqueÉcole normale supérieure, CNRS, PSL University, Sorbonne UniversitéParisFrance
- Centre d’Analyse et de Mathématique SocialesEHESS, CNRS, PSL UniversityParisFrance
| | - Nicolas Brunel
- Departments of Statistics and NeurobiologyUniversity of ChicagoChicagoUnited States
| | - Vincent Hakim
- Laboratoire de Physique StatistiqueÉcole normale supérieure, CNRS, PSL University, Sorbonne UniversitéParisFrance
| | - Boris Barbour
- Institut de biologie de l’École normale supérieure (IBENS)École normale supérieure, CNRS, INSERM, PSL UniversityParisFrance
| |
Collapse
|
68
|
Scheefhals N, MacGillavry HD. Functional organization of postsynaptic glutamate receptors. Mol Cell Neurosci 2018; 91:82-94. [PMID: 29777761 PMCID: PMC6276983 DOI: 10.1016/j.mcn.2018.05.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 01/28/2023] Open
Abstract
Glutamate receptors are the most abundant excitatory neurotransmitter receptors in the brain, responsible for mediating the vast majority of excitatory transmission in neuronal networks. The AMPA- and NMDA-type ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the fast synaptic responses, while metabotropic glutamate receptors (mGluRs) are coupled to downstream signaling cascades that act on much slower timescales. These functionally distinct receptor sub-types are co-expressed at individual synapses, allowing for the precise temporal modulation of postsynaptic excitability and plasticity. Intriguingly, these receptors are differentially distributed with respect to the presynaptic release site. While iGluRs are enriched in the core of the synapse directly opposing the release site, mGluRs reside preferentially at the border of the synapse. As such, to understand the differential contribution of these receptors to synaptic transmission, it is important to not only consider their signaling properties, but also the mechanisms that control the spatial segregation of these receptor types within synapses. In this review, we will focus on the mechanisms that control the organization of glutamate receptors at the postsynaptic membrane with respect to the release site, and discuss how this organization could regulate synapse physiology.
Collapse
Affiliation(s)
- Nicky Scheefhals
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
69
|
Kakegawa W, Katoh A, Narumi S, Miura E, Motohashi J, Takahashi A, Kohda K, Fukazawa Y, Yuzaki M, Matsuda S. Optogenetic Control of Synaptic AMPA Receptor Endocytosis Reveals Roles of LTD in Motor Learning. Neuron 2018; 99:985-998.e6. [PMID: 30122381 DOI: 10.1016/j.neuron.2018.07.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 06/03/2018] [Accepted: 07/19/2018] [Indexed: 11/18/2022]
Abstract
Long-term depression (LTD) of AMPA-type glutamate receptor (AMPA receptor)-mediated synaptic transmission has been proposed as a cellular substrate for learning and memory. Although activity-induced AMPA receptor endocytosis is believed to underlie LTD, it remains largely unclear whether LTD and AMPA receptor endocytosis at specific synapses are causally linked to learning and memory in vivo. Here we developed a new optogenetic tool, termed PhotonSABER, which enabled the temporal, spatial, and cell-type-specific control of AMPA receptor endocytosis at active synapses, while the basal synaptic properties and other forms of synaptic plasticity were unaffected. We found that fiberoptic illumination to Purkinje cells expressing PhotonSABER in vivo inhibited cerebellar motor learning during adaptation of the horizontal optokinetic response and vestibulo-ocular reflex, as well as synaptic AMPA receptor decrease in the flocculus. Our results demonstrate that LTD and AMPA receptor endocytosis at specific neuronal circuits were directly responsible for motor learning in vivo. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akira Katoh
- Department of Physiology, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Sakae Narumi
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Eriko Miura
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junko Motohashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akiyo Takahashi
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Kazuhisa Kohda
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan
| | - Yugo Fukazawa
- Department of Anatomy, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Shinji Matsuda
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Brain Science Inspired Life Support Research Center (BLSC), The University of Electro-Communications, Tokyo 182-8585, Japan.
| |
Collapse
|
70
|
Hirano T. Regulation and Interaction of Multiple Types of Synaptic Plasticity in a Purkinje Neuron and Their Contribution to Motor Learning. THE CEREBELLUM 2018; 17:756-765. [DOI: 10.1007/s12311-018-0963-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
71
|
Cellular Receptors of Amyloid β Oligomers (AβOs) in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071884. [PMID: 29954063 PMCID: PMC6073792 DOI: 10.3390/ijms19071884] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
It is estimated that Alzheimer’s disease (AD) affects tens of millions of people, comprising not only suffering patients, but also their relatives and caregivers. AD is one of age-related neurodegenerative diseases (NDs) characterized by progressive synaptic damage and neuronal loss, which result in gradual cognitive impairment leading to dementia. The cause of AD remains still unresolved, despite being studied for more than a century. The hallmark pathological features of this disease are senile plaques within patients’ brain composed of amyloid beta (Aβ) and neurofibrillary tangles (NFTs) of Tau protein. However, the roles of Aβ and Tau in AD pathology are being questioned and other causes of AD are postulated. One of the most interesting theories proposed is the causative role of amyloid β oligomers (AβOs) aggregation in the pathogenesis of AD. Moreover, binding of AβOs to cell membranes is probably mediated by certain proteins on the neuronal cell surface acting as AβO receptors. The aim of our paper is to describe alternative hypotheses of AD etiology, including genetic alterations and the role of misfolded proteins, especially Aβ oligomers, in Alzheimer’s disease. Furthermore, in this review we present various putative cellular AβO receptors related to toxic activity of oligomers.
Collapse
|
72
|
Bardsley EN, Davis H, Ajijola OA, Buckler KJ, Ardell JL, Shivkumar K, Paterson DJ. RNA Sequencing Reveals Novel Transcripts from Sympathetic Stellate Ganglia During Cardiac Sympathetic Hyperactivity. Sci Rep 2018; 8:8633. [PMID: 29872217 PMCID: PMC5988725 DOI: 10.1038/s41598-018-26651-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is the most prevalent age-related illness worldwide, causing approximately 15 million deaths every year. Hypertension is central in determining cardiovascular risk and is a strong predictive indicator of morbidity and mortality; however, there remains an unmet clinical need for disease-modifying and prophylactic interventions. Enhanced sympathetic activity is a well-established contributor to the pathophysiology of hypertension, however the cellular and molecular changes that increase sympathetic neurotransmission are not known. The aim of this study was to identify key changes in the transcriptome in normotensive and spontaneously hypertensive rats. We validated 15 of our top-scoring genes using qRT-PCR, and network and enrichment analyses suggest that glutamatergic signalling plays a key role in modulating Ca2+ balance within these ganglia. Additionally, phosphodiesterase activity was found to be altered in stellates obtained from the hypertensive rat, suggesting that impaired cyclic nucleotide signalling may contribute to disturbed Ca2+ homeostasis and sympathetic hyperactivity in hypertension. We have also confirmed the presence of these transcripts in human donor stellate samples, suggesting that key genes coupled to neurotransmission are conserved. The data described here may provide novel targets for future interventions aimed at treating sympathetic hyperactivity associated with cardiovascular disease and other dysautonomias.
Collapse
Affiliation(s)
- Emma N Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK.
| | - Harvey Davis
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - Keith J Buckler
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - David J Paterson
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
73
|
Long RM, Pakan JMP, Graham DJ, Hurd PL, Gutierrez-Ibañez C, Wylie DR. Modulation of complex spike activity differs between zebrin-positive and -negative Purkinje cells in the pigeon cerebellum. J Neurophysiol 2018; 120:250-262. [PMID: 29589816 DOI: 10.1152/jn.00797.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebellum is organized into parasagittal zones defined by its climbing and mossy fiber inputs, efferent projections, and Purkinje cell (PC) response properties. Additionally, parasagittal stripes can be visualized with molecular markers, such as heterogeneous expression of the isoenzyme zebrin II (ZII), where sagittal stripes of high ZII expression (ZII+) are interdigitated with stripes of low ZII expression (ZII-). In the pigeon vestibulocerebellum, a ZII+/- stripe pair represents a functional unit, insofar as both ZII+ and ZII- PCs within a stripe pair respond best to the same pattern of optic flow. In the present study, we attempted to determine whether there were any differences in the responses between ZII+ and ZII- PCs within a functional unit in response to optic flow stimuli. In pigeons of either sex, we recorded complex spike activity (CSA) from PCs in response to optic flow, marked recording sites with a fluorescent tracer, and determined the ZII identity of recorded PCs by immunohistochemistry. We found that CSA of ZII+ PCs showed a greater depth of modulation in response to the preferred optic flow pattern compared with ZII- PCs. We suggest that these differences in the depth of modulation to optic flow stimuli are due to differences in the connectivity of ZII+ and ZII- PCs within a functional unit. Specifically, ZII+ PCs project to areas of the vestibular nuclei that provide inhibitory feedback to the inferior olive, whereas ZII- PCs do not. NEW & NOTEWORTHY Although the cerebellum appears to be a uniform structure, Purkinje cells (PCs) are heterogeneous and can be categorized on the basis of the expression of molecular markers. These phenotypes are conserved across species, but the significance is undetermined. PCs in the vestibulocerebellum encode optic flow resulting from self-motion, and those that express the molecular marker zebrin II (ZII+) exhibit more sensitivity to optic flow than those that do not express zebrin II (ZII-).
Collapse
Affiliation(s)
- Rebecca M Long
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Janelle M P Pakan
- German Center for Neurodegenerative Diseases (DZNE) , Magdeburg , Germany.,Institute for Cognitive Neurology (IKND), Medical Faculty, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | | | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| | | | - Douglas R Wylie
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
74
|
Davies B, Brown LA, Cais O, Watson J, Clayton AJ, Chang VT, Biggs D, Preece C, Hernandez-Pliego P, Krohn J, Bhomra A, Twigg SRF, Rimmer A, Kanapin A, Sen A, Zaiwalla Z, McVean G, Foster R, Donnelly P, Taylor JC, Blair E, Nutt D, Aricescu AR, Greger IH, Peirson SN, Flint J, Martin HC. A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Hum Mol Genet 2018; 26:3869-3882. [PMID: 29016847 PMCID: PMC5639461 DOI: 10.1093/hmg/ddx270] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/06/2017] [Indexed: 01/19/2023] Open
Abstract
The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.
Collapse
Affiliation(s)
- Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Ondrej Cais
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Jake Watson
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Amber J Clayton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Veronica T Chang
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Daniel Biggs
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Christopher Preece
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | | | - Jon Krohn
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Amarjit Bhomra
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | | | - Alexander Kanapin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Department of Oncology, University of Oxford, Oxford, Oxfordshire OX3 7DQ, UK
| | | | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Zenobia Zaiwalla
- Department of Neuroscience, John Radcliffe Hospital, Oxford, Oxfordshire OX3 9DU, UK
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, Oxfordshire OX3 7FZ, UK
| | - Russell Foster
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Department of Statistics, University of Oxford, Oxford, Oxfordshire OX1 3LB, UK
| | - Jenny C Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,National Institute for Health Research Oxford Biomedical Research Centre (NIHR Oxford BRC), Oxford, Oxfordshire OX3 7LE, UK
| | - Edward Blair
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, Oxfordshire OX3 7HE, UK
| | - David Nutt
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London W12 0NN, UK
| | - A Radu Aricescu
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Ingo H Greger
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Jonathan Flint
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, CA 90095, USA
| | - Hilary C Martin
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
75
|
Galliano E, Schonewille M, Peter S, Rutteman M, Houtman S, Jaarsma D, Hoebeek FE, De Zeeuw CI. Impact of NMDA Receptor Overexpression on Cerebellar Purkinje Cell Activity and Motor Learning. eNeuro 2018; 5:ENEURO.0270-17.2018. [PMID: 29464191 PMCID: PMC5815660 DOI: 10.1523/eneuro.0270-17.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/24/2017] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
In many brain regions involved in learning NMDA receptors (NMDARs) act as coincidence detectors of pre- and postsynaptic activity, mediating Hebbian plasticity. Intriguingly, the parallel fiber (PF) to Purkinje cell (PC) input in the cerebellar cortex, which is critical for procedural learning, shows virtually no postsynaptic NMDARs. Why is this? Here, we address this question by generating and testing independent transgenic lines that overexpress NMDAR containing the type 2B subunit (NR2B) specifically in PCs. PCs of the mice that show larger NMDA-mediated currents than controls at their PF input suffer from a blockage of long-term potentiation (LTP) at their PF-PC synapses, while long-term depression (LTD) and baseline transmission are unaffected. Moreover, introducing NMDA-mediated currents affects cerebellar learning in that phase-reversal of the vestibulo-ocular reflex (VOR) is impaired. Our results suggest that under physiological circumstances PC spines lack NMDARs postsynaptically at their PF input so as to allow LTP to contribute to motor learning.
Collapse
Affiliation(s)
- Elisa Galliano
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Mandy Rutteman
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Simone Houtman
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
76
|
Abstract
In this issue of Neuron, Gutierrez-Castellanos et al. (2017) reveal a critical role for the AMPA receptor subunit GluA3 in cerebellar synaptic plasticity and motor learning in mice.
Collapse
Affiliation(s)
- Zhengping Jia
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| | - Graham L Collingridge
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Centre for Synaptic Plasticity, Department of Physiology, Pharmacology & Neuroscience, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK.
| |
Collapse
|
77
|
Ablation of TFR1 in Purkinje Cells Inhibits mGlu1 Trafficking and Impairs Motor Coordination, But Not Autistic-Like Behaviors. J Neurosci 2017; 37:11335-11352. [PMID: 29054881 DOI: 10.1523/jneurosci.1223-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022] Open
Abstract
Group 1 metabotropic glutamate receptors (mGlu1/5s) are critical to synapse formation and participate in synaptic LTP and LTD in the brain. mGlu1/5 signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases, but underlying mechanisms for its modulation are not clear. Here, we report that transferrin receptor 1 (TFR1), a transmembrane protein of the clathrin complex, modulates the trafficking of mGlu1 in cerebellar Purkinje cells (PCs) from male mice. We show that conditional knock-out of TFR1 in PCs does not affect the cytoarchitecture of PCs, but reduces mGlu1 expression at synapses. This regulation by TFR1 acts in concert with that by Rab8 and Rab11, which modulate the internalization and recycling of mGlu1, respectively. TFR1 can bind to Rab proteins and facilitate their expression at synapses. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-LTP and PC intrinsic excitability are not affected. Finally, we demonstrate that PC ablation of TFR1 impairs motor coordination, but does not affect social behaviors in mice. Together, these findings underscore the importance of TFR1 in regulating mGlu1 trafficking and suggest that mGlu1- and mGlu1-dependent parallel fiber-LTD are associated with regulation of motor coordination, but not autistic behaviors.SIGNIFICANCE STATEMENT Group 1 metabotropic glutamate receptor (mGlu1/5) signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases. Recent work suggests that altered mGlu1 signaling in Purkinje cells (PCs) may be involved in not only motor learning, but also autistic-like behaviors. We find that conditional knock-out of transferrin receptor 1 (TFR1) in PCs reduces synaptic mGlu1 by tethering Rab8 and Rab11 in the cytosol. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-PC LTP and PC intrinsic excitability are intact. Motor coordination is impaired, but social behaviors are normal in TFR1flox/flox;pCP2-cre mice. Our data reveal a new regulator for trafficking and synaptic expression of mGlu1 and suggest that mGlu1-dependent LTD is associated with motor coordination, but not autistic-like behaviors.
Collapse
|
78
|
Renner MC, Albers EH, Gutierrez-Castellanos N, Reinders NR, van Huijstee AN, Xiong H, Lodder TR, Kessels HW. Synaptic plasticity through activation of GluA3-containing AMPA-receptors. eLife 2017; 6:25462. [PMID: 28762944 PMCID: PMC5578739 DOI: 10.7554/elife.25462] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
Excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). In CA1 pyramidal neurons of the hippocampus two types of AMPARs predominate: those that contain subunits GluA1 and GluA2 (GluA1/2), and those that contain GluA2 and GluA3 (GluA2/3). Whereas subunits GluA1 and GluA2 have been extensively studied, the contribution of GluA3 to synapse physiology has remained unclear. Here we show in mice that GluA2/3s are in a low-conductance state under basal conditions, and although present at synapses they contribute little to synaptic currents. When intracellular cyclic AMP (cAMP) levels rise, GluA2/3 channels shift to a high-conductance state, leading to synaptic potentiation. This cAMP-driven synaptic potentiation requires the activation of both protein kinase A (PKA) and the GTPase Ras, and is induced upon the activation of β-adrenergic receptors. Together, these experiments reveal a novel type of plasticity at CA1 hippocampal synapses that is expressed by the activation of GluA3-containing AMPARs.
Collapse
Affiliation(s)
- Maria C Renner
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Eva Hh Albers
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Nicolas Gutierrez-Castellanos
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Niels R Reinders
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Aile N van Huijstee
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Hui Xiong
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Tessa R Lodder
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
79
|
Modulation of Complex-Spike Duration and Probability during Cerebellar Motor Learning in Visually Guided Smooth-Pursuit Eye Movements of Monkeys. eNeuro 2017; 4:eN-NWR-0115-17. [PMID: 28698888 PMCID: PMC5502376 DOI: 10.1523/eneuro.0115-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/11/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022] Open
Abstract
Activation of an inferior olivary neuron powerfully excites Purkinje cells via its climbing fiber input and triggers a characteristic high-frequency burst, known as the complex spike (CS). The theory of cerebellar learning postulates that the CS induces long-lasting depression of the strength of synapses from active parallel fibers onto Purkinje cells, and that synaptic depression leads to changes in behavior. Prior reports showed that a CS on one learning trial is linked to a properly timed depression of simple spikes on the subsequent trial, as well as a learned change in pursuit eye movement. Further, the duration of a CS is a graded instruction for single-trial plasticity and behavioral learning. We now show across multiple learning paradigms that both the probability and duration of CS responses are correlated with the magnitudes of neural and behavioral learning in awake behaving monkeys. When the direction of the instruction for learning repeatedly was in the same direction or alternated directions, the duration and probability of CS responses decreased over a learning block along with the magnitude of trial-over-trial neural learning. When the direction of the instruction was randomized, CS duration, CS probability, and neural and behavioral learning remained stable across time. In contrast to depression, potentiation of simple-spike firing rate for ON-direction learning instructions follows a longer time course and plays a larger role as depression wanes. Computational analysis provides a model that accounts fully for the detailed statistics of a complex set of data.
Collapse
|
80
|
Voges K, Wu B, Post L, Schonewille M, De Zeeuw CI. Mechanisms underlying vestibulo-cerebellar motor learning in mice depend on movement direction. J Physiol 2017; 595:5301-5326. [PMID: 28586131 PMCID: PMC5538199 DOI: 10.1113/jp274346] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Directionality, inherent to movements, has behavioural and neuronal correlates. Direction of vestibular stimulation determines motor learning efficiency. Vestibulo-ocular reflex gain-increase correlates with Purkinje cell simple spike potentiation. The locus of neural correlates for vestibulo-ocular reflex adaptation is paradigm specific. ABSTRACT Compensatory eye movements elicited by head rotation, also known as vestibulo-ocular reflex (VOR), can be adapted with the use of visual feedback. The cerebellum is essential for this type of movement adaptation, although its neuronal correlates remain to be clarified. In the present study, we show that the direction of vestibular input determines the magnitude of eye movement adaptation induced by mismatched visual input in mice, with larger changes during contraversive head rotation. Moreover, the location of the neural correlate of this changed behaviour depends on the type of paradigm. Gain-increase paradigms induce increased simple spike (SS) activity in ipsilateral cerebellar Purkinje cells (PC), which is in line with eye movements triggered by optogenetic PC activation. By contrast, gain-decrease paradigms do not induce changes in SS activity, indicating that the murine vestibulo-cerebellar cortical circuitry is optimally designed to enhance ipsiversive eye movements.
Collapse
Affiliation(s)
- Kai Voges
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,SINAPSE, Singapore National University, Singapore
| | - Bin Wu
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Post
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands
| |
Collapse
|
81
|
Greger IH, Watson JF, Cull-Candy SG. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 2017; 94:713-730. [DOI: 10.1016/j.neuron.2017.04.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
82
|
Safaryan K, Maex R, Davey N, Adams R, Steuber V. Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise. Sci Rep 2017; 7:46550. [PMID: 28425471 PMCID: PMC5397845 DOI: 10.1038/srep46550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/22/2017] [Indexed: 01/22/2023] Open
Abstract
Many forms of synaptic plasticity require the local production of volatile or rapidly diffusing substances such as nitric oxide. The nonspecific plasticity these neuromodulators may induce at neighboring non-active synapses is thought to be detrimental for the specificity of memory storage. We show here that memory retrieval may benefit from this non-specific plasticity when the applied sparse binary input patterns are degraded by local noise. Simulations of a biophysically realistic model of a cerebellar Purkinje cell in a pattern recognition task show that, in the absence of noise, leakage of plasticity to adjacent synapses degrades the recognition of sparse static patterns. However, above a local noise level of 20%, the model with nonspecific plasticity outperforms the standard, specific model. The gain in performance is greatest when the spatial distribution of noise in the input matches the range of diffusion-induced plasticity. Hence non-specific plasticity may offer a benefit in noisy environments or when the pressure to generalize is strong.
Collapse
Affiliation(s)
- Karen Safaryan
- Centre for Computer Science and Informatics Research, University of Hertfordshire, College Lane, AL10 9AB Hatfield, United Kingdom.,Department of Physics and Astronomy, Knudsen Hall, University of California, Los Angeles CA, 90095-0001, USA
| | - Reinoud Maex
- Centre for Computer Science and Informatics Research, University of Hertfordshire, College Lane, AL10 9AB Hatfield, United Kingdom.,Department of Cognitive Sciences, Ecole Normale Supérieure, rue d'Ulm 25, 75005 Paris, France
| | - Neil Davey
- Centre for Computer Science and Informatics Research, University of Hertfordshire, College Lane, AL10 9AB Hatfield, United Kingdom
| | - Rod Adams
- Centre for Computer Science and Informatics Research, University of Hertfordshire, College Lane, AL10 9AB Hatfield, United Kingdom
| | - Volker Steuber
- Centre for Computer Science and Informatics Research, University of Hertfordshire, College Lane, AL10 9AB Hatfield, United Kingdom
| |
Collapse
|