51
|
Talpalar AE, Kiehn O. Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CpG. Front Neural Circuits 2010; 4. [PMID: 20844601 PMCID: PMC2938926 DOI: 10.3389/fncir.2010.00019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 07/12/2010] [Indexed: 11/13/2022] Open
Abstract
Locomotion is a fundamental motor act that, to a large degree, is controlled by central pattern-generating (CPG) networks in the spinal cord. Glutamate is thought to be responsible for most of the excitatory input to and the excitatory activity within the locomotor CPG. However, previous studies in mammals have produced conflicting results regarding the necessity and role of the different ionotropic glutamate receptors (GluRs) in the CPG function. Here, we use electrophysiological and pharmacological techniques in the in vitro neonatal mouse lumbar spinal cord to investigate the role of a broad range of ionotropic GluRs in the control of locomotor speed and intrinsic locomotor network function. We show that non-NMDA (non-NMDARs) and NMDA receptor (NMDAR) systems may independently mediate locomotor-like activity and that these receptors set different speeds of locomotor-like activity through mechanisms acting at various network levels. AMPA and kainate receptors are necessary for generating the highest locomotor frequencies. For coordination, NMDARs are more important than non-NMDARs for conveying the rhythmic signal from the network to the motor neurons during long-lasting and steady locomotor activity. This study reveals that a diversity of ionotropic GluRs tunes the network to perform at different locomotor speeds and provides multiple levels for potential regulation and plasticity.
Collapse
Affiliation(s)
- Adolfo E Talpalar
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | | |
Collapse
|
52
|
Schmidt HD, Pierce RC. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann N Y Acad Sci 2010; 1187:35-75. [PMID: 20201846 DOI: 10.1111/j.1749-6632.2009.05144.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence indicates that repeated exposure to cocaine leads to profound changes in glutamate transmission in limbic nuclei, particularly the nucleus accumbens. This review focuses on preclinical studies of cocaine-induced behavioral plasticity, including behavioral sensitization, self-administration, and the reinstatement of cocaine seeking. Behavioral, pharmacological, neurochemical, electrophysiological, biochemical, and molecular biological changes associated with cocaine-induced plasticity in glutamate systems are reviewed. The ultimate goal of these lines of research is to identify novel targets for the development of therapies for cocaine craving and addiction. Therefore, we also outline the progress and prospects of glutamate modulators for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
53
|
Joslyn G, Ravindranathan A, Brush G, Schuckit M, White RL. Human Variation in Alcohol Response Is Influenced by Variation in Neuronal Signaling Genes. Alcohol Clin Exp Res 2010; 34:800-12. [DOI: 10.1111/j.1530-0277.2010.01152.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
54
|
Kranzler HR, Gelernter J, Anton RF, Arias AJ, Herman A, Zhao H, Burian L, Covault J. Association of markers in the 3' region of the GluR5 kainate receptor subunit gene to alcohol dependence. Alcohol Clin Exp Res 2010; 33:925-30. [PMID: 19320626 DOI: 10.1111/j.1530-0277.2009.00913.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Glutamate neurotransmission plays an important role in a variety of alcohol-related phenomena, including alcohol self-administration by both animals and humans. Because the risk for alcohol dependence (AD) is genetically influenced, genes encoding glutamate receptors are candidates to contribute to the risk for AD. We examined the role of variation in the 3' region of GRIK1, the gene that encodes the GluR5 receptor subunit of the kainic acid glutamate receptor, on risk for AD. We focused specifically on this gene because topiramate, a glutamate modulator that binds to the GluR5 subunit, has shown robust efficacy in the treatment of AD. METHODS We genotyped 7 single nucleotide polymorphisms (SNPs) in the 3'-half of GRIK1, which includes 3 differentially spliced exons, in a sample of EA control subjects (n = 507) and subjects with AD (n = 1,057). RESULTS We found nominally significant evidence of association to AD for 3 SNPs (rs2832407 in intron 9, rs2186305 in intron 17, and rs2832387 in the 3'UTR). Empirical p-value estimation revealed that only rs2832407 was significantly associated to phenotype (p = 0.043). DISCUSSION These findings provide support for the hypothesis that variation in the 3' portion of the gene encoding the GluR5 kainate receptor subunit contributes to the risk for AD. Further research is needed to ascertain whether this SNP is itself functional or whether the association reflects linkage disequilibrium with functional variation elsewhere in the gene and whether this SNP moderates topiramate's effects in the treatment of AD.
Collapse
Affiliation(s)
- Henry R Kranzler
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, University Health Center, Farmington, CT 06030-2103, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
|
56
|
Kranzler HR, Edenberg HJ. Pharmacogenetics of alcohol and alcohol dependence treatment. Curr Pharm Des 2010; 16:2141-8. [PMID: 20482509 PMCID: PMC4142701 DOI: 10.2174/138161210791516387] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/29/2010] [Indexed: 11/22/2022]
Abstract
In this article, we review studies of genetic moderators of the response to medications to treat alcohol dependence, the acute response to alcohol, and the response to the psychotherapeutic treatment of heavy drinking. We consider four neurotransmitter systems: opioidergic, dopaminergic, GABAergic, and glutamatergic and focus on one receptor protein in each: OPRM1 (the micro;-opioid receptor gene), DRD4 (the D(4) dopamine receptor gene), GABRA2 (GABA(A) receptor alpha-2 subunit gene), and GRIK1 (the kainite receptor GluR5 subunit gene). We conclude that because parallel developments in alcoholism treatment and the genetics of alcohol dependence are beginning to converge, using genotypic information, it may be possible to match patients with specific treatments. Of greatest clinical relevance is the finding that the presence of an Asp40 allele in OPRM1 modestly predicts a better response to naltrexone treatment. Promising findings include the observations that a polymorphism in GABRA2 predicts the response to specific psychotherapies; a polymorphism in DRD4 predicts the effects of the antipsychotic olanzapine on craving for alcohol and drinking behavior; and a polymorphism in GRIKI predicts adverse events resulting from treatment with the anticonvulsant topiramate. Although variants in other genes have been associated with the risk for alcohol dependence, they have not been studied as moderators of the response either to treatment or acute alcohol administration. We recommend that, whenever possible, treatment trials include the collection of DNA samples to permit pharmacogenetic analyses, and that such analyses look broadly for relevant genetic variation.
Collapse
Affiliation(s)
- Henry R. Kranzler
- Departments of Psychiatry and Genetics and Developmental Biology University of Connecticut Health Center 263 Farmington Ave. Farmington, CT 06030-2103
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology Indiana University School of Medicine Medical Science Building, Room 4063 635 Barnhill Drive Indianapolis, Indiana 46202-5122 Telephone: 317-274-2353 Facsimile: 317-274-4686
| |
Collapse
|
57
|
Aberrant glutamate receptor 5 expression in temporal lobe epilepsy lesions. Brain Res 2010; 1311:166-74. [DOI: 10.1016/j.brainres.2009.11.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 11/21/2022]
|
58
|
Galletti F, Cupini LM, Corbelli I, Calabresi P, Sarchielli P. Pathophysiological basis of migraine prophylaxis. Prog Neurobiol 2009; 89:176-92. [DOI: 10.1016/j.pneurobio.2009.07.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 07/14/2009] [Accepted: 07/28/2009] [Indexed: 01/04/2023]
|
59
|
Fritsch B, Qashu F, Figueiredo TH, Aroniadou-Anderjaska V, Rogawski MA, Braga MF. Pathological alterations in GABAergic interneurons and reduced tonic inhibition in the basolateral amygdala during epileptogenesis. Neuroscience 2009; 163:415-29. [PMID: 19540312 PMCID: PMC2733834 DOI: 10.1016/j.neuroscience.2009.06.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/11/2009] [Accepted: 06/15/2009] [Indexed: 11/18/2022]
Abstract
An acute brain insult such as traumatic head/brain injury, stroke, or an episode of status epilepticus can trigger epileptogenesis, which, after a latent, seizure-free period, leads to epilepsy. The discovery of effective pharmacological interventions that can prevent the development of epilepsy requires knowledge of the alterations that occur during epileptogenesis in brain regions that play a central role in the induction and expression of epilepsy. In the present study, we investigated pathological alterations in GABAergic interneurons in the rat basolateral amygdala (BLA), and the functional impact of these alterations on inhibitory synaptic transmission, on days 7 to 10 after status epilepticus induced by kainic acid. Using design-based stereology combined with glutamic acid decarboxylase (GAD) 67 immunohistochemistry, we found a more extensive loss of GABAergic interneurons compared to the loss of principal cells. Fluoro-Jade C staining showed that neuronal degeneration was still ongoing. These alterations were accompanied by an increase in the levels of GAD and the alpha1 subunit of the GABA(A) receptor, and a reduction in the GluK1 (previously known as GluR5) subunit, as determined by Western blots. Whole-cell recordings from BLA pyramidal neurons showed a significant reduction in the frequency and amplitude of action potential-dependent spontaneous inhibitory postsynaptic currents (IPSCs), a reduced frequency but not amplitude of miniature IPSCs, and impairment in the modulation of IPSCs via GluK1-containing kainate receptors (GluK1Rs). Thus, in the BLA, GABAergic interneurons are more vulnerable to seizure-induced damage than principal cells. Surviving interneurons increase their expression of GAD and the alpha1 GABA(A) receptor subunit, but this does not compensate for the interneuronal loss; the result is a dramatic reduction of tonic inhibition in the BLA circuitry. As activation of GluK1Rs by ambient levels of glutamate facilitates GABA release, the reduced level and function of these receptors may contribute to the reduction of tonic inhibitory activity. These alterations at a relatively early stage of epileptogenesis may facilitate the progress towards the development of epilepsy.
Collapse
Affiliation(s)
- Brita Fritsch
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felicia Qashu
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Taiza H. Figueiredo
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Vassiliki Aroniadou-Anderjaska
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Michael A. Rogawski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Maria F.M. Braga
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| |
Collapse
|
60
|
Filippi L, la Marca G, Fiorini P, Poggi C, Cavallaro G, Malvagia S, Pellegrini-Giampietro DE, Guerrini R. Topiramate concentrations in neonates treated with prolonged whole body hypothermia for hypoxic ischemic encephalopathy. Epilepsia 2009; 50:2355-61. [PMID: 19744111 DOI: 10.1111/j.1528-1167.2009.02302.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Therapeutic hypothermia reduces mortality and neurologic impairment in neonates with hypoxic-ischemic encephalopathy. Topiramate exerts a neuroprotective effect in asphyxiated neonatal animal models. However, no studies have investigated the association of hypothermia and topiramate, because topiramate pharmacokinetics during hypothermia and the optimal administration schedule are unknown. The influence of hypothermia on topiramate pharmacokinetics was evaluated in asphyxiated neonates treated with prolonged whole-body hypothermia and topiramate. METHODS Thirteen term newborns were treated with mild or deep whole body hypothermia for 72 h; all received oral topiramate, 5 mg/kg once a day for the first 3 days of life, and seven had concomitant phenobarbital treatment. Topiramate concentrations were measured on serial dried blood spots. RESULTS Topiramate concentrations were within the reference range in 11 of 13 newborns, whereas concentrations exceeded the upper limit in 2 of 13, both newborns on deep hypothermia. Topiramate concentrations reached a virtual steady state in nine newborns, for whom pharmacokinetic parameters were calculated. Values of topiramate maximal and minimal concentration, half-life, average concentration, and area under the time-concentration curve resulted in considerably higher values than those reported in normothermic infants. With respect to normothermic infants, time of maximal concentration was mildly delayed and apparent total body clearance was lower, suggesting slower absorption and elimination. Pharmacokinetic parameters did not differ significantly between infants on deep versus mild hypothermia and in those on topiramate monotherapy versus add-on phenobarbital. CONCLUSION Most neonates on prolonged hypothermia treated with topiramate 5 mg/kg once a day exhibited drug concentrations within the reference range for the entire treatment duration.
Collapse
Affiliation(s)
- Luca Filippi
- Neonatal Intensive Care Unit, Department of Critical Care Medicine, A. Meyer University Children's Hospital, Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Braga MFM, Aroniadou-Anderjaska V, Li H, Rogawski MA. Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons. J Pharmacol Exp Ther 2009; 330:558-66. [PMID: 19417176 DOI: 10.1124/jpet.109.153908] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Topiramate [2,3:4,5-bis-O-(1-methylethylidene)-beta-D-fructopyranose sulfamate] is a structurally novel antiepileptic drug that has broad efficacy in epilepsy, but the mechanisms underlying its therapeutic activity are not fully understood. We have found that topiramate selectively inhibits GluK1 (GluR5) kainate receptor-mediated excitatory postsynaptic responses in rat basolateral amygdala (BLA) principal neurons and protects against seizures induced by the GluK1 kainate receptor agonist (R,S)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA). Here, we demonstrate that topiramate also modulates inhibitory function in the BLA. Using whole-cell recordings in rat amygdala slices, we found that 0.3 to 10 microM topiramate 1) inhibited ATPA-evoked postsynaptic currents recorded from BLA interneurons; 2) suppressed ATPA-induced enhancement of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from BLA pyramidal cells; and 3) blocked ATPA-induced suppression of evoked IPSCs, which is mediated by presynaptic GluK1 kainate receptors present on BLA interneurons. Topiramate (10 microM) had no effect on the AMPA [(R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid]-induced enhancement of spontaneous activity of BLA neurons. Thus, although topiramate inhibits GluK1 kainate receptor-mediated enhancement of interneuron firing, it promotes evoked GABA release, leading to a net inhibition of circuit excitability. In addition, we found that topiramate (0.3-10 microM) increased the amplitude of evoked, spontaneous, and miniature IPSCs in BLA pyramidal neurons, indicating an enhancement of postsynaptic GABA(A) receptor responses. Taken together with our previous findings, we conclude that topiramate protects against hyperexcitability in the BLA by suppressing the GluK1 kainate receptor-mediated excitation of principal neurons by glutamatergic afferents, blocking the suppression of GABA release from interneurons mediated by presynaptic GluK1 kainate receptors and directly enhancing GABA(A) receptor-mediated inhibitory currents.
Collapse
Affiliation(s)
- Maria F M Braga
- Department of Neurology, F Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
62
|
Ray LA, Miranda R, MacKillop J, McGeary J, Tidey J, Rohsenow DJ, Gwaltney C, Swift R, Monti PM. A preliminary pharmacogenetic investigation of adverse events from topiramate in heavy drinkers. Exp Clin Psychopharmacol 2009; 17:122-9. [PMID: 19331489 PMCID: PMC3682424 DOI: 10.1037/a0015700] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Topiramate, an anticonvulsant medication, is an efficacious treatment for alcohol dependence. To date, little is known about genetic moderators of side effects from topiramate. The objective of this study was to examine 3 single nucleotide polymorphisms (SNPs) of the glutamate receptor GluR5 gene (GRIK1) as predictors of topiramate-induced side effects in the context of a laboratory study of topiramate. Heavy drinkers (n=51, 19 women and 32 men), 75% of whom met criteria for an alcohol use disorder, completed a 5-week dose escalation schedule to a target dose of either 200 or 300 mg or matched placebo. The combined medication groups were compared with placebo-treated individuals for side effects at target dose. Analyses revealed that an SNP in intron 9 of the GRIK1 gene (rs2832407) was associated with the severity of topiramate-induced side effects and with serum levels of topiramate. Genes underlying glutamatergic neurotransmission, such as the GRIK1 gene, may help predict heterogeneity in topiramate-induced side effects. Future studies in larger samples are needed to more fully establish these preliminary findings.
Collapse
Affiliation(s)
- Lara A. Ray
- Center for Alcohol and Addiction Studies, Brown University,Department of Psychology, University of California Los Angeles
| | - Robert Miranda
- Center for Alcohol and Addiction Studies, Brown University
| | - James MacKillop
- Center for Alcohol and Addiction Studies, Brown University,Department of Psychology, University of Georgia
| | - John McGeary
- Center for Alcohol and Addiction Studies, Brown University,Providence Veterans Affairs Medical Center
| | - Jennifer Tidey
- Center for Alcohol and Addiction Studies, Brown University
| | - Damaris J. Rohsenow
- Center for Alcohol and Addiction Studies, Brown University,Providence Veterans Affairs Medical Center
| | - Chad Gwaltney
- Center for Alcohol and Addiction Studies, Brown University
| | - Robert Swift
- Center for Alcohol and Addiction Studies, Brown University,Providence Veterans Affairs Medical Center
| | - Peter M. Monti
- Center for Alcohol and Addiction Studies, Brown University,Providence Veterans Affairs Medical Center
| |
Collapse
|
63
|
Vincent P, Mulle C. Kainate receptors in epilepsy and excitotoxicity. Neuroscience 2009; 158:309-23. [DOI: 10.1016/j.neuroscience.2008.02.066] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/12/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
64
|
Kainate receptors: Pharmacology, function and therapeutic potential. Neuropharmacology 2009; 56:90-113. [DOI: 10.1016/j.neuropharm.2008.08.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/04/2008] [Accepted: 08/07/2008] [Indexed: 01/28/2023]
|
65
|
Apland JP, Aroniadou-Anderjaska V, Braga MFM. Soman induces ictogenesis in the amygdala and interictal activity in the hippocampus that are blocked by a GluR5 kainate receptor antagonist in vitro. Neuroscience 2008; 159:380-9. [PMID: 19136046 DOI: 10.1016/j.neuroscience.2008.11.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/07/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
Exposure to organophosphorus nerve agents induces brain seizures, which can cause profound brain damage resulting in death or long-term cognitive deficits. The amygdala and the hippocampus are two of the most seizure-prone brain structures, but their relative contribution to the generation of seizures after nerve agent exposure is unclear. Here, we report that application of 1 muM soman for 30 min, in rat coronal brain slices containing both the hippocampus and the amygdala, produces prolonged synchronous neuronal discharges (10-40 s duration, 1.5-5 min interval of occurrence) resembling ictal activity in the basolateral nucleus of the amygdala (BLA), but only interictal-like activity ("spikes" of 100-250 ms duration; 2-5 s interval) in the pyramidal cell layer of the CA1 hippocampal area. BLA ictal- and CA1 interictal-like activity were synaptically driven, as they were blocked by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. As the expression of the GluR5 subunit of kainate receptors is high in the amygdala, and kainate receptors containing this subunit (GluR5KRs) play an important role in the regulation of neuronal excitability in both the amygdala and the hippocampus, we tested the efficacy of a GluR5KR antagonist against the epileptiform activity induced by soman. The GluR5KR antagonist UBP302 reduced the amplitude of the hippocampal interictal-like spikes, and eliminated the seizure-like discharges in the BLA, or reduced their duration and frequency, with no significant effect on the evoked field potentials. This is the first study reporting in vitro ictal-like activity in response to a nerve agent. Our findings, along with previous literature, suggest that the amygdala may play a more important role than the hippocampus in the generation of seizures following soman exposure, and provide the first evidence that GluR5KR antagonists may be an effective treatment against nerve agent-induced seizures.
Collapse
Affiliation(s)
- J P Apland
- Neurotoxicology Branch, USAMRICD, Aberdeen Proving Ground (EA), MD 21010, USA
| | | | | |
Collapse
|
66
|
Läck AK, Ariwodola OJ, Chappell AM, Weiner JL, McCool BA. Ethanol inhibition of kainate receptor-mediated excitatory neurotransmission in the rat basolateral nucleus of the amygdala. Neuropharmacology 2008; 55:661-8. [PMID: 18617194 PMCID: PMC2615485 DOI: 10.1016/j.neuropharm.2008.05.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
Abstract
The neurobiological mechanisms governing alcohol-induced alterations in anxiety-like behaviors are not fully understood. Given that the amygdala is a major emotional center in the brain and regulates the expression of both learned fear and anxiety, neurotransmitter systems within the basolateral amygdala represent likely mechanisms governing the anxiety-related effects of acute ethanol exposure. It is well established that, within the glutamatergic system, N-methyl-d-aspartate (NMDA)-type receptors are particularly sensitive to intoxicating concentrations of ethanol. However, recent evidence suggests that kainate-type glutamate receptors are sensitive to ethanol as well. Therefore, we examined the effect of acute ethanol on kainate receptor (KA-R)-mediated synaptic transmission in the basolateral amygdala (BLA) of Sprague-Dawley rats. Acute ethanol decreased KA-R-mediated excitatory postsynaptic currents (EPSCs) in the BLA in a concentration-dependent manner. Ethanol also inhibited currents evoked by focal application of the kainate receptor agonist (R,S)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), and ethanol inhibition of kainate EPSCs was not associated with a change in paired-pulse ratio, suggesting a postsynaptic mechanism of ethanol action. The neurophysiological consequences of this acute sensitivity were tested by measuring ethanol's effects on KA-R-dependent modulation of synaptic plasticity. Acute ethanol, like the GluR5-specific antagonist (R,S)-3-(2-carboxybenzyl)willardiine (UBP 296), robustly diminished ATPA-induced increases in synaptic efficacy. Lastly, to better understand the relationship between KA-R activity and anxiety-like behavior, we bilaterally microinjected ATPA directly into the BLA. We observed an increase in measures of anxiety-like behavior, assessed in the light/dark box, with no change in locomotor activity. This evidence suggests that kainate receptors in the BLA are inhibited by pharmacologically relevant concentrations of ethanol and may contribute to some of the acute anxiolytic effects of this drug.
Collapse
Affiliation(s)
- A K Läck
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
67
|
Activation of kainate GLU(K5) transmission rescues kindling-induced impairment of LTP in the rat lateral amygdala. Neuropsychopharmacology 2008; 33:2524-35. [PMID: 18046310 DOI: 10.1038/sj.npp.1301633] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amygdala is a component of the limbic system that plays a central role in emotional behavior and certain psychiatric diseases. Pathophysiological alterations of neuronal excitability in the amygdala are characteristic features of temporal lobe epilepsy and certain (epilepsy accompanying) psychiatric illnesses such as anxiety and depressive disorders. The role of kainate receptors in the activity of synaptic networks, in brain function, and diseases is still poorly understood. Various kainate receptor subtypes have been shown to contribute to synaptic transmission and modulate presynaptic release of glutamate and gamma-aminobutyric acid (GABA). Several lines of evidence point to the importance of GLU(K5) kainate receptors in epilepsy. In this study we investigated the role of specific GLU(K5) kainate receptor in the lateral nucleus of the amygdala (LA). The cellular mechanisms for emotional learning in the amygdala are believed to be the result of changes in synaptic transmission efficacy, similar to long-term potentiation (LTP). Here, we used both field potential and intracellular recordings in horizontal rat amygdala slices, and showed that LTP in the LA, induced by high-frequency stimulation of afferents running within LA, is impaired 48 h after the last induced seizure. This kindling-induced impairment was reversed by the specific kainate GLU(K5) agonist ATPA. Partial blockade of GABAergic transmission with the specific GABA(A) receptor antagonist SR95531 also significantly facilitated the induction of early LA-LTP, but only partially abolished the kindling-induced impairment of LA-LTP. This study shows that the stimulation of the GLU(K5) kainate receptor subtype rescues the kindling-induced impairment of LA-LTP at least within 48 h after the last seizure. Therefore, GLU(K5) kainate receptor subunits are involved in kindling-induced plasticity changes in the amygdala.
Collapse
|
68
|
Henschel O, Gipson KE, Bordey A. GABAA receptors, anesthetics and anticonvulsants in brain development. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:211-24. [PMID: 18537647 PMCID: PMC2557552 DOI: 10.2174/187152708784083812] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GABA, acting via GABA(A) receptors, is well-accepted as the main inhibitory neurotransmitter of the mature brain, where it dampens neuronal excitability. The receptor's properties have been studied extensively, yielding important information about its structure, pharmacology, and regulation that are summarized in this review. Several GABAergic drugs have been commonly used as anesthetics, sedatives, and anticonvulsants for decades. However, findings that GABA has critical functions in brain development, in particular during the late embryonic and neonatal period, raise worthwhile questions regarding the side effects of GABAergic drugs that may lead to long-term cognitive deficits. Here, we will review some of these drugs in parallel with the control of CNS development that GABA exerts via activation of GABA(A) receptors. This review aims to provide a basic science and clinical perspective on the function of GABA and related pharmaceuticals acting at GABA(A) receptors.
Collapse
Affiliation(s)
- Oliver Henschel
- Department of Neurosurgery, Yale University, New Haven, CT 06520-8082, USA
| | | | | |
Collapse
|
69
|
Johannessen Landmark C. Antiepileptic drugs in non-epilepsy disorders: relations between mechanisms of action and clinical efficacy. CNS Drugs 2008; 22:27-47. [PMID: 18072813 DOI: 10.2165/00023210-200822010-00003] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antiepileptic drugs (AEDs) are used extensively to treat multiple non-epilepsy disorders, both in neurology and psychiatry. This article provides a review of the clinical efficacy of AEDs in non-epilepsy disorders based on recently published preclinical and clinical studies, and attempts to relate this efficacy to the mechanism of action of AEDs and pathophysiological processes associated with the disorders. Some newer indications for AEDs have been established, while others are under investigation. The disorders where AEDs have been demonstrated to be of clinical importance include neurological disorders, such as essential tremor, neuropathic pain and migraine, and psychiatric disorders, including anxiety, schizophrenia and bipolar disorder. Many of the AEDs have various targets of action in the synapse and have several proposed relevant mechanisms of action in epilepsy and in other disorders. Pathophysiological processes disturb neuronal excitability by modulating ion channels, receptors and intracellular signalling pathways, and these are targets for the pharmacological action of various AEDs. Attention is focused on the glutamatergic and GABAergic synapses. In psychiatric conditions such as schizophrenia and bipolar disorder, AEDs such as valproate, carbamazepine and lamotrigine appear to have clear roles based on their effect on intracellular pathways. On the other hand, some AEDs, e.g. topiramate, have efficacy for nonpsychiatric disorders including migraine, possibly by enhancing GABAergic and reducing glutamatergic neurotransmission. AEDs that seem to enhance GABAergic neurotransmission, e.g. tiagabine, valproate, gabapentin and possibly levetiracetam, may have a role in treating neurological disorders such as essential tremor, or anxiety disorders. AEDs with effects on voltage-gated sodium or calcium channels may be advantageous in treating neuropathic pain, e.g. gabapentin, pregabalin, carbamazepine, oxcarbazepine, lamotrigine and valproate. Co-morbid conditions associated with epilepsy, such as mood disorders and migraine, may often respond to treatment with AEDs. Other possible disorders where AEDs may be of clinical importance include cancer, HIV infection, drug and alcohol abuse, and also in neuroprotection. A future challenge is to evaluate the second-generation AEDs in non-epilepsy disorders and to design clinical trials to study their effects in such disorders in paediatric patients. Differentiation between the main mechanisms of action of the AEDs needs more consideration in drug selection for tailored treatment of the various non-epilepsy disorders.
Collapse
|
70
|
Landmark CJ, Johannessen SI. Modifications of Antiepileptic Drugs for Improved Tolerability and Efficacy. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1177/1177391x0800200001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction A large number of antiepileptic drugs (AEDs) are available today, but they may not be satisfactory regarding clinical efficacy, tolerance, toxicity or pharmacokinetic properties. The purpose of this review is to focus upon the rationale behind the chemical modifications of several recently marketed AEDs or drugs in development and to categorize them according to the main purposes for the improvements: better efficacy or tolerability accompanied by improved pharmacokinetic properties. Material and Method AEDs that have been chemically modified to new derivatives during the last years are reviewed based on recent publications and PubMed-searches. Results and Discussion Improvement in pharmacokinetic parameters may affect both tolerability and efficacy. Modifications to improve tolerability include various valproate analogues, divided into aliphatic amides, cyclic derivatives or amino acid conjugates. Furthermore, there are the carbamazepine analogues oxcarbazepine and eslicarbazepine, the felbamate analogues fluorofelbamate and carisbamate (RWJ 33369), and the lamotrigine analogue JZP-4. The levetiracetam analogues brivaracetam and seletracetam and the derivatives of gabapentin, pregabalin and XP13512, have improved selectivity compared to their parent compounds. Other new drugs have new mechanisms of action related to GABA and glutamate receptors; the glutamate antagonists like topiramate (talampanel and NS-1209), and GABAA receptor agonists, benzodiazepine or progesterone analogues (ELB-139 and ganaxolone). Conclusion Further challenges for development of new AEDs include investigations of target molecules affected by pathophysiological processes and detailed structure-activity relationships with focus on stereoselectivity. These potential drugs may become of importance in future drug therapy in epilepsy and other CNS disorders.
Collapse
Affiliation(s)
| | - Svein I. Johannessen
- National Center for Epilepsy, Sandvika, Division of Clinical Neuroscience, Rikshospitalet University Hospital, Oslo, Norway
| |
Collapse
|
71
|
Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MFM. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 2008; 78:102-16. [PMID: 18226499 PMCID: PMC2272535 DOI: 10.1016/j.eplepsyres.2007.11.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/20/2007] [Accepted: 11/30/2007] [Indexed: 11/20/2022]
Abstract
Acute brain insults, such as traumatic brain injury, status epilepticus, or stroke are common etiologies for the development of epilepsy, including temporal lobe epilepsy (TLE), which is often refractory to drug therapy. The mechanisms by which a brain injury can lead to epilepsy are poorly understood. It is well recognized that excessive glutamatergic activity plays a major role in the initial pathological and pathophysiological damage. This initial damage is followed by a latent period, during which there is no seizure activity, yet a number of pathophysiological and structural alterations are taking place in key brain regions, that culminate in the expression of epilepsy. The process by which affected/injured neurons that have survived the acute insult, along with well-preserved neurons are progressively forming hyperexcitable, epileptic neuronal networks has been termed epileptogenesis. Understanding the mechanisms of epileptogenesis is crucial for the development of therapeutic interventions that will prevent the manifestation of epilepsy after a brain injury, or reduce its severity. The amygdala, a temporal lobe structure that is most well known for its central role in emotional behavior, also plays a key role in epileptogenesis and epilepsy. In this article, we review the current knowledge on the pathology of the amygdala associated with epileptogenesis and/or epilepsy in TLE patients, and in animal models of TLE. In addition, because a derangement in the balance between glutamatergic and GABAergic synaptic transmission is a salient feature of hyperexcitable, epileptic neuronal circuits, we also review the information available on the role of the glutamatergic and GABAergic systems in epileptogenesis and epilepsy in the amygdala.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
72
|
Abstract
Topiramate (Topamax) is a structurally novel broad-spectrum antiepileptic drug (AED) with established efficacy as monotherapy or adjunctive therapy in the treatment of adult and paediatric patients with generalised tonic-clonic seizures, partial seizures with or without generalised seizures, and seizures associated with Lennox-Gastaut syndrome. The incidence and severity of many adverse events, including CNS-related events, may be reduced through the use of slow titration to effective and well tolerated dosages. It is associated with few clinically significant interactions with other drugs, is effective when used with other AEDs, is not associated with drug-induced weight gain and, at lower dosages, does not interfere with the effectiveness of oral contraceptives. Therefore, topiramate is a valuable option as monotherapy or adjunctive therapy in the treatment of epilepsy in adult and paediatric patients.
Collapse
|
73
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
74
|
McElroy SL, Hudson JI, Capece JA, Beyers K, Fisher AC, Rosenthal NR. Topiramate for the treatment of binge eating disorder associated with obesity: a placebo-controlled study. Biol Psychiatry 2007; 61:1039-48. [PMID: 17258690 DOI: 10.1016/j.biopsych.2006.08.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/10/2006] [Accepted: 08/11/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND In a single-center, placebo-controlled study, topiramate reduced binge eating and weight in patients with binge eating disorder (BED) and obesity. The current investigation evaluated the safety and efficacy of topiramate in a multicenter, placebo-controlled trial. METHODS Eligible patients between 18 and 65 years with >or= 3 binge eating days/week and a body mass index (BMI) between 30 and 50 kg/m2 were randomized. RESULTS A total of 407 patients enrolled; 13 failed to meet inclusion criteria, resulting in 195 topiramate and 199 placebo patients. Topiramate reduced binge eating days/week (-3.5 +/- 1.9 vs. -2.5 +/- 2.1), binge episodes/week (-5.0 +/- 4.3 vs. -3.4 +/- 3.8), weight (-4.5 +/- 5.1 kg vs. .2 +/- 3.2 kg), and BMI (-1.6 +/- 1.8 kg/m2 vs. .1 +/- 1.2 kg/m2) compared with placebo (p < .001). Topiramate induced binge eating remission in 58% of patients (placebo, 29%; p < .001). Discontinuation rates were 30% in each group; adverse events (AEs) were the most common reason for topiramate discontinuation (16%; placebo, 8%). Paresthesia, upper respiratory tract infection, somnolence, and nausea were the most common AEs with topiramate. CONCLUSIONS This multicenter study in patients with BED associated with obesity demonstrated that topiramate was well tolerated and efficacious in improving the features of BED and in reducing obesity.
Collapse
Affiliation(s)
- Susan L McElroy
- Psychopharmacology Research Program, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0559, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Hartman AL, Gasior M, Vining EPG, Rogawski MA. The neuropharmacology of the ketogenic diet. Pediatr Neurol 2007; 36:281-92. [PMID: 17509459 PMCID: PMC1940242 DOI: 10.1016/j.pediatrneurol.2007.02.008] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 12/12/2006] [Accepted: 02/19/2007] [Indexed: 11/30/2022]
Abstract
The ketogenic diet is a valuable therapeutic approach for epilepsy, one in which most clinical experience has been with children. Although the mechanism by which the diet protects against seizures is unknown, there is evidence that it causes effects on intermediary metabolism that influence the dynamics of the major inhibitory and excitatory neurotransmitter systems in brain. The pattern of protection of the ketogenic diet in animal models of seizures is distinct from that of other anticonvulsants, suggesting that it has a unique mechanism of action. During consumption of the ketogenic diet, marked alterations in brain energy metabolism occur, with ketone bodies partly replacing glucose as fuel. Whether these metabolic changes contribute to acute seizure protection is unclear; however, the ketone body acetone has anticonvulsant activity and could play a role in the seizure protection afforded by the diet. In addition to acute seizure protection, the ketogenic diet provides protection against the development of spontaneous recurrent seizures in models of chronic epilepsy, and it has neuroprotective properties in diverse models of neurodegenerative disease.
Collapse
Affiliation(s)
- Adam L Hartman
- John M. Freeman Pediatric Epilepsy Center, Johns Hopkins Hospital, Baltimore, Maryland 21287, USA.
| | | | | | | |
Collapse
|
76
|
West PJ, Dalpé-Charron A, Wilcox KS. Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. Neuroscience 2007; 146:1000-12. [PMID: 17395391 PMCID: PMC2921318 DOI: 10.1016/j.neuroscience.2007.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/02/2007] [Accepted: 02/19/2007] [Indexed: 02/02/2023]
Abstract
Although in situ hybridization studies have revealed the presence of kainate receptor (KAR) mRNA in neurons of the rat medial entorhinal cortex (mEC), the functional presence and roles of these receptors are only beginning to be examined. To address this deficiency, whole cell voltage clamp recordings of locally evoked excitatory postsynaptic currents (EPSCs) were made from mEC layer II and III neurons in combined entorhinal cortex-hippocampal brain slices. Three types of neurons were identified by their electroresponsive membrane properties, locations, and morphologies: stellate-like "Sag" neurons in layer II (S), pyramidal-like "No Sag" neurons in layer III (NS), and "Intermediate Sag" neurons with varied morphologies and locations (IS). Non-NMDA EPSCs in these neurons were composed of two components, and the slow decay component in NS neurons had larger amplitudes and contributed more to the combined EPSC than did those observed in S and IS neurons. This slow component was mediated by KARs and was characterized by its resistance to either 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466, 100 microM) or 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[lsqb]f[rsqb]quinoxaline-7-sulfonamide (NBQX, 1 microM), relatively slow decay kinetics, and sensitivity to 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10-50 microM). KAR-mediated EPSCs in pyramidal-like NS neurons contributed significantly more to the combined non-NMDA EPSC than did those from S and IS neurons. Layer III neurons of the mEC are selectively susceptible to degeneration in human temporal lobe epilepsy (TLE) and animal models of TLE such as kainate-induced status epilepticus. Characterizing differences in the complement of postsynaptic receptors expressed in injury prone versus injury resistant mEC neurons represents an important step toward understanding the vulnerability of layer III neurons seen in TLE.
Collapse
Affiliation(s)
- P J West
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
77
|
Abstract
This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the alpha subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, alpha2-delta voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABA(A) receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABA(B) and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABA(A) receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies.
Collapse
Affiliation(s)
- Brian S Meldrum
- Centre for Neuroscience, Division of Biomedical and Health Sciences, School of Medicine, Kings College, London, United Kingdom
| | | |
Collapse
|
78
|
Choi JW, Kim WK. Is topiramate a potential therapeutic agent for cerebral hypoxic/ischemic injury? Exp Neurol 2007; 203:5-7. [PMID: 17070522 DOI: 10.1016/j.expneurol.2006.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Accepted: 09/26/2006] [Indexed: 11/26/2022]
Affiliation(s)
- Ji Woong Choi
- Division of NanoSciences, Ewha Woman's University, 11-1, Daehyun-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | | |
Collapse
|
79
|
Aroniadou-Anderjaska V, Qashu F, Braga MFM. Mechanisms regulating GABAergic inhibitory transmission in the basolateral amygdala: implications for epilepsy and anxiety disorders. Amino Acids 2006; 32:305-15. [PMID: 17048126 DOI: 10.1007/s00726-006-0415-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 08/09/2006] [Indexed: 11/26/2022]
Abstract
The amygdala, a temporal lobe structure that is part of the limbic system, has long been recognized for its central role in emotions and emotional behavior. Pathophysiological alterations in neuronal excitability in the amygdala are characteristic features of certain psychiatric illnesses, such as anxiety disorders and depressive disorders. Furthermore, neuronal excitability in the amygdala, and, in particular, excitability of the basolateral nucleus of the amygdala (BLA) plays a pivotal role in the pathogenesis and symptomatology of temporal lobe epilepsy. Here, we describe two recently discovered mechanisms regulating neuronal excitability in the BLA, by modulating GABAergic inhibitory transmission. One of these mechanisms involves the regulation of GABA release via kainate receptors containing the GluR5 subunit (GluR5KRs). In the rat BLA, GluR5KRs are present on both somatodendritic regions and presynaptic terminals of GABAergic interneurons, and regulate GABA release in an agonist concentration-dependent, bidirectional manner. The relevance of the GluR5KR function to epilepsy is suggested by the findings that GluR5KR agonists can induce epileptic activity, whereas GluR5KR antagonists can prevent it. Further support for an important role of GluR5KRs in epilepsy comes from the findings that antagonism of GluR5KRs is a primary mechanism underlying the antiepileptic properties of the anticonvulsant topiramate. Another mechanism regulating neuronal excitability in the BLA by modulating GABAergic synaptic transmission is the facilitation of GABA release via presynaptic alpha1A adrenergic receptors. This mechanism may significantly underlie the antiepileptic properties of norepinephrine. Notably, the alpha1A adrenoceptor-mediated facilitation of GABA release is severely impaired by stress. This stress-induced impairment in the noradrenergic facilitation of GABA release in the BLA may underlie the hyperexcitability of the amygdala in certain stress-related affective disorders, and may explain the stress-induced exacerbation of seizure activity in epileptic patients.
Collapse
Affiliation(s)
- V Aroniadou-Anderjaska
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
80
|
Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I. Substantia Nigra Is an Anticonvulsant Site of Action of Topiramate in the Focal Pilocarpine Model of Limbic Seizures. Epilepsia 2006; 47:1519-35. [PMID: 16981869 DOI: 10.1111/j.1528-1167.2006.00625.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The substantia nigra pars reticulata (SNR) is known to play a role in gating and control of seizures. Prompted by the observation that intrahippocampal topiramate (TPM) administration does not suppress limbic seizures in the focal pilocarpine model, we investigated the role of the SNR in the anticonvulsant mechanism of action of TPM. METHODS Limbic seizures were evoked in freely moving rats by intrahippocampal administration of pilocarpine via a microdialysis probe. Changes in hippocampal extracellular (EC) glutamate and GABA concentrations were monitored. Effects of intraperitoneal (10-200 mg/kg), intrahippocampal (1-5 mM), and bilateral intranigral (100-300 nmol) TPM administration on pilocarpine-induced seizures and neurochemical changes were evaluated. Effects of TPM administration alone on hippocampal and nigral EC amino acid concentrations were also studied. RESULTS Systemic and intranigral, but not intrahippocampal TPM administration suppressed pilocarpine-induced seizures and neurochemical changes. Nigral GABA(A) receptor blockade by picrotoxin abolished the anticonvulsant effect of TPM in SNR. Systemic TPM administration increased hippocampal glutamate and decreased GABA. Intranigral TPM administration increased hippocampal glutamate, but not GABA. Intrahippocampal TPM increased hippocampal glutamate and GABA, but only at high concentrations. CONCLUSIONS In the focal pilocarpine model, TPM does not exert its anticonvulsant effect at the site of seizure initiation. We identified the SNR as a site of action of TPM, and showed that the nigral GABA-ergic system is central to TPM's anticonvulsant effect in SNR. Anticonvulsant effects and neurochemical changes in hippocampus following intranigral TPM administration suggest the existence of a nigro-hippocampal circuit, which may be involved in the control of limbic seizures.
Collapse
Affiliation(s)
- Alfred Meurs
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
81
|
Abstract
Kainate receptors form a family of ionotropic glutamate receptors that appear to play a special role in the regulation of the activity of synaptic networks. This review first describes briefly the molecular and pharmacological properties of native and recombinant kainate receptors. It then attempts to outline the general principles that appear to govern the function of kainate receptors in the activity of synaptic networks under physiological conditions. It subsequently describes the way that kainate receptors are involved in synaptic integration, synaptic plasticity, the regulation of neurotransmitter release and the control of neuronal excitability, and the manner in which they might play an important role in synaptogenesis and synaptic maturation. These functions require the proper subcellular localization of kainate receptors in specific functional domains of the neuron, necessitating complex cellular and molecular trafficking events. We show that our comprehension of these mechanisms is just starting to emerge. Finally, this review presents evidence that implicates kainate receptors in pathophysiological conditions such as epilepsy, excitotoxicity and pain, and that shows that these receptors represent promising therapeutic targets.
Collapse
Affiliation(s)
- Paulo Pinheiro
- CNRS UMR 5091, Laboratoire "Physiologie Cellulaire de la Synapse", Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
82
|
Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA. Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol 2006; 59:652-61. [PMID: 16450381 DOI: 10.1002/ana.20778] [Citation(s) in RCA: 437] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Topiramate, valproate, propranolol, amitriptyline, and methysergide have been widely prescribed for migraine prophylaxis, but their mechanism or site of action is uncertain. Cortical spreading depression (CSD) has been implicated in migraine and as a headache trigger and can be evoked in experimental animals by electrical or chemical stimulation. We hypothesized that migraine prophylactic agents suppress CSD as a common mechanism of action. METHODS Rats were treated either acutely or chronically over weeks and months, with one of the above migraine prophylactic drugs, vehicle, or D-propranolol, a clinically ineffective drug. The impact of treatment was determined on the frequency of evoked CSDs after topical potassium application or on the incremental cathodal stimulation threshold to evoke CSD. RESULTS Chronic daily administration of migraine prophylactic drugs dose-dependently suppressed CSD frequency by 40 to 80% and increased the cathodal stimulation threshold, whereas acute treatment was ineffective. Longer treatment durations produced stronger CSD suppression. Chronic D-propranolol treatment did not differ from saline control. INTERPRETATION Our data suggest that CSD provides a common therapeutic target for widely prescribed migraine prophylactic drugs. Assessing CSD threshold may prove useful for developing new prophylactic drugs and improving upon existing ones.
Collapse
Affiliation(s)
- Cenk Ayata
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
83
|
Dahl JP, Kampman KM, Oslin DW, Weller AE, Lohoff FW, Ferraro TN, O'Brien CP, Berrettini WH. Association of a polymorphism in the Homer1 gene with cocaine dependence in an African American population. Psychiatr Genet 2005; 15:277-83. [PMID: 16314758 DOI: 10.1097/00041444-200512000-00010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE While twin and adoption studies have demonstrated that up to 70% of the risk for becoming addicted to cocaine is due to genetic factors, identifying specific genes involved in the development or progression of cocaine dependence has been difficult. The purpose of this study is to determine whether single-nucleotide polymorphisms in the Homer1 and Homer2 genes associate with the cocaine-dependent phenotype in an African American population. METHODS This study utilized a case-control design in which the genotype and allele frequencies for four single-nucleotide polymorphisms in the Homer1 gene and three single-nucleotide polymorphisms in the Homer2 gene were compared between African American individuals with a diagnosis of cocaine dependence (n=170) and African American individuals with no history of substance abuse (n=90). RESULTS The data indicate that one single-nucleotide polymorphism, rs6871510, located in intron 1 of the Homer1 gene significantly (P=0.029) associates with cocaine dependence at the genotype level, and trends toward a significant association at the allele frequency level (chi=2.62, df=1, P=0.106, OR=1.71). None of the single-nucleotide polymorphisms analyzed in the Homer2 gene associates with cocaine dependence. CONCLUSIONS The results of this study suggest that a polymorphism in the Homer1 gene, rs6871510, is a potential risk factor for the development of cocaine dependence in an African American population, whereas polymorphisms in the Homer2 gene are not.
Collapse
Affiliation(s)
- John P Dahl
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Clinical Research Building, Philadelphia, 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Brown JT, Teriakidis A, Randall AD. A pharmacological investigation of the role of GLUK5-containing receptors in kainate-driven hippocampal gamma band oscillations. Neuropharmacology 2005; 50:47-56. [PMID: 16153668 DOI: 10.1016/j.neuropharm.2005.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/22/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
Low concentrations of kainate can induce gamma frequency (25-80 Hz) oscillations in hippocampal slices as well as other brain structures in vitro. Little is known, however, about the kainate receptor (KAR) subtypes that underlie this type of rhythmic neuronal network activity. In this study, the role of GLU(K5) subunit-containing KARs in kainate-induced hippocampal gamma frequency oscillations was assessed using GLU(K5)-selective pharmacological ligands. Activation of GLU(K5)-containing subunits using the selective agonists (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA; 0.1-1 microM) or iodowillardiine (0.1-1 microM) failed to induce gamma frequency oscillations in area CA3 of the rat hippocampal slice. Likewise, preincubation with a selective GLU(K5) antagonist, (RS)-3-(2-carboxybenzyl)willardiine (UBP296), did not prevent the appearance of gamma oscillations induced by 150 nM kainate. However, addition of UBP296 (10 microM) to hippocampal slices in which kainate-driven gamma oscillations were pre-established resulted in an approximately 50% reduction in gamma frequency power. These effects occurred in the absence of any effect on AMPA receptor-mediated synaptic transmission. Furthermore, carbachol-induced gamma oscillations were also unaffected by application of UBP296. These results suggest that GLU(K5)-containing KARs are not alone sufficient to generate gamma frequency oscillations, but are involved in maintaining neuronal network activity induced by the actions of kainate at other KARs such as GLU(K6).
Collapse
Affiliation(s)
- J T Brown
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park (North), Harlow, Essex, UK.
| | | | | |
Collapse
|
85
|
Lee HJ, Ghelardoni S, Chang L, Bosetti F, Rapoport SI, Bazinet RP. Topiramate does not Alter the Kinetics of Arachidonic or Docosahexaenoic Acid in Brain Phospholipids of the Unanesthetized Rat. Neurochem Res 2005; 30:677-83. [PMID: 16176072 DOI: 10.1007/s11064-005-2756-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interest in the potential therapeutic utility of topiramate for treating bipolar disorder was stimulated by published reports of investigator-initiated open label clinical studies. Because chronic lithium, carbamazepine and valproate decrease the turnover of arachidonic acid (AA) but not docosahexaenoic acid (DHA) in brain phospholipids of the awake rat, we tested if topiramate would produce similar results. Rats received either topiramate (20 mg/kg twice per day) or vehicle for 14 days and then while unanesthetized were infused intravenously with either [1-(14)C] AA or [1-(14)C] DHA for 5 min while blood was collected from the femoral artery at fixed times. Topiramate did not alter the incorporation rate of AA or DHA from their respective brain acyl-CoA pool into brain phospholipids, nor the turnover of AA and DHA in brain phospholipids. The results of our study indicate that topiramate does not possess a pharmacological property that three drugs with proven efficacy in treating bipolar disorder have in common.
Collapse
Affiliation(s)
- Ho-Joo Lee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
Topiramate is a neuromodulatory compound with stabilizing properties that was initially introduced for the management of partial seizures. Topiramate has been demonstrated to modify several receptor-gated and voltage-sensitive ion channels, including voltage-activated Na+ and Ca2+ channels and non-NMDA receptors. These receptors have been implicated in the pathophysiology of both epilepsy and migraine. The pharmacological mechanisms of action for topiramate that may explain its antiepileptic and migraine preventive activities will be discussed in this review. In addition, the potential relationship between the molecular activities of topiramate and its efficacy in epilepsy and migraine prevention will be emphasized.
Collapse
Affiliation(s)
- H Steve White
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City 84112, USA
| |
Collapse
|
87
|
Affiliation(s)
- Michael A Rogawski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|