51
|
Walsh AP, Simon DJ. Sugar-free synapses run on mitochondrial Sirtuin 3. J Cell Biol 2024; 223:e202312035. [PMID: 38091013 PMCID: PMC10720655 DOI: 10.1083/jcb.202312035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Metabolic plasticity of neurons ensures their activity continues when glucose is limited. Walsh and Simon discuss new work by Ashrafi and colleagues (https://doi.org/10.1083/jcb.202305048) that finds Sirtuin 3 directs local metabolic adaptation at synapses during sustained glucose deprivation.
Collapse
Affiliation(s)
| | - David J. Simon
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
52
|
Tiwari A, Hashemiaghdam A, Laramie MA, Maschi D, Haddad T, Stunault MI, Bergom C, Javaheri A, Klyachko V, Ashrafi G. Sirtuin3 ensures the metabolic plasticity of neurotransmission during glucose deprivation. J Cell Biol 2024; 223:e202305048. [PMID: 37988067 PMCID: PMC10660140 DOI: 10.1083/jcb.202305048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Neurotransmission is an energetically expensive process that underlies cognition. During intense electrical activity or dietary restrictions, the glucose level in the brain plummets, forcing neurons to utilize alternative fuels. However, the molecular mechanisms of neuronal metabolic plasticity remain poorly understood. Here, we demonstrate that glucose-deprived neurons activate the CREB and PGC1α transcriptional program, which induces expression of the mitochondrial deacetylase Sirtuin 3 (Sirt3) both in vitro and in vivo. We show that Sirt3 localizes to axonal mitochondria and stimulates mitochondrial oxidative capacity in hippocampal nerve terminals. Sirt3 plays an essential role in sustaining synaptic transmission in the absence of glucose by providing metabolic support for the retrieval of synaptic vesicles after release. These results demonstrate that the transcriptional induction of Sirt3 facilitates the metabolic plasticity of synaptic transmission.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marissa A. Laramie
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dario Maschi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tristaan Haddad
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marion I. Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali Javaheri
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran VA Hospital, St. Louis, MO, USA
| | - Vitaly Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
53
|
Piette C, Gervasi N, Venance L. Synaptic plasticity through a naturalistic lens. Front Synaptic Neurosci 2023; 15:1250753. [PMID: 38145207 PMCID: PMC10744866 DOI: 10.3389/fnsyn.2023.1250753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
From the myriad of studies on neuronal plasticity, investigating its underlying molecular mechanisms up to its behavioral relevance, a very complex landscape has emerged. Recent efforts have been achieved toward more naturalistic investigations as an attempt to better capture the synaptic plasticity underpinning of learning and memory, which has been fostered by the development of in vivo electrophysiological and imaging tools. In this review, we examine these naturalistic investigations, by devoting a first part to synaptic plasticity rules issued from naturalistic in vivo-like activity patterns. We next give an overview of the novel tools, which enable an increased spatio-temporal specificity for detecting and manipulating plasticity expressed at individual spines up to neuronal circuit level during behavior. Finally, we put particular emphasis on works considering brain-body communication loops and macroscale contributors to synaptic plasticity, such as body internal states and brain energy metabolism.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
54
|
Wei Y, Miao Q, Zhang Q, Mao S, Li M, Xu X, Xia X, Wei K, Fan Y, Zheng X, Fang Y, Mei M, Zhang Q, Ding J, Fan Y, Lu M, Hu G. Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. Nat Neurosci 2023; 26:2081-2089. [PMID: 37996529 DOI: 10.1038/s41593-023-01476-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/29/2023] [Indexed: 11/25/2023]
Abstract
It is generally thought that under basal conditions, neurons produce ATP mainly through mitochondrial oxidative phosphorylation (OXPHOS), and glycolytic activity only predominates when neurons are activated and need to meet higher energy demands. However, it remains unknown whether there are differences in glucose metabolism between neuronal somata and axon terminals. Here, we demonstrated that neuronal somata perform higher levels of aerobic glycolysis and lower levels of OXPHOS than terminals, both during basal and activated states. We found that the glycolytic enzyme pyruvate kinase 2 (PKM2) is localized predominantly in the somata rather than in the terminals. Deletion of Pkm2 in mice results in a switch from aerobic glycolysis to OXPHOS in neuronal somata, leading to oxidative damage and progressive loss of dopaminergic neurons. Our findings update the conventional view that neurons uniformly use OXPHOS under basal conditions and highlight the important role of somatic aerobic glycolysis in maintaining antioxidant capacity.
Collapse
Affiliation(s)
- Yao Wei
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - QianQian Miao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyu Mao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Mengke Li
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Xu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xian Xia
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Wei
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fan
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinlei Zheng
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Meng Mei
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingyu Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
55
|
Yonamine CY, Michalani MLE, Moreira RJ, Machado UF. Glucose Transport and Utilization in the Hippocampus: From Neurophysiology to Diabetes-Related Development of Dementia. Int J Mol Sci 2023; 24:16480. [PMID: 38003671 PMCID: PMC10671460 DOI: 10.3390/ijms242216480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The association of diabetes with cognitive dysfunction has at least 60 years of history, which started with the observation that children with type 1 diabetes mellitus (T1D), who had recurrent episodes of hypoglycemia and consequently low glucose supply to the brain, showed a deficit of cognitive capacity. Later, the growing incidence of type 2 diabetes mellitus (T2D) and dementia in aged populations revealed their high association, in which a reduced neuronal glucose supply has also been considered as a key mechanism, despite hyperglycemia. Here, we discuss the role of glucose in neuronal functioning/preservation, and how peripheral blood glucose accesses the neuronal intracellular compartment, including the exquisite glucose flux across the blood-brain barrier (BBB) and the complex network of glucose transporters, in dementia-related areas such as the hippocampus. In addition, insulin resistance-induced abnormalities in the hippocampus of obese/T2D patients, such as inflammatory stress, oxidative stress, and mitochondrial stress, increased generation of advanced glycated end products and BBB dysfunction, as well as their association with dementia/Alzheimer's disease, are addressed. Finally, we discuss how these abnormalities are accompained by the reduction in the expression and translocation of the high capacity insulin-sensitive glucose transporter GLUT4 in hippocampal neurons, which leads to neurocytoglycopenia and eventually to cognitive dysfunction. This knowledge should further encourage investigations into the beneficial effects of promising therapeutic approaches which could improve central insulin sensitivity and GLUT4 expression, to fight diabetes-related cognitive dysfunctions.
Collapse
Affiliation(s)
- Caio Yogi Yonamine
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Maria Luiza Estimo Michalani
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.L.E.M.); (R.J.M.)
| | - Rafael Junges Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.L.E.M.); (R.J.M.)
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (M.L.E.M.); (R.J.M.)
| |
Collapse
|
56
|
Myeong J, Stunault MI, Klyachko VA, Ashrafi G. Metabolic Regulation of Single Synaptic Vesicle Exo- and Endocytosis in Hippocampal Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566236. [PMID: 37986894 PMCID: PMC10659320 DOI: 10.1101/2023.11.08.566236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Glucose has long been considered a primary source of energy for synaptic function. However, it remains unclear under what conditions alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in cultured hippocampal synapses, we found that mitochondrial ATP production from oxidation of lactate/pyruvate regulates basal vesicle release probability and release location within the active zone (AZ) evoked by single action potentials (APs). Mitochondrial inhibition shifted vesicle release closer to the AZ center, suggesting that the energetic barrier for vesicle release is lower in the AZ center that the periphery. Mitochondrial inhibition also altered the efficiency of single AP evoked vesicle retrieval by increasing occurrence of ultrafast endocytosis, while inhibition of glycolysis had no effect. Mitochondria are sparsely distributed along hippocampal axons and we found that nerve terminals containing mitochondria displayed enhanced vesicle release and reuptake during high-frequency trains, irrespective of whether neurons were supplied with glucose or lactate. Thus, synaptic terminals can entirely bypass glycolysis to robustly maintain the vesicle cycle using oxidative fuels in the absence of glucose. These observations further suggest that mitochondrial metabolic function not only regulates several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
| | - Marion I Stunault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63132, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63132, United States
| |
Collapse
|
57
|
Rabah Y, Francés R, Minatchy J, Guédon L, Desnous C, Plaçais PY, Preat T. Glycolysis-derived alanine from glia fuels neuronal mitochondria for memory in Drosophila. Nat Metab 2023; 5:2002-2019. [PMID: 37932430 PMCID: PMC10663161 DOI: 10.1038/s42255-023-00910-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Glucose is the primary source of energy for the brain; however, it remains controversial whether, upon neuronal activation, glucose is primarily used by neurons for ATP production or if it is partially oxidized in astrocytes, as proposed by the astrocyte-neuron lactate shuttle model for glutamatergic neurons. Thus, an in vivo picture of glucose metabolism during cognitive processes is missing. Here, we uncover in Drosophila melanogaster a glia-to-neuron alanine transfer involving alanine aminotransferase that sustains memory formation. Following associative conditioning, glycolysis in glial cells produces alanine, which is back-converted into pyruvate in cholinergic neurons of the olfactory memory center to uphold their increased mitochondrial needs. Alanine, as a mediator of glia-neuron coupling, could be an alternative to lactate in cholinergic systems. In parallel, a dedicated glial glucose transporter imports glucose specifically for long-term memory, by directly transferring it to neurons for use by the pentose phosphate pathway. Our results demonstrate in vivo the compartmentalization of glucose metabolism between neurons and glial cells during memory formation.
Collapse
Affiliation(s)
- Yasmine Rabah
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Julia Minatchy
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laura Guédon
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Coraline Desnous
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
58
|
Geiser A, Foylan S, Tinning PW, Bryant NJ, Gould GW. GLUT4 dispersal at the plasma membrane of adipocytes: a super-resolved journey. Biosci Rep 2023; 43:BSR20230946. [PMID: 37791639 PMCID: PMC10600063 DOI: 10.1042/bsr20230946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/05/2023] Open
Abstract
In adipose tissue, insulin stimulates glucose uptake by mediating the translocation of GLUT4 from intracellular vesicles to the plasma membrane. In 2010, insulin was revealed to also have a fundamental impact on the spatial distribution of GLUT4 within the plasma membrane, with the existence of two GLUT4 populations at the plasma membrane being defined: (1) as stationary clusters and (2) as diffusible monomers. In this model, in the absence of insulin, plasma membrane-fused GLUT4 are found to behave as clusters. These clusters are thought to arise from exocytic events that retain GLUT4 at their fusion sites; this has been proposed to function as an intermediate hub between GLUT4 exocytosis and re-internalisation. By contrast, insulin stimulation induces the dispersal of GLUT4 clusters into monomers and favours a distinct type of GLUT4-vesicle fusion event, known as fusion-with-release exocytosis. Here, we review how super-resolution microscopy approaches have allowed investigation of the characteristics of plasma membrane-fused GLUT4 and further discuss regulatory step(s) involved in the GLUT4 dispersal machinery, introducing the scaffold protein EFR3 which facilitates localisation of phosphatidylinositol 4-kinase type IIIα (PI4KIIIα) to the cell surface. We consider how dispersal may be linked to the control of transporter activity, consider whether macro-organisation may be a widely used phenomenon to control proteins within the plasma membrane, and speculate on the origin of different forms of GLUT4-vesicle exocytosis.
Collapse
Affiliation(s)
- Angéline Geiser
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Shannan Foylan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Peter W Tinning
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| | - Nia J Bryant
- Department of Biology, University of York, Heslington, York, U.K
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, U.K
| |
Collapse
|
59
|
Kokotos AC, Antoniazzi AM, Unda SR, Ko MS, Park D, Eliezer D, Kaplitt MG, Camilli PD, Ryan TA. Phosphoglycerate kinase is a central leverage point in Parkinson's Disease driven neuronal metabolic deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561760. [PMID: 37873141 PMCID: PMC10592794 DOI: 10.1101/2023.10.10.561760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Phosphoglycerate kinase 1 (PGK1), the first ATP producing glycolytic enzyme, has emerged as a therapeutic target for Parkinson's Disease (PD), since a potential enhancer of its activity was reported to significantly lower PD risk. We carried out a suppressor screen of hypometabolic synaptic deficits and demonstrated that PGK1 is a rate limiting enzyme in nerve terminal ATP production. Increasing PGK1 expression in mid-brain dopamine neurons protected against hydroxy-dopamine driven striatal dopamine nerve terminal dysfunction in-vivo and modest changes in PGK1 activity dramatically suppressed hypometabolic synapse dysfunction in vitro. Furthermore, PGK1 is cross-regulated by PARK7 (DJ-1), a PD associated molecular chaperone, and synaptic deficits driven by PARK20 (Synaptojanin-1) can be reversed by increasing local synaptic PGK1 activity. These data indicate that nerve terminal bioenergetic deficits may underly a spectrum of PD susceptibilities and the identification of PGK1 as the limiting enzyme in axonal glycolysis provides a mechanistic underpinning for therapeutic protection.
Collapse
Affiliation(s)
- Alexandros C Kokotos
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Aldana M Antoniazzi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY 10065
| | - Santiago R Unda
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY 10065
| | - Myung Soo Ko
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Daehun Park
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Michael G Kaplitt
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY 10065
| | - Pietro De Camilli
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
60
|
Huang YQ, Gu X, Chen X, Du YT, Chen BC, Sun FY. BMECs Ameliorate High Glucose-Induced Morphological Aberrations and Synaptic Dysfunction via VEGF-Mediated Modulation of Glucose Uptake in Cortical Neurons. Cell Mol Neurobiol 2023; 43:3575-3592. [PMID: 37418138 PMCID: PMC10477237 DOI: 10.1007/s10571-023-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023]
Abstract
It has been demonstrated that diabetes cause neurite degeneration in the brain and cognitive impairment and neurovascular interactions are crucial for maintaining brain function. However, the role of vascular endothelial cells in neurite outgrowth and synaptic formation in diabetic brain is still unclear. Therefore, present study investigated effects of brain microvascular endothelial cells (BMECs) on high glucose (HG)-induced neuritic dystrophy using a coculture model of BMECs with neurons. Multiple immunofluorescence labelling and western blot analysis were used to detect neurite outgrowth and synapsis formation, and living cell imaging was used to detect uptake function of neuronal glucose transporters. We found cocultured with BMECs significantly reduced HG-induced inhibition of neurites outgrowth (including length and branch formation) and delayed presynaptic and postsynaptic development, as well as reduction of neuronal glucose uptake capacity, which was prevented by pre-treatment with SU1498, a vascular endothelial growth factor (VEGF) receptor antagonist. To analyse the possible mechanism, we collected BMECs cultured condition medium (B-CM) to treat the neurons under HG culture condition. The results showed that B-CM showed the same effects as BMEC on HG-treated neurons. Furthermore, we observed VEGF administration could ameliorate HG-induced neuronal morphology aberrations. Putting together, present results suggest that cerebral microvascular endothelial cells protect against hyperglycaemia-induced neuritic dystrophy and restorate neuronal glucose uptake capacity by activation of VEGF receptors and endothelial VEGF release. This result help us to understand important roles of neurovascular coupling in pathogenesis of diabetic brain, providing a new strategy to study therapy or prevention for diabetic dementia. Hyperglycaemia induced inhibition of neuronal glucose uptake and impaired to neuritic outgrowth and synaptogenesis. Cocultured with BMECs/B-CM and VEGF treatment protected HG-induced inhibition of glucose uptake and neuritic outgrowth and synaptogenesis, which was antagonized by blockade of VEGF receptors. Reduction of glucose uptake may further deteriorate impairment of neurites outgrowth and synaptogenesis.
Collapse
Affiliation(s)
- Yu-Qi Huang
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Gu
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yi-Ting Du
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bin-Chi Chen
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Feng-Yan Sun
- Department of Neurobiology and Research Institute for Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 138 Yi-Xue-Yuan Road, Shanghai, 200032, People's Republic of China.
- National Clinical Research Center for Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
61
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
62
|
Skwarzynska D, Sun H, Kasprzak I, Sharma S, Williamson J, Kapur J. Glycolytic lactate production supports status epilepticus in experimental animals. Ann Clin Transl Neurol 2023; 10:1873-1884. [PMID: 37632130 PMCID: PMC10578888 DOI: 10.1002/acn3.51881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE Status epilepticus (SE) requires rapid intervention to prevent cerebral injury and mortality. The ketogenic diet, which bypasses glycolysis, is a promising remedy for patients with refractory SE. We tested the role of glycolytic lactate production in sustaining SE. METHODS Extracellular lactate and glucose concentration during a seizure and SE in vivo was measured using lactate and glucose biosensors. A lactate dehydrogenase inhibitor, oxamate, blocked pyruvate to lactate conversion during SE. Video-EEG recordings evaluated seizure duration, severity, and immunohistochemistry was used to determine neuronal loss. Genetically encoded calcium indicator GCaMP7 was used to study the effect of oxamate on CA1 pyramidal neurons in vitro. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from CA1 neurons to study oxamate's impact on neurotransmission. RESULTS The extracellular glucose concentration dropped rapidly during seizures, and lactate accumulated in the extracellular space. Inhibition of pyruvate to lactate conversion with oxamate terminated SE in mice. There was less neuronal loss in treated compared to control mice. Oxamate perfusion decreased tonic and phasic neuronal activity of GCaMP7-expressing CA1 pyramidal neurons in vitro. Oxamate application reduced the frequency, but not amplitude of sEPSCs recorded from CA1 neurons, suggesting an effect on the presynaptic glutamatergic neurotransmission. INTERPRETATION A single seizure and SE stimulate lactate production. Diminishing pyruvate to lactate conversion with oxamate terminated SE and reduced associated neuronal death. Oxamate reduced neuronal excitability and excitatory neurotransmission at the presynaptic terminal. Glycolytic lactate production sustains SE and is an attractive therapeutic target.
Collapse
Affiliation(s)
- Daria Skwarzynska
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Huayu Sun
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Izabela Kasprzak
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Supriya Sharma
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - John Williamson
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
- UVA Brain InstituteUniversity of VirginiaCharlottesvilleVirginia22908USA
| |
Collapse
|
63
|
Wang H, Vant J, Wu Y, Sanchez R, Micou ML, Zhang A, Luczak V, Yu SB, Jabbo M, Yoon S, Abushawish AA, Ghassemian M, Griffis E, Hammarlund M, Singharoy A, Pekkurnaz G. Functional Organization of Glycolytic Metabolon on Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554955. [PMID: 37662343 PMCID: PMC10473731 DOI: 10.1101/2023.08.26.554955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Glucose, the primary cellular energy source, is metabolized through glycolysis initiated by the rate-limiting enzyme Hexokinase (HK). In energy-demanding tissues like the brain, HK1 is the dominant isoform, primarily localized on mitochondria, crucial for efficient glycolysis-oxidative phosphorylation coupling and optimal energy generation. This study unveils a unique mechanism regulating HK1 activity, glycolysis, and the dynamics of mitochondrial coupling, mediated by the metabolic sensor enzyme O-GlcNAc transferase (OGT). OGT catalyzes reversible O-GlcNAcylation, a post-translational modification, influenced by glucose flux. Elevated OGT activity induces dynamic O-GlcNAcylation of HK1's regulatory domain, subsequently promoting the assembly of the glycolytic metabolon on the outer mitochondrial membrane. This modification enhances HK1's mitochondrial association, orchestrating glycolytic and mitochondrial ATP production. Mutations in HK1's O-GlcNAcylation site reduce ATP generation, affecting synaptic functions in neurons. The study uncovers a novel pathway that bridges neuronal metabolism and mitochondrial function via OGT and the formation of the glycolytic metabolon, offering new prospects for tackling metabolic and neurological disorders.
Collapse
|
64
|
Cisternas P, Gherardelli C, Gutierrez J, Salazar P, Mendez-Orellana C, Wong GW, Inestrosa NC. Adiponectin and resistin modulate the progression of Alzheimer´s disease in a metabolic syndrome model. Front Endocrinol (Lausanne) 2023; 14:1237796. [PMID: 37732123 PMCID: PMC10507329 DOI: 10.3389/fendo.2023.1237796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Metabolic syndrome (MetS), a cluster of metabolic conditions that include obesity, hyperlipidemia, and insulin resistance, increases the risk of several aging-related brain diseases, including Alzheimer's disease (AD). However, the underlying mechanism explaining the link between MetS and brain function is poorly understood. Among the possible mediators are several adipose-derived secreted molecules called adipokines, including adiponectin (ApN) and resistin, which have been shown to regulate brain function by modulating several metabolic processes. To investigate the impact of adipokines on MetS, we employed a diet-induced model to induce the various complications associated with MetS. For this purpose, we administered a high-fat diet (HFD) to both WT and APP/PSN1 mice at a pre-symptomatic disease stage. Our data showed that MetS causes a fast decline in cognitive performance and stimulates Aβ42 production in the brain. Interestingly, ApN treatment restored glucose metabolism and improved cognitive functions by 50% while decreasing the Aβ42/40 ratio by approximately 65%. In contrast, resistin exacerbated Aβ pathology, increased oxidative stress, and strongly reduced glucose metabolism. Together, our data demonstrate that ApN and resistin alterations could further contribute to AD pathology.
Collapse
Affiliation(s)
- Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joel Gutierrez
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Mendez-Orellana
- Carrera de Fonoaudiología, Departamento Ciencias de la Salud, facultad Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - G. William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
65
|
Stadtler H, Neigh GN. Sex Differences in the Neurobiology of Stress. Psychiatr Clin North Am 2023; 46:427-446. [PMID: 37500242 DOI: 10.1016/j.psc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
This review highlights the existing knowledge and data that explain the physiologic impacts of stress, especially pertaining to neurobiology, and how these impacts differ by sex. Furthermore, this review explains the benefits of interventions aimed at preventing or mitigating the adverse effects of stress, because of both the significant toll of stress on the body and the disproportionate impact of these changes experienced by women.
Collapse
Affiliation(s)
- Hannah Stadtler
- Department of Anatomy and Neurobiology, 1101 East Marshall Street Box 980709, Virginia Commonwealth University, Richmond, VA, USA
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, 1101 East Marshall Street Box 980709, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
66
|
Wolfe AD, Koberstein JN, Smith CB, Stewart ML, Hammarlund M, Hyman A, Stork PJ, Goodman R, Colón-Ramos DA. Local and dynamic regulation of neuronal glycolysis in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554774. [PMID: 37662365 PMCID: PMC10473759 DOI: 10.1101/2023.08.25.554774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here we adapted a biosensor for glycolysis, HYlight, for use in C. elegans to image dynamic changes in glycolysis within individual neurons and in vivo. We determined that neurons perform glycolysis cell-autonomously, and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function, and uncovers new relationships between neuronal identities and metabolic landscapes in vivo.
Collapse
Affiliation(s)
- Aaron D Wolfe
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - John N Koberstein
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chadwick B Smith
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa L Stewart
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc Hammarlund
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
| | - Anthony Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden, Germany
| | - Philip Js Stork
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard Goodman
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine; New Haven, CT 06536, USA
- Wu Tsai Institute, Yale University; New Haven, CT 06510, USA
| |
Collapse
|
67
|
Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells 2023; 12:2019. [PMID: 37626828 PMCID: PMC10453773 DOI: 10.3390/cells12162019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's principal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 transporters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Michael Powers
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA;
| | - Minelly Gonzalez
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Salvatore Mancuso
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| |
Collapse
|
68
|
Zaninello M, Bean C. Highly Specialized Mechanisms for Mitochondrial Transport in Neurons: From Intracellular Mobility to Intercellular Transfer of Mitochondria. Biomolecules 2023; 13:938. [PMID: 37371518 DOI: 10.3390/biom13060938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The highly specialized structure and function of neurons depend on a sophisticated organization of the cytoskeleton, which supports a similarly sophisticated system to traffic organelles and cargo vesicles. Mitochondria sustain crucial functions by providing energy and buffering calcium where it is needed. Accordingly, the distribution of mitochondria is not even in neurons and is regulated by a dynamic balance between active transport and stable docking events. This system is finely tuned to respond to changes in environmental conditions and neuronal activity. In this review, we summarize the mechanisms by which mitochondria are selectively transported in different compartments, taking into account the structure of the cytoskeleton, the molecular motors and the metabolism of neurons. Remarkably, the motor proteins driving the mitochondrial transport in axons have been shown to also mediate their transfer between cells. This so-named intercellular transport of mitochondria is opening new exciting perspectives in the treatment of multiple diseases.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
69
|
Li S, Sheng ZH. Oligodendrocyte-derived transcellular signaling regulates axonal energy metabolism. Curr Opin Neurobiol 2023; 80:102722. [PMID: 37028201 PMCID: PMC10225329 DOI: 10.1016/j.conb.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.
Collapse
Affiliation(s)
- Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA. https://twitter.com/@sunan_li
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
70
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
71
|
Skwarzynska D, Sun H, Williamson J, Kasprzak I, Kapur J. Glycolysis regulates neuronal excitability via lactate receptor, HCA1R. Brain 2023; 146:1888-1902. [PMID: 36346130 PMCID: PMC10411940 DOI: 10.1093/brain/awac419] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Repetitively firing neurons during seizures accelerate glycolysis to meet energy demand, which leads to the accumulation of extracellular glycolytic by-product lactate. Here, we demonstrate that lactate rapidly modulates neuronal excitability in times of metabolic stress via the hydroxycarboxylic acid receptor type 1 (HCA1R) to modify seizure activity. The extracellular lactate concentration, measured by a biosensor, rose quickly during brief and prolonged seizures. In two epilepsy models, mice lacking HCA1R (lactate receptor) were more susceptible to developing seizures. Moreover, HCA1R deficient (knockout) mice developed longer and more severe seizures than wild-type littermates. Lactate perfusion decreased tonic and phasic activity of CA1 pyramidal neurons in genetically encoded calcium indicator 7 imaging experiments. HCA1R agonist 3-chloro-5-hydroxybenzoic acid (3CL-HBA) reduced the activity of CA1 neurons in HCA1R WT but not in knockout mice. In patch-clamp recordings, both lactate and 3CL-HBA hyperpolarized CA1 pyramidal neurons. HCA1R activation reduced the spontaneous excitatory postsynaptic current frequency and altered the paired-pulse ratio of evoked excitatory postsynaptic currents in HCA1R wild-type but not in knockout mice, suggesting it diminished presynaptic release of excitatory neurotransmitters. Overall, our studies demonstrate that excessive neuronal activity accelerates glycolysis to generate lactate, which translocates to the extracellular space to slow neuronal firing and inhibit excitatory transmission via HCA1R. These studies may identify novel anticonvulsant target and seizure termination mechanisms.
Collapse
Affiliation(s)
- Daria Skwarzynska
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Izabela Kasprzak
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
72
|
Li H, Guglielmetti C, Sei YJ, Zilberter M, Le Page LM, Shields L, Yang J, Nguyen K, Tiret B, Gao X, Bennett N, Lo I, Dayton TL, Kampmann M, Huang Y, Rathmell JC, Vander Heiden M, Chaumeil MM, Nakamura K. Neurons require glucose uptake and glycolysis in vivo. Cell Rep 2023; 42:112335. [PMID: 37027294 PMCID: PMC10556202 DOI: 10.1016/j.celrep.2023.112335] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Neurons require large amounts of energy, but whether they can perform glycolysis or require glycolysis to maintain energy remains unclear. Using metabolomics, we show that human neurons do metabolize glucose through glycolysis and can rely on glycolysis to supply tricarboxylic acid (TCA) cycle metabolites. To investigate the requirement for glycolysis, we generated mice with postnatal deletion of either the dominant neuronal glucose transporter (GLUT3cKO) or the neuronal-enriched pyruvate kinase isoform (PKM1cKO) in CA1 and other hippocampal neurons. GLUT3cKO and PKM1cKO mice show age-dependent learning and memory deficits. Hyperpolarized magnetic resonance spectroscopic (MRS) imaging shows that female PKM1cKO mice have increased pyruvate-to-lactate conversion, whereas female GLUT3cKO mice have decreased conversion, body weight, and brain volume. GLUT3KO neurons also have decreased cytosolic glucose and ATP at nerve terminals, with spatial genomics and metabolomics revealing compensatory changes in mitochondrial bioenergetics and galactose metabolism. Therefore, neurons metabolize glucose through glycolysis in vivo and require glycolysis for normal function.
Collapse
Affiliation(s)
- Huihui Li
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Yoshitaka J Sei
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Lauren Shields
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joyce Yang
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevin Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA
| | - Neal Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Talya L Dayton
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin Kampmann
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
73
|
Yonamine CY, Passarelli M, Suemoto CK, Pasqualucci CA, Jacob-Filho W, Alves VAF, Marie SKN, Correa-Giannella ML, Britto LR, Machado UF. Postmortem Brains from Subjects with Diabetes Mellitus Display Reduced GLUT4 Expression and Soma Area in Hippocampal Neurons: Potential Involvement of Inflammation. Cells 2023; 12:cells12091250. [PMID: 37174649 PMCID: PMC10177173 DOI: 10.3390/cells12091250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) is an important risk factor for dementia, which is a common neurodegenerative disorder. DM is known to activate inflammation, oxidative stress, and advanced glycation end products (AGEs) generation, all capable of inducing neuronal dysfunctions, thus participating in the neurodegeneration progress. In that process, disturbed neuronal glucose supply plays a key role, which in hippocampal neurons is controlled by the insulin-sensitive glucose transporter type 4 (GLUT4). We investigated the expression of GLUT4, nuclear factor NF-kappa B subunit p65 [NFKB (p65)], carboxymethyllysine and synapsin1 (immunohistochemistry), and soma area in human postmortem hippocampal samples from control, obese, and obese+DM subjects (41 subjects). Moreover, in human SH-SY5Y neurons, tumor necrosis factor (TNF) and glycated albumin (GA) effects were investigated in GLUT4, synapsin-1 (SYN1), tyrosine hydroxylase (TH), synaptophysin (SYP) proteins, and respective genes; NFKB binding activity in the SLC2A4 promoter; effects of increased histone acetylation grade by histone deacetylase 3 (HDAC3) inhibition. Hippocampal neurons (CA4 area) of obese+DM subjects displayed reduced GLUT4 expression and neuronal soma area, associated with increased expression of NFKB (p65). Challenges with TNF and GA decreased the SLC2A4/GLUT4 expression in SH-SY5Y neurons. TNF decreased SYN1, TH, and SYP mRNAs and respective proteins, and increased NFKB binding activity in the SLC2A4 promoter. Inhibition of HDAC3 increased the SLC2A4 expression and the total neuronal content of CRE-binding proteins (CREB/ICER), and also counterbalanced the repressor effect of TNF upon these parameters. This study revealed reduced postmortem human hippocampal GLUT4 content and neuronal soma area accompanied by increased proinflammatory activity in the brains of DM subjects. In isolated human neurons, inflammatory activation by TNF reduced not only the SLC2A4/GLUT4 expression but also the expression of some genes related to neuronal function (SYN1, TH, SYP). These effects may be related to epigenetic regulations (H3Kac and H4Kac status) since they can be counterbalanced by inhibiting HDAC3. These results uncover the improvement in GLUT4 expression and/or the inhibition of HDAC3 as promising therapeutic targets to fight DM-related neurodegeneration.
Collapse
Affiliation(s)
- Caio Yogi Yonamine
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Marisa Passarelli
- Laboratório de Lipides (LIM-10) do HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
- Programa de Pos-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01525-000, Brazil
| | - Claudia Kimie Suemoto
- Divisao de Geriatria, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01246-000, Brazil
| | | | - Wilson Jacob-Filho
- Divisao de Geriatria, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01246-000, Brazil
| | - Venâncio Avancini Ferreira Alves
- Laboratório de Investigação Médica em Patologia Hepática, (LIM14) do Hospital das Clínicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | | | - Maria Lucia Correa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01246-000, Brazil
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
74
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
75
|
Rumpf S, Sanal N, Marzano M. Energy metabolic pathways in neuronal development and function. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad004. [PMID: 38596236 PMCID: PMC10913822 DOI: 10.1093/oons/kvad004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2024]
Abstract
Neuronal development and function are known to be among the most energy-demanding functions of the body. Constant energetic support is therefore crucial at all stages of a neuron's life. The two main adenosine triphosphate (ATP)-producing pathways in cells are glycolysis and oxidative phosphorylation. Glycolysis has a relatively low yield but provides fast ATP and enables the metabolic versatility needed in dividing neuronal stem cells. Oxidative phosphorylation, on the other hand, is highly efficient and therefore thought to provide most or all ATP in differentiated neurons. However, it has recently become clear that due to their distinct properties, both pathways are required to fully satisfy neuronal energy demands during development and function. Here, we provide an overview of how glycolysis and oxidative phosphorylation are used in neurons during development and function.
Collapse
Affiliation(s)
- Sebastian Rumpf
- Correspondence address. Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany. E-mail:
| | - Neeraja Sanal
- Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| | - Marco Marzano
- Multiscale Imaging Center, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany
| |
Collapse
|
76
|
Cerasuolo M, Papa M, Colangelo AM, Rizzo MR. Alzheimer’s Disease from the Amyloidogenic Theory to the Puzzling Crossroads between Vascular, Metabolic and Energetic Maladaptive Plasticity. Biomedicines 2023; 11:biomedicines11030861. [PMID: 36979840 PMCID: PMC10045635 DOI: 10.3390/biomedicines11030861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive and degenerative disease producing the most common type of dementia worldwide. The main pathogenetic hypothesis in recent decades has been the well-known amyloidogenic hypothesis based on the involvement of two proteins in AD pathogenesis: amyloid β (Aβ) and tau. Amyloid deposition reported in all AD patients is nowadays considered an independent risk factor for cognitive decline. Vascular damage and blood–brain barrier (BBB) failure in AD is considered a pivotal mechanism for brain injury, with increased deposition of both immunoglobulins and fibrin. Furthermore, BBB dysfunction could be an early sign of cognitive decline and the early stages of clinical AD. Vascular damage generates hypoperfusion and relative hypoxia in areas with high energy demand. Long-term hypoxia and the accumulation within the brain parenchyma of neurotoxic molecules could be seeds of a self-sustaining pathological progression. Cellular dysfunction comprises all the elements of the neurovascular unit (NVU) and neuronal loss, which could be the result of energy failure and mitochondrial impairment. Brain glucose metabolism is compromised, showing a specific region distribution. This energy deficit worsens throughout aging. Mild cognitive impairment has been reported to be associated with a glucose deficit in the entorhinal cortex and in the parietal lobes. The current aim is to understand the complex interactions between amyloid β (Aβ) and tau and elements of the BBB and NVU in the brain. This new approach aimed at the study of metabolic mechanisms and energy insufficiency due to mitochondrial impairment would allow us to define therapies aimed at predicting and slowing down the progression of AD.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milan, Italy
- Correspondence:
| | - Anna Maria Colangelo
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milan, Italy
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
77
|
Tiwari A, Hashemiaghdam A, Laramie MA, Maschi D, Haddad T, Stunault MI, Bergom C, Javaheri A, Klyachko V, Ashrafi G. Sirtuin3 ensures the metabolic plasticity of neurotransmission during glucose deprivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531724. [PMID: 36945567 PMCID: PMC10028948 DOI: 10.1101/2023.03.08.531724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Neurotransmission is an energetically expensive process that underlies cognition. During intense electrical activity or dietary restrictions, glucose levels in the brain plummet, forcing neurons to utilize alternative fuels. However, the molecular mechanisms of neuronal metabolic plasticity remain poorly understood. Here, we demonstrate that glucose-deprived neurons activate the CREB and PGC1α transcriptional program that induces the expression of the mitochondrial deacetylase Sirtuin 3 (Sirt3) both in vitro and in vivo . We show that Sirt3 localizes to axonal mitochondria and stimulates mitochondrial oxidative capacity in hippocampal nerve terminals. Sirt3 plays an essential role in sustaining synaptic transmission in the absence of glucose by powering the retrieval of synaptic vesicles after release. These results demonstrate that the transcriptional induction of Sirt3 ensures the metabolic plasticity of synaptic transmission. Highlights Glucose deprivation drives transcriptional reprogramming of neuronal metabolism via CREB and PGC1α. Glucose or food deprivation trigger the neuronal expression of mitochondrial deacetylase sirtuin 3 (Sirt3) both in vitro and in vivo . Sirt3 stimulates oxidative ATP synthesis in nerve terminals.Sirt3 sustains the synaptic vesicle cycle in the absence of glucose.
Collapse
|
78
|
del Arco A, González-Moreno L, Pérez-Liébana I, Juaristi I, González-Sánchez P, Contreras L, Pardo B, Satrústegui J. Regulation of neuronal energy metabolism by calcium: Role of MCU and Aralar/malate-aspartate shuttle. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119468. [PMID: 36997074 DOI: 10.1016/j.bbamcr.2023.119468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Calcium is a major regulator of cellular metabolism. Calcium controls mitochondrial respiration, and calcium signaling is used to meet cellular energetic demands through energy production in the organelle. Although it has been widely assumed that Ca2+-actions require its uptake by mitochondrial calcium uniporter (MCU), alternative pathways modulated by cytosolic Ca2+ have been recently proposed. Recent findings have indicated a role for cytosolic Ca2+ signals acting on mitochondrial NADH shuttles in the control of cellular metabolism in neurons using glucose as fuel. It has been demonstrated that AGC1/Aralar, the component of the malate/aspartate shuttle (MAS) regulated by cytosolic Ca2+, participates in the maintenance of basal respiration exerted through Ca2+-fluxes between ER and mitochondria, whereas mitochondrial Ca2+-uptake by MCU does not contribute. Aralar/MAS pathway, activated by small cytosolic Ca2+ signals, provides in fact substrates, redox equivalents and pyruvate, fueling respiration. Upon activation and increases in workload, neurons upregulate OxPhos, cytosolic pyruvate production and glycolysis, together with glucose uptake, in a Ca2+-dependent way, and part of this upregulation is via Ca2+ signaling. Both MCU and Aralar/MAS contribute to OxPhos upregulation, Aralar/MAS playing a major role, especially at small and submaximal workloads. Ca2+ activation of Aralar/MAS, by increasing cytosolic NAD+/NADH provides Ca2+-dependent increases in glycolysis and cytosolic pyruvate production priming respiration as a feed-forward mechanism in response to workload. Thus, except for glucose uptake, these processes are dependent on Aralar/MAS, whereas MCU is the relevant target for Ca2+ signaling when MAS is bypassed, by using pyruvate or β-hydroxybutyrate as substrates.
Collapse
|
79
|
Loss of brain energy metabolism control as a driver for memory impairment upon insulin resistance. Biochem Soc Trans 2023; 51:287-301. [PMID: 36606696 DOI: 10.1042/bst20220789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
The pathophysiological mechanisms intersecting metabolic and neurodegenerative disorders include insulin resistance, which has a strong involvement of environmental factors. Besides central regulation of whole-body homeostasis, insulin in the central nervous system controls molecular signalling that is critical for cognitive performance, namely signalling through pathways that modulate synaptic transmission and plasticity, and metabolism in neurons and astrocytes. This review provides an overview on how insulin signalling in the brain might regulate brain energy metabolism, and further identified molecular mechanisms by which brain insulin resistance might impair synaptic fuelling, and lead to cognitive deterioration.
Collapse
|
80
|
Saenz J, Yao O, Khezerlou E, Aggarwal M, Zhou X, Barker DJ, DiCicco-Bloom E, Pan PY. Cocaine-regulated trafficking of dopamine transporters in cultured neurons revealed by a pH sensitive reporter. iScience 2023; 26:105782. [PMID: 36594015 PMCID: PMC9804146 DOI: 10.1016/j.isci.2022.105782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cocaine acts by inhibiting plasma membrane dopamine transporter (DAT) function and altering its surface expression. The precise manner and mechanism by which cocaine regulates DAT trafficking, especially at neuronal processes, are poorly understood. In this study, we engineered and validated the use of DAT-pHluorin for studying DAT localization and its dynamic trafficking at neuronal processes of cultured mouse midbrain neurons. We demonstrate that unlike neuronal soma and dendrites, which contain a majority of the DATs in weakly acidic intracellular compartments, axonal DATs at both shafts and boutons are primarily (75%) localized to the plasma membrane, whereas large varicosities contain abundant intracellular DAT within acidic intracellular structures. We also demonstrate that cocaine exposure leads to a Synaptojanin1-sensitive DAT internalization process followed by membrane reinsertion that lasts for days. Thus, our study reveals the previously unknown dynamics and molecular regulation for cocaine-regulated DAT trafficking in neuronal processes.
Collapse
Affiliation(s)
- Jacqueline Saenz
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- Rutgers Graduate School of Biomedical Sciences, Molecular Biosciences Graduate Program, Piscataway, NJ 08854, USA
| | - Oscar Yao
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Elnaz Khezerlou
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Meha Aggarwal
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Xiaofeng Zhou
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - David J. Barker
- Rutgers, The State University of New Jersey, Department of Psychology, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Emanuel DiCicco-Bloom
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ping-Yue Pan
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| |
Collapse
|
81
|
Yu SB, Sanchez RG, Papich ZD, Whisenant TC, Ghassemian M, Koberstein JN, Stewart ML, Pekkurnaz G. Neuronal activity-driven O-GlcNAcylation promotes mitochondrial plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523512. [PMID: 36711626 PMCID: PMC9882081 DOI: 10.1101/2023.01.11.523512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuronal activity is an energy-intensive process that is largely sustained by instantaneous fuel utilization and ATP synthesis. However, how neurons couple ATP synthesis rate to fuel availability is largely unknown. Here, we demonstrate that the metabolic sensor enzyme O-GlcNAc transferase regulates neuronal activity-driven mitochondrial bioenergetics. We show that neuronal activity upregulates O-GlcNAcylation mainly in mitochondria. Mitochondrial O-GlcNAcylation is promoted by activity-driven fuel consumption, which allows neurons to compensate for high energy expenditure based on fuel availability. To determine the proteins that are responsible for these adjustments, we mapped the mitochondrial O-GlcNAcome of neurons. Finally, we determine that neurons fail to meet activity-driven metabolic demand when O-GlcNAcylation dynamics are prevented. Our findings suggest that O-GlcNAcylation provides a fuel-dependent feedforward control mechanism in neurons to optimize mitochondrial performance based on neuronal activity. This mechanism thereby couples neuronal metabolism to mitochondrial bioenergetics and plays a key role in sustaining energy homeostasis.
Collapse
|
82
|
Lee HG, Dhamija A, Das CK, Park KM, Chang YT, Schäfer LV, Kim K. Synthetic Monosaccharide Channels: Size-Selective Transmembrane Transport of Glucose and Fructose Mediated by Porphyrin Boxes. Angew Chem Int Ed Engl 2023; 62:e202214326. [PMID: 36382990 DOI: 10.1002/anie.202214326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Here we report synthetic monosaccharide channels built with shape-persistent organic cages, porphyrin boxes (PBs), that allow facile transmembrane transport of glucose and fructose through their windows. PBs show a much higher transport rate for glucose and fructose over disaccharides such as sucrose, as evidenced by intravesicular enzyme assays and molecular dynamics simulations. The transport rate can be modulated by changing the length of the alkyl chains decorating the cage windows. Insertion of a linear pillar ligand into the cavity of PBs blocks the monosaccharide transport. In vitro cell experiment shows that PBs transport glucose across the living-cell membrane and enhance cell viability when the natural glucose transporter GLUT1 is blocked. Time-dependent live-cell imaging and MTT assays confirm the cyto-compatibility of PBs. The monosaccharide-selective transport ability of PBs is reminiscent of natural glucose transporters (GLUTs), which are crucial for numerous biological functions.
Collapse
Affiliation(s)
- Hong-Guen Lee
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Avinash Dhamija
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Chandan K Das
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Daegu, 42472, Republic of Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
83
|
Tena-Morraja P, Riqué-Pujol G, Müller-Sánchez C, Reina M, Martínez-Estrada OM, Soriano FX. Synaptic Activity Regulates Mitochondrial Iron Metabolism to Enhance Neuronal Bioenergetics. Int J Mol Sci 2023; 24:ijms24020922. [PMID: 36674431 PMCID: PMC9864932 DOI: 10.3390/ijms24020922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Synaptic activity is the main energy-consuming process in the central nervous system. We are beginning to understand how energy is supplied and used during synaptic activity by neurons. However, the long-term metabolic adaptations associated with a previous episode of synaptic activity are not well understood. Herein, we show that an episode of synaptic activity increases mitochondrial bioenergetics beyond the duration of the synaptic activity by transcriptionally inducing the expression of iron metabolism genes with the consequent enhancement of cellular and mitochondrial iron uptake. Iron is a necessary component of the electron transport chain complexes, and its chelation or knockdown of mitochondrial iron transporter Mfrn1 blocks the activity-mediated bioenergetics boost. We found that Mfrn1 expression is regulated by the well-known regulator of synaptic plasticity CREB, suggesting the coordinated expression of synaptic plasticity programs with those required to meet the associated increase in energetic demands.
Collapse
Affiliation(s)
- Paula Tena-Morraja
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Guillem Riqué-Pujol
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Claudia Müller-Sánchez
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Manuel Reina
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ofelia M. Martínez-Estrada
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Francesc X. Soriano
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
84
|
Kudo Y, Endo S, Tanio M, Saka T, Himura R, Abe N, Takeda M, Yamaguchi E, Yoshino Y, Arai Y, Kashiwagi H, Oyama M, Itoh A, Shiota M, Fujimoto N, Ikari A. Antiandrogenic Effects of a Polyphenol in Carex kobomugi through Inhibition of Androgen Synthetic Pathway and Downregulation of Androgen Receptor in Prostate Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms232214356. [PMID: 36430833 PMCID: PMC9696374 DOI: 10.3390/ijms232214356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer (PC) represents the most common cancer disease in men. Since high levels of androgens increase the risk of PC, androgen deprivation therapy is the primary treatment; however this leads to castration-resistant PC (CRPC) with a poor prognosis. The progression to CRPC involves ectopic androgen production in the adrenal glands and abnormal activation of androgen signaling due to mutations and/or amplification of the androgen receptor (AR) as well as activation of androgen-independent proliferative pathways. Recent studies have shown that adrenal-derived 11-oxygenated androgens (11-ketotestosterone and 11-ketodihydrotestosterone) with potencies equivalent to those of traditional androgens (testosterone and dihydrotestosterone) are biomarkers of CRPC. Additionally, dehydrogenase/reductase SDR family member 11 (DHRS11) has been reported to be a 17β-hydroxysteroid dehydrogenase that catalyzes the production of the 11-oxygenated and traditional androgens. This study was conducted to evaluate the pathophysiological roles of DHRS11 in PC using three LNCaP, C4-2 and 22Rv1 cell lines. DHRS11 silencing and inhibition resulted in suppression of the androgen-induced expression of AR downstream genes and decreases in the expression of nuclear AR and the proliferation marker Ki67, suggesting that DHRS11 is involved in androgen-dependent PC cell proliferation. We found that 5,7-dihydroxy-8-methyl-2-[2-(4-hydroxyphenyl)ethenyl]-4H-1-benzopyran-4-one (Kobochromone A, KC-A), an ingredient in the flowers of Carex kobomugi, is a novel potent DHRS11 inhibitor (IC50 = 0.35 μM). Additionally, KC-A itself decreased the AR expression in PC cells. Therefore, KC-A suppresses the androgen signaling in PC cells through both DHRS11 inhibition and AR downregulation. Furthermore, KC-A enhanced the anticancer activity of abiraterone, a CRPC drug, suggesting that it may be a potential candidate for the development of drugs for the prevention and treatment of CRPC.
Collapse
Affiliation(s)
- Yudai Kudo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Correspondence: ; Tel.: +81-58-230-8100; Fax: +81-58-230-8105
| | - Masatoshi Tanio
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Tomofumi Saka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Rin Himura
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Naohito Abe
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mitsumi Takeda
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuki Arai
- Universal Corporation Co., Ltd., Gifu 502-0931, Japan
| | - Hirohito Kashiwagi
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Universal Corporation Co., Ltd., Gifu 502-0931, Japan
| | - Masayoshi Oyama
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
85
|
Abstract
To maintain energy supply to the brain, a direct energy source called adenosine triphosphate (ATP) is produced by oxidative phosphorylation and aerobic glycolysis of glucose in the mitochondria and cytoplasm. Brain glucose metabolism is reduced in many neurodegenerative diseases, including Alzheimer's disease (AD), where it appears presymptomatically in a progressive and region-specific manner. Following dysregulation of energy metabolism in AD, many cellular repair/regenerative processes are activated to conserve the energy required for cell viability. Glucose metabolism plays an important role in the pathology of AD and is closely associated with the tricarboxylic acid cycle, type 2 diabetes mellitus, and insulin resistance. The glucose intake in neurons is from endothelial cells, astrocytes, and microglia. Damage to neurocentric glucose also damages the energy transport systems in AD. Gut microbiota is necessary to modulate bidirectional communication between the gastrointestinal tract and brain. Gut microbiota may influence the process of AD by regulating the immune system and maintaining the integrity of the intestinal barrier. Furthermore, some therapeutic strategies have shown promising therapeutic effects in the treatment of AD at different stages, including the use of antidiabetic drugs, rescuing mitochondrial dysfunction, and epigenetic and dietary intervention. This review discusses the underlying mechanisms of alterations in energy metabolism in AD and provides potential therapeutic strategies in the treatment of AD.
Collapse
|
86
|
Zilio E, Piano V, Wirth B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2022; 23:10878. [PMID: 36142791 PMCID: PMC9503857 DOI: 10.3390/ijms231810878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by recessive mutations in the SMN1 gene, globally affecting ~8-14 newborns per 100,000. The severity of the disease depends on the residual levels of functional survival of motor neuron protein, SMN. SMN is a ubiquitously expressed RNA binding protein involved in a plethora of cellular processes. In this review, we discuss the effects of SMN loss on mitochondrial functions in the neuronal and muscular systems that are the most affected in patients with spinal muscular atrophy. Our aim is to highlight how mitochondrial defects may contribute to disease progression and how restoring mitochondrial functionality may be a promising approach to develop new therapies. We also collected from previous studies a list of transcripts encoding mitochondrial proteins affected in various SMA models. Moreover, we speculate that in adulthood, when motor neurons require only very low SMN levels, the natural deterioration of mitochondria associated with aging may be a crucial triggering factor for adult spinal muscular atrophy, and this requires particular attention for therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Zilio
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Valentina Piano
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
87
|
Alpha-Ketoglutarate Alleviates Neuronal Apoptosis Induced by Central Insulin Resistance through Inhibiting S6K1 Phosphorylation after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9148257. [PMID: 36062190 PMCID: PMC9436633 DOI: 10.1155/2022/9148257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Neuronal apoptosis after subarachnoid hemorrhage (SAH) is believed to play an important role in early brain injury after SAH. The energy metabolism of neuron is closely related to its survival. The transient hyperglycemia caused by insulin resistance (IR) after SAH seriously affects the prognosis of patients. However, the specific mechanisms of IR after SAH are still not clear. Studies have shown that α-KG takes part in the regulation of IR and cell apoptosis. In this study, we aim to investigate whether α-KG can reduce IR after SAH, improve the disorder of neuronal glucose metabolism, alleviate neuronal apoptosis, and ultimately play a neuroprotective role in SAH-induced EBI. We first measured α-KG levels in the cerebrospinal fluid (CSF) of patients with SAH. Then, we established a SAH model through hemoglobin (Hb) stimulation with HT22 cells for further mechanism research. Furthermore, an in vivo SAH model in mice was established by endovascular perforation. Our results showed that α-KG levels in CSF significantly increased in SAH patients and could be used as a potential prognostic biomarker. In in vitro model of SAH, we found that α-KG not only inhibited IR-induced reduction of glucose uptake in neurons after SAH but also alleviated SAH-induced neuronal apoptosis. Mechanistically, we found that α-KG inhibits neuronal IR by inhibiting S6K1 activation after SAH. Moreover, neuronal apoptosis significantly increased when glucose uptake was reduced. Furthermore, our results demonstrated that α-KG could also alleviate neuronal apoptosis in vivo SAH model. In conclusion, our study suggests that α-KG alleviates apoptosis by inhibiting IR induced by S6K1 activation after SAH.
Collapse
|
88
|
Duarte JMN. Serine racemase modulation for improving brain insulin resistance: An Editorial Highlight for "Deletion of serine racemase reverses neuronal insulin signaling inhibition by amyloid-β oligomers". J Neurochem 2022; 163:6-7. [PMID: 35996309 DOI: 10.1111/jnc.15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
This Editorial highlights an interesting study in the current issue of the Journal of Neurochemistry in which Zhou et al. report new data showing that the ablation of serine racemase increases local insulin production in neurons of the hippocampus. The authors explored some of the possible mechanisms mediating the interaction between dampening production of D-serine and the local synthesis of insulin, and they further propose that stimulating insulin production could counteract hippocampal insulin resistance in Alzheimer's disease (AD). Most importantly, they leave open a number of questions that need to be experimentally addressed to ascertain whether D-serine modulation of neuronal insulin expression can effectively improve insulin sensitivity in AD, as well as in metabolic disease with neurological impact.
Collapse
Affiliation(s)
- João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
89
|
Li H, Datunashvili M, Reyes RC, Voglmaier SM. Inositol hexakisphosphate kinases differentially regulate trafficking of vesicular glutamate transporters 1 and 2. Front Cell Neurosci 2022; 16:926794. [PMID: 35936490 PMCID: PMC9355605 DOI: 10.3389/fncel.2022.926794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Inositol pyrophosphates have been implicated in cellular signaling and membrane trafficking, including synaptic vesicle (SV) recycling. Inositol hexakisphosphate kinases (IP6Ks) and their product, diphosphoinositol pentakisphosphate (PP-IP5 or IP7), directly and indirectly regulate proteins important in vesicle recycling by the activity-dependent bulk endocytosis pathway (ADBE). In the present study, we show that two isoforms, IP6K1 and IP6K3, are expressed in axons. The role of the kinases in SV recycling are investigated using pharmacologic inhibition, shRNA knockdown, and IP6K1 and IP6K3 knockout mice. Live-cell imaging experiments use optical reporters of SV recycling based on vesicular glutamate transporter isoforms, VGLUT1- and VGLUT2-pHluorins (pH), which recycle differently. VGLUT1-pH recycles by classical AP-2 dependent endocytosis under moderate stimulation conditions, while VGLUT2-pH recycles using AP-1 and AP-3 adaptor proteins as well. Using a short stimulus to release the readily releasable pool (RRP), we show that IP6K1 KO increases exocytosis of both VGLUT1-and VGLUT2-pH, while IP6K3 KO decreases the amount of both transporters in the RRP. In electrophysiological experiments we measure glutamate signaling with short stimuli and under the intense stimulation conditions that trigger bulk endocytosis. IP6K1 KO increases synaptic facilitation and IP6K3 KO decreases facilitation compared to wild type in CA1 hippocampal Schaffer collateral synapses. After intense stimulation, the rate of endocytosis of VGLUT2-pH, but not VGLUT1-pH, is increased by knockout, knockdown, and pharmacologic inhibition of IP6Ks. Thus IP6Ks differentially affect the endocytosis of two SV protein cargos that use different endocytic pathways. However, while IP6K1 KO and IP6K3 KO exert similar effects on endocytosis after stimulation, the isoforms exert different effects on exocytosis earlier in the stimulus and on the early phase of glutamate release. Taken together, the data indicate a role for IP6Ks both in exocytosis early in the stimulation period and in endocytosis, particularly under conditions that may utilize AP-1/3 adaptors.
Collapse
|
90
|
Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 2022; 4:802-812. [PMID: 35817853 PMCID: PMC11151822 DOI: 10.1038/s42255-022-00594-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
91
|
Tourigny DS, Zucker M, Kim M, Russo P, Coleman J, Lee CH, Carlo MI, Chen YB, Hakimi AA, Kotecha RR, Reznik E. Molecular Characterization of the Tumor Microenvironment in Renal Medullary Carcinoma. Front Oncol 2022; 12:910147. [PMID: 35837094 PMCID: PMC9275834 DOI: 10.3389/fonc.2022.910147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Renal medullary carcinoma (RMC) is a highly aggressive disease associated with sickle hemoglobinopathies and universal loss of the tumor suppressor gene SMARCB1. RMC has a relatively low rate of incidence compared with other renal cell carcinomas (RCCs) that has hitherto made molecular profiling difficult. To probe this rare disease in detail we performed an in-depth characterization of the RMC tumor microenvironment using a combination of genomic, metabolic and single-cell RNA-sequencing experiments on tissue from a representative untreated RMC patient, complemented by retrospective analyses of archival tissue and existing published data. Our study of the tumor identifies a heterogenous population of malignant cell states originating from the thick ascending limb of the Loop of Henle within the renal medulla. Transformed RMC cells displayed the hallmarks of increased resistance to cell death by ferroptosis and proteotoxic stress driven by MYC-induced proliferative signals. Specifically, genomic characterization of RMC tumors provides substantiating evidence for the recently proposed dependence of SMARCB1-difficient cancers on proteostasis modulated by an intact CDKN2A-p53 pathway. We also provide evidence that increased cystine-mTORC-GPX4 signaling plays a role in protecting transformed RMC cells against ferroptosis. We further propose that RMC has an immune landscape comparable to that of untreated RCCs, including heterogenous expression of the immune ligand CD70 within a sub-population of tumor cells. The latter could provide an immune-modulatory role that serves as a viable candidate for therapeutic targeting.
Collapse
Affiliation(s)
- David S. Tourigny
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, United States
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| | - Mark Zucker
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Minsoo Kim
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Paul Russo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jonathan Coleman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Chung-Han Lee
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria I. Carlo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A. Ari Hakimi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| | - Ritesh R. Kotecha
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| | - Ed Reznik
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- *Correspondence: David S. Tourigny, ; A. Ari Hakimi, ; Ritesh R. Kotecha, ; Ed Reznik,
| |
Collapse
|
92
|
Faria-Pereira A, Temido-Ferreira M, Morais VA. BrainPhys Neuronal Media Support Physiological Function of Mitochondria in Mouse Primary Neuronal Cultures. Front Mol Neurosci 2022; 15:837448. [PMID: 35774868 PMCID: PMC9239074 DOI: 10.3389/fnmol.2022.837448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
In vitro neuronal cultures are extensively used in the field of neurosciences as they represent an accessible experimental tool for neuronal genetic manipulation, time-lapse imaging, and drug screening. Optimizing the cultivation of rodent primary neuronal cultures led to the development of defined media that support the growth and maintenance of different neuronal types. Recently, a new neuronal medium, BrainPhys (BP), was formulated envisioning the mimicry of brain physiological conditions and suitability for cultured human iPSC-derived neurons and rat primary neurons. However, its advantages in mouse primary neuronal cultures and its effects in neuronal bioenergetics are yet to be demonstrated. In this study, we validated the beneficial use of BP in mouse primary neuronal cultures based on the observation that neuronal cultures in BP media showed enhanced ATP levels, which increased throughout neuronal maturation, a finding that correlates with higher mitochondrial activity and ATP production at later maturation stages, as well as an increased glycolysis response on mitochondrial inhibition and increased mitochondrial fuel flexibility. Taken together, our data demonstrate that BP medium promotes mitochondrial activity along with neuronal maturation of in vitro cultures.
Collapse
|
93
|
Rothman DL, Dienel GA, Behar KL, Hyder F, DiNuzzo M, Giove F, Mangia S. Glucose sparing by glycogenolysis (GSG) determines the relationship between brain metabolism and neurotransmission. J Cereb Blood Flow Metab 2022; 42:844-860. [PMID: 34994222 PMCID: PMC9254033 DOI: 10.1177/0271678x211064399] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the last two decades, it has been established that glucose metabolic fluxes in neurons and astrocytes are proportional to the rates of the glutamate/GABA-glutamine neurotransmitter cycles in close to 1:1 stoichiometries across a wide range of functional energy demands. However, there is presently no mechanistic explanation for these relationships. We present here a theoretical meta-analysis that tests whether the brain's unique compartmentation of glycogen metabolism in the astrocyte and the requirement for neuronal glucose homeostasis lead to the observed stoichiometries. We found that blood-brain barrier glucose transport can be limiting during activation and that the energy demand could only be met if glycogenolysis supports neuronal glucose metabolism by replacing the glucose consumed by astrocytes, a mechanism we call Glucose Sparing by Glycogenolysis (GSG). The predictions of the GSG model are in excellent agreement with a wide range of experimental results from rats, mice, tree shrews, and humans, which were previously unexplained. Glycogenolysis and glucose sparing dictate the energy available to support neuronal activity, thus playing a fundamental role in brain function in health and disease.
Collapse
Affiliation(s)
- Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Kevin L Behar
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, RM, Italy
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, RM, Italy.,Fondazione Santa Lucia IRCCS, Rome, RM, Italy
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
94
|
Brain Metabolic Alterations in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23073785. [PMID: 35409145 PMCID: PMC8998942 DOI: 10.3390/ijms23073785] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the body. Satisfying such energy demand requires compartmentalized, cell-specific metabolic processes, known to be complementary and intimately coupled. Thus, the brain relies on thoroughly orchestrated energy-obtaining agents, processes and molecular features, such as the neurovascular unit, the astrocyte-neuron metabolic coupling, and the cellular distribution of energy substrate transporters. Importantly, early features of the aging process are determined by the progressive perturbation of certain processes responsible for adequate brain energy supply, resulting in brain hypometabolism. These age-related brain energy alterations are further worsened during the prodromal stages of neurodegenerative diseases, namely Alzheimer's disease (AD), preceding the onset of clinical symptoms, and are anatomically and functionally associated with the loss of cognitive abilities. Here, we focus on concrete neuroenergetic features such as the brain's fueling by glucose and lactate, the transporters and vascular system guaranteeing its supply, and the metabolic interactions between astrocytes and neurons, and on its neurodegenerative-related disruption. We sought to review the principles underlying the metabolic dimension of healthy and AD brains, and suggest that the integration of these concepts in the preventive, diagnostic and treatment strategies for AD is key to improving the precision of these interventions.
Collapse
|
95
|
Dysmetabolism and Neurodegeneration: Trick or Treat? Nutrients 2022; 14:nu14071425. [PMID: 35406040 PMCID: PMC9003269 DOI: 10.3390/nu14071425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests the existence of a strong link between metabolic syndrome and neurodegeneration. Indeed, epidemiologic studies have described solid associations between metabolic syndrome and neurodegeneration, whereas animal models contributed for the clarification of the mechanistic underlying the complex relationships between these conditions, having the development of an insulin resistance state a pivotal role in this relationship. Herein, we review in a concise manner the association between metabolic syndrome and neurodegeneration. We start by providing concepts regarding the role of insulin and insulin signaling pathways as well as the pathophysiological mechanisms that are in the genesis of metabolic diseases. Then, we focus on the role of insulin in the brain, with special attention to its function in the regulation of brain glucose metabolism, feeding, and cognition. Moreover, we extensively report on the association between neurodegeneration and metabolic diseases, with a particular emphasis on the evidence observed in animal models of dysmetabolism induced by hypercaloric diets. We also debate on strategies to prevent and/or delay neurodegeneration through the normalization of whole-body glucose homeostasis, particularly via the modulation of the carotid bodies, organs known to be key in connecting the periphery with the brain.
Collapse
|
96
|
Faria-Pereira A, Morais VA. Synapses: The Brain's Energy-Demanding Sites. Int J Mol Sci 2022; 23:3627. [PMID: 35408993 PMCID: PMC8998888 DOI: 10.3390/ijms23073627] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the mammalian body, and synaptic transmission is one of the major contributors. To meet these energetic requirements, the brain primarily uses glucose, which can be metabolized through glycolysis and/or mitochondrial oxidative phosphorylation. The relevance of these two energy production pathways in fulfilling energy at presynaptic terminals has been the subject of recent studies. In this review, we dissect the balance of glycolysis and oxidative phosphorylation to meet synaptic energy demands in both resting and stimulation conditions. Besides ATP output needs, mitochondria at synapse are also important for calcium buffering and regulation of reactive oxygen species. These two mitochondrial-associated pathways, once hampered, impact negatively on neuronal homeostasis and synaptic activity. Therefore, as mitochondria assume a critical role in synaptic homeostasis, it is becoming evident that the synaptic mitochondria population possesses a distinct functional fingerprint compared to other brain mitochondria. Ultimately, dysregulation of synaptic bioenergetics through glycolytic and mitochondrial dysfunctions is increasingly implicated in neurodegenerative disorders, as one of the first hallmarks in several of these diseases are synaptic energy deficits, followed by synapse degeneration.
Collapse
Affiliation(s)
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
97
|
Skoug C, Holm C, Duarte JMN. Hormone-sensitive lipase is localized at synapses and is necessary for normal memory functioning in mice. J Lipid Res 2022; 63:100195. [PMID: 35300984 PMCID: PMC9026619 DOI: 10.1016/j.jlr.2022.100195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 10/31/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is mainly present in adipose tissue where it hydrolyses diacylglycerol. Although expression of HSL has also been reported in the brain, its presence in different cellular compartments is uncertain, and its role in regulating brain lipid metabolism remains hitherto unexplored. We hypothesized HSL might play a role in regulating the availability of bioactive lipids necessary for neuronal function, and therefore investigated whether dampening HSL activity could lead to brain dysfunction. In mice, we found HSL protein and enzymatic activity throughout the brain, both localized within neurons and enriched in synapses. HSL-null mice were then analyzed using a battery of behavioral tests. Relative to wild-type littermates, HSL-null mice showed impaired short- and long-term memory, yet preserved exploratory behaviurs. Molecular analysis of the cortex and hippocampus showed increased expression of genes involved in glucose utilization in the hippocampus, but not cortex, of HSL-null mice compared to controls. Furthermore, lipidomics analyses indicated an impact of HSL deletion on the profile of bioactive lipids, including a decrease in endocannabinoids and eicosanoids that are known to modulate neuronal activity, cerebral blood flow, and inflammation processes. Accordingly, mild increases in the expression of pro-inflammatory cytokines in HSL mice compared to littermates were suggestive of low-grade inflammation. We conclude that HSL has a homeostatic role in maintaining pools of lipids required for normal brain function. It remains to be tested, however, whether the recruitment of HSL for the synthesis of these lipids occurs during increased neuronal activity, or whether HSL participates in neuroinflammatory responses.
Collapse
Affiliation(s)
- Cecilia Skoug
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden; Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sweden; Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Sweden.
| |
Collapse
|
98
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
99
|
Hobson BD, Choi SJ, Mosharov EV, Soni RK, Sulzer D, Sims PA. Subcellular proteomics of dopamine neurons in the mouse brain. eLife 2022; 11:e70921. [PMID: 35098924 PMCID: PMC8860448 DOI: 10.7554/elife.70921] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/30/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurons modulate neural circuits and behaviors via dopamine (DA) release from expansive, long range axonal projections. The elaborate cytoarchitecture of these neurons is embedded within complex brain tissue, making it difficult to access the neuronal proteome using conventional methods. Here, we demonstrate APEX2 proximity labeling within genetically targeted neurons in the mouse brain, enabling subcellular proteomics with cell-type specificity. By combining APEX2 biotinylation with mass spectrometry, we mapped the somatodendritic and axonal proteomes of midbrain dopaminergic neurons. Our dataset reveals the proteomic architecture underlying proteostasis, axonal metabolism, and neurotransmission in these neurons. We find that most proteins encoded by DA neuron-enriched genes are localized within striatal dopaminergic axons, including ion channels with previously undescribed axonal localization. These proteomic datasets provide a resource for neuronal cell biology, and this approach can be readily adapted for study of other neural cell types.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Medical Scientist Training Program, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Psychiatry, Columbia University Irving Medical CenterNew YorkUnited States
| | - Se Joon Choi
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Rajesh K Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical CenterNew YorkUnited States
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
- Department of Neurology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Pharmacology, Columbia University Irving Medical CenterNew YorkUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical CenterNew YorkUnited States
- Sulzberger Columbia Genome Center, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
100
|
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022; 100:835-854. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Life expectancy in humans is increasing, resulting in a growing aging population, that is accompanied by an increased disposition to develop cognitive deterioration. Hypometabolism is one of the multiple factors related to inefficient brain function during aging. This review emphasizes the metabolic interactions between glial cells (astrocytes, oligodendrocytes, and microglia) and neurons, particularly, during aging. Glial cells provide support and protection to neurons allowing adequate synaptic activity. We address metabolic coupling from the expression of transporters, availability of substrates, metabolic pathways, and mitochondrial activity. In aging, the main metabolic exchange machinery is altered with inefficient levels of nutrients and detrimental mitochondrial activity that results in high reactive oxygen species levels and reduced ATP production, generating a highly inflammatory environment that favors deregulated cell death. Here, we provide an overview of the glial-to-neuron mechanisms, from the molecular components to the cell types, emphasizing aging as the crucial risk factor for developing neurodegenerative/neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Stem Cells and Neuroregeneration, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Janelia Research Campus, HHMI, Ashburn, VA, USA
| |
Collapse
|