51
|
Wada E, Tanihata J, Iwamura A, Takeda S, Hayashi YK, Matsuda R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet Muscle 2017; 7:23. [PMID: 29078808 PMCID: PMC5660454 DOI: 10.1186/s13395-017-0140-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 11/12/2022] Open
Abstract
Background Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Methods Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Results Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. Conclusion As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy particularly for promoting skeletal muscle regeneration. Electronic supplementary material The online version of this article (10.1186/s13395-017-0140-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan.
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Akira Iwamura
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| |
Collapse
|
52
|
Abdullah M, Kornegay JN, Honcoop A, Parry TL, Balog-Alvarez CJ, O'Neal SK, Bain JR, Muehlbauer MJ, Newgard CB, Patterson C, Willis MS. Non-Targeted Metabolomics Analysis of Golden Retriever Muscular Dystrophy-Affected Muscles Reveals Alterations in Arginine and Proline Metabolism, and Elevations in Glutamic and Oleic Acid In Vivo. Metabolites 2017; 7:E38. [PMID: 28758940 PMCID: PMC5618323 DOI: 10.3390/metabo7030038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Like Duchenne muscular dystrophy (DMD), the Golden Retriever Muscular Dystrophy (GRMD) dog model of DMD is characterized by muscle necrosis, progressive paralysis, and pseudohypertrophy in specific skeletal muscles. This severe GRMD phenotype includes moderate atrophy of the biceps femoris (BF) as compared to unaffected normal dogs, while the long digital extensor (LDE), which functions to flex the tibiotarsal joint and serves as a digital extensor, undergoes the most pronounced atrophy. A recent microarray analysis of GRMD identified alterations in genes associated with lipid metabolism and energy production. METHODS We, therefore, undertook a non-targeted metabolomics analysis of the milder/earlier stage disease GRMD BF muscle versus the more severe/chronic LDE using GC-MS to identify underlying metabolic defects specific for affected GRMD skeletal muscle. RESULTS Untargeted metabolomics analysis of moderately-affected GRMD muscle (BF) identified eight significantly altered metabolites, including significantly decreased stearamide (0.23-fold of controls, p = 2.89 × 10-3), carnosine (0.40-fold of controls, p = 1.88 × 10-2), fumaric acid (0.40-fold of controls, p = 7.40 × 10-4), lactamide (0.33-fold of controls, p = 4.84 × 10-2), myoinositol-2-phosphate (0.45-fold of controls, p = 3.66 × 10-2), and significantly increased oleic acid (1.77-fold of controls, p = 9.27 × 10-2), glutamic acid (2.48-fold of controls, p = 2.63 × 10-2), and proline (1.73-fold of controls, p = 3.01 × 10-2). Pathway enrichment analysis identified significant enrichment for arginine/proline metabolism (p = 5.88 × 10-4, FDR 4.7 × 10-2), where alterations in L-glutamic acid, proline, and carnosine were found. Additionally, multiple Krebs cycle intermediates were significantly decreased (e.g., malic acid, fumaric acid, citric/isocitric acid, and succinic acid), suggesting that altered energy metabolism may be underlying the observed GRMD BF muscle dysfunction. In contrast, two pathways, inosine-5'-monophosphate (VIP Score 3.91) and 3-phosphoglyceric acid (VIP Score 3.08) mainly contributed to the LDE signature, with two metabolites (phosphoglyceric acid and inosine-5'-monophosphate) being significantly decreased. When the BF and LDE were compared, the most significant metabolite was phosphoric acid, which was significantly less in the GRMD BF compared to control and GRMD LDE groups. CONCLUSIONS The identification of elevated BF oleic acid (a long-chain fatty acid) is consistent with recent microarray studies identifying altered lipid metabolism genes, while alterations in arginine and proline metabolism are consistent with recent studies identifying elevated L-arginine in DMD patient sera as a biomarker of disease. Together, these studies demonstrate muscle-specific alterations in GRMD-affected muscle, which illustrate previously unidentified metabolic changes.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Department of Biochemistry, QuaidiAzam University, 45320 Islamabad, Pakistan.
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| | - Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Aubree Honcoop
- Toxicology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Traci L Parry
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Sara K O'Neal
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27703, USA.
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27708, USA.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC 27703, USA.
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA.
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
53
|
Li Z, Li Y, Zhang L, Zhang X, Sullivan R, Ai X, Szeto C, Cai A, Liu L, Xiao W, Li Q, Ge S, Chen X. Reduced Myocardial Reserve in Young X-Linked Muscular Dystrophy Mice Diagnosed by Two-Dimensional Strain Analysis Combined with Stress Echocardiography. J Am Soc Echocardiogr 2017; 30:815-827.e9. [PMID: 28511858 DOI: 10.1016/j.echo.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Early, sensitive, and reproducible evaluation of left ventricular function is imperative for the diagnosis of cardiac dysfunction in patients with Duchene muscular dystrophy. The aim of this study was to test the hypothesis that combining two-dimensional strain analysis with catecholamine stress could be a sensitive method for detecting early cardiac dysfunction. METHODS Mdx (C57BL/10ScSn-Dmdmdx/J, a mouse model of DMD) and control (C57BL/10ScSn) mice were studied with conventional M-mode and high-frequency ultrasound-based two-dimensional speckle-tracking echocardiography using long- and short-axis images of the left ventricle at baseline and after intraperitoneal isoprenaline (ISO) administration (2 μg/g body weight). RESULTS Conventional M-mode analysis showed no differences in left ventricular fractional shortening, wall thickness, or internal diameter at diastole between mdx and control mice before the age of 6 months. ISO increased left ventricular ejection fraction and fractional shortening to the same extent in mdx and control mice at young ages (3, 4, and 5 months). No differences in basal peak systolic strain (PSS) but increased SDs of times to PSS between young mdx and control mice were found. After ISO, PSS and percentile changes of PSS were significantly diminished in mdx mice compared with control mice at young ages. ISO increased the normalized maximum difference of times to PSS in young mdx mice but not in young control mice, suggesting that ISO reduces cardiac contractile synchrony in young mdx mice. CONCLUSIONS This study suggests that catecholamine stress coupled with two-dimensional strain analysis is a feasible and sensitive approach for detecting early onset of cardiac dysfunction, which is instrumental for early diagnosis of cardiac dysfunction and early treatment.
Collapse
Affiliation(s)
- Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, Shenzhen, China; Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ying Li
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; The General Hospital of The PLA Rocket Force, Beijing, China
| | - Li Zhang
- Drexel University College of Medicine, Philadelphia, Pennsylvania; Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoying Zhang
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Rebecca Sullivan
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xiaojie Ai
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania; College of Biological Sciences, Shanghai Jiaotong University, Shanghai, China
| | - Christopher Szeto
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Angela Cai
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Longjian Liu
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Weidong Xiao
- Department of Microbiology and Immunology and Sol Sherry Thrombosis Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Quanshui Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Shuping Ge
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
54
|
Fraysse B, Barthélémy I, Qannari EM, Rouger K, Thorin C, Blot S, Le Guiner C, Chérel Y, Hogrel JY. Gait characterization in golden retriever muscular dystrophy dogs using linear discriminant analysis. BMC Musculoskelet Disord 2017; 18:153. [PMID: 28403854 PMCID: PMC5388997 DOI: 10.1186/s12891-017-1494-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accelerometric analysis of gait abnormalities in golden retriever muscular dystrophy (GRMD) dogs is of limited sensitivity, and produces highly complex data. The use of discriminant analysis may enable simpler and more sensitive evaluation of treatment benefits in this important preclinical model. METHODS Accelerometry was performed twice monthly between the ages of 2 and 12 months on 8 healthy and 20 GRMD dogs. Seven accelerometric parameters were analysed using linear discriminant analysis (LDA). Manipulation of the dependent and independent variables produced three distinct models. The ability of each model to detect gait alterations and their pattern change with age was tested using a leave-one-out cross-validation approach. RESULTS Selecting genotype (healthy or GRMD) as the dependent variable resulted in a model (Model 1) allowing a good discrimination between the gait phenotype of GRMD and healthy dogs. However, this model was not sufficiently representative of the disease progression. In Model 2, age in months was added as a supplementary dependent variable (GRMD_2 to GRMD_12 and Healthy_2 to Healthy_9.5), resulting in a high overall misclassification rate (83.2%). To improve accuracy, a third model (Model 3) was created in which age was also included as an explanatory variable. This resulted in an overall misclassification rate lower than 12%. Model 3 was evaluated using blinded data pertaining to 81 healthy and GRMD dogs. In all but one case, the model correctly matched gait phenotype to the actual genotype. Finally, we used Model 3 to reanalyse data from a previous study regarding the effects of immunosuppressive treatments on muscular dystrophy in GRMD dogs. Our model identified significant effect of immunosuppressive treatments on gait quality, corroborating the original findings, with the added advantages of direct statistical analysis with greater sensitivity and more comprehensible data representation. CONCLUSIONS Gait analysis using LDA allows for improved analysis of accelerometry data by applying a decision-making analysis approach to the evaluation of preclinical treatment benefits in GRMD dogs.
Collapse
Affiliation(s)
| | - Inès Barthélémy
- INSERM U955-E10 Biology of the NeuroMuscular System, 94000, Créteil, France.,Université Paris-Est, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.,Faculté de Médecine, 94000, Créteil, France
| | - El Mostafa Qannari
- LUNAM University, ONIRIS, National College of Veterinary Medicine, Food Science, and Engineering, USC "Sensometrics and Chemometrics Laboratory", Nantes, France
| | - Karl Rouger
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Chantal Thorin
- Nutrition and Endocrinology Unit, ONIRIS, National College of Veterinary Medicine, Food Science, and Engineering, Nantes, France
| | - Stéphane Blot
- INSERM U955-E10 Biology of the NeuroMuscular System, 94000, Créteil, France.,Université Paris-Est, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.,Faculté de Médecine, 94000, Créteil, France
| | | | - Yan Chérel
- Atlantic Gene Therapies, INRA UMR 703, ONIRIS, Nantes, France
| | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Lab, Institute of Myology, Paris, France
| |
Collapse
|
55
|
Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2017; 114:4213-4218. [PMID: 28373570 DOI: 10.1073/pnas.1613203114] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMDJ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMDJ dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMDJ dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart.
Collapse
|
56
|
Iyer SR, Shah SB, Valencia AP, Schneider MF, Hernández-Ochoa EO, Stains JP, Blemker SS, Lovering RM. Altered nuclear dynamics in MDX myofibers. J Appl Physiol (1985) 2016; 122:470-481. [PMID: 27979987 DOI: 10.1152/japplphysiol.00857.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/17/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to progressive muscle degeneration and weakness. Although the genetic basis is known, the pathophysiology of dystrophic skeletal muscle remains unclear. We examined nuclear movement in wild-type (WT) and muscular dystrophy mouse model for DMD (MDX) (dystrophin-null) mouse myofibers. We also examined expression of proteins in the linkers of nucleoskeleton and cytoskeleton (LINC) complex, as well as nuclear transcriptional activity via histone H3 acetylation and polyadenylate-binding nuclear protein-1. Because movement of nuclei is not only LINC dependent but also microtubule dependent, we analyzed microtubule density and organization in WT and MDX myofibers, including the application of a unique 3D tool to assess microtubule core structure. Nuclei in MDX myofibers were more mobile than in WT myofibers for both distance traveled and velocity. MDX muscle shows reduced expression and labeling intensity of nesprin-1, a LINC protein that attaches the nucleus to the microtubule and actin cytoskeleton. MDX nuclei also showed altered transcriptional activity. Previous studies established that microtubule structure at the cortex is disrupted in MDX myofibers; our analyses extend these findings by showing that microtubule structure in the core is also disrupted. In addition, we studied malformed MDX myofibers to better understand the role of altered myofiber morphology vs. microtubule architecture in the underlying susceptibility to injury seen in dystrophic muscles. We incorporated morphological and microtubule architectural concepts into a simplified finite element mathematical model of myofiber mechanics, which suggests a greater contribution of myofiber morphology than microtubule structure to muscle biomechanical performance.NEW & NOTEWORTHY Microtubules provide the means for nuclear movement but show altered organization in the muscular dystrophy mouse model (MDX) (dystrophin-null) muscle. Here, MDX myofibers show increased nuclear movement, altered transcriptional activity, and altered linkers of nucleoskeleton and cytoskeleton complex expression compared with healthy myofibers. Microtubule architecture was incorporated in finite element modeling of passive stretch, revealing a role of fiber malformation, commonly found in MDX muscle. The results suggest that alterations in microtubule architecture in MDX muscle affect nuclear movement, which is essential for muscle function.
Collapse
Affiliation(s)
- Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, California
| | - Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Silvia S Blemker
- Department of Biomedical Engineering and Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia; and
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
57
|
Impaired regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx muscles on DBA/2 background. Sci Rep 2016; 6:38371. [PMID: 27924830 PMCID: PMC5141435 DOI: 10.1038/srep38371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy, one of the most common lethal genetic disorders, is caused by mutations in the DMD gene and a lack of dystrophin protein. In most DMD patients and animal models, sporadic dystrophin-positive muscle fibres, called revertant fibres (RFs), are observed in otherwise dystrophin-negative backgrounds. RFs are thought to arise from skeletal muscle precursor cells and clonally expand with age due to the frequent regeneration of necrotic fibres. Here we examined the effects of genetic background on muscle regeneration and RF expansion by comparing dystrophin-deficient mdx mice on the C57BL/6 background (mdx-B6) with those on the DBA/2 background (mdx-DBA), which have a more severe phenotype. Interestingly, mdx-DBA muscles had significantly lower RF expansion than mdx-B6 in all age groups, including 2, 6, 12, and 18 months. The percentage of centrally nucleated fibres was also significantly lower in mdx-DBA mice compared to mdx-B6, indicating that less muscle regeneration occurs in mdx-DBA. Our study aligns with the model that RF expansion reflects the activity of precursor cells in skeletal muscles, and it serves as an index of muscle regeneration capacity.
Collapse
|
58
|
Terrill JR, Duong MN, Turner R, Le Guiner C, Boyatzis A, Kettle AJ, Grounds MD, Arthur PG. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy. Redox Biol 2016; 9:276-286. [PMID: 27611888 PMCID: PMC5018082 DOI: 10.1016/j.redox.2016.08.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 01/29/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD) dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl). There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia; School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia, Australia.
| | - Marisa N Duong
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| | - Rufus Turner
- Centre for Free Radical Research, Department of Pathology, the University of Otago, Christchurch, New Zealand
| | - Caroline Le Guiner
- Atlantic Gene Therapies, INSERM UMR1089, Nantes, France; Genethon, Evry, France
| | - Amber Boyatzis
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, the University of Otago, Christchurch, New Zealand
| | - Miranda D Grounds
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Chemistry and Biochemistry, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
59
|
Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice). BIOMED RESEARCH INTERNATIONAL 2016; 2016:7063093. [PMID: 27689088 PMCID: PMC5023834 DOI: 10.1155/2016/7063093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/27/2016] [Accepted: 07/10/2016] [Indexed: 11/17/2022]
Abstract
The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.
Collapse
|
60
|
Zhu H, Xiao F, Wang G, Wei X, Jiang L, Chen Y, Zhu L, Wang H, Diao Y, Wang H, Ip N, Cheung T, Wu Z. STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration. Cell Rep 2016; 16:2102-2115. [DOI: 10.1016/j.celrep.2016.07.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/07/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
|
61
|
Bettadapur A, Suh GC, Geisse NA, Wang ER, Hua C, Huber HA, Viscio AA, Kim JY, Strickland JB, McCain ML. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels. Sci Rep 2016; 6:28855. [PMID: 27350122 PMCID: PMC4924097 DOI: 10.1038/srep28855] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/10/2016] [Indexed: 12/19/2022] Open
Abstract
In vitro models of skeletal muscle are critically needed to elucidate disease mechanisms, identify therapeutic targets, and test drugs pre-clinically. However, culturing skeletal muscle has been challenging due to myotube delamination from synthetic culture substrates approximately one week after initiating differentiation from myoblasts. In this study, we successfully maintained aligned skeletal myotubes differentiated from C2C12 mouse skeletal myoblasts for three weeks by utilizing micromolded (μmolded) gelatin hydrogels as culture substrates, which we thoroughly characterized using atomic force microscopy (AFM). Compared to polydimethylsiloxane (PDMS) microcontact printed (μprinted) with fibronectin (FN), cell adhesion on gelatin hydrogel constructs was significantly higher one week and three weeks after initiating differentiation. Delamination from FN-μprinted PDMS precluded robust detection of myotubes. Compared to a softer blend of PDMS μprinted with FN, myogenic index, myotube width, and myotube length on μmolded gelatin hydrogels was similar one week after initiating differentiation. However, three weeks after initiating differentiation, these parameters were significantly higher on μmolded gelatin hydrogels compared to FN-μprinted soft PDMS constructs. Similar results were observed on isotropic versions of each substrate, suggesting that these findings are independent of substrate patterning. Our platform enables novel studies into skeletal muscle development and disease and chronic drug testing in vitro.
Collapse
Affiliation(s)
- Archana Bettadapur
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gio C Suh
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Evelyn R Wang
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.,Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Clara Hua
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Holly A Huber
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Alyssa A Viscio
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joon Young Kim
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Julie B Strickland
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
62
|
van der Pijl EM, van Putten M, Niks EH, Verschuuren JJGM, Aartsma-Rus A, Plomp JJ. Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models. Eur J Neurosci 2016; 43:1623-35. [PMID: 27037492 DOI: 10.1111/ejn.13249] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked myopathy caused by dystrophin deficiency. Dystrophin is present intracellularly at the sarcolemma, connecting actin to the dystrophin-associated glycoprotein complex. Interestingly, it is enriched postsynaptically at the neuromuscular junction (NMJ), but its synaptic function is largely unknown. Utrophin, a dystrophin homologue, is also concentrated at the NMJ, and upregulated in DMD. It is possible that the absence of dystrophin at NMJs in DMD causes neuromuscular transmission defects that aggravate muscle weakness. We studied NMJ function in mdx mice (lacking dystrophin) and wild type mice. In addition, mdx/utrn(+/-) and mdx/utrn(-/-) mice (lacking utrophin) were used to investigate influences of utrophin levels. The three Duchenne mouse models showed muscle weakness when comparatively tested in vivo, with mdx/utrn(-/-) mice being weakest. Ex vivo muscle contraction and electrophysiological studies showed a reduced safety factor of neuromuscular transmission in all models. NMJs had ~ 40% smaller miniature endplate potential amplitudes compared with wild type, indicating postsynaptic sensitivity loss for the neurotransmitter acetylcholine. However, nerve stimulation-evoked endplate potential amplitudes were unchanged. Consequently, quantal content (i.e. the number of acetylcholine quanta released per nerve impulse) was considerably increased. Such a homeostatic compensatory increase in neurotransmitter release is also found at NMJs in myasthenia gravis, where autoantibodies reduce acetylcholine receptors. However, high-rate nerve stimulation induced exaggerated endplate potential rundown. Study of NMJ morphology showed that fragmentation of acetylcholine receptor clusters occurred in all models, being most severe in mdx/utrn(-/-) mice. Overall, we showed mild 'myasthenia-like' neuromuscular synaptic dysfunction in several Duchenne mouse models, which possibly affects muscle weakness and degeneration.
Collapse
Affiliation(s)
- Elizabeth M van der Pijl
- Department of Neurology, Leiden University Medical Centre, Research Building S5-P, P.O. Box 9600 2300 RC, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Centre, Research Building S5-P, P.O. Box 9600 2300 RC, Leiden, The Netherlands
| | - Jan J G M Verschuuren
- Department of Neurology, Leiden University Medical Centre, Research Building S5-P, P.O. Box 9600 2300 RC, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Centre, Research Building S5-P, P.O. Box 9600 2300 RC, Leiden, The Netherlands
| |
Collapse
|
63
|
Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb. PLoS One 2016; 11:e0147669. [PMID: 27115354 PMCID: PMC4846001 DOI: 10.1371/journal.pone.0147669] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023] Open
Abstract
Mice are one of the most commonly used laboratory animals, with an extensive array of disease models in existence, including for many neuromuscular diseases. The hindlimb is of particular interest due to several close muscle analogues/homologues to humans and other species. A detailed anatomical study describing the adult morphology is lacking, however. This study describes in detail the musculoskeletal geometry and skeletal muscle architecture of the mouse hindlimb and pelvis, determining the extent to which the muscles are adapted for their function, as inferred from their architecture. Using I2KI enhanced microCT scanning and digital segmentation, it was possible to identify 39 distinct muscles of the hindlimb and pelvis belonging to nine functional groups. The architecture of each of these muscles was determined through microdissections, revealing strong architectural specialisations between the functional groups. The hip extensors and hip adductors showed significantly stronger adaptations towards high contraction velocities and joint control relative to the distal functional groups, which exhibited larger physiological cross sectional areas and longer tendons, adaptations for high force output and elastic energy savings. These results suggest that a proximo-distal gradient in muscle architecture exists in the mouse hindlimb. Such a gradient has been purported to function in aiding locomotor stability and efficiency. The data presented here will be especially valuable to any research with a focus on the architecture or gross anatomy of the mouse hindlimb and pelvis musculature, but also of use to anyone interested in the functional significance of muscle design in relation to quadrupedal locomotion.
Collapse
|
64
|
Saeman MR, DeSpain K, Liu MM, Wolf SE, Song J. Severe burn increased skeletal muscle loss in mdx mutant mice. J Surg Res 2016; 202:372-9. [PMID: 27229112 DOI: 10.1016/j.jss.2016.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/29/2016] [Accepted: 02/26/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND Severe burn causes muscle mass loss and atrophy. The balance between muscle cell death and growth maintains tissue homeostasis. We hypothesize that preexisting cellular structural defects will exacerbate skeletal muscle mass loss after burn. Using a Duchenne muscular dystrophy (mdx) mutant mouse, we investigated whether severe burn caused more damage in skeletal muscle with preexisting muscle disease. METHODS The mdx mice and wild-type (WT) mice received 25% total body surface area scald burn. Gastrocnemius (GM), tibialis anterior, and gluteus muscles were obtained at days 1 and 3 after burn. GM muscle function was measured on day 3. Animals without burn served as controls. RESULTS Wet tissue weight significantly decreased in tibialis anterior and gluteus in both mdx and WT mice after burn (P < 0.05). The ratio of muscle to body weight decreased in mdx mutant mice (P < 0.05) but not WT. Isometric force was significantly lower in mdx GM, and this difference persisted after burn (P < 0.05). Caspase-3 activity increased significantly after burn in both the groups, whereas HMGB1 expression was higher in burn mdx mice (P < 0.05). Proliferating cell nuclear antigen decreased significantly in mdx mice (P < 0.05). Myogenic markers pax7, myoD, and myogenin increased after burn in both the groups and were higher in mdx mice (P < 0.05). CONCLUSIONS More muscle loss occurred in response to severe burn in mdx mutant mice. Cell turnover in mdx mice after burn is differed from WT. Although markers of myogenic activation are elevated in mdx mutant mice, the underlying muscle pathophysiology is less tolerant of traumatic injury.
Collapse
Affiliation(s)
- Melody R Saeman
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin DeSpain
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ming-Mei Liu
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven E Wolf
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Juquan Song
- Division of Burn/Trauma/Critical Care, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
65
|
Saunier M, Bönnemann CG, Durbeej M, Allamand V. 212th ENMC International Workshop: Animal models of congenital muscular dystrophies, Naarden, The Netherlands, 29-31 May 2015. Neuromuscul Disord 2016; 26:252-9. [PMID: 26948708 DOI: 10.1016/j.nmd.2016.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
Affiliation(s)
- M Saunier
- UPMC Univ Paris 06, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, Sorbonne Universités, F-75013 Paris, France
| | - C G Bönnemann
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| | - M Durbeej
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - V Allamand
- UPMC Univ Paris 06, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, Sorbonne Universités, F-75013 Paris, France.
| | | |
Collapse
|
66
|
Pelosi L, Berardinelli MG, Forcina L, Spelta E, Rizzuto E, Nicoletti C, Camilli C, Testa E, Catizone A, De Benedetti F, Musarò A. Increased levels of interleukin-6 exacerbate the dystrophic phenotype in mdx mice. Hum Mol Genet 2015; 24:6041-53. [PMID: 26251044 PMCID: PMC4599671 DOI: 10.1093/hmg/ddv323] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive lethal muscle degeneration and chronic inflammatory response. The mdx mouse strain has served as the animal model for human DMD. However, while DMD patients undergo extensive necrosis, the affected muscles of adult mdx mice rapidly regenerates and regains structural and functional integrity. The basis for the mild effects observed in mice compared with the lethal consequences in humans remains unknown. In this study, we provide evidence that interleukin-6 (IL-6) is causally linked to the pathogenesis of muscular dystrophy. We report that forced expression of IL-6, in the adult mdx mice, recapitulates the severe phenotypic characteristics of DMD in humans. Increased levels of IL-6 exacerbate the dystrophic muscle phenotype, sustaining inflammatory response and repeated cycles of muscle degeneration and regeneration, leading to exhaustion of satellite cells. The mdx/IL6 mouse closely approximates the human disease and more faithfully recapitulates the disease progression in humans. This study promises to significantly advance our understanding of the pathogenic mechanisms that lead to DMD.
Collapse
Affiliation(s)
- Laura Pelosi
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | | | - Laura Forcina
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Elisa Spelta
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome 00184, Italy
| | - Carmine Nicoletti
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Carlotta Camilli
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Erika Testa
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Angela Catizone
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome 00161, Italy
| | | | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
67
|
Pratt SJP, Valencia AP, Le GK, Shah SB, Lovering RM. Pre- and postsynaptic changes in the neuromuscular junction in dystrophic mice. Front Physiol 2015; 6:252. [PMID: 26441672 PMCID: PMC4563167 DOI: 10.3389/fphys.2015.00252] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease in which weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. While most attention has focused within the muscle fiber, we recently demonstrated in mdx mice (murine model for DMD) significant morphologic alterations at the motor endplate of the neuromuscular junction (NMJ) and corresponding NMJ transmission failure after injury. Here we extend these initial observations at the motor endplate to gain insight into the pre- vs. postsynaptic morphology, as well as the subsynaptic nuclei in healthy (WT) vs. mdx mice. We quantified the discontinuity and branching of the terminal nerve in adult mice. We report mdx- and age-dependent changes for discontinuity and an increase in branching when compared to WT. To examine mdx- and age-dependent changes in the relative localization of pre- and postsynaptic structures, we calculated NMJ occupancy, defined as the ratio of the footprint occupied by presynaptic vesicles vs. that of the underlying motor endplate. The normally congruent coupling between presynaptic and postsynaptic morphology was altered in mdx mice, independent of age. Finally we found an almost two-fold increase in the number of nuclei and an increase in density (nuclei/area) underlying the NMJ. These outcomes suggest substantial remodeling of the NMJ during dystrophic progression. This remodeling reflects plasticity in both pre- and postsynaptic contributors to NMJ structure, and thus perhaps also NM transmission and muscle function.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Kinesiology, University of Maryland School of Public Health College Park, MD, USA
| | - Gloribel K Le
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
68
|
Burch PM, Pogoryelova O, Goldstein R, Bennett D, Guglieri M, Straub V, Bushby K, Lochmüller H, Morris C. Muscle-Derived Proteins as Serum Biomarkers for Monitoring Disease Progression in Three Forms of Muscular Dystrophy. J Neuromuscul Dis 2015; 2:241-255. [PMID: 26870665 PMCID: PMC4746763 DOI: 10.3233/jnd-140066] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Identifying translatable, non-invasive biomarkers of muscular dystrophy that better reflect the disease pathology than those currently available would aid the development of new therapies, the monitoring of disease progression and the response to therapy. Objective: The goal of this study was to evaluate a panel of serum protein biomarkers with the potential to specifically detect skeletal muscle injury. Method: Serum concentrations of skeletal troponin I (sTnI), myosin light chain 3 (Myl3), fatty acid binding protein 3 (FABP3) and muscle-type creatine kinase (CKM) proteins were measured in 74 Duchenne muscular dystrophy (DMD), 38 Becker muscular dystrophy (BMD) and 49 Limb-girdle muscular dystrophy type 2B (LGMD2B) patients and 32 healthy controls. Results: All four proteins were significantly elevated in the serum of these three muscular dystrophy patient populations when compared to healthy controls, but, interestingly, displayed different profiles depending on the type of muscular dystrophy. Additionally, the effects of patient age, ambulatory status, cardiac function and treatment status on the serum concentrations of the proteins were investigated. Statistical analysis revealed correlations between the serum concentrations and certain clinical endpoints including forced vital capacity in DMD patients and the time to walk ten meters in LGMD2B patients. Serum concentrations of these proteins were also elevated in two preclinical models of muscular dystrophy, the mdx mouse and the golden-retriever muscular dystrophy dog. Conclusions: These proteins, therefore, are potential muscular dystrophy biomarkers for monitoring disease progression and therapeutic response in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Peter M Burch
- Worldwide Research & Development, Pfizer Inc., Groton, CT, USA
| | - Oksana Pogoryelova
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Donald Bennett
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kate Bushby
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Carl Morris
- Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
69
|
Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015; 85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency.
Collapse
|
70
|
Primary Murine Myotubes as a Model for Investigating Muscular Dystrophy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:594751. [PMID: 26380282 PMCID: PMC4561302 DOI: 10.1155/2015/594751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022]
Abstract
Muscular dystrophies caused by defects in various genes are often associated with impairment of calcium homeostasis. Studies of calcium currents are hampered because of the lack of a robust cellular model. Primary murine myotubes, formed upon satellite cell fusion, were examined for their utilization as a model of adult skeletal muscle. We enzymatically isolated satellite cells and induced them to differentiation to myotubes. Myotubes displayed morphological and physiological properties resembling adult muscle fibers. Desmin and myosin heavy chain immunoreactivity in the differentiated myotubes were similar to the mature muscle cross-striated pattern. The myotubes responded to electrical and chemical stimulations with sarcoplasmic reticulum calcium release. Presence of L-type calcium channels in the myotubes sarcolemma was confirmed via whole-cell patch-clamp technique. To assess the use of myotubes for studying functional mutation effects lentiviral transduction was applied. Satellite cells easily underwent transduction and were able to retain a positive expression of lentivirally encoded GFP up to and after the formation of myotubes, without changes in their physiological and morphological properties. Thus, we conclude that murine myotubes may serve as a fruitful cell model for investigating calcium homeostasis in muscular dystrophy and the effects of gene modifications can be assessed due to lentiviral transduction.
Collapse
|
71
|
Chronic Dosing with Membrane Sealant Poloxamer 188 NF Improves Respiratory Dysfunction in Dystrophic Mdx and Mdx/Utrophin-/- Mice. PLoS One 2015; 10:e0134832. [PMID: 26248188 PMCID: PMC4527695 DOI: 10.1371/journal.pone.0134832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/14/2015] [Indexed: 01/19/2023] Open
Abstract
Poloxamer 188 NF (national formulary (NF) grade of P-188) improves cardiac muscle function in the mdx mouse and golden retriever muscular dystrophy models. However in vivo effects on skeletal muscle have not been reported. We postulated that P-188 NF might protect diaphragm muscle membranes from contraction-induced injury in mdx and mdx/utrophin-/- (dko) muscular dystrophy models. In the first study 7-month old mdx mice were treated for 22 weeks with subcutaneous (s.c.) injections of saline or P-188 NF at 3 mg/Kg. In the second, dkos were treated with saline or P-188 NF (1 mg/Kg) for 8 weeks beginning at age 3 weeks. Prednisone was the positive control in both studies. Respiratory function was monitored using unrestrained whole body plethysmography. P-188 NF treatment affected several respiratory parameters including tidal volume/BW and minute volume/BW in mdx mice. In the more severe dko model, P-188 NF (1 mg/Kg) significantly slowed the decline in multiple respiratory parameters compared with saline-treated dko mice. Prednisone’s effects were similar to those seen with P-188 NF. Diaphragms from P-188 NF or prednisone treated mdx and dko mice showed signs of muscle fiber protection including less centralized nuclei, less variation in fiber size, greater fiber density, and exhibited a decreased amount of collagen deposition. P-188 NF at 3 mg/Kg s.c. also improved parameters of systolic and diastolic function in mdx mouse hearts. These results suggest that P-188 NF may be useful in treating respiratory and cardiac dysfunction, the leading causes of death in Duchenne muscular dystrophy patients.
Collapse
|
72
|
Aquapuncture Using Stem Cell Therapy to Treat Mdx Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:132706. [PMID: 26074983 PMCID: PMC4444575 DOI: 10.1155/2015/132706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/19/2015] [Indexed: 01/29/2023]
Abstract
Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to absence or decrease of dystrophin protein generating progressive muscle degeneration. Cell therapy using mesenchymal stem cell (MSC) has been described as a treatment to DMD. In this work, MSC derived from deciduous teeth, called stem cells from human exfoliated deciduous teeth (SHED), were injected in acupoint as an alternative therapy to minimize muscle degeneration in twenty-two mdx mice. The treatment occurred three times with intervals of 21 days, and animals were analyzed four times: seven days prior treatment (T-7); 10 days after first treatment (T10); 10 days after second treatment (T31); and 10 days after third treatment (T52). Animals were evaluated by wire test for estimate strength and blood was collected to perform a creatinine phosphokinase analysis. After euthanasia, cranial tibial muscles were collected and submitted to histological and immunohistochemistry analyses. Treated groups presented improvement of strength and reduced creatinine phosphokinase levels. Also, a slight dystrophin increase was observed in tibial cranial muscle when aquapuncture was associated SHED. All therapies have minimized muscle degeneration, but the association of aquapuncture with SHED appears to have better effect, reducing muscle damage, suggesting a therapeutic value.
Collapse
|
73
|
Hernández-Ochoa EO, Pratt SJP, Garcia-Pelagio KP, Schneider MF, Lovering RM. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice. Physiol Rep 2015; 3:3/4/e12366. [PMID: 25907787 PMCID: PMC4425971 DOI: 10.14814/phy2.12366] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca2+ transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Karla P Garcia-Pelagio
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Martin F Schneider
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
74
|
Humphrey SE, Kasinski AL. RNA-guided CRISPR-Cas technologies for genome-scale investigation of disease processes. J Hematol Oncol 2015; 8:31. [PMID: 25888285 PMCID: PMC4389696 DOI: 10.1186/s13045-015-0127-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/14/2015] [Indexed: 12/26/2022] Open
Abstract
From its discovery as an adaptive bacterial and archaea immune system, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system has quickly been developed into a powerful and groundbreaking programmable nuclease technology for the global and precise editing of the genome in cells. This system allows for comprehensive unbiased functional studies and is already advancing the field by revealing genes that have previously unknown roles in disease processes. In this review, we examine and compare recently developed CRISPR-Cas platforms for global genome editing and examine the advancements these platforms have made in guide RNA design, guide RNA/Cas9 interaction, on-target specificity, and target sequence selection. We also explore some of the exciting therapeutic potentials of the CRISPR-Cas technology as well as some of the innovative new uses of this technology beyond genome editing.
Collapse
Affiliation(s)
- Sean E Humphrey
- Department of Biological Sciences, Purdue University, 1203 West State Street, West Lafayette, IN, 47907, USA.
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, 1203 West State Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
75
|
Suh J, Moncaster JA, Wang L, Hafeez I, Herz J, Tanzi RE, Goldstein LE, Guénette SY. FE65 and FE65L1 amyloid precursor protein-binding protein compound null mice display adult-onset cataract and muscle weakness. FASEB J 2015; 29:2628-39. [PMID: 25757569 DOI: 10.1096/fj.14-261453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
FE65 and FE65L1 are cytoplasmic adaptor proteins that bind a variety of proteins, including the amyloid precursor protein, and that mediate the assembly of multimolecular complexes. We previously reported that FE65/FE65L1 double knockout (DKO) mice display disorganized laminin in meningeal fibroblasts and a cobblestone lissencephaly-like phenotype in the developing cortex. Here, we examined whether loss of FE65 and FE65L1 causes ocular and muscular deficits, 2 phenotypes that frequently accompany cobblestone lissencephaly. Eyes of FE65/FE65L1 DKO mice develop normally, but lens degeneration becomes apparent in young adult mice. Abnormal lens epithelial cell migration, widespread small vacuole formation, and increased laminin expression underneath lens capsules suggest impaired interaction between epithelial cells and capsular extracellular matrix in DKO lenses. Cortical cataracts develop in FE65L1 knockout (KO) mice aged 16 months or more but are absent in wild-type or FE65 KO mice. FE65 family KO mice show attenuated grip strength, and the nuclei of DKO muscle cells frequently locate in the middle of muscle fibers. These findings reveal that FE65 and FE65L1 are essential for the maintenance of lens transparency, and their loss produce phenotypes in brain, eye, and muscle that are comparable to the clinical features of congenital muscular dystrophies in humans.
Collapse
Affiliation(s)
- Jaehong Suh
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juliet A Moncaster
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lirong Wang
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Imran Hafeez
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rudolph E Tanzi
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lee E Goldstein
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne Y Guénette
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
76
|
Pelosi L, Berardinelli MG, De Pasquale L, Nicoletti C, D'Amico A, Carvello F, Moneta GM, Catizone A, Bertini E, De Benedetti F, Musarò A. Functional and Morphological Improvement of Dystrophic Muscle by Interleukin 6 Receptor Blockade. EBioMedicine 2015; 2:285-93. [PMID: 26137572 PMCID: PMC4485902 DOI: 10.1016/j.ebiom.2015.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 01/07/2023] Open
Abstract
The anti-inflammatory agents glucocorticoids (GC) are the only available treatment for Duchenne muscular dystrophy (DMD). However, long-term GC treatment causes muscle atrophy and wasting. Thus, targeting specific mediator of inflammatory response may be more specific, more efficacious, and with fewer side effects. The pro-inflammatory cytokine interleukin (IL) 6 is overproduced in patients with DMD and in the muscle of mdx, the animal model for human DMD. We tested the ability of inhibition of IL6 activity, using an interleukin-6 receptor (Il6r) neutralizing antibody, to ameliorate the dystrophic phenotype. Blockade of endogenous Il6r conferred on dystrophic muscle resistance to degeneration and alleviated both morphological and functional consequences of the primary genetic defect. Pharmacological inhibition of IL6 activity leaded to changes in the dystrophic muscle environment, favoring anti-inflammatory responses and improvement in muscle repair. This resulted in a functional homeostatic maintenance of dystrophic muscle. These data provide an alternative pharmacological strategy for treatment of DMD and circumvent the major problems associated with conventional therapy. Inhibition of IL6 activity leads to changes in the dystrophic muscle environment. IL6R neutralizing antibody ameliorates the dystrophic phenotype. IL6 blockade counters muscle decline in mdx mice.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Homeostasis
- Inflammation/complications
- Inflammation/pathology
- Interleukin-6/blood
- Male
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscles/pathology
- Muscles/physiopathology
- Muscular Dystrophy, Animal/blood
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/blood
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Necrosis
- Phenotype
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/metabolism
Collapse
Affiliation(s)
- Laura Pelosi
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
| | - Maria Grazia Berardinelli
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
| | | | - Carmine Nicoletti
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
| | - Adele D'Amico
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children's Hospital, Rome 00100, Italy
| | - Francesco Carvello
- Division of Rheumatology, Bambino Gesù Children's Hospital, Rome 00100, Italy
| | - Gian Marco Moneta
- Division of Rheumatology, Bambino Gesù Children's Hospital, Rome 00100, Italy
| | - Angela Catizone
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children's Hospital, Rome 00100, Italy
| | | | - Antonio Musarò
- Institute Pasteur-Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, 00161, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
- Corresponding author at: Unit of Histology and Medical Embryology, Via A. Scarpa, 14, Rome 00161, Italy.
| |
Collapse
|
77
|
Wasala NB, Zhang K, Wasala LP, Hakim CH, Duan D. The FVB Background Does Not Dramatically Alter the Dystrophic Phenotype of Mdx Mice. PLOS CURRENTS 2015; 7. [PMID: 25737807 PMCID: PMC4339318 DOI: 10.1371/currents.md.28266819ca0ec5fefcac767ea9a3461c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mdx mouse is the most frequently used animal model for Duchenne muscular dystrophy (DMD), a fatal muscle disease caused by the loss of dystrophin. Mdx mice are naturally occurring dystrophin-null mice on the C57BL/10 (BL10) background. We crossed black mdx to the white FVB background and generated mdx/FVB mice. Compared to that of age- and sex-matched FVB mice, mdx/FVB mice showed characteristic limb muscle pathology similar to that of original mdx mice. Further, the forelimb grip strength and limb muscle (tibialis anterior and extensor digitorum longus) specific force of mdx/FVB mice were significantly lower than that of wild type FVB mice. Consistent with what has been reported in original mdx mice, mdx/FVB mice also showed increased susceptibility to eccentric contraction-induced force loss and elevated serum creatine kinase. Our results suggest that the FVB background does not dramatically alter the dystrophic phenotype of mdx mice.
Collapse
Affiliation(s)
- Nalinda B Wasala
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Lakmini P Wasala
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
78
|
Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 2015; 55:119-49. [PMID: 24936034 DOI: 10.1093/ilar/ilu011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.
Collapse
|
79
|
Gutpell KM, Hrinivich WT, Hoffman LM. Skeletal muscle fibrosis in the mdx/utrn+/- mouse validates its suitability as a murine model of Duchenne muscular dystrophy. PLoS One 2015; 10:e0117306. [PMID: 25607927 PMCID: PMC4301874 DOI: 10.1371/journal.pone.0117306] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients. Other murine models of DMD are available that lack one or both alleles of utrophin, a functional analog of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson’s trichrome stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our results indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not (p = 0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly higher than that found in the corresponding diaphragm muscles of wild-type animals, but not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both diaphragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx diaphragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle in these animals was not fibrotic. We did not measure a significant difference in collagen staining between wild-type and mdx gastrocnemius muscles. The results of this study support previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of DMD, and we show here that this difference is apparent by 2 months of age.
Collapse
Affiliation(s)
- Kelly M. Gutpell
- Imaging Program, Lawson Health Research Institute, Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- * E-mail:
| | | | - Lisa M. Hoffman
- Imaging Program, Lawson Health Research Institute, Department of Anatomy and Cell Biology, Western University, Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
80
|
Lynn S, Aartsma-Rus A, Bushby K, Furlong P, Goemans N, De Luca A, Mayhew A, McDonald C, Mercuri E, Muntoni F, Pohlschmidt M, Verschuuren J, Voit T, Vroom E, Wells DJ, Straub V. Measuring clinical effectiveness of medicinal products for the treatment of Duchenne muscular dystrophy. Neuromuscul Disord 2015; 25:96-105. [DOI: 10.1016/j.nmd.2014.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
81
|
Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol 2014; 35:728-36. [PMID: 25512605 DOI: 10.1128/mcb.01394-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analysis allowed the identification of new long noncoding RNAs differentially expressed during murine myoblast differentiation. These transcripts were classified on the basis of their expression under proliferating versus differentiated conditions, muscle-restricted activation, and subcellular localization. Several species displayed preferential expression in dystrophic (mdx) versus wild-type muscles, indicating their possible link with regenerative processes. One of the identified transcripts, lnc-31, even if originating from the same nuclear precursor of miR-31, is produced by a pathway mutually exclusive. We show that lnc-31 and its human homologue hsa-lnc-31 are expressed in proliferating myoblasts, where they counteract differentiation. In line with this, both species are more abundant in mdx muscles and in human Duchenne muscular dystrophy (DMD) myoblasts, than in their normal counterparts. Altogether, these data suggest a crucial role for lnc-31 in controlling the differentiation commitment of precursor myoblasts and indicate that its function is maintained in evolution despite the poor sequence conservation with the human counterpart.
Collapse
|
82
|
Whitmore C, Morgan J. What do mouse models of muscular dystrophy tell us about the DAPC and its components? Int J Exp Pathol 2014; 95:365-77. [PMID: 25270874 PMCID: PMC4285463 DOI: 10.1111/iep.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/16/2014] [Indexed: 12/17/2022] Open
Abstract
There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated.
Collapse
Affiliation(s)
- Charlotte Whitmore
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, Institute of Child Health, University College LondonLondon, UK
| | - Jennifer Morgan
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, Institute of Child Health, University College LondonLondon, UK
| |
Collapse
|
83
|
Brolio MP, Cima DS, Miglino MA, Ambrósio CE. Histological comparison of the smooth uterine muscle of healthy golden retriever bitches, carriers of the progressive muscular dystrophy (GRMD) gene, and GRMD-affected bitches. Anim Reprod Sci 2014; 150:56-61. [PMID: 25200710 DOI: 10.1016/j.anireprosci.2014.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
Abstract
There is evidence to suggest that weakness of the pelvic and/or uterine musculature may negatively affect the obstetric performance of women who carry the gene for Duchenne muscular dystrophy (DMD). The golden retriever dog is the ideal animal model for preclinical studies of progressive muscular dystrophy, and this model is referred to as "golden retriever muscular dystrophy (GRMD)". This study evaluated and compared the histopathological aspects of the uterine muscle of eleven dogs: health, n=4; carriers of GRMD gene, n=5; and affected females, n=2. The obtained results showed that the uterine muscle of healthy dogs was exclusively composed of type III collagen, while a predominance of type I collagen and small amounts of type III were observed in the uterine muscle of the carriers. The myometrium of the affected bitches showed small quantities of both collagen types. The differences noted in the three evaluated groups suggest that female carrier and those individuals affected by muscular dystrophy had collagen alteration and muscle fiber commitment in the uterine muscle, a deficiency which could directly influence the composition and function of this tissue. In addition, this information is highly relevant to the reproductive management of these animals. This data open important venues for translate reproductive protocols for women, who carry the dystrophin gene.
Collapse
Affiliation(s)
- M P Brolio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science of the University of São Paulo - FMVZ-USP, Orlando Marques de Paiva, 87 street, Sao Paulo, SP 05508-270, Brazil.
| | - D S Cima
- Paulista University - UNIP, Tenente Júlio Prado Neves, 965 street, São Paulo, SP 02370-000, Brazil.
| | - M A Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science of the University of São Paulo - FMVZ-USP, Orlando Marques de Paiva, 87 street, Sao Paulo, SP 05508-270, Brazil.
| | - C E Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering of the University of São Paulo - FZEA-USP, Duque de Caxias Norte, 225, Pirassunuga, SP 13635-900, Brazil.
| |
Collapse
|
84
|
Barthélémy I, Pinto-Mariz F, Yada E, Desquilbet L, Savino W, Silva-Barbosa SD, Faussat AM, Mouly V, Voit T, Blot S, Butler-Browne G. Predictive markers of clinical outcome in the GRMD dog model of Duchenne muscular dystrophy. Dis Model Mech 2014; 7:1253-61. [PMID: 25261568 PMCID: PMC4213729 DOI: 10.1242/dmm.016014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the translational process of developing innovative therapies for DMD (Duchenne muscular dystrophy), the last preclinical validation step is often carried out in the most relevant animal model of this human disease, namely the GRMD (Golden Retriever muscular dystrophy) dog. The disease in GRMD dogs mimics human DMD in many aspects, including the inter-individual heterogeneity. This last point can be seen as a drawback for an animal model but is inherently related to the disease in GRMD dogs closely resembling that of individuals with DMD. In order to improve the management of this inter-individual heterogeneity, we have screened a combination of biomarkers in sixty-one 2-month-old GRMD dogs at the onset of the disease and a posteriori we addressed their predictive value on the severity of the disease. Three non-invasive biomarkers obtained at early stages of the disease were found to be highly predictive for the loss of ambulation before 6 months of age. An elevation in the number of circulating CD4+CD49dhi T cells and a decreased stride frequency resulting in a reduced spontaneous speed were found to be strongly associated with the severe clinical form of the disease. These factors can be used as predictive tests to screen dogs to separate them into groups with slow or fast disease progression before their inclusion into a therapeutic preclinical trial, and therefore improve the reliability and translational value of the trials carried out on this invaluable large animal model. These same biomarkers have also been described to be predictive for the time to loss of ambulation in boys with DMD, strengthening the relevance of GRMD dogs as preclinical models of this devastating muscle disease.
Collapse
Affiliation(s)
- Inès Barthélémy
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UPR de Neurobiologie, 94704 Maisons-Alfort, France
| | - Fernanda Pinto-Mariz
- Université Pierre et Marie Curie-Paris 06 UM76, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris, France. Institute of Pediatrics/Federal University of Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro 21941-912, Brazil. Laboratory of Thymus Research, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Erica Yada
- Université Pierre et Marie Curie-Paris 06 UM76, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris, France
| | - Loïc Desquilbet
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité D'Épidémiologie clinique et de Biostatistique, 94704 Maisons-Alfort, France. CNRS UMR 7179, MNHN, Brunoy 91800, France
| | - Wilson Savino
- Laboratory of Thymus Research, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Suse Dayse Silva-Barbosa
- Department of Clinical Research, National Cancer Institute (INCA), Rio de Janeiro 20230-130, Brazil
| | - Anne-Marie Faussat
- Université Pierre et Marie Curie-Paris 06 IFR 65 Saint-Antoine, Paris 75005, France
| | - Vincent Mouly
- Université Pierre et Marie Curie-Paris 06 UM76, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris, France
| | - Thomas Voit
- Université Pierre et Marie Curie-Paris 06 UM76, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris, France
| | - Stéphane Blot
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UPR de Neurobiologie, 94704 Maisons-Alfort, France.
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie-Paris 06 UM76, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris, France.
| |
Collapse
|
85
|
Qin EC, Jugé L, Lambert SA, Paradis V, Sinkus R, Bilston LE. In vivo anisotropic mechanical properties of dystrophic skeletal muscles measured by anisotropic MR elastographic imaging: the mdx mouse model of muscular dystrophy. Radiology 2014; 273:726-35. [PMID: 25105354 DOI: 10.1148/radiol.14132661] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the utility of mechanical anisotropy (shear storage modulus parallel to fiber/shear storage modulus perpendicular to fiber) measured by combined magnetic resonance (MR) elastography and diffusion-tensor imaging ( DTI diffusion-tensor imaging ) technique (anisotropic MR elastography) to distinguish between healthy and necrotic muscle with different degrees of muscle necrosis in the mdx mouse model of muscular dystrophy. MATERIALS AND METHODS The experimental protocol was approved by the regional animal ethics committee. Twenty-one mdx and 21 wild-type ( WT wild type ) mice were used in our study. Animals were divided into exercised and sedentary groups. Anisotropic MR elastography was used to obtain mechanical anisotropic shear moduli for the lateral gastrocnemius and plantaris muscles in a 7-T MR imager, from which the mechanical anisotropic ratio was calculated. The animals were imaged before and after 10 weeks of a horizontal treadmill running protocol. Spearman rank correlations were used to compare MR elastographic data with muscle necrotic area percentage from histologic analysis. Mechanical anisotropy in WT wild type and mdx mice muscle were compared by using t test and one-way analysis of variance, and receiver operating characteristic curves were constructed by using statistical software. RESULTS Anisotropic MR elastography was able to be used to distinguish between the muscles of mdx and WT wild type mice, with an area under the receiver operating characteristic curve of 0.8. Strong negative correlation (rs = -0.701; P < .001) between the mechanical anisotropic ratio and the percentage of muscle necrotic area was found. By comparing mice with no or mild (0%-5% mean necrotic area) and severe (>5% mean necrotic area) muscle necrosis, an area under the receiver operating characteristic curve of 0.964 was achieved. Diffusion parameters alone were unable to distinguish between the WT wild type and mdx mice at any time point. CONCLUSION The mechanical anisotropic ratio of the shear storage moduli measured by an anisotropic MR elastographic technique can distinguish between healthy muscle and dystrophic muscle.
Collapse
Affiliation(s)
- Eric C Qin
- From the Neuroscience Research Australia, Barker St, Randwick, 2031, Australia (E.C.Q., L.J., L.E.B.); University of New South Wales, Prince of Wales Clinical School, Randwick, Australia (E.C.Q., L.E.B.); Université Paris Diderot, Sorbonne Paris Cité, CRB3, UMR 773, Inserm, Clichy, France (S.A.L.); Department of Pathologic Anatomy, Hôpital Beaujon, Clichy, France (V.P.); and Department of Biomedical Engineering, King's College London, London, England (R.S.)
| | | | | | | | | | | |
Collapse
|
86
|
De Palma C, Perrotta C, Pellegrino P, Clementi E, Cervia D. Skeletal muscle homeostasis in duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front Aging Neurosci 2014; 6:188. [PMID: 25104934 PMCID: PMC4109521 DOI: 10.3389/fnagi.2014.00188] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 12/25/2022] Open
Abstract
Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterized by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD), the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity, and chronic local inflammation leading to substitution of myofibers by connective and adipose tissue. DMD patients suffer from continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. Autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates, and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels, it can be detrimental and contribute to muscle wasting; at low levels, it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular level, the Akt axis is one of the key dysregulated pathways, although the molecular events are not completely understood. The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signaling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting.
Collapse
Affiliation(s)
- Clara De Palma
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Paolo Pellegrino
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy ; Scientific Institute IRCCS Eugenio Medea , Bosisio Parini , Italy
| | - Davide Cervia
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy ; Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia , Viterbo , Italy
| |
Collapse
|
87
|
Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, Naito K, Yamanouchi K, Nishihara M. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep 2014; 4:5635. [PMID: 25005781 PMCID: PMC4088098 DOI: 10.1038/srep05635] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder caused by mutations in the Dmd gene encoding Dystrophin12. DMD model animals, such as mdx mice and canine X-linked muscular dystrophy dogs, have been widely utilized in the development of a treatment for DMD3. Here, we demonstrate the generation of Dmd-mutated rats using a clustered interspaced short palindromic repeats (CRISPR)/Cas system, an RNA-based genome engineering technique that is also adaptive to rats. We simultaneously targeted two exons in the rat Dmd gene, which resulted in the absence of Dystrophin expression in the F0 generation. Dmd-mutated rats exhibited a decline in muscle strength, and the emergence of degenerative/regenerative phenotypes in the skeletal muscle, heart, and diaphragm. These mutations were heritable by the next generation, and F1 male rats exhibited similar phenotypes in their skeletal muscles. These model rats should prove to be useful for developing therapeutic methods to treat DMD.
Collapse
Affiliation(s)
- Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaya Tsuboi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shiho Takeuchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
88
|
Pratt SJP, Shah SB, Ward CW, Kerr JP, Stains JP, Lovering RM. Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury. Cell Mol Life Sci 2014; 72:153-64. [PMID: 24947322 PMCID: PMC4282693 DOI: 10.1007/s00018-014-1663-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 12/02/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease in which weakness, increased susceptibility to muscle injury, and inadequate repair underlie the pathology. While most attention has focused within the muscle fiber, we recently demonstrated significant alterations in the neuromuscular junction (NMJ) morphology and resulting neuromuscular transmission failure (NTF) 24 h after injury in mdx mice (murine model for DMD). Here we determine the contribution of NMJ morphology and NTF to the recovery of muscle contractile function post-injury. NMJ morphology and NTF rates were assessed day 0 (immediately after injury) and days 1, 7, 14 and 21 after quadriceps injury. Eccentric injury of the quadriceps resulted in a significant loss of maximal torque in both WT (39 ± 6 %) and mdx (76 ± 8 %) with a full recovery in WT by day 7 and in mdx by day 21. Post-injury alterations in NMJ morphology and NTF were found only in mdx, were limited to days 0 and 1, and were independent of changes in MuSK or AChR expression. Such early changes at the NMJ after injury are consistent with mechanical disruption rather than newly forming NMJs. Furthermore, we show that the dense microtubule network that underlies the NMJ is significantly reduced and disorganized in mdx compared to WT. These structural changes at the NMJ may play a role in the increased NMJ disruption and the exaggerated loss of nerve-evoked muscle force seen after injury to dystrophic muscles.
Collapse
Affiliation(s)
- Stephen J. P. Pratt
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn St. AHB, Room 540, Baltimore, MD 21201 USA
| | - Sameer B. Shah
- Department of Orthopaedic Surgery and Bioengineering, University of California, San Diego, USA
| | | | - Jaclyn P. Kerr
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn St. AHB, Room 540, Baltimore, MD 21201 USA
| | - Richard M. Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn St. AHB, Room 540, Baltimore, MD 21201 USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
89
|
Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of duchenne muscular dystrophy. PLoS One 2014; 9:e89277. [PMID: 24586653 PMCID: PMC3929705 DOI: 10.1371/journal.pone.0089277] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old) and adult (12- to 14-wk-old) male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing) adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles.
Collapse
|
90
|
Martin PT, Golden B, Okerblom J, Camboni M, Chandrasekharan K, Xu R, Varki A, Flanigan KM, Kornegay JN. A comparative study of N-glycolylneuraminic acid (Neu5Gc) and cytotoxic T cell (CT) carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle. PLoS One 2014; 9:e88226. [PMID: 24505439 PMCID: PMC3914967 DOI: 10.1371/journal.pone.0088226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/03/2014] [Indexed: 12/23/2022] Open
Abstract
The expression of N-glycolylneuraminic acid (Neu5Gc) and the cytotoxic T cell (CT) carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95%) in muscle from normal golden retriever crosses (GR, n = 3) and from golden retriever with muscular dystrophy (GRMD, n = 5) dogs at multiple ages (3, 6 and 13 months) when compared to mouse muscle, however, overall sialic acid expression in GR and GRMD muscles remained high at all ages. Neu5Gc was expressed on only a minority of GRMD satellite cells, CD8+ T lymphocytes and macrophages. Human muscle from normal (no evident disease, n = 3), Becker (BMD, n = 3) and Duchenne (DMD, n = 3) muscular dystrophy individuals had absent to very low Neu5Gc staining, but some punctate intracellular muscle staining was present in BMD and DMD muscles. The CT carbohydrate was localized to the neuromuscular junction in GR muscle, while GRMD muscles had increased expression on a subset of myofibers and macrophages. In humans, the CT carbohydrate was ectopically expressed on the sarcolemmal membrane of some BMD muscles, but not normal human or DMD muscles. These data are consistent with the notion that altered Neu5Gc and CT carbohydrate expression may modify disease severity resulting from dystrophin deficiency in dogs and humans.
Collapse
MESH Headings
- Animals
- Dogs
- Dystrophin/genetics
- Female
- Gene Deletion
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Neuraminic Acids/analysis
- Neuraminic Acids/metabolism
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- Paul T. Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| | - Bethannie Golden
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jonathan Okerblom
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Marybeth Camboni
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Kumaran Chandrasekharan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Rui Xu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Ajit Varki
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Kevin M. Flanigan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Joe N. Kornegay
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
91
|
Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, Sali A, Miller BK, Phadke A, Scheffer L, Quinn J, Tatem K, Jordan S, Dadgar S, Rodriguez OC, Albanese C, Calhoun M, Gordish-Dressman H, Jaiswal JK, Connor EM, McCall JM, Hoffman EP, Reeves EKM, Nagaraju K. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med 2013; 5:1569-85. [PMID: 24014378 PMCID: PMC3799580 DOI: 10.1002/emmm.201302621] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 01/01/2023] Open
Abstract
Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti-inflammatory signaling and membrane-stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF-κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live-imaging and pathology through both preventive and post-onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Christopher R Heier
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Vallese D, Negroni E, Duguez S, Ferry A, Trollet C, Aamiri A, Vosshenrich CAJ, Füchtbauer EM, Di Santo JP, Vitiello L, Butler-Browne G, Mouly V. The Rag2⁻Il2rb⁻Dmd⁻ mouse: a novel dystrophic and immunodeficient model to assess innovating therapeutic strategies for muscular dystrophies. Mol Ther 2013; 21:1950-7. [PMID: 23975040 DOI: 10.1038/mt.2013.186] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/25/2013] [Indexed: 01/06/2023] Open
Abstract
The development of innovative therapeutic strategies for muscular dystrophies, particularly cell-based approaches, is still a developing field. Although positive results have been obtained in animal models, they have rarely been confirmed in patients and resulted in very limited clinical improvements, suggesting some specificity in humans. These findings emphasized the need for an appropriate animal model (i.e., immunodeficient and dystrophic) to investigate in vivo the behavior of transplanted human myogenic stem cells. We report a new model, the Rag2(-)Il2rb(-)Dmd(-) mouse, which lacks T, B, and NK cells, and also carries a mutant Dmd allele that prevents the production of any dystrophin isoform. The dystrophic features of this new model are comparable with those of the classically used mdx mouse, but with the total absence of any revertant dystrophin positive fiber. We show that Rag2(-)Il2rb(-)Dmd(-) mice allow long-term xenografts of human myogenic cells. Altogether, our findings indicate that the Rag2(-)Il2rb(-)Dmd(-) mouse represents an ideal model to gain further insights into the behavior of human myogenic stem cells in a dystrophic context, and can be used to assess innovative therapeutic strategies for muscular dystrophies.
Collapse
Affiliation(s)
- Denis Vallese
- 1] UPMC Université Pierre et Marie Curie (UPMC), UM76, Institut de Myologie, Paris, France [2] INSERM U 974, Institut de Myologie, Paris, France [3] CNRS UMR 7215, Institut de Myologie, Paris, France [4] Department of Biology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Morales MG, Gutierrez J, Cabello-Verrugio C, Cabrera D, Lipson KE, Goldschmeding R, Brandan E. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 2013; 22:4938-51. [PMID: 23904456 DOI: 10.1093/hmg/ddt352] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) and the mdx mouse model, the absence of the cytoskeletal protein dystrophin causes defective anchoring of myofibres to the basal lamina. The resultant myofibre degeneration and necrosis lead to a progressive loss of muscle mass, increased fibrosis and ultimately fatal weakness. Connective tissue growth factor (CTGF/CCN-2) is critically involved in several chronic fibro-degenerative diseases. In DMD, the role of CTGF might extend well beyond replacement fibrosis secondary to loss of muscle fibres, since its overexpression in skeletal muscle could by itself induce a dystrophic phenotype. Using two independent approaches, we here show that mdx mice with reduced CTGF availability do indeed have less severe muscular dystrophy. Mdx mice with hemizygous CTGF deletion (mdx-Ctgf+/-), and mdx mice treated with a neutralizing anti-CTGF monoclonal antibody (FG-3019), performed better in an exercise endurance test, had better muscle strength in isolated muscles and reduced skeletal muscle impairment, apoptotic damage and fibrosis. Transforming growth factor type-β (TGF-β), pERK1/2 and p38 signalling remained unaffected during CTGF suppression. Moreover, both mdx-Ctgf+/- and FG-3019 treated mdx mice had improved grafting upon intramuscular injection of dystrophin-positive satellite cells. These findings reveal the potential of targeting CTGF to reduce disease progression and to improve cell therapy in DMD.
Collapse
Affiliation(s)
- Maria Gabriela Morales
- Laboratorio de Diferenciación Celular y Patología, Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
94
|
Temporal changes in magnetic resonance imaging in the mdx mouse. BMC Res Notes 2013; 6:262. [PMID: 23837666 PMCID: PMC3716616 DOI: 10.1186/1756-0500-6-262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/10/2013] [Indexed: 12/03/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is characterized clinically by severe, progressive loss of skeletal muscle. The phenotype is much less severe in the mdx mouse model of DMD than that seen in patients with DMD. However, a “critical period” has been described for the mdx mouse, during which there is a peak in muscle weakness and degeneration/regeneration between the 2nd and 5th weeks of life. A number of studies have employed small animal magnetic resonance imaging (MRI) to examine skeletal muscle in various dystrophic models, but such studies represent a snapshot in time rather than a longitudinal view. Results The in vivo cross-sectional T2-weighted image of the healthy (wild type, WT) muscles is homogeneously dark and this homogeneity does not change with time, as there is no disease. We, and others, have shown marked changes in MRI in dystrophic muscle, with multiple, unevenly distributed focal hyperintensities throughout the bulk of the muscles. Here we monitored an mdx mouse using MRI from 5 to 80 weeks of age. Temporal MRI scans show an increase in heterogeneity shortly after the critical period, at 9 and 13 weeks of age, with a decrease in heterogeneity thereafter. The 4.3-fold increase in percent heterogeneity at week 9 and 13 is consistent with the notion of an early critical period described for mdx mice. Conclusions Age is a significant variable in quantitative MR studies of the mdx mouse. The mdx mouse is typically studied during the critical period, at a time that most closely mimics the DMD pathology, but the preliminary findings here, albeit based on imaging only one mdx mouse over time, suggest that the changes in MRI can occur shortly after this period, when the muscles are still recovering.
Collapse
|
95
|
GLPG0492, a novel selective androgen receptor modulator, improves muscle performance in the exercised-mdx mouse model of muscular dystrophy. Pharmacol Res 2013; 72:9-24. [PMID: 23523664 DOI: 10.1016/j.phrs.2013.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/22/2022]
Abstract
Anabolic drugs may counteract muscle wasting and dysfunction in Duchenne muscular dystrophy (DMD); however, steroids have unwanted side effects. We focused on GLPG0492, a new non-steroidal selective androgen receptor modulator that is currently under development for musculo-skeletal diseases such as sarcopenia and cachexia. GLPG0492 was tested in the exercised mdx mouse model of DMD in a 4-week trial at a single high dose (30 mg/kg, 6 day/week s.c.), and the results were compared with those from the administration of α-methylprednisolone (PDN; 1 mg/kg, i.p.) and nandrolone (NAND, 5 mg/kg, s.c.). This assessment was followed by a 12-week dose-dependence study (0.3-30 mg/kg s.c.). The outcomes were evaluated in vivo and ex vivo on functional, histological and biochemical parameters. Similar to PDN and NAND, GLPG0492 significantly increased mouse strength. In acute exhaustion tests, a surrogate of the 6-min walking test used in DMD patients, GLPG0492 preserved running performance, whereas vehicle- or comparator-treated animals showed a significant increase in fatigue (30-50%). Ex vivo, all drugs resulted in a modest but significant increase of diaphragm force. In parallel, a decrease in the non-muscle area and markers of fibrosis was observed in GLPG0492- and NAND-treated mice. The drugs exerted minor effects on limb muscles; however, electrophysiological biomarkers were ameliorated in extensor digitorum longus muscle. The longer dose-dependence study confirmed the effect on mdx mouse strength and resistance to fatigue and demonstrated the efficacy of lower drug doses on in vivo and ex vivo functional parameters. These results support the interest of further studies of GLPG0492 as a potential treatment for DMD.
Collapse
|
96
|
Moorwood C, Khurana TS. Duchenne muscular dystrophy drug discovery - the application of utrophin promoter activation screening. Expert Opin Drug Discov 2013; 8:569-81. [PMID: 23473647 DOI: 10.1517/17460441.2013.777040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a devastating genetic muscle wasting disease caused by mutations in the DMD gene that in turn lead to an absence of dystrophin. Currently, there is no definitive therapy for DMD. Gene- and cell-based therapies designed to replace dystrophin have met some degree of success, as have strategies that seek to improve the dystrophic pathology independent of dystrophin. AREAS COVERED In this review the authors focus on utrophin promoter activation-based strategies and their implications on potential therapeutics for DMD. These strategies in common are designed to identify drugs/small molecules that can activate the utrophin promoter and would allow the functional substitution of dystrophin by upregulating utrophin expression in dystrophic muscle. The authors provide an overview of utrophin biology with a focus on regulation of the utrophin promoter and discuss current attempts in identifying utrophin promoter-activating molecules using high-throughput screening (HTS). EXPERT OPINION The characterisation of utrophin promoter regulatory mechanisms coupled with advances in HTS have allowed researchers to undertake screens and identify a number of promising lead compounds that may prove useful for DMD. In principle, these pharmacological compounds offer significant advantages from a translational viewpoint for developing DMD therapeutics.
Collapse
Affiliation(s)
- Catherine Moorwood
- University of Pennsylvania School of Dental Medicine, Department of Anatomy & Cell Biology, 438 Levy Research Building, 240 S. 40th Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
97
|
Lovering RM, Shah SB, Pratt SJP, Gong W, Chen Y. Architecture of healthy and dystrophic muscles detected by optical coherence tomography. Muscle Nerve 2013; 47:588-90. [PMID: 23381871 DOI: 10.1002/mus.23711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The ability to view individual myofibers is possible with many histological techniques, but not yet with standard in vivo imaging. Optical coherence tomography (OCT) is an emerging technology that can generate high resolution 1-10 μm cross-sectional imaging of tissue in vivo and in real time. METHODS We used OCT to determine architectural differences of tibialis anterior muscles in situ from healthy mice (wild-type [WT], n = 4) and dystrophic mice (mdx, n = 4). After diffusion tensor imaging (DTI) and OCT, muscles were harvested, snap-frozen, and sectioned for staining with wheat germ agglutinin. RESULTS DTI suggested differences in pennation and OCT was used to confirm this supposition. OCT indicated a shorter intramuscular tendon (WT/mdx ratio of 1.2) and an 18% higher degree of pennation in mdx. Staining confirmed these architectural changes. CONCLUSIONS Architectural changes in mdx muscles, which could contribute to reduction of force, are detectable with OCT.
Collapse
Affiliation(s)
- Richard M Lovering
- University of Maryland School of Medicine, Department of Orthopaedics, 100 Penn Street, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
98
|
Pertl C, Eblenkamp M, Pertl A, Pfeifer S, Wintermantel E, Lochmüller H, Walter MC, Krause S, Thirion C. A new web-based method for automated analysis of muscle histology. BMC Musculoskelet Disord 2013; 14:26. [PMID: 23324401 PMCID: PMC3560198 DOI: 10.1186/1471-2474-14-26] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background Duchenne Muscular Dystrophy is an inherited degenerative neuromuscular disease characterised by rapidly progressive muscle weakness. Currently, curative treatment is not available. Approaches for new treatments that improve muscle strength and quality of life depend on preclinical testing in animal models. The mdx mouse model is the most frequently used animal model for preclinical studies in muscular dystrophy research. Standardised pathology-relevant parameters of dystrophic muscle in mdx mice for histological analysis have been developed in international, collaborative efforts, but automation has not been accessible to most research groups. A standardised and mainly automated quantitative assessment of histopathological parameters in the mdx mouse model is desirable to allow an objective comparison between laboratories. Methods Immunological and histochemical reactions were used to obtain a double staining for fast and slow myosin. Additionally, fluorescence staining of the myofibre membranes allows defining the minimal Feret’s diameter. The staining of myonuclei with the fluorescence dye bisbenzimide H was utilised to identify nuclei located internally within myofibres. Relevant structures were extracted from the image as single objects and assigned to different object classes using web-based image analysis (MyoScan). Quantitative and morphometric data were analysed, e.g. the number of nuclei per fibre and minimal Feret’s diameter in 6 month old wild-type C57BL/10 mice and mdx mice. Results In the current version of the module “MyoScan”, essential parameters for histologic analysis of muscle sections were implemented including the minimal Feret’s diameter of the myofibres and the automated calculation of the percentage of internally nucleated myofibres. Morphometric data obtained in the present study were in good agreement with previously reported data in the literature and with data obtained from manual analysis. Conclusions A standardised and mainly automated quantitative assessment of histopathological parameters in the mdx mouse model is now available. Automated analysis of histological parameters is more rapid and less time-consuming. Moreover, results are unbiased and more reliable. Efficacy of therapeutic interventions, e.g. within the scope of a drug screening or therapeutic exon skipping, can be monitored. The automatic analysis system MyoScan used in this study is not limited exclusively to dystrophin-deficient mice but also represents a useful tool for applications in the research of other dystrophic pathologies, various other skeletal muscle diseases and degenerative neuromuscular disorders.
Collapse
Affiliation(s)
- Cordula Pertl
- Laboratory of Molecular Myology, Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universität München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
The GRMD (Golden retriever muscular dystrophy) dog has been widely used in pre-clinical trials targeting DMD (Duchenne muscular dystrophy), using in many cases a concurrent immune-suppressive treatment. The aim of this study is to assess if such a treatment could have an effect on the disease course of these animals. Seven GRMD dogs were treated with an association of cyclosporine A (immunosuppressive dosage) and prednisolone (2 mg/kg/d) during 7 months, from 2 to 9 months of age. A multi-parametric evaluation was performed during this period which allowed us to demonstrate that this treatment had several significant effects on the disease progression. The gait quality as assessed by 3D-accelerometry was dramatically improved. This was consistent with the evolution of other parameters towards a significant improvement, such as the clinical motor score, the post-tetanic relaxation and the serum CK levels. In contrast the isometric force measurement as well as the histological evaluation argued in favor of a more severe disease progression. In view of the disease modifying effects which have been observed in this study it should be concluded that immunosuppressive treatments should be used with caution when carrying out pre-clinical studies in this canine model of DMD. They also highlight the importance of using a large range of multi-parametric evaluation tools to reliably draw any conclusion from trials involving dystrophin-deficient dogs, which reproduce the complexity of the human disease.
Collapse
|
100
|
Pratt SJP, Shah SB, Ward CW, Inacio MP, Stains JP, Lovering RM. Effects of in vivo injury on the neuromuscular junction in healthy and dystrophic muscles. J Physiol 2012; 591:559-70. [PMID: 23109110 DOI: 10.1113/jphysiol.2012.241679] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The most common and severe form of muscular dystrophy is Duchenne muscular dystrophy (DMD), a disorder caused by the absence of dystrophin, a structural protein found on the cytoplasmic surface of the sarcolemma of striated muscle fibres. Considerable attention has been dedicated to studying myofibre damage and muscle plasticity, but there is little information to determine if damage from contraction-induced injury occurs at or near the nerve terminal axon. We used α-bungarotoxin to compare neuromuscular junction (NMJ) morphology in healthy (wild-type, WT) and dystrophic (mdx) mouse quadriceps muscles and evaluated transcript levels of the post-synaptic muscle-specific kinase signalling complex. Our focus was to study changes in NMJs after injury induced with an established in vivo animal injury model. Neuromuscular transmission, electromyography (EMG), and NMJ morphology were assessed 24 h after injury. In non-injured muscle, muscle-specific kinase expression was significantly decreased in mdx compared to WT. Injury resulted in a significant loss of maximal torque in WT (39 ± 6%) and mdx (76 ± 8%) quadriceps, but significant changes in NMJ morphology, neuromuscular transmission and EMG data were found only in mdx following injury. Compared with WT mice, motor end-plates of mdx mice demonstrated less continuous morphology, more disperse acetylcholine receptor aggregates and increased number of individual acetylcholine receptor clusters, an effect that was exacerbated following injury. Neuromuscular transmission failure increased and the EMG measures decreased after injury in mdx mice only. The data show that eccentric contraction-induced injury causes morphological and functional changes to the NMJs in mdx skeletal muscle, which may play a role in excitation-contraction coupling failure and progression of the dystrophic process.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|