51
|
Abstract
Tumor necrosis factor-α (TNF-α) has complex effects on muscle regeneration. In this issue of Cell Stem Cell, Palacios et al. (2010) report that TNF-α-activated p38α kinase controls differentiation of muscle stem cells by promoting polycomb repressive complex 2 (PRC2) silencing of the Pax7 promoter.
Collapse
Affiliation(s)
- Gergana Dobreva
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Ludwigstr. 43, Germany
| | | |
Collapse
|
52
|
Gehrig SM, Lynch GS. Emerging drugs for treating skeletal muscle injury and promoting muscle repair. Expert Opin Emerg Drugs 2011; 16:163-82. [DOI: 10.1517/14728214.2010.524743] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
53
|
Nemoto H, Konno S, Sugimoto H, Nakazora H, Nomoto N, Murata M, Kitazono H, Fujioka T. Anti-TNF therapy using etanercept suppresses degenerative and inflammatory changes in skeletal muscle of older SJL/J mice. Exp Mol Pathol 2011; 90:264-70. [PMID: 21324312 DOI: 10.1016/j.yexmp.2011.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 02/06/2011] [Accepted: 02/07/2011] [Indexed: 12/13/2022]
Abstract
Limb-girdle muscular dystrophy 2B and Miyoshi myopathy are characterized by muscle fiber necrosis caused by a defect in dysferlin and inflammatory changes. SJL/J mice are deficient in dysferlin and display severe inflammatory changes, most notably the presence of cytokines, which may be related to destruction of the sarcolemma. We tested the hypothesis that tumor necrosis factor (TNF) contributes to myofibril necrosis. Administration of etanercept, an agent that blocks TNF, resulted in dose-dependent reductions in inflammatory change, necrosis, and fatty/fibrous change. These findings indicate that TNF does indeed play a role in the damage to muscle in SJL/J mice and that etanercept has the potential to reduce such damage.
Collapse
Affiliation(s)
- Hiroshi Nemoto
- Division of Neurology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-17-6 Ohashi, Meguro, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Piers AT, Lavin T, Radley-Crabb HG, Bakker AJ, Grounds MD, Pinniger GJ. Blockade of TNF in vivo using cV1q antibody reduces contractile dysfunction of skeletal muscle in response to eccentric exercise in dystrophic mdx and normal mice. Neuromuscul Disord 2010; 21:132-41. [PMID: 21055937 DOI: 10.1016/j.nmd.2010.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 01/25/2023]
Abstract
This study evaluated the contribution of the pro-inflammatory cytokine, tumour necrosis factor (TNF) to the severity of exercise-induced muscle damage and subsequent myofibre necrosis in mdx mice. Adult mdx and non-dystrophic C57 mice were treated with the mouse-specific TNF antibody cV1q before undergoing a damaging eccentric contraction protocol performed in vivo on a custom built mouse dynamometer. Muscle damage was quantified by (i) contractile dysfunction (initial torque deficit) immediately after the protocol, (ii) subsequent myofibre necrosis 48 h later. Blockade of TNF using cV1q significantly reduced contractile dysfunction in mdx and C57 mice compared with mice injected with the negative control antibody (cVaM) and un-treated mice. Furthermore, cV1q treatment significantly reduced myofibre necrosis in mdx mice. This in vivo evidence that cV1q reduces the TNF-mediated adverse response to exercise-induced muscle damage supports the use of targeted anti-TNF treatments to reduce the severity of the functional deficit and dystropathology in DMD.
Collapse
Affiliation(s)
- A T Piers
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|
55
|
Serrano AL, Muñoz-Cánoves P. Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 2010; 316:3050-8. [DOI: 10.1016/j.yexcr.2010.05.035] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 05/30/2010] [Indexed: 02/06/2023]
|
56
|
Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, Marquez VE, Valente S, Mai A, Forcales SV, Sartorelli V, Puri PL. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 2010; 7:455-69. [PMID: 20887952 PMCID: PMC2951277 DOI: 10.1016/j.stem.2010.08.013] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 05/26/2010] [Accepted: 07/28/2010] [Indexed: 12/14/2022]
Abstract
How regeneration cues are converted into the epigenetic information that controls gene expression in adult stem cells is currently unknown. We identified an inflammation-activated signaling in muscle stem (satellite) cells, by which the polycomb repressive complex 2 (PRC2) represses Pax7 expression during muscle regeneration. TNF-activated p38α kinase promotes the interaction between YY1 and PRC2, via threonine 372 phosphorylation of EZH2, the enzymatic subunit of the complex, leading to the formation of repressive chromatin on Pax7 promoter. TNF-α antibodies stimulate satellite cell proliferation in regenerating muscles of dystrophic or normal mice. Genetic knockdown or pharmacological inhibition of the enzymatic components of the p38/PRC2 signaling--p38α and EZH2--invariably promote Pax7 expression and expansion of satellite cells that retain their differentiation potential upon signaling resumption. Genetic knockdown of Pax7 impaired satellite cell proliferation in response to p38 inhibition, thereby establishing the biological link between p38/PRC2 signaling to Pax7 and satellite cell decision to proliferate or differentiate.
Collapse
Affiliation(s)
- Daniela Palacios
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| | - Chiara Mozzetta
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| | - Silvia Consalvi
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| | - Giuseppina Caretti
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892-8022, USA
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan, Italy
| | - Valentina Saccone
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| | - Valentina Proserpio
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892-8022, USA
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan, Italy
| | | | - Sergio Valente
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Chemistry and Drug Technologies, University La Sapienza, Italy
| | - Antonello Mai
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Chemistry and Drug Technologies, University La Sapienza, Italy
| | | | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892-8022, USA
| | - Pier Lorenzo Puri
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| |
Collapse
|
57
|
Nye DJ, Costas JM, Henley JB, Kim JK, Plochocki JH. The chondrogenic response to exercise in the proximal femur of normal and mdx mice. BMC Musculoskelet Disord 2010; 11:198. [PMID: 20815903 PMCID: PMC2944215 DOI: 10.1186/1471-2474-11-198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/03/2010] [Indexed: 12/16/2022] Open
Abstract
Background Submaximal exercise is used in the management of muscular dystrophy. The effects of mechanical stimulation on skeletal development are well understood, although its effects on cartilage growth have yet to be investigated in the dystrophic condition. The objective of this study was to investigate the chondrogenic response to voluntary exercise in dystrophin-deficient mice. Methods Control and dystrophin-deficient (mdx) mice were divided into sedentary and exercise-treated groups and tested for chondral histomorphometric differences at the proximal femur. Results Control mice ran 7 km/week further than mdx mice on average, but this difference was not statistically significant (P > 0.05). However, exercised control mice exhibited significantly enlarged femur head diameter, articular cartilage thickness, articular cartilage tissue area, and area of calcified cartilage relative to sedentary controls and exercised mdx mice (P < 0.05). No differences were found between other treatment groups. Conclusions Mdx mice exhibit a reduced chondrogenic response to increased mechanical stimulation relative to controls. However, no significant reduction in articular dimensions was found, indicating loss of chondral tissue may not be a clinical concern with dystrophinopathy.
Collapse
Affiliation(s)
- David J Nye
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | | | | | | | | |
Collapse
|
58
|
TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy. PLoS One 2010; 5:e12479. [PMID: 20814569 PMCID: PMC2930001 DOI: 10.1371/journal.pone.0012479] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 08/01/2010] [Indexed: 12/21/2022] Open
Abstract
Background Classical NF-κB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFα on skeletal muscle differentiation are mediated in part through sustained NF-κB activity. In dystrophic muscles, NF-κB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFα that is also under IKKβ and NF-κB control. Methodology/Principal Findings Based on these findings we speculated that in DMD, TNFα secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFα is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-κB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFα stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. Conclusions/Significance We propose that in dystrophic muscles, elevated levels of TNFα and NF-κB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.
Collapse
|
59
|
Guido AN, Campos GER, Neto HS, Marques MJ, Minatel E. Fiber type composition of the sternomastoid and diaphragm muscles of dystrophin-deficient mdx mice. Anat Rec (Hoboken) 2010; 293:1722-8. [PMID: 20730859 DOI: 10.1002/ar.21224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 05/06/2010] [Indexed: 11/05/2022]
Abstract
The muscle fiber phenotype is mainly determined by motoneuron innervation and changes in neuromuscular interaction alter the muscle fiber type. In dystrophin-deficient mdx mice, changes in the molecular assembly of the neuromuscular junction and in nerve terminal sprouting occur in the sternomastoid (STN) muscle during early stages of the disease. In this study, we were interested to see whether early changes in neuromuscular assembly are correlated with alterations in fiber type in dystrophic STN at 2 months of age. A predominance of hybrid fast myofibers (about 52% type IIDB) was observed in control (C57Bl/10) STN. In mdx muscle, the lack of dystrophin did not change this profile (about 54% hybrid type IIDB). Pure fast type IID fibers predominated in normal and dystrophic diaphragm (DIA; about 39% in control and 30% in mdx muscle) and a population of slow Type I fibers was also present (about 10% in control and 13% in mdx muscle). In conclusion, early changes in neuromuscular assembly do not affect the fiber type composition of dystrophic STN. In contrast to the pure fast fibers of the more affected DIA, the hybrid phenotype of the STN may permit dynamic adaptations during progression of the disease.
Collapse
Affiliation(s)
- Anderson Neri Guido
- Departamento de Anatomia, Biologia Celular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
60
|
Sciorati C, Buono R, Azzoni E, Casati S, Ciuffreda P, D'Angelo G, Cattaneo D, Brunelli S, Clementi E. Co-administration of ibuprofen and nitric oxide is an effective experimental therapy for muscular dystrophy, with immediate applicability to humans. Br J Pharmacol 2010; 160:1550-60. [PMID: 20590643 PMCID: PMC2938824 DOI: 10.1111/j.1476-5381.2010.00809.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Current therapies for muscular dystrophy are based on corticosteroids. Significant side effects associated with these therapies have prompted several studies aimed at identifying possible alternative strategies. As inflammation and defects of nitric oxide (NO) generation are key pathogenic events in muscular dystrophies, we have studied the effects of combining the NO donor isosorbide dinitrate (ISDN) and the non-steroidal anti-inflammatory drug ibuprofen. EXPERIMENTAL APPROACH alpha-Sarcoglycan-null mice were treated for up to 8 months with ISDN (30 mg.kg(-1)) plus ibuprofen (50 mg.kg(-1)) administered daily in the diet. Effects of ISDN and ibuprofen alone were assessed in parallel. Drug effects on animal motility and muscle function, muscle damage, inflammatory infiltrates and cytokine levels, as well as muscle regeneration including assessment of endogenous stem cell pool, were measured at selected time points. KEY RESULTS Combination of ibuprofen and ISDN stimulated regeneration capacity, of myogenic precursor cells, reduced muscle necrotic damage and inflammation. Muscle function in terms of free voluntary movement and resistance to exercise was maintained throughout the time window analysed. The effects of ISDN and ibuprofen administered separately were transient and significantly lower than those induced by their combination. CONCLUSIONS AND IMPLICATIONS Co-administration of NO and ibuprofen provided synergistic beneficial effects in a mouse model of muscular dystrophy, leading to an effective therapy. Our results open the possibility of immediate clinical testing of a combination of ISDN and ibuprofen in dystrophic patients, as both components are approved for use in humans, with a good safety profile.
Collapse
Affiliation(s)
- Clara Sciorati
- San Raffaele Scientific Institute, Stem Cell Research InstituteMilan, Italy
| | - Roberta Buono
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
| | - Emanuele Azzoni
- San Raffaele Scientific Institute, Stem Cell Research InstituteMilan, Italy
- Department of Experimental Medicine, University of Milano-BicoccaMonza, Italy
| | - Silvana Casati
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
| | - Pierangela Ciuffreda
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
| | | | - Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
| | - Silvia Brunelli
- San Raffaele Scientific Institute, Stem Cell Research InstituteMilan, Italy
- Department of Experimental Medicine, University of Milano-BicoccaMonza, Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Preclinical Sciences, University Hospital ‘Luigi Sacco’, Università di MilanoMilan, Italy,
- E. Medea Scientific InstituteBosisio Parini, Italy
| |
Collapse
|
61
|
A 3 months mild functional test regime does not affect disease parameters in young mdx mice. Neuromuscul Disord 2010; 20:273-80. [DOI: 10.1016/j.nmd.2010.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/26/2010] [Accepted: 02/08/2010] [Indexed: 11/23/2022]
|
62
|
Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion RDN, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260:75-82. [PMID: 19917503 DOI: 10.1016/j.cellimm.2009.10.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/13/2009] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked musculodegenerative condition consisting of an underlying genetic defect whose manifestation is augmented by inflammatory mechanisms. Previous treatment approaches using gene replacement, exon-skipping or allogeneic cell therapy have been relatively unsuccessful. The only intervention to mediate improvement in survival, albeit minor, is glucocorticoid treatment. Given this modality appears to function via suppression of underlying inflammation; we focus this review on the inflammatory response as a target for mesenchymal stem cell (MSC) therapy. In contrast to other cell based therapies attempted in DMD, MSC have the advantages of (a) ability to fuse with and genetically complement dystrophic muscle; (b) possess anti-inflammatory activities; and (c) produce trophic factors that may augment activity of endogenous repair cells. We conclude by describing one practical scenario of stem cell therapy for DMD.
Collapse
|
63
|
Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology 2009; 11:363-76. [PMID: 20033288 DOI: 10.1007/s10522-009-9260-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/09/2009] [Indexed: 12/26/2022]
Abstract
The ability of very old animals to make new muscle after injury remains controversial. This issue has major implications for the regenerative potential of damaged geriatric human muscle, to age-related loss of muscle mass (sarcopenia) and to the proposed need for muscle stem cell therapy for the aged. To further address issues of inherent myogenic capacity and the role of host systemic factors in new muscle formation, whole muscle grafts were transplanted between geriatric (aged 27-29 months) and young (3 months) C57Bl/6J mice and compared with autografts in geriatric and young mice. Grafts were sampled at 5 and 10 days for histological analysis. Inflammation and formation of new myotubes was strikingly impaired at 5 days in the geriatric muscle autografts. However, there was a strong inflammatory response by the geriatric hosts to young muscle grafts and geriatric muscles provoked an inflammatory response by young hosts at 5 days. At 10 days, extensive myotube formation in geriatric muscle autografts (equivalent to that seen in young autografts and both other groups) confirmed excellent intrinsic capacity of myogenic (stem) cells to proliferate and fuse. The key conclusion is that a weaker chemotactic stimulus by damaged geriatric muscle, combined with a reduced inflammatory response of old hosts, results in delayed inflammation in geriatric muscle autografts. This delay is transient. Once inflammation occurs, myogenesis can proceed. The presence of well developed myotubes in old muscle autografts at 10 days confirms a very good inherent myogenic response of geriatric skeletal muscle.
Collapse
|
64
|
Use of pifithrin to inhibit p53-mediated signalling of TNF in dystrophic muscles of mdx mice. Mol Cell Biochem 2009; 337:119-31. [PMID: 19859789 DOI: 10.1007/s11010-009-0291-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Tumour Necrosis Factor (TNF) plays a major role in exacerbating necrosis of dystrophic muscle; however, the precise molecular mechanism underlying this effect of TNF is unknown. This study investigates the role that p53 plays in TNF-mediated necrosis of dystrophic myofibres by inhibiting p53 using pifithrin-alpha and three pifithrin-beta analogues. Tissue culture studies using C2C12 myoblasts established that pifithrin-alpha was toxic to differentiating myoblasts at concentrations greater than 10 muM. While non-toxic concentrations of pifithrin-alpha did not prevent the TNF-mediated inhibition of myoblast differentiation, Western blots indicated that nuclear levels of p53 were higher in TNF-treated myoblasts indicating that TNF does elevate p53. In contrast, in vivo studies in adult mdx mice showed that pifithrin-alpha significantly reduced myofibre necrosis that resulted from voluntary wheel running over 48 h. These results support the hypothesis that p53 plays some role in TNF-mediated necrosis of dystrophic muscle and present a potential new target for therapeutic interventions.
Collapse
|
65
|
Vetrone SA, Montecino-Rodriguez E, Kudryashova E, Kramerova I, Hoffman EP, Liu SD, Miceli MC, Spencer MJ. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest 2009; 119:1583-94. [PMID: 19451692 DOI: 10.1172/jci37662] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 04/01/2009] [Indexed: 01/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked, degenerative muscle disease that is exacerbated by secondary inflammation. Here, we characterized the immunological milieu of dystrophic muscle in mdx mice, a model of DMD, to identify potential therapeutic targets. We identified a specific subpopulation of cells expressing the Vbeta8.1/8.2 TCR that is predominant among TCR-beta+ T cells. These cells expressed high levels of osteopontin (OPN), a cytokine that promotes immune cell migration and survival. Elevated OPN levels correlated with the dystrophic process, since OPN was substantially elevated in the serum of mdx mice and muscle biopsies after disease onset. Muscle biopsies from individuals with DMD also had elevated OPN levels. To test the role of OPN in mdx muscle, mice lacking both OPN and dystrophin were generated and termed double-mutant mice (DMM mice). Reduced infiltration of NKT-like cells and neutrophils was observed in the muscle of DMM mice, supporting an immunomodulatory role for OPN in mdx muscle. Concomitantly, an increase in CD4+ and FoxP3+ Tregs was also observed in DMM muscle, which also showed reduced levels of TGF-beta, a known fibrosis mediator. These inflammatory changes correlated with increased strength and reduced diaphragm and cardiac fibrosis. These studies suggest that OPN may be a promising therapeutic target for reducing inflammation and fibrosis in individuals with DMD.
Collapse
Affiliation(s)
- Sylvia A Vetrone
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-7334, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Mozzetta C, Minetti G, Puri PL. Regenerative pharmacology in the treatment of genetic diseases: the paradigm of muscular dystrophy. Int J Biochem Cell Biol 2009; 41:701-10. [PMID: 18804548 PMCID: PMC2643324 DOI: 10.1016/j.biocel.2008.08.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 08/18/2008] [Accepted: 08/28/2008] [Indexed: 01/21/2023]
Abstract
Current evidence supports the therapeutic potential of pharmacological interventions that counter the progression of genetic disorders by promoting regeneration of the affected organs or tissues. The rationale behind this concept lies on the evidence that targeting key events downstream of the genetic defect can compensate, at least partially, the pathological consequence of the related disease. In this regard, the beneficial effect exerted on animal models of muscular dystrophy by pharmacological strategies that enhance muscle regeneration provides an interesting paradigm. In this review, we describe and discuss the potential targets of pharmacological strategies that promote regeneration of dystrophic muscles and alleviate the consequence of the primary genetic defect. Regenerative pharmacology provides an immediate and suitable therapeutic opportunity to slow down the decline of muscles in the present generation of dystrophic patients, with the perspective to hold them in conditions such that they could benefit of future, more definitive, therapies.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Dulbecco Telethon Institute (DTI) at Fondazione Santa Lucia/EBRI, Via di Fosso Fiorano, 64−00143 Roma, Italy
| | - Giulia Minetti
- Dulbecco Telethon Institute (DTI) at Fondazione Santa Lucia/EBRI, Via di Fosso Fiorano, 64−00143 Roma, Italy
| | - Pier Lorenzo Puri
- Dulbecco Telethon Institute (DTI) at Fondazione Santa Lucia/EBRI, Via di Fosso Fiorano, 64−00143 Roma, Italy
- The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA, United States
| |
Collapse
|
67
|
|
68
|
Multiplicity of experimental approaches to therapy for genetic muscle diseases and necessity for population screening. J Muscle Res Cell Motil 2008; 29:247-52. [PMID: 19115047 DOI: 10.1007/s10974-008-9158-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/03/2008] [Indexed: 12/17/2022]
Abstract
Currently a multiplicity of experimental approaches to therapy for genetic muscle diseases is being investigated. These include replacement of the missing gene, manipulation of the gene message, repair of the mutation, upregulation of an alternative gene and pharmacological interventions targeting a number of systems. A number of these approaches are in current clinical trials. There is considerable anticipation that perhaps more than one of the approaches will finally prove of clinical benefit, but there are many voices of caution. No matter which approaches might ultimately prove effective, there is a consensus that for most benefit to the patients it will be necessary to start treatment as early as possible. A consensus is also developing that the only way to do this is to implement population-based newborn screening to identify affected children shortly after birth. Population-based newborn screening is currently practised in very few places in the world and it brings with it implications for prevention rather than cure of genetic muscle diseases.
Collapse
|
69
|
Ridgley JA, Pinniger GJ, Hamer PW, Grounds MD. The physiological effects of IGF-1 (class 1:Ea transgene) over-expression on exercise-induced damage and adaptation in dystrophic muscles of mdx mice. Pflugers Arch 2008; 457:1121-32. [DOI: 10.1007/s00424-008-0568-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
|
70
|
Grounds MD, Radley HG, Lynch GS, Nagaraju K, De Luca A. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol Dis 2008; 31:1-19. [PMID: 18499465 PMCID: PMC2518169 DOI: 10.1016/j.nbd.2008.03.008] [Citation(s) in RCA: 266] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 11/19/2022] Open
Abstract
This review discusses various issues to consider when developing standard operating procedures for pre-clinical studies in the mdx mouse model of Duchenne muscular dystrophy (DMD). The review describes and evaluates a wide range of techniques used to measure parameters of muscle pathology in mdx mice and identifies some basic techniques that might comprise standardised approaches for evaluation. While the central aim is to provide a basis for the development of standardised procedures to evaluate efficacy of a drug or a therapeutic strategy, a further aim is to gain insight into pathophysiological mechanisms in order to identify other therapeutic targets. The desired outcome is to enable easier and more rigorous comparison of pre-clinical data from different laboratories around the world, in order to accelerate identification of the best pre-clinical therapies in the mdx mouse that will fast-track translation into effective clinical treatments for DMD.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Anatomy and Human Biology, the University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
71
|
Grounds MD, Radley HG, Gebski BL, Bogoyevitch MA, Shavlakadze T. IMPLICATIONS OF CROSS-TALK BETWEEN TUMOUR NECROSIS FACTOR AND INSULIN-LIKE GROWTH FACTOR-1 SIGNALLING IN SKELETAL MUSCLE. Clin Exp Pharmacol Physiol 2008; 35:846-51. [DOI: 10.1111/j.1440-1681.2007.04868.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|