51
|
Assaf N, El-Shamarka ME, Salem NA, Khadrawy YA, El Sayed NS. Neuroprotective effect of PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the Wnt/beta catenin pathway via targeting alpha- and beta-secretases. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109793. [PMID: 31669201 DOI: 10.1016/j.pnpbp.2019.109793] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
The present study was conducted to evaluate the efficacy of fenofibrate and pioglitazone in a mouse model of amyloidogenesis induced by amyloidβ (βA) peptide. Mice were injected intracerebroventricularly with βA1-40 (400 pmol/mouse) once, followed by treatment with fenofibrate (300 mg/kg), pioglitazone (30 mg/kg),or both. After 21 days of daily treatment, memory impairment and cognitive function were evaluated by Morris water maze (MWM), Y-maze and object recognition tests. On the 22nd day, mice were sacrificed, and their hippocampi were dissected to determine the levels of α- and β-secretase, peroxisome proliferator-activated receptor (PPARα and β), Wnt and β-catenin. Significant memory impairment and cognitive dysfunction were observed in the mouse model group. This finding was associated with a significant increase in α- and β-secretase levels and a significant decrease in Wnt, β-catenin, and PPARα and β levels. Neuronal damage was also evident after histopathological examination. Treatment with fenofibrate, pioglitazone and their combination resulted in a significant improvement in the behavioural and neurochemical changes induced by βA injection. The present findings indicate that the combined administration of fenofibrate and pioglitazone was more effective than monotherapy in ameliorating the behavioural, neurochemical and histopathological changes in amyloidogenesis model mice and provide a promising therapeutic approach in the management of Alzheimer's disease complicated by diabetes and hypercholesterolemia.
Collapse
Affiliation(s)
- Naglaa Assaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Marwa E El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Centre, Giza, Egypt
| | - Neveen A Salem
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Centre, Giza, Egypt; Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Yasser A Khadrawy
- Department of Medical Physiology, Medical Research Division, National Research Centre, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
52
|
Marcondes LA, Nachtigall EG, Zanluchi A, de Carvalho Myskiw J, Izquierdo I, Furini CRG. Involvement of medial prefrontal cortex NMDA and AMPA/kainate glutamate receptors in social recognition memory consolidation. Neurobiol Learn Mem 2020; 168:107153. [DOI: 10.1016/j.nlm.2019.107153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/28/2022]
|
53
|
Lin PY, Kavalali ET, Monteggia LM. Genetic Dissection of Presynaptic and Postsynaptic BDNF-TrkB Signaling in Synaptic Efficacy of CA3-CA1 Synapses. Cell Rep 2020; 24:1550-1561. [PMID: 30089265 PMCID: PMC7176480 DOI: 10.1016/j.celrep.2018.07.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/31/2018] [Accepted: 07/05/2018] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), regulate long-term potentiation (LTP) in the hippocampus, although the sites of BDNF-TrkB receptors in this process are controversial. We used a viral-mediated approach to delete BDNF or TrkB specifically in CA1 and CA3 regions of the Schaffer collateral pathway. Deletion of BDNF in CA3 or CA1 revealed that presynaptic BDNF is involved in LTP induction, while postsynaptic BDNF contributes to LTP maintenance. Similarly, loss of presynaptic or postsynaptic TrkB receptors leads to distinct LTP deficits, with presynaptic TrkB required to maintain LTP, while postsynaptic TrkB is essential for LTP formation. In addition, loss of TrkB in CA3 significantly diminishes release probability, uncovering a role for presynaptic TrkB receptors in basal neurotransmission. Taken together, this direct comparison of presynaptic and postsynaptic BDNF-TrkB reveals insight into BDNF release and TrkB activation sites in hippocampal LTP. Lin et al. directly compare a role for presynaptic and postsynaptic BDNF and TrkB receptors in hippocampal LTP. They find that LTP induction is mediated by anterograde BDNF-TrkB signaling, while both anterograde and retrograde BDNFTrkB signaling persists presynaptically and postsynaptically for LTP maintenance.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Lisa M Monteggia
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
54
|
Haider S, Liaquat L, Ahmad S, Batool Z, Siddiqui RA, Tabassum S, Shahzad S, Rafiq S, Naz N. Naringenin protects AlCl3/D-galactose induced neurotoxicity in rat model of AD via attenuation of acetylcholinesterase levels and inhibition of oxidative stress. PLoS One 2020; 15:e0227631. [PMID: 31945778 PMCID: PMC6964982 DOI: 10.1371/journal.pone.0227631] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
Currently prescribed medications for the treatment of Alzheimer's disease (AD) that are based on acetylcholinesterase inhibition only offer symptomatic relief but do not provide protection against neurodegeneration. There appear to be an intense need for the development of therapeutic strategies that not only improve brain functions but also prevent neurodegeneration. The oxidative stress is one of the main causative factors of AD. Various antioxidants are being investigated to prevent neurodegeneration in AD. The objective of this study was to investigate the neuroprotective effects of naringenin (NAR) against AlCl3+D-gal induced AD-like symptoms in an animal model. Rats were orally pre-treated with NAR (50 mg/kg) for two weeks and then exposed to AlCl3+D-gal (150 mg/kg + 300 mg/kg) intraperitoneally for one week to develop AD-like symptoms. The standard drug, donepezil (DPZ) was used as a stimulator of cholinergic activity. Our results showed that NAR pre-treatment significantly protected AD-like behavioral disturbances in rats. In DPZ group, rats showed improved cognitive and cholinergic functions but the neuropsychiatric functions were not completely improved and showed marked histopathological alterations. However, NAR not only prevented AlCl3+D-gal induced AD-like symptoms but also significantly prevented neuropsychiatric dysfunctions in rats. Results of present study suggest that NAR may play a role in enhancing neuroprotective and cognition functions and it can potentially be considered as a neuroprotective compound for therapeutic management of AD in the future.
Collapse
Affiliation(s)
- Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Laraib Liaquat
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Saara Ahmad
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
| | - Zehra Batool
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- * E-mail:
| | - Rafat Ali Siddiqui
- Nutrition Science and Food Chemistry Laboratory, Agricultural Research Station, Virginia State University, Petersburg, United States of America
| | - Saiqa Tabassum
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
- Department of Biosciences, Shaheed Zuifiqar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Sidrah Shahzad
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
- Pakistan Navy Medical Training School and College, PNS Shifa, Karachi, Pakistan
| | - Sahar Rafiq
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Narjis Naz
- Department of Genetics, University of Karachi, Karachi, Pakistan
| |
Collapse
|
55
|
Rafi H, Ahmad F, Anis J, Khan R, Rafiq H, Farhan M. Comparative Effectiveness of Agmatine and Choline Treatment in Rats with Cognitive Impairment Induced by AlCl 3 and Forced Swim Stress. CURRENT CLINICAL PHARMACOLOGY 2020; 15:251-264. [PMID: 31622210 DOI: 10.2174/1574884714666191016152143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Accepted: 06/21/2019] [Indexed: 11/22/2022]
Abstract
AIM Endogenous agmatine has a significant role in learning and memory processes as a neurotransmitter. Various studies described the physiological role of endogenous agmatine in learning and memory of multiple cognitive tasks suggesting elevated levels of agmatine during the learning process in the rat brain. Dietary intake of choline showed correlation with cognitive functions in human subjects and treatment with choline supplements validated the ability to diminish learning and cognitive impairment dementias. METHODS 36 Albino rats were equally divided into three groups previously: a) control-water, b) Test I - AlCl3 (100 mg/Kg body weight), and c) Test II - Forced swim stress (FSS) for 14 days. On the next day of AlCl3 and FSS last administration, animals were allocated into further three groups and received the following treatments: a. water was given orally to the control group, b. Agmatine (100 mg/Kg Body Weight) group, and c. Choline (100 mg/Kg Body Weight) group for the next 14 days. Behaviors were assessed in Light/Dark Box, Open Field, Novel Object Recognition Test (NOR), T Maze Test, and Morris Water Maze Test. RESULTS Animals administered with agmatine demonstrated increased time spent in bright areas of light/dark box and square crossed while improved spatial memory in Morris water maze and T maze test and enhanced discrimination of novel object in NOR were observed in learning and memory paradigms along with choline. CONCLUSION The present study determines that agmatine at the dose of (100 mg/kg body weight) attenuates memory and cognitive impairment in comparison with choline supplements.
Collapse
Affiliation(s)
- Hira Rafi
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Fahad Ahmad
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Javaria Anis
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Ruba Khan
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Hamna Rafiq
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Farhan
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
56
|
Pro-cognitive effect of 1MeTIQ on recognition memory in the ketamine model of schizophrenia in rats: the behavioural and neurochemical effects. Psychopharmacology (Berl) 2020; 237:1577-1593. [PMID: 32076746 PMCID: PMC7239818 DOI: 10.1007/s00213-020-05484-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE Schizophrenia is a mental illness which is characterised by positive and negative symptoms and by cognitive impairments. While the major prevailing hypothesis is that altered dopaminergic and/or glutamatergic transmission contributes to this disease, there is evidence that the noradrenergic system also plays a role in its major symptoms. OBJECTIVES In the present paper, we investigated the pro-cognitive effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) an endogenous neuroprotective compound, on ketamine-modelled schizophrenia in rats. METHODS We used an antagonist of NMDA receptors (ketamine) to model memory deficit symptoms in rats. Using the novel object recognition (NOR) test, we investigated the pro-cognitive effect of 1MeTIQ. Additionally, olanzapine, an atypical antipsychotic drug, was used as a standard to compare the pro-cognitive effects of the substances. In vivo microdialysis studies allowed us to verify the changes in the release of monoamines and their metabolites in the rat striatum. RESULTS Our study demonstrated that 1MeTIQ, similarly to olanzapine, exhibits a pro-cognitive effect in NOR test and enhances memory disturbed by ketamine treatment. Additionally, in vivo microdialysis studies have shown that ketamine powerfully increased noradrenaline release in the rat striatum, while 1MeTIQ and olanzapine completely antagonised this neurochemical effect. CONCLUSIONS 1MeTIQ, as a possible pro-cognitive drug, in contrast to olanzapine, expresses beneficial neuroprotective activity in the brain, increasing concentration of the extraneuronal dopamine metabolite, 3-methoxytyramine (3-MT), which plays an important physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Moreover, we first demonstrated the essential role of noradrenaline release in memory disturbances observed in the ketamine-model of schizophrenia, and its possible participation in negative symptoms of the schizophrenia.
Collapse
|
57
|
Kim JW, Monteggia LM. Increasing doses of ketamine curtail antidepressant responses and suppress associated synaptic signaling pathways. Behav Brain Res 2019; 380:112378. [PMID: 31760154 DOI: 10.1016/j.bbr.2019.112378] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Clinical findings show that a single subanesthetic dose of ketamine elicits rapid antidepressant effects. Accumulating data suggests that ketamine blocks the N-methyl-D-aspartate receptor and results in specific effects on intracellular signaling including increased brain-derived neurotrophic factor (BDNF) protein expression, which augments synaptic responses required for rapid antidepressant effects. To further investigate this potential mechanism for ketamine's antidepressant action, we examined the effect of increasing ketamine doses on intracellular signaling, synaptic plasticity, and rapid antidepressant effects. Given that ketamine is often used at 2.5-10 mg/kg to examine antidepressant effects and 20-50 mg/kg to model schizophrenia, we compared effects at 5, 20 and 50 mg/kg. We found that intraperitoneal (i.p.) injection of low dose (5 mg/kg) ketamine produces rapid antidepressant effects, which were not observed at 20 or 50 mg/kg. At 5 mg/kg ketamine significantly increased the level of BDNF, a protein necessary for the rapid antidepressant effects, while 20 and 50 mg/kg ketamine did not alter BDNF levels in the hippocampus. Low concentration ketamine also evoked the highest synaptic potentiation in the hippocampal CA1, while higher concentrations significantly decreased the synaptic effects. Our results suggest low dose ketamine produces antidepressant effects and has independent behavioral and synaptic effects compared to higher doses of ketamine that are used to model schizophrenia. These findings strengthen our knowledge on specific signaling associated with ketamine's rapid antidepressant effects.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
58
|
Chen WC, Chang LH, Huang SS, Huang YJ, Chih CL, Kuo HC, Lee YH, Lee IH. Aryl hydrocarbon receptor modulates stroke-induced astrogliosis and neurogenesis in the adult mouse brain. J Neuroinflammation 2019; 16:187. [PMID: 31606043 PMCID: PMC6790016 DOI: 10.1186/s12974-019-1572-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/29/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor activated by environmental agonists and dietary tryptophan metabolites for the immune response and cell cycle regulation. Emerging evidence suggests that AHR activation after acute stroke may play a role in brain ischemic injury. However, whether AHR activation alters poststroke astrogliosis and neurogenesis remains unknown. METHODS We adopted conditional knockout of AHR from nestin-expressing neural stem/progenitor cells (AHRcKO) and wild-type (WT) mice in the permanent middle cerebral artery occlusion (MCAO) model. WT mice were treated with either vehicle or the AHR antagonist 6,2',4'-trimethoxyflavone (TMF, 5 mg/kg/day) intraperitoneally. The animals were examined at 2 and 7 days after MCAO. RESULTS The AHR signaling pathway was significantly upregulated after stroke. Both TMF-treated WT and AHRcKO mice showed significantly decreased infarct volume, improved sensorimotor, and nonspatial working memory functions compared with their respective controls. AHR immunoreactivities were increased predominantly in activated microglia and astrocytes after MCAO compared with the normal WT controls. The TMF-treated WT and AHRcKO mice demonstrated significant amelioration of astrogliosis and microgliosis. Interestingly, these mice also showed augmentation of neural progenitor cell proliferation at the ipsilesional neurogenic subventricular zone (SVZ) and the hippocampal subgranular zone. At the peri-infarct cortex, the ipsilesional SVZ/striatum, and the hippocampus, both the TMF-treated and AHRcKO mice demonstrated downregulated IL-1β, IL-6, IFN-γ, CXCL1, and S100β, and concomitantly upregulated Neurogenin 2 and Neurogenin 1. CONCLUSION Neural cell-specific AHR activation following acute ischemic stroke increased astrogliosis and suppressed neurogenesis in adult mice. AHR inhibition in acute stroke may potentially benefit functional outcomes likely through reducing proinflammatory gliosis and preserving neurogenesis.
Collapse
Affiliation(s)
- Wan-Ci Chen
- Department and Institute of Physiology, National Yang-Ming University, No.155, Sec. 2, Linong Street, Beitou District, Taipei, 11217, Taiwan
| | - Li-Hsin Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology, Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Yu-Jie Huang
- Department and Institute of Physiology, National Yang-Ming University, No.155, Sec. 2, Linong Street, Beitou District, Taipei, 11217, Taiwan
| | | | - Hung-Chih Kuo
- Stem Cell Program, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, National Yang-Ming University, No.155, Sec. 2, Linong Street, Beitou District, Taipei, 11217, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| | - I-Hui Lee
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, 11217, Taiwan.
| |
Collapse
|
59
|
Effect of pioglitazone and simvastatin in lipopolysaccharide-induced amyloidogenesis and cognitive impairment in mice: possible role of glutamatergic pathway and oxidative stress. Behav Pharmacol 2019; 30:5-15. [PMID: 29659380 DOI: 10.1097/fbp.0000000000000407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroinflammation and β-amyloid (Aβ) deposition in the brain are well known characteristics of neurodegeneration. Diabetes and hypercholesterolemia are the main risk factors leading to memory loss and cognitive impairment. Recently, it was found that statins and thiazolidinediones have promising anti-inflammatory and neuroprotective effects that could delay neurodegeneration and neuronal loss in diabetic and hypercholesterolemic patients. The aim of the present study was to investigate the protective effect of simvastatin, pioglitazone, and their combination in lipopolysaccharide (LPS)-induced neuroinflammation and amyloidogenesis. Mice were divided into five groups: group 1 received 0.9% saline, group 2 received LPS (0.8 mg/kg in saline), group 3 received LPS (0.8 mgl kg)+simvastatin (5 mg/kg in saline), group 4 received LPS (0.8 mg/kg)+pioglitazone (20 mg/kg in saline), group 5 receiving LPS (0.8 mg/kg)+simvastatin (5 mg/kg)+pioglitazone (20 mg/kg). Y-maze and novel object recognition were used to assess the spatial and nonspatial behavioral changes. Nitric oxide levels and glutamate levels were measured to elucidate the anti-glutamatergic and anti-inflammatory effects of the tested drugs. Immunohistochemistry was performed to detect the presence of Aβ1-42 in the mice brain. LPS impaired memory, and increased Aβ deposition, nitric oxide, and glutamate brain levels. Both drugs produced a significant improvement in all parameters. We conclude that simvastatin and pioglitazone may have a protective effect against cognitive impairment induced by LPS, through targeting the glutamatergic and inflammatory pathways, especially in patients having hypercholesterolemia and diabetes.
Collapse
|
60
|
Erdinc M, Uyar E, Kelle I, Akkoc H. Anti-nociceptive effects of low dose ketamine in mice may be mediated by the serotonergic systems. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1605665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Meral Erdinc
- Department of Medical Pharmacology, Dicle University, Diyarbakir, Turkey
| | - Emre Uyar
- Department of Medical Pharmacology, Dicle University, Diyarbakir, Turkey
| | - Ilker Kelle
- Department of Medical Pharmacology, Dicle University, Diyarbakir, Turkey
| | - Hasan Akkoc
- Department of Medical Pharmacology, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
61
|
Zhang M, Radford KD, Driscoll M, Purnomo S, Kim J, Choi KH. Effects of subanesthetic intravenous ketamine infusion on neuroplasticity-related proteins in the prefrontal cortex, amygdala, and hippocampus of Sprague-Dawley rats. IBRO Rep 2019; 6:87-94. [PMID: 30723838 PMCID: PMC6350099 DOI: 10.1016/j.ibror.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Ketamine, a multimodal dissociative anesthetic, is a powerful analgesic administered following trauma due to its hemodynamic and respiratory stability. However, ketamine can cause hallucination and dissociation which may adversely impact traumatic memory after an injury. The effects of ketamine on proteins implicated in neural plasticity are unclear due to different doses, routes, and timing of drug administration in previous studies. Here, we investigated the effects of a single intravenous (IV) ketamine infusion on protein levels in three brain regions of rats. Adult male Sprague-Dawley rats with indwelling IV catheters underwent an auditory fear conditioning (three pairings of tone and mild footshock 0.8 mA, 0.5 s) and received a high dose of IV ketamine (0 or 40 mg/kg/2 h) infusion (Experiment 1). In a follow-up study, animals received a low dose of IV ketamine (0 or 10 mg/kg/2 h) infusion (Experiment 2). Two hours after the infusion, brain tissue from the medial prefrontal cortex (mPFC), hippocampus, and amygdala were collected for western blot analyses. Protein levels of a transcription factor (c-Fos), brain-derived neurotrophic factor (BDNF), and phosphorylated extracellular signal-regulated kinase (pERK) were quantified in these regions. The 40 mg/kg ketamine infusion increased c-Fos levels in the mPFC and amygdala as well as pERK levels in the mPFC and hippocampus. The 10 mg/kg ketamine infusion increased BDNF levels in the amygdala, but decreased pERK levels in the mPFC and hippocampus. These findings suggest that a clinically relevant route of ketamine administration produces dose-dependent and brain region-specific effects on proteins involved in neuroplasticity.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Mercedes Driscoll
- National Capital Consortium Psychiatry Residency Program, Walter Reed National Military Medical Center, Bethesda, MD 20814, United States
| | - Salsabila Purnomo
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Jean Kim
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| | - Kwang H. Choi
- Department of Psychiatry, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Center for the Study of Traumatic Stress, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, United States
| |
Collapse
|
62
|
Protective effects of melatonin against valproic acid-induced memory impairments and reductions in adult rat hippocampal neurogenesis. Neuroscience 2019; 406:580-593. [DOI: 10.1016/j.neuroscience.2019.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/12/2023]
|
63
|
Ren X, Keeney JTR, Miriyala S, Noel T, Powell DK, Chaiswing L, Bondada S, St Clair DK, Butterfield DA. The triangle of death of neurons: Oxidative damage, mitochondrial dysfunction, and loss of choline-containing biomolecules in brains of mice treated with doxorubicin. Advanced insights into mechanisms of chemotherapy induced cognitive impairment ("chemobrain") involving TNF-α. Free Radic Biol Med 2019; 134:1-8. [PMID: 30593843 PMCID: PMC6588453 DOI: 10.1016/j.freeradbiomed.2018.12.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
Abstract
Cancer treatments are developing fast and the number of cancer survivors could arise to 20 million in United State by 2025. However, a large fraction of cancer survivors demonstrate cognitive dysfunction and associated decreased quality of life both shortly, and often long-term, after chemotherapy treatment. The etiologies of chemotherapy induced cognitive impairment (CICI) are complicated, made more so by the fact that many anti-cancer drugs cannot cross the blood-brain barrier (BBB). Multiple related factors and confounders lead to difficulties in determining the underlying mechanisms. Chemotherapy induced, oxidative stress-mediated tumor necrosis factor-alpha (TNF-α) elevation was considered as one of the main candidate mechanisms underlying CICI. Doxorubicin (Dox) is a prototypical reactive oxygen species (ROS)-generating chemotherapeutic agent used to treat solid tumors and lymphomas as part of multi-drug chemotherapeutic regimens. We previously reported that peripheral Dox-administration leads to plasma protein damage and elevation of TNF-α in plasma and brain of mice. In the present study, we used TNF-α null (TNFKO) mice to investigate the role of TNF-α in Dox-induced, oxidative stress-mediated alterations in brain. We report that Dox-induced oxidative stress in brain is ameliorated and brain mitochondrial function assessed by the Seahorse-determined oxygen consumption rate (OCR) is preserved in brains of TNFKO mice. Further, we show that Dox-decreased the level of hippocampal choline-containing compounds and brain phospholipases activity are partially protected in TNFKO group in MRS study. Our results provide strong evidence that Dox-targeted mitochondrial damage and levels of brain choline-containing metabolites, as well as phospholipases changes decreased in the CNS are associated with oxidative stress mediated by TNF-α. These results are consistent with the notion that oxidative stress and elevated TNF-α in brain underlie the damage to mitochondria and other pathological changes that lead to CICI. The results are discussed with reference to our identifying a potential therapeutic target to protect against cognitive problems after chemotherapy.
Collapse
Affiliation(s)
- Xiaojia Ren
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jeriel T R Keeney
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Sumitra Miriyala
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Teresa Noel
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - David K Powell
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Subbarao Bondada
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA, USA; Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, USA; Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536 USA, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
64
|
Rashid H, Ahmed T. Muscarinic activity in hippocampus and entorhinal cortex is crucial for spatial and fear memory retrieval. Pharmacol Rep 2019; 71:449-456. [PMID: 31003156 DOI: 10.1016/j.pharep.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hippocampus and entorhinal cortex are key players of learning and memory. Despite their established role in memory processes, the contribution of muscarinic receptor activity in these brain regions during memory retrieval remains elusive. This study was aimed to assess the role of hippocampal CA1 and medial entorhinal cortex muscarinic receptors in memory retrieval. METHOD Mice were implanted with bilateral cannulas in the hippocampus CA1 and medial entorhinal cortex. After recovery they were trained for Morris water maze test, novel object recognition test and contextual fear conditioning. Scopolamine was infused 10 min prior to retrieval test. RESULTS Pre-test scopolamine infusion in hippocampal CA1 and medial entorhinal cortex significantly reduced overall exploration of objects (p<0.001). Similarly, pre-retrieval inactivation dorsal hippocampal CA1 and medial entorhinal cortex muscarinic activity caused significant impairment of spatial and fear memories retrieval (p<0.05). CONCLUSION These findings showed vital role of muscarinic activity in retrieving hippocampal and entorhinal cortex dependent memories and suggest a possible target for treating retrograde amnesia.
Collapse
Affiliation(s)
- Habiba Rashid
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
65
|
Acute aluminum chloride toxicity revisited: Study on DNA damage and histopathological, biochemical and neurochemical alterations in rat brain. Life Sci 2018; 217:202-211. [PMID: 30528774 DOI: 10.1016/j.lfs.2018.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022]
Abstract
AIMS Due to rapid increase in industrialization in the last few years, use of aluminum (Al) and its alloys have been increased in different industrial fields. Ample evidence supports the neurotoxic effects of chronic aluminum chloride (AlCl3) administration in rats but acute Al toxicity has been less described so the present study was aimed to investigate the neurotoxic effects of acute AlCl3. MAIN METHODS To investigate such effects 12 male albino Wistar rats were randomly divided into control and test rats. AlCl3 at a dose of 150 mg/kg was intraperitoneally injected to test rats for 7 days. Rats were subjected to behavioral assessments 24 h after last dose and after behavioral assessment rats were sacrificed to collect brain samples for further neurochemical, biochemical and histopathological examinations. KEY FINDINGS In the present study acute administration of AlCl3 resulted in noticeable behavioral deficits. Cognitive deficits and neuropsychiatric disturbances were evident in AlCl3 injected rats. Test rats also exhibited marked antioxidant enzymes, cholinergic, serotonergic and dopaminergic dysfunctions and DNA fragmentation. Histopathological alterations were observed in hippocampus and cortex of rats injected with AlCl3. SIGNIFICANCE The observed effects may be due to pro-oxidant nature of Al and its participation in free radical mediated cellular injury. Al by promoting oxidative stress, impairing antioxidant defense system and altering brain neurochemistry may act as a potent neurotoxic agent as evident from observed histopathological alterations in brain of test rats. This investigation may further confirm and shed some more light on deleterious effects of acute Al intoxication on brain.
Collapse
|
66
|
Radford KD, Park TY, Jaiswal S, Pan H, Knutsen A, Zhang M, Driscoll M, Osborne-Smith LA, Dardzinski BJ, Choi KH. Enhanced fear memories and brain glucose metabolism ( 18F-FDG-PET) following sub-anesthetic intravenous ketamine infusion in Sprague-Dawley rats. Transl Psychiatry 2018; 8:263. [PMID: 30504810 PMCID: PMC6269482 DOI: 10.1038/s41398-018-0310-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Ketamine is a multimodal dissociative anesthetic, which provides powerful analgesia for victims with traumatic injury. However, the impact of ketamine administration in the peri-trauma period on the development of post-traumatic stress disorder (PTSD) remains controversial. Moreover, there is a major gap between preclinical and clinical studies because they utilize different doses and routes of ketamine administration. Here, we investigated the effects of sub-anesthetic doses of intravenous (IV) ketamine infusion on fear memory and brain glucose metabolism (BGluM) in rats. Male Sprague-Dawley rats received an IV ketamine infusion (0, 2, 10, and 20 mg/kg, 2 h) or an intraperitoneal (IP) injection (0 and 10 mg/kg) following an auditory fear conditioning (3 pairings of tone and foot shock [0.6 mA, 1 s]) on day 0. Fear memory retrieval, fear extinction, and fear recall were tested on days 2, 3, and 4, respectively. The effects of IV ketamine infusion (0 and 10 mg/kg) on BGluM were measured using 18F-fluoro-deoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT). The IV ketamine infusion dose-dependently enhanced fear memory retrieval, delayed fear extinction, and increased fear recall in rats. The IV ketamine (10 mg/kg) increased BGluM in the hippocampus, amygdala, and hypothalamus, while decreasing it in the cerebellum. On the contrary, a single ketamine injection (10 mg/kg, IP) after fear conditioning facilitated fear memory extinction in rats. The current findings suggest that ketamine may produce differential effects on fear memory depending on the route and duration of ketamine administration.
Collapse
Affiliation(s)
- Kennett D. Radford
- 0000 0001 0421 5525grid.265436.0Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Thomas Y. Park
- 0000 0001 0421 5525grid.265436.0Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Shalini Jaiswal
- 0000 0001 0421 5525grid.265436.0Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Hongna Pan
- 0000 0001 0421 5525grid.265436.0Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Andrew Knutsen
- 0000 0001 0421 5525grid.265436.0Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Michael Zhang
- 0000 0001 0421 5525grid.265436.0Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Mercedes Driscoll
- 0000 0001 0560 6544grid.414467.4National Capital Consortium Psychiatry Residency Program, Walter Reed National Military Medical Center, Bethesda, MD 20814 USA
| | - Lisa A. Osborne-Smith
- 0000 0000 9758 5690grid.5288.7Nurse Anesthesia Program, Oregon Health and Science University, Portland, OR 97239 USA
| | - Bernard J. Dardzinski
- 0000 0001 0421 5525grid.265436.0Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Kwang H. Choi
- 0000 0001 0421 5525grid.265436.0Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| |
Collapse
|
67
|
Ghasemzadeh Z, Rezayof A. Medial Prefrontal Cortical Cannabinoid CB1 Receptors Mediate Morphine–Dextromethorphan Cross State-Dependent Memory: The Involvement of BDNF/cFOS Signaling Pathways. Neuroscience 2018; 393:295-304. [DOI: 10.1016/j.neuroscience.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
|
68
|
Episodic-like memory impairment induced by sub-anaesthetic doses of ketamine. Behav Brain Res 2018; 359:165-171. [PMID: 30359643 DOI: 10.1016/j.bbr.2018.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 01/07/2023]
Abstract
Episodic-like memory refers to integration of where and when a certain event (what) happened. The glutamatergic neurotransmission, particularly AMPA and NMDA receptors, in the dorsal hippocampus mediates episodic recall. Ketamine is a non-competitive NMDA antagonist with effect on cognitive performance and plasticity. The goal of this study was to evaluate the acute action of ketamine on behavioural and neurochemical aspects of episodic-like memory (WWWhen/ELM task) through immediate-early gene expression (IEG), c-Fos, in the dorsal hippocampus. Animals received saline 0.9% or ketamine at 8 mg/kg or 15 mg/kg (i.p.) immediately after the second sample. Our data indicate that untreated and saline rats integrate the three elements of episodic-like memory. Conversely, animals treated with ketamine showed impairment of ELM formation. In addition, the highest dose of ketamine increased c-Fos expression in dorsal CA1 subregion when compared to saline rats. Our results indicate that the antagonism of NMDA concurrently impair ELM formation of all three aspects of ELM and increase neuronal activation in dorsal CA1.
Collapse
|
69
|
Canever L, Freire TG, Mastella GA, Damázio L, Gomes S, Fachim I, Michels C, Carvalho G, Godói AK, Peterle BR, Gava FF, Valvassori SS, Budni J, Quevedo J, Zugno AI. Changes in behavioural parameters, oxidative stress and neurotrophins in the brain of adult offspring induced to an animal model of schizophrenia: The effects of FA deficient or FA supplemented diet during the neurodevelopmental phase. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:52-64. [PMID: 29782958 DOI: 10.1016/j.pnpbp.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023]
Abstract
A deficiency of maternal folic acid (FA) can compromise the function and development of the brain, and may produce a susceptibility to diseases such as schizophrenia (SZ) in the later life of offspring. The aim of this study was to evaluate the effects of both FA deficient and FA supplemented diets during gestation and lactation on behavioural parameters, the markers of oxidative stress and neurotrophic factors in adult offspring which had been subjected to an animal model of SZ. Female mother rats (Dam's) were separated into experimental maternal groups, which began receiving a special diet (food) consisting of the AIN-93 diet, a control diet, or an FA deficient diet during the periods of pregnancy and lactation. Dam's receiving the control diet were further subdivided into four groups: one group received only control diet, while three groups to receive supplementation with FA at different doses (5, 10 and 50 mg/kg). Adult offspring bred from the Dam's were divided into ten groups for induction of the animal model of SZ through the administration of ketamine (Ket) (25 mg/kg). After the last administration of the drug, the animals were subjected to the behavioural tests and were then euthanized. The frontal cortex (FC) and hippocampus (Hip) were then dissected for later biochemical analysis. Our data demonstrates that Ket induced the model of SZ by altering the behavioural parameters (e.g. hyperlocomotion, social impairment, deficits in the sensory-motor profile and memory damage in the adult animals); and also caused changes in the parameters of oxidative stress (lipid hydroperoxide - LPO; 8-isoprostane - 8-ISO; 4-hydroxynonenal - 4-HNE; protein carbonyl content; superoxide dismutase - SOD and catalase - CAT) as well as in the levels of neurotrophic factors (brain-derived neurotrophic factor - BDNF and nerve growth factor - NGF) particularly within the FC of adult offspring. A deficiency in maternal FA, alone or in combination with ket, was able to induce hyperlocomotion and social impairment in the offspring with increased levels of lipid and protein damage (LPO, 8-ISO, 4-HNE, carbonylation of protein) within the FC, increased activity of antioxidant enzymes (SOD and CAT) in both of the brain structures studied, and also reduced the levels of neurotrophins (BDNF and NGF), particularly within the Hip of the adult offspring. Supplementation of FA (5, 10 and 50 mg/kg) to the Dam's was mostly able to prevent the cognitive damage which was induced by Ket in the adult animals. FA (10 and 50 mg/kg) attenuated the action of Ket in the animals in relation to the biochemical parameters, proving the possible neuroprotective effect of FA in the adulthood of offspring that were subjected to the animal model of SZ. Our study indicates that the intake of maternal FA during pregnancy and lactation plays an important role, particularly in the regulation of markers of oxidative stress and neurotrophins.
Collapse
Affiliation(s)
- L Canever
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - T G Freire
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - G A Mastella
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - L Damázio
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - S Gomes
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - I Fachim
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - C Michels
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - G Carvalho
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - A K Godói
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - B R Peterle
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - F F Gava
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - S S Valvassori
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - J Budni
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | - J Quevedo
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - A I Zugno
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.
| |
Collapse
|
70
|
Keeney JTR, Ren X, Warrier G, Noel T, Powell DK, Brelsfoard JM, Sultana R, Saatman KE, Clair DKS, Butterfield DA. Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment ("chemobrain"). Oncotarget 2018; 9:30324-30339. [PMID: 30100992 PMCID: PMC6084398 DOI: 10.18632/oncotarget.25718] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/13/2018] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy-induced cognitive impairment (CICI) is now widely recognized as a real and too common complication of cancer chemotherapy experienced by an ever-growing number of cancer survivors. Previously, we reported that doxorubicin (Dox), a prototypical reactive oxygen species (ROS)-producing anti-cancer drug, results in oxidation of plasma proteins, including apolipoprotein A-I (ApoA-I) leading to tumor necrosis factor-alpha (TNF-α)-mediated oxidative stress in plasma and brain. We also reported that co-administration of the antioxidant drug, 2-mercaptoethane sulfonate sodium (MESNA), prevents Dox-induced protein oxidation and subsequent TNF-α elevation in plasma. In this study, we measured oxidative stress in both brain and plasma of Dox-treated mice both with and without MESNA. MESNA ameliorated Dox-induced oxidative protein damage in plasma, confirming our prior studies, and in a new finding led to decreased oxidative stress in brain. This study also provides further functional and biochemical evidence of the mechanisms of CICI. Using novel object recognition (NOR), we demonstrated the Dox administration resulted in memory deficits, an effect that was rescued by MESNA. Using hydrogen magnetic resonance imaging spectroscopy (H1-MRS) techniques, we demonstrated that Dox administration led to a dramatic decrease in choline-containing compounds assessed by (Cho)/creatine ratios in the hippocampus in mice. To better elucidate a potential mechanism for this MRS observation, we tested the activities of the phospholipase enzymes known to act on phosphatidylcholine (PtdCho), a key component of phospholipid membranes and a source of choline for the neurotransmitter, acetylcholine (ACh). The activities of both phosphatidylcholine-specific phospholipase C (PC-PLC) and phospholipase D were severely diminished following Dox administration. The activity of PC-PLC was preserved when MESNA was co-administered with Dox; however, PLD activity was not protected. This study is the first to demonstrate the protective effects of MESNA on Dox-related protein oxidation, cognitive decline, phosphocholine (PCho) levels, and PC-PLC activity in brain and suggests novel potential therapeutic targets and strategies to mitigate CICI.
Collapse
Affiliation(s)
| | - Xiaojia Ren
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Govind Warrier
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Teresa Noel
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - David K. Powell
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
| | - Jennifer M. Brelsfoard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40502, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40502, USA
| | - D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40502, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
71
|
Saavedra A, Ballesteros JJ, Tyebji S, Martínez-Torres S, Blázquez G, López-Hidalgo R, Azkona G, Alberch J, Martín ED, Pérez-Navarro E. Proteolytic Degradation of Hippocampal STEP 61 in LTP and Learning. Mol Neurobiol 2018; 56:1475-1487. [PMID: 29948948 DOI: 10.1007/s12035-018-1170-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP61 levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP61 levels were significantly reduced, with a concomitant increase of STEP33 levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP61 levels were significantly reduced, but STEP33 levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkBTyr816, pPLCγTyr783, and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP61 accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP61 undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.
Collapse
Affiliation(s)
- Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús J Ballesteros
- Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shiraz Tyebji
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | - Sara Martínez-Torres
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Gloria Blázquez
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosa López-Hidalgo
- Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain.,Grupo de Patología Celular y Molecular del Alcohol, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Garikoitz Azkona
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eduardo D Martín
- Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain.,Instituto Cajal, CSIC, Madrid, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143 08036, Barcelona, Catalonia, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
72
|
Sorrenti V, Contarini G, Sut S, Dall'Acqua S, Confortin F, Pagetta A, Giusti P, Zusso M. Curcumin Prevents Acute Neuroinflammation and Long-Term Memory Impairment Induced by Systemic Lipopolysaccharide in Mice. Front Pharmacol 2018; 9:183. [PMID: 29556196 PMCID: PMC5845393 DOI: 10.3389/fphar.2018.00183] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Systemic lipopolysaccharide (LPS) induces an acute inflammatory response in the central nervous system (CNS) (“neuroinflammation”) characterized by altered functions of microglial cells, the major resident immune cells of the CNS, and an increased inflammatory profile that can result in long-term neuronal cell damage and severe behavioral and cognitive consequences. Curcumin, a natural compound, exerts CNS anti-inflammatory and neuroprotective functions mainly after chronic treatment. However, its effect after acute treatment has not been well investigated. In the present study, we provide evidence that 50 mg/kg of curcumin, orally administered for 2 consecutive days before a single intraperitoneal injection of a high dose of LPS (5 mg/kg) in young adult mice prevents the CNS immune response. Curcumin, able to enter brain tissue in biologically relevant concentrations, reduced acute and transient microglia activation, pro-inflammatory mediator production, and the behavioral symptoms of sickness. In addition, short-term treatment with curcumin, administered at the time of LPS challenge, anticipated the recovery from memory impairments observed 1 month after the inflammatory stimulus, when mice had completely recovered from the acute neuroinflammation. Together, these results suggest that the preventive effect of curcumin in inhibiting the acute effects of neuroinflammation could be of value in reducing the long-term consequences of brain inflammation, including cognitive deficits such as memory dysfunction.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Gabriella Contarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Stefania Sut
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Francesca Confortin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Andrea Pagetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
73
|
Mert DG, Turgut NH, Arslanbas E, Gungor H, Kara H. The influence of quercetin on recognition memory and brain oxidative damage in a ketamine model of schizophrenia. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1442670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Derya Guliz Mert
- Department of Psychiatry, Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| | - Nergiz Hacer Turgut
- Department of Pharmacology, Katip Çelebi University Faculty of Pharmacy, İzmir, Turkey
| | - Emre Arslanbas
- Department of Pharmacology and Toxicology, Cumhuriyet University Faculty of Veterinary Medicine, Sivas, Turkey
| | - Huseyin Gungor
- Department of Pharmacology and Toxicology, Cumhuriyet University Faculty of Veterinary Medicine, Sivas, Turkey
| | - Haki Kara
- Department of Pharmacology and Toxicology, Cumhuriyet University Faculty of Veterinary Medicine, Sivas, Turkey
| |
Collapse
|
74
|
Ivan Ezquerra-Romano I, Lawn W, Krupitsky E, Morgan CJA. Ketamine for the treatment of addiction: Evidence and potential mechanisms. Neuropharmacology 2018; 142:72-82. [PMID: 29339294 DOI: 10.1016/j.neuropharm.2018.01.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
Ketamine is a dissociative anaesthetic drug which acts on the central nervous system chiefly through antagonism of the n-methyl-d-aspartate (NMDA) receptor. Recently, ketamine has attracted attention as a rapid-acting anti-depressant but other studies have also reported its efficacy in reducing problematic alcohol and drug use. This review explores the preclinical and clinical research into ketamine's ability to treat addiction. Despite methodological limitations and the relative infancy of the field, results thus far are promising. Ketamine has been shown to effectively prolong abstinence from alcohol and heroin in detoxified alcoholics and heroin dependent individuals, respectively. Moreover, ketamine reduced craving for and self-administration of cocaine in non-treatment seeking cocaine users. However, further randomised controlled trials are urgently needed to confirm ketamine's efficacy. Possible mechanisms by which ketamine may work within addiction include: enhancement of neuroplasticity and neurogenesis, disruption of relevant functional neural networks, treating depressive symptoms, blocking reconsolidation of drug-related memories, provoking mystical experiences and enhancing psychological therapy efficacy. Identifying the mechanisms by which ketamine exerts its therapeutic effects in addiction, from the many possible candidates, is crucial for advancing this treatment and may have broader implications understanding other psychedelic therapies. In conclusion, ketamine shows great promise as a treatment for various addictions, but well-controlled research is urgently needed. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.
Collapse
Affiliation(s)
- I Ivan Ezquerra-Romano
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - W Lawn
- Clinical Psychopharmacology Unit, University College London, Gower Street, London, UK
| | - E Krupitsky
- St.-Petersburg Pavlov State Medical University and Bekhterev Research Psychoneurological Institute, St. Petersburg, Russia
| | - C J A Morgan
- Clinical Psychopharmacology Unit, University College London, Gower Street, London, UK; Psychopharmacology and Addiction Research Centre, University of Exeter, Exeter, UK.
| |
Collapse
|
75
|
Pan X, Jiang T, Zhang L, Zheng H, Luo J, Hu X. Physical Exercise Promotes Novel Object Recognition Memory in Spontaneously Hypertensive Rats after Ischemic Stroke by Promoting Neural Plasticity in the Entorhinal Cortex. Front Behav Neurosci 2017; 11:185. [PMID: 29167635 PMCID: PMC5682296 DOI: 10.3389/fnbeh.2017.00185] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023] Open
Abstract
Cerebral ischemia leads to memory impairment, and several studies have indicated that physical exercise (PE) has memory-improving effects after ischemia. This study was designed to further explore the specific role of PE in novel object recognition (NOR) memory after stroke and the exact cortical regions in which memory is restored by PE. Spontaneously hypertensive rats (SHR) were subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery, followed by 26 days of PE starting on day 3 post-tMCAO. Thereafter, infarct volume, neurobehavioral outcome and NOR memory were assessed. Immunofluorescence staining and Luxol Fast Blue (LFB) staining were performed in the prefrontal cortex, entorhinal cortex and corpus callosum regions. Western blot analysis was performed to detect expressions of Nestin, Bcl-2 and SYN proteins in the entorhinal cortex. After tMCAO, NOR memory impairment was found in SHR. Rats subjected to PE post-tMCAO showed increased discrimination ratio, as well as significant decreases in infarct volumes and modified neurological severity scores (mNSS), when compared with tMCAO rats without PE. After stroke, NeuN-positive cell number was drastically reduced in the entorhinal cortex, rather than in the prefrontal cortex. Ischemic stroke had no impact on myelin and phospholipids, and the ratio of SMI-32/MBP in the corpus callosum. PE increased NeuN, Nestin, Ki67, MBP, SYN, PSD-95 and Bcl-2 expressions in the entorhinal cortex, while TUNEL and SMI-32 expressions were decreased. In conclusion, the NOR memory-improving capacity promoted by PE was closely related to neuronal cell proliferation and synaptic plasticity of the entorhinal cortex.
Collapse
Affiliation(s)
- Xiaona Pan
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ting Jiang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Luo
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
76
|
Neves G, Borsoi M, Antonio CB, Pranke MA, Betti AH, Rates SMK. Is Forced Swimming Immobility a Good Endpoint for Modeling Negative Symptoms of Schizophrenia? - Study of Sub-Anesthetic Ketamine Repeated Administration Effects. AN ACAD BRAS CIENC 2017; 89:1655-1669. [PMID: 28832723 DOI: 10.1590/0001-3765201720160844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Immobility time in the forced swimming has been described as analogous to emotional blunting or apathy and has been used for characterizing schizophrenia animal models. Several clinical studies support the use of NMDA receptor antagonists to model schizophrenia in rodents. Some works describe the effects of ketamine on immobility behavior but there is variability in the experimental design used leading to controversial results. In this study, we evaluated the effects of repeated administration of ketamine sub-anesthetic doses in forced swimming, locomotion in response to novelty and novel object recognition, aiming a broader evaluation of the usefulness of this experimental approach for modeling schizophrenia in mice. Ketamine (30 mg/kg/day i.p. for 14 days) induced a not persistent decrease in immobility time, detected 24h but not 72h after treatment. This same administration protocol induced a deficit in novel object recognition. No change was observed in mice locomotion. Our results confirm that repeated administration of sub-anesthetic doses of ketamine is useful in modeling schizophrenia-related behavioral changes in mice. However, the immobility time during forced swimming does not seem to be a good endpoint to evaluate the modeling of negative symptoms in NMDAR antagonist animal models of schizophrenia.
Collapse
Affiliation(s)
- Gilda Neves
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Milene Borsoi
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Camila B Antonio
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Mariana A Pranke
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Andresa H Betti
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Stela M K Rates
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
77
|
Grizzell JA, Patel S, Barreto GE, Echeverria V. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78:75-81. [PMID: 28536070 DOI: 10.1016/j.pnpbp.2017.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed.
Collapse
Affiliation(s)
- J Alex Grizzell
- Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - Sagar Patel
- Department of Psychology, NeuroNET Research Center, University of Tennessee, Knoxville, TN 37996, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia; Center for Biomedical Research, Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago, Chile
| | - Valentina Echeverria
- Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA; Fac. Cs de la Salud, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
| |
Collapse
|
78
|
Valiati FE, Vasconcelos M, Lichtenfels M, Petry FS, de Almeida RMM, Schwartsmann G, Schröder N, de Farias CB, Roesler R. Administration of a Histone Deacetylase Inhibitor into the Basolateral Amygdala Enhances Memory Consolidation, Delays Extinction, and Increases Hippocampal BDNF Levels. Front Pharmacol 2017; 8:415. [PMID: 28701956 PMCID: PMC5487430 DOI: 10.3389/fphar.2017.00415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 01/28/2023] Open
Abstract
Gene expression related to the formation and modification of memories is regulated epigenetically by chromatin remodeling through histone acetylation. Memory formation and extinction can be enhanced by treatment with inhibitors of histone deacetylases (HDACs). The basolateral amygdala (BLA) is a brain area critically involved in regulating memory for inhibitory avoidance (IA). However, previous studies have not examined the effects of HDAC inhibition in the amygdala on memory for IA. Here we show that infusion of an HDAC inhibitor (HDACi), trichostatin A (TSA), into the BLA, enhanced consolidation of IA memory in rats when given at 1.5, 3, or 6 h posttraining, but not when the drug was infused immediately after training. In addition, intra-BLA administration of TSA immediately after retrieval delayed extinction learning. Moreover, we show that intra-BLA TSA in rats given IA training increased the levels of brain-derived neurotrophic factor in the dorsal hippocampus, but not in the BLA itself. These findings reveal novel aspects of the regulation of fear memory by epigenetic mechanisms in the amygdala.
Collapse
Affiliation(s)
- Fernanda E Valiati
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Mailton Vasconcelos
- Institute of Psychology, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Martina Lichtenfels
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Fernanda S Petry
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Gilberto Schwartsmann
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do SulPorto Alegre, Brazil
| | - Nadja Schröder
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do SulPorto Alegre, Brazil
| | - Caroline B de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Children's Cancer InstitutePorto Alegre, Brazil
| | - Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil.,Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital, Federal University of Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
79
|
Effects of ketamine, dexmedetomidine and propofol anesthesia on emotional memory consolidation in rats: Consequences for the development of post-traumatic stress disorder. Behav Brain Res 2017; 329:215-220. [DOI: 10.1016/j.bbr.2017.04.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 01/02/2023]
|
80
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
81
|
Ashabi G, Sarkaki A, Khodagholi F, Zareh Shahamati S, Goudarzvand M, Farbood Y, Badavi M, Khalaj L. Subchronic metformin pretreatment enhances novel object recognition memory task in forebrain ischemia: behavioural, molecular, and electrophysiological studies. Can J Physiol Pharmacol 2017; 95:388-395. [DOI: 10.1139/cjpp-2016-0260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metformin exerts its effect via AMP-activated protein kinase (AMPK), which is a key sensor for energy homeostasis that regulates different intracellular pathways. Metformin attenuates oxidative stress and cognitive impairment. In our experiment, rats were divided into 8 groups; some were pretreated with metformin (Met, 200 mg/kg) and (or) the AMPK inhibitor Compound C (CC) for 14 days. On day 14, rats underwent transient forebrain global ischemia. Data indicated that pretreatment of ischemic rats with metformin reduced working memory deficits in a novel object recognition test compared to group with ischemia–reperfusion (I–R) (P < 0.01). Pretreatment of the I–R animals with metformin increased phosphorylated cyclic-AMP response element-binding protein (pCREB) and c-fos levels compared to the I–R group (P < 0.001 for both). The level of CREB and c-fos was significantly lower in ischemic rats pretreated with Met + CC compared to the Met + I–R group. Field excitatory postsynaptic potential (fEPSP) amplitude and slope was significantly lower in the I–R group compared to the sham operation group (P < 0.001). Data showed that fEPSP amplitude and slope was significantly higher in the Met + I–R group compared to the I–R group (P < 0.001). Treatment of ischemic animals with Met + CC increased fEPSP amplitude and slope compared to the Met + I–R group (P < 0.01). We unravelled new aspects of the protective role of AMPK activation by metformin, further emphasizing the potency of metformin pretreatment against cerebral ischemia.
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Zareh Shahamati
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yaghoob Farbood
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Ahvaz Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Khalaj
- Medical School, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
82
|
Farahmandfar M, Akbarabadi A, Bakhtazad A, Zarrindast MR. Recovery from ketamine-induced amnesia by blockade of GABA-A receptor in the medial prefrontal cortex of mice. Neuroscience 2017; 344:48-55. [DOI: 10.1016/j.neuroscience.2016.02.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 11/30/2022]
|
83
|
Sorial ME, El Sayed NSED. Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer's disease mouse model: possible involvement of the cholinergic system. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:581-593. [PMID: 28188358 DOI: 10.1007/s00210-017-1357-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
Sporadic Alzheimer's disease (SAD) is a slowly progressive neurological disorder that is the most common form of dementia. Cholinergic system dysfunction and amyloid beta formation are the two main underlying pathological mechanisms for the disease development. In recent studies, insulin receptor desensitization and disturbances in the downstream effects of insulin receptor signaling were observed in the brains of Alzheimer's patients. Currently, intracereberoventricular (ICV) injection of streptozotocin (STZ) is found to induce behavioral, neurochemical, and structural alterations in animals resembling those found in SAD patients. Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was recently shown to regulate the transcription of several genes in both in vivo and in vitro models of Alzheimer's disease. The aim of the current study is to investigate the potential effect of different doses of valproic acid, in an ICV-STZ-induced animal model of SAD. Streptozotocin-injected mice showed cognitive and spatial memory dysfunction in the Y-maze, object recognition test, and Morris water maze (MWM) neurobehavioral tests. The mice also exhibited a decrease in acetylcholine (ACh) and neprilysin (NEP) levels accompanied by an increase in acetylcholinesterase (AChE) activity. For the first time to our knowledge, our findings have shown that VPA is capable of restoring ACh levels in ICV-STZ-injected mice, as well as normalizing both NEP levels and AChE activity. Via this mechanism, an enhancement of cognitive functions is observed. Thus, VPA is suggested to be a promising therapeutic approach against SAD.
Collapse
Affiliation(s)
- Mirna Ezzat Sorial
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt
| | - Nesrine Salah El Dine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
84
|
Neuroprotective effects of Caralluma tuberculata on ameliorating cognitive impairment in a d-galactose-induced mouse model. Biomed Pharmacother 2016; 84:387-394. [DOI: 10.1016/j.biopha.2016.09.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
|
85
|
Mitra S, Bastos CP, Chesworth S, Frye C, Bult-Ito A. Strain and sex based characterization of behavioral expressions in non-induced compulsive-like mice. Physiol Behav 2016; 168:103-111. [PMID: 27838311 DOI: 10.1016/j.physbeh.2016.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023]
Abstract
There is currently a lack of understanding how genetic background and sex differences attribute to the heterogeneity of obsessive-compulsive disorder (OCD). An animal model of compulsive-like behaviors has been developed through bidirectional selection of house mice (Mus musculus) for high (big cotton nests; BIG mice) and low levels (small nests; SMALL mice) of nest-building behavior. The BIG male strains have predictive and face validity as a spontaneous animal model of OCD. Here, we evaluated compulsive-, anxiety-, cognitive-, and depression-like behaviors among male and proestrus female replicate strains each of BIG (BIG1, BIG2) and SMALL (SML1, SML2) nest-builders, and randomly-bred Controls (C1, C2). BIG1 and BIG2 males and females had higher nesting scores when compared to SMALL and Control strains. Male BIG1 and BIG2 strains showed more compulsive-like nesting than BIG1 and BIG2 proestrus females, which was not observed among the other strains. Nesting scores were also different between BIG replicate male strains. A similar pattern was observed in the compulsive-like marble burying behavior with BIG strains burying more marbles than SMALL and Control strains. Significant replicate and sex differences were also observed in marble burying among the BIG strains. The open field test revealed replicate effects while the BIG strains showed less anxiety-like behavior in the elevated plus maze test compared to the SMALL strains. For novel object recognition only the Control strains showed replicate and sex differences. In the depression-like forced swim test proestrus females demonstrated less depression-like behavior than males. BIG and SMALL nest-building strains had a higher corticosterone stress response than the Control strains. Together these results indicate a strong interplay of genetic background and sex in influencing expression of behaviors in our compulsive-like mouse model. These results are in congruence with the clinical heterogeneity of OCD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA; IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, USA
| | - Cristiane P Bastos
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, USA; Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Savanna Chesworth
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA
| | - Cheryl Frye
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA; IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, USA; Department of Psychology, University at Albany, State University of New York, USA
| | - Abel Bult-Ito
- Department of Biology & Wildlife, University of Alaska Fairbanks, USA.
| |
Collapse
|
86
|
LASSBio-579, a prototype antipsychotic drug, and clozapine are effective in novel object recognition task, a recognition memory model. Behav Pharmacol 2016; 27:339-49. [DOI: 10.1097/fbp.0000000000000200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
Farahmandfar M, Bakhtazad A, Akbarabadi A, Zarrindast MR. The influence of dopaminergic system in medial prefrontal cortex on ketamine-induced amnesia in passive avoidance task in mice. Eur J Pharmacol 2016; 781:45-52. [DOI: 10.1016/j.ejphar.2016.03.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/26/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
|
88
|
Petry FS, Dornelles AS, Lichtenfels M, Valiati FE, de Farias CB, Schwartsmann G, Parent MB, Roesler R. Histone deacetylase inhibition prevents the impairing effects of hippocampal gastrin-releasing peptide receptor antagonism on memory consolidation and extinction. Behav Brain Res 2016; 307:46-53. [PMID: 27025446 DOI: 10.1016/j.bbr.2016.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/12/2022]
Abstract
Hippocampal gastrin-releasing peptide receptors (GRPR) regulate memory formation and extinction, and disturbances in GRPR signaling may contribute to cognitive impairment associated with neurodevelopmental disorders. Histone acetylation is an important epigenetic mechanism that regulates gene expression involved in memory formation, and histone deacetylase inhibitors (HDACis) rescue memory deficits in several models. The present study determined whether inhibiting histone deacetylation would prevent memory impairments produced by GRPR blockade in the hippocampus. Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or the HDACi sodium butyrate (NaB) shortly before inhibitory avoidance (IA) training, followed by an infusion of either SAL or the selective GRPR antagonist RC-3095 immediately after training. In a second experiment, the infusions were administered before and after a retention test trial that served as extinction training. As expected, RC-3095 significantly impaired consolidation and extinction of IA memory. More importantly, pretraining administration of NaB, at a dose that had no effect when given alone, prevented the effects of RC-3095. In addition, the combination of NaB and RC-3095 increased hippocampal levels of the brain-derived neurotrophic factor (BDNF). These findings indicate that HDAC inhibition can protect against memory impairment caused by GRPR blockade.
Collapse
Affiliation(s)
- Fernanda S Petry
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Arethuza S Dornelles
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Martina Lichtenfels
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda E Valiati
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Gilberto Schwartsmann
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marise B Parent
- Neuroscience Institute and Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
89
|
Khan MZ, Zhuang X, He L. GPR40 receptor activation leads to CREB phosphorylation and improves cognitive performance in an Alzheimer's disease mouse model. Neurobiol Learn Mem 2016; 131:46-55. [PMID: 26976092 DOI: 10.1016/j.nlm.2016.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/01/2016] [Accepted: 03/05/2016] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a very complex neurodegenerative disorder as neuronal loss is a prominent and initial feature of AD. This loss correlates with cognitive deficits more closely than amyloid load. GPR40 receptor belongs to the class of G-protein coupled receptors, is expressed in wide parts of the brain including the hippocampus which is involved in spatial learning and memory. Till now, there are few studies investigating the functional role of GPR40 in brain. In this study, we evaluated the functional role of GPR40 receptor in the A-beta AD mice model. Administration of Aβ1-42 (410pmol) intracerebroventricularly (i.c.v.) once at the beginning of experiment significantly impaired cognitive performance (in step-through passive test), the ability of spatial learning and memory in (Morris water maze test), working memory, attention, anxiety in (Novel object recognition test), and spatial working and reference-memory in (Hole board discrimination test) compared with the control group. The results revealed that GPR40 receptor treatment groups significantly ameliorated model mice cognitive performance. All GPR40 receptor agonist GW9508, treatment groups enhanced the learning and memory ability in Step-through passive test, Morris water maze test, Hole board discrimination test, Novel object recognition test. Furthermore, we have observed that activation of GPR40 receptor provoked the phosphorylation of the cAMP response element binding protein (CREB) and significant increase in neurotropic factors including brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrohin-4 (NT-4) in mouse hippocampal neurons and contribute to neurogenesis. These results suggest that GPR40 is a suitable therapeutic candidate for neurogenesis and neuroprotection in the treatment and prevention of AD.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Xuxu Zhuang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
90
|
Groeber Travis CM, Altman DE, Genovese RF. Ketamine administration diminishes operant responding but does not impair conditioned fear. Pharmacol Biochem Behav 2015; 139:84-91. [DOI: 10.1016/j.pbb.2015.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
|
91
|
Rajagopal L, Burgdorf JS, Moskal JR, Meltzer HY. GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice. Behav Brain Res 2015; 299:105-10. [PMID: 26632337 DOI: 10.1016/j.bbr.2015.10.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-D-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg.i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, 303 E Chicago Ave., 7-101, Chicago, IL 60611, USA
| | - Jeffrey S Burgdorf
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 1801 Maple Ave., Suite 4300, Evanston, IL 60201, USA
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 1801 Maple Ave., Suite 4300, Evanston, IL 60201, USA; Naurex Inc., 1801 Maple Ave., Suite 4300, Evanston, IL 60201, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, 303 E Chicago Ave., 7-101, Chicago, IL 60611, USA.
| |
Collapse
|
92
|
May Z, Morrill A, Holcombe A, Johnston T, Gallup J, Fouad K, Schalomon M, Hamilton TJ. Object recognition memory in zebrafish. Behav Brain Res 2015; 296:199-210. [PMID: 26376244 DOI: 10.1016/j.bbr.2015.09.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/19/2023]
Abstract
The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour.
Collapse
Affiliation(s)
- Zacnicte May
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Adam Morrill
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Adam Holcombe
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Travis Johnston
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Joshua Gallup
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Karim Fouad
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Melike Schalomon
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Trevor James Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada,.
| |
Collapse
|
93
|
Raber J. Novel images and novel locations of familiar images as sensitive translational cognitive tests in humans. Behav Brain Res 2015; 285:53-9. [DOI: 10.1016/j.bbr.2015.01.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 01/20/2023]
|
94
|
Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice. Behav Brain Res 2015; 282:165-75. [PMID: 25591475 DOI: 10.1016/j.bbr.2015.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Dysfunctions in the GABAergic system are considered a core feature of schizophrenia. Pharmacological blockade of NMDA receptors (NMDAR), or their genetic ablation in parvalbumin (PV)-expressing GABAergic interneurons can induce schizophrenia-like behavior in animals. NMDAR-mediated currents shape the maturation of GABAergic interneurons during a critical period of development, making transient blockade of NMDARs during this period an attractive model for the developmental changes that occur in the course of schizophrenia's pathophysiology. Here, we examined whether developmental administration of the non-competitive NMDAR antagonist ketamine results in persistent deficits in PFC-dependent behaviors in adult animals. Mice received injections of ketamine (30mg/kg) on postnatal days (PND) 7, 9 and 11, and then tested on a battery of behavioral experiments aimed to mimic major symptoms of schizophrenia in adulthood (between PND 90 and 120). Ketamine treatment reduced the number of cells that expressed PV in the PFC by ∼60% as previously described. Ketamine affected performance in an attentional set-shifting task, impairing the ability of the animals to perform an extradimensional shift to acquire a new strategy. Ketamine-treated animals showed deficits in latent inhibition, novel-object recognition and social novelty detection compared to their SAL-treated littermates. These deficits were not a result of generalized anxiety, as both groups performed comparably on an elevated plus maze. Ketamine treatment did not cause changes in amphetamine-induced hyperlocomotion that are often taken as measures for the positive-like symptoms of the disorder. Thus, ketamine administration during development appears to be a useful model for inducing cognitive and negative symptoms of schizophrenia.
Collapse
|
95
|
Serum brain-derived neurotrophic factor and nerve growth factor decreased in chronic ketamine abusers. Drug Alcohol Depend 2014; 142:290-4. [PMID: 25064020 PMCID: PMC4888958 DOI: 10.1016/j.drugalcdep.2014.06.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/23/2014] [Accepted: 06/28/2014] [Indexed: 12/16/2022]
Abstract
AIMS This study investigated the serum levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in a group of chronic ketamine abusers in comparison to healthy controls. The correlations between the serum BDNF, NGF level with the subjects' demographic, pattern of ketamine use were also examined. METHODS 93 subjects who met the criteria of ketamine dependence and 39 healthy subjects were recruited. Serum BDNF and NGF levels were assayed by enzyme-linked immunosorbent assay (ELISA). Psychopathological symptoms were assessed using Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). RESULTS Both serum levels of BDNF and NGF were significant lower in the ketamine users compared to the healthy control subjects (9.50±6.68 versus 14.37±6.07 ng/ml, p=0.019 for BDNF; 1.93±0.80 versus 2.60±1.07 ng/ml, p=0.011 for NGF). BDNF level was negatively associated with current frequency of ketamine use (r=-0.209, p=0.045). CONCLUSIONS Both BDNF and NGF serum concentrations were significantly lower among chronic ketamine users than among health controls.
Collapse
|
96
|
Drugs of abuse as memory modulators: a study of cocaine in rats. Psychopharmacology (Berl) 2014; 231:2339-48. [PMID: 24337026 DOI: 10.1007/s00213-013-3390-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/29/2013] [Indexed: 01/22/2023]
Abstract
RATIONALE It has been proposed that drugs of abuse reinforce behavior partly, or wholly, because they facilitate learning by enhancing memory consolidation. Cocaine can clearly serve as a reinforcer, but its effect on learning has not been fully characterized. OBJECTIVES To explore the effects of different regimens of pre- and post-training cocaine administration on win-stay and object learning. METHODS Cocaine naïve and cocaine pre-exposed (30 mg/kg/day, × 5 days followed by 7 days drug-free) male Sprague-Dawley rats received cocaine (0, 1, 2.5, 7.5, or 20 mg/kg, i.p.) immediately following training on a win-stay task in a radial maze or following the sample phase of an object learning task. Win-stay performance was also assessed in tests of extinction and after a set shift. RESULTS Post-training cocaine did not improve accuracy on the win-stay task and produced performance deficits at 20 mg/kg. These deficits were attenuated by prior cocaine exposure. There was indirect evidence of facilitated learning in extinction and set shift tests, but the effective dosage was different (2.5 and 7.5 mg/kg, respectively). Post-training cocaine produced dose-dependent improvements in object learning. CONCLUSION Post-training cocaine administration can facilitate learning, but this effect is highly dependent on the dose and the type of task employed.
Collapse
|
97
|
Liu H, Xu GH, Wang K, Cao JL, Gu EW, Li YH, Liu XS. Involvement of GSK3β/β-catenin signaling in the impairment effect of ketamine on spatial memory consolidation in rats. Neurobiol Learn Mem 2014; 111:26-34. [DOI: 10.1016/j.nlm.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 01/09/2023]
|
98
|
|
99
|
Chen L, Tian S, Ke J. Rapid eye movement sleep deprivation disrupts consolidation but not reconsolidation of novel object recognition memory in rats. Neurosci Lett 2014; 563:12-6. [DOI: 10.1016/j.neulet.2014.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/24/2013] [Accepted: 01/14/2014] [Indexed: 01/21/2023]
|
100
|
Browne CA, Lucki I. Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 2013; 4:161. [PMID: 24409146 PMCID: PMC3873522 DOI: 10.3389/fphar.2013.00161] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/07/2013] [Indexed: 01/21/2023] Open
Abstract
Newer antidepressants are needed for the many individuals with major depressive disorder (MDD) that do not respond adequately to treatment and because of a delay of weeks before the emergence of therapeutic effects. Recent evidence from clinical trials shows that the NMDA antagonist ketamine is a revolutionary novel antidepressant because it acts rapidly and is effective for treatment-resistant patients. A single infusion of ketamine alleviates depressive symptoms in treatment-resistant depressed patients within hours and these effects may be sustained for up to 2 weeks. Although the discovery of ketamine's effects has reshaped drug discovery for antidepressants, the psychotomimetic properties of this compound limit the use of this therapy to the most severely ill patients. In order to develop additional antidepressants like ketamine, adequate preclinical behavioral screening paradigms for fast-acting antidepressants need to be established and used to identify the underlying neural mechanisms. This review examines the preclinical literature attempting to model the antidepressant-like effects of ketamine. Acute administration of ketamine has produced effects in behavioral screens for antidepressants like the forced swim test, novelty suppression of feeding and in rodent models for depression. Protracted behavioral effects of ketamine have been reported to appear after a single treatment that last for days. This temporal pattern is similar to its clinical effects and may serve as a new animal paradigm for rapid antidepressant effects in humans. In addition, protracted changes in molecules mediating synaptic plasticity have been implicated in mediating the antidepressant-like behavioral effects of ketamine. Current preclinical studies are examining compounds with more specific pharmacological effects at glutamate receptors and synapses in order to develop additional rapidly acting antidepressants without the hallucinogenic side effects or abuse potential of ketamine.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Psychiatry, University of Pennsylvania Philadelphia, PA, USA
| | - Irwin Lucki
- Department of Psychiatry, University of Pennsylvania Philadelphia, PA, USA ; Department of Pharmacology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|