51
|
The disorders of the calcium release unit of skeletal muscles: what have we learned from mouse models? J Muscle Res Cell Motil 2014; 36:61-9. [PMID: 25424378 DOI: 10.1007/s10974-014-9396-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023]
Abstract
Calcium storage, release, and reuptake are essential for normal physiological function of muscle. Several human skeletal muscle disorders can arise from dysfunction in the control and coordination of these three critical processes. The release from the Sarcoplasmic Reticulum stores (SR) is handled by a multiprotein complex called Calcium Release Unit and composed of DiHydroPyridine Receptor or DHPR, Ryanodine Receptor or RYR, Calsequestrin or CASQ, junctin, Triadin, Junctophilin and Mitsugumin 29. Malignant hyperthermia (MH), Central Core Disease (CCD), Exertional/environmental Heat Stroke (EHS) and Multiminicore disease (MmD) are inherited disorders of calcium homeostasis in skeletal muscles directly related to mutations of genes coding for proteins of the CRU, primarily ryanodine receptor (RYR1). To understand the pathophysiology of MH and CCD, four murine lines carrying point mutations of human RYR1 have been developed: Y524S, R163C, I4898T and T4826I. Mice carrying those mutations show a phenotype with the traits of MH and/or CCD. Interestingly, also ablation of skeletal muscle calsequestrin (CASQ1) leads to a phenotype with MH-like lethal episodes in response to halothane and heat stress and development of central cores. In this review, we aim to describe the murine lines with RYR mutations or CASQ ablation, which show a phenotype similar to human MH or CCD, to underline their specific phenotypes and their differences and to discuss their contribution to the understanding of the pathophysiology of the disorders and the development of therapeutic strategies.
Collapse
|
52
|
Romero NB, Xie T, Malfatti E, Schaeffer U, Böhm J, Wu B, Xu F, Boucebci S, Mathis S, Neau JP, Monnier N, Fardeau M, Laporte J. Autosomal dominant eccentric core disease caused by a heterozygous mutation in the MYH7 gene. J Neurol Neurosurg Psychiatry 2014; 85:1149-52. [PMID: 24828896 PMCID: PMC4173876 DOI: 10.1136/jnnp-2013-306754] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Autosomal dominant (AD) central core disease (CCD) is a congenital myopathy characterised by the presence of cores in the muscle fibres which correspond to broad areas of myofibrils disorganisation, Z-line streaming and lack of mitochondria. Heterozygous mutations in the RYR1 gene were observed in the large majority of AD-CCD families; however, this gene was excluded in some of AD-CCD families. OBJECTIVE To enlarge the genetic spectrum of AD-CCD demonstrating mutations in an additional gene. PATIENTS AND METHODS Four affected AD family members over three generations, three of whom were alive and participate in the study: the mother and two of three siblings. The symptoms began during the early childhood with mild delayed motor development. Later they developed mainly tibialis anterior weakness, hypertrophy of calves and significant weakness (amyotrophic) of quadriceps. No cardiac or ocular involvement was noted. RESULTS The muscle biopsies sections showed a particular pattern: eccentric cores in type 1 fibres, associated with type 1 predominance. Most cores have abrupt borders. Electron microscopy confirmed the presence of both unstructured and structured cores. Exome sequencing analysis identified a novel heterozygous missense mutation p.Leu1723Pro in MYH7 segregating with the disease and affecting a conserved residue in the myosin tail domain. CONCLUSIONS We describe MYH7 as an additional causative gene for AD-CCD. These findings have important implications for diagnosis and future investigations of AD-congenital myopathies with cores, without cardiomyopathy, but presenting a particular involvement of distal and quadriceps muscles.
Collapse
Affiliation(s)
- Norma B Romero
- Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France Inserm, U974, Paris, France University Pierre et Marie Curie- Paris 6, UM 76, CNRS, UMR 7215, Myology Institute, IFR14, Paris, France Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ting Xie
- Department of Translational Medicine and Neurogenetics, IGBMC, Illkirch, France Inserm, U964, Illkirch, France CNRS, UMR7104, Illkirch, France Université de Strasbourg, Illkirch, France Collège de France, chaire de génétique humaine, Illkirch, France
| | - Edoardo Malfatti
- Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France Inserm, U974, Paris, France University Pierre et Marie Curie- Paris 6, UM 76, CNRS, UMR 7215, Myology Institute, IFR14, Paris, France Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France Department of Neurological, Neurosurgical, and Behavioral Sciences, University of Siena, Siena, Italy
| | - Ursula Schaeffer
- Department of Translational Medicine and Neurogenetics, IGBMC, Illkirch, France Inserm, U964, Illkirch, France CNRS, UMR7104, Illkirch, France Université de Strasbourg, Illkirch, France Collège de France, chaire de génétique humaine, Illkirch, France
| | - Johann Böhm
- Department of Translational Medicine and Neurogenetics, IGBMC, Illkirch, France Inserm, U964, Illkirch, France CNRS, UMR7104, Illkirch, France Université de Strasbourg, Illkirch, France Collège de France, chaire de génétique humaine, Illkirch, France
| | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | | | - Samy Boucebci
- Service de Neurologie and Pôle Imagerie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Stéphane Mathis
- Service de Neurologie and Pôle Imagerie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-Philippe Neau
- Service de Neurologie and Pôle Imagerie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Nicole Monnier
- Laboraroire de Biochimie et Génétique moléculaire, IBP, CHU Grenoble, Grenoble, France
| | - Michel Fardeau
- Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France University Pierre et Marie Curie- Paris 6, UM 76, CNRS, UMR 7215, Myology Institute, IFR14, Paris, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, IGBMC, Illkirch, France Inserm, U964, Illkirch, France CNRS, UMR7104, Illkirch, France Université de Strasbourg, Illkirch, France Collège de France, chaire de génétique humaine, Illkirch, France
| |
Collapse
|
53
|
Finsterer J, Brandau O, Stöllberger C, Wallefeld W, Laing NG, Laccone F. Distal myosin heavy chain-7 myopathy due to the novel transition c.5566G>A (p.E1856K) with high interfamilial cardiac variability and putative anticipation. Neuromuscul Disord 2014; 24:721-5. [PMID: 24953931 DOI: 10.1016/j.nmd.2014.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 11/25/2022]
Abstract
Myosin-heavy-chain 7 (MYH7)-myopathy manifests clinically with a distal, scapuloperoneal, limb-girdle (proximal), or axial distribution and may involve the respiratory muscles. Cardiac involvement is frequent, ranging from relaxation impairment to severe dilative cardiomyopathy. Progression and earlier onset of cardiac disease in successive generations with MYH7-myopathy is unreported. In a five-generation family MYH7-myopathy due to the novel c.5566G > A (p.E1856K) mutation manifested with late-onset, distal > proximal myopathy and variable degree of cardiac involvement. The index patient developed distal myopathy since age 49 y and anginal chest pain. Her mother had distal myopathy and impaired myocardial relaxation. The daughter of the index patient had discrete myopathy but left ventricular hypertrabeculation/noncompaction and ventricular arrhythmias requiring an implantable cardioverter defibrillator. The granddaughter of the index patient had infantile dilated cardiomyopathy without overt myopathy. Cardiac involvement may be present in MYH7-myopathy and may be progressive between the generations, ranging from relaxation abnormality to noncompaction, ventricular arrhythmias, and dilated cardiomyopathy.
Collapse
Affiliation(s)
| | - Oliver Brandau
- Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090 Vienna, Austria
| | - Claudia Stöllberger
- 2nd Medical Department with Cardiology and Intensive Care Medicine Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - William Wallefeld
- Centre for Medical Research, University of Western Australia and Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Nigel G Laing
- Centre for Medical Research, University of Western Australia and Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090 Vienna, Austria
| |
Collapse
|
54
|
Lamont PJ, Wallefeld W, Hilton-Jones D, Udd B, Argov Z, Barboi AC, Bonneman C, Boycott KM, Bushby K, Connolly AM, Davies N, Beggs AH, Cox GF, Dastgir J, DeChene ET, Gooding R, Jungbluth H, Muelas N, Palmio J, Penttilä S, Schmedding E, Suominen T, Straub V, Staples C, Van den Bergh PYK, Vilchez JJ, Wagner KR, Wheeler PG, Wraige E, Laing NG. Novel mutations widen the phenotypic spectrum of slow skeletal/β-cardiac myosin (MYH7) distal myopathy. Hum Mutat 2014; 35:868-79. [PMID: 24664454 DOI: 10.1002/humu.22553] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/10/2014] [Indexed: 01/01/2023]
Abstract
Laing early onset distal myopathy and myosin storage myopathy are caused by mutations of slow skeletal/β-cardiac myosin heavy chain encoded by the gene MYH7, as is a common form of familial hypertrophic/dilated cardiomyopathy. The mechanisms by which different phenotypes are produced by mutations in MYH7, even in the same region of the gene, are not known. To explore the clinical spectrum and pathobiology, we screened the MYH7 gene in 88 patients from 21 previously unpublished families presenting with distal or generalized skeletal muscle weakness, with or without cardiac involvement. Twelve novel mutations have been identified in thirteen families. In one of these families, the father of the proband was found to be a mosaic for the MYH7 mutation. In eight cases, de novo mutation appeared to have occurred, which was proven in four. The presenting complaint was footdrop, sometimes leading to delayed walking or tripping, in members of 17 families (81%), with other presentations including cardiomyopathy in infancy, generalized floppiness, and scoliosis. Cardiac involvement as well as skeletal muscle weakness was identified in nine of 21 families. Spinal involvement such as scoliosis or rigidity was identified in 12 (57%). This report widens the clinical and pathological phenotypes, and the genetics of MYH7 mutations leading to skeletal muscle diseases.
Collapse
Affiliation(s)
- Phillipa J Lamont
- Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Western Australia, Australia; Diagnostic Genomics Laboratory, Pathwest, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Finsterer J, Stöllberger C, Brandau O, Laccone F, Bichler K, Laing NG. Novel MYH7 mutation associated with mild myopathy but life-threatening ventricular arrhythmias and noncompaction. Int J Cardiol 2014; 173:532-5. [DOI: 10.1016/j.ijcard.2014.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/09/2014] [Indexed: 11/27/2022]
|
56
|
North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, Amburgey K, Quijano-Roy S, Beggs AH, Sewry C, Laing NG, Bönnemann CG. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 2014; 24:97-116. [PMID: 24456932 PMCID: PMC5257342 DOI: 10.1016/j.nmd.2013.11.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
Over the past decade there have been major advances in defining the genetic basis of the majority of congenital myopathy subtypes. However the relationship between each congenital myopathy, defined on histological grounds, and the genetic cause is complex. Many of the congenital myopathies are due to mutations in more than one gene, and mutations in the same gene can cause different muscle pathologies. The International Standard of Care Committee for Congenital Myopathies performed a literature review and consulted a group of experts in the field to develop a summary of (1) the key features common to all forms of congenital myopathy and (2) the specific features that help to discriminate between the different genetic subtypes. The consensus statement was refined by two rounds of on-line survey, and a three-day workshop. This consensus statement provides guidelines to the physician assessing the infant or child with hypotonia and weakness. We summarise the clinical features that are most suggestive of a congenital myopathy, the major differential diagnoses and the features on clinical examination, investigations, muscle pathology and muscle imaging that are suggestive of a specific genetic diagnosis to assist in prioritisation of genetic testing of known genes. As next generation sequencing becomes increasingly used as a diagnostic tool in clinical practise, these guidelines will assist in determining which sequence variations are likely to be pathogenic.
Collapse
Affiliation(s)
- Kathryn N North
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, Victoria 3052, Australia; Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia.
| | - Ching H Wang
- Driscoll Children's Hospital, Corpus Christi, TX, United States
| | - Nigel Clarke
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Heinz Jungbluth
- Evelina Children's Hospital, Department of Paediatric Neurology, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, United Kingdom; Clinical Neuroscience Division, IoP, London, United Kingdom
| | - Mariz Vainzof
- Human Genome Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - James J Dowling
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Kimberly Amburgey
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Susana Quijano-Roy
- Department of Pediatrics, Garches Neuromuscular Reference Center (GNMH), APHP Raymond Poincare University Hospital (UVSQ), Garches, France
| | - Alan H Beggs
- Children's Hospital Boston, Boston, MA, United States
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, London, United Kingdom; Wolfson Centre of Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Nigel G Laing
- Centre for Medical Research, University of Western Australia and Harry Perkins Institute of Medical Research, QQ Building, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
57
|
Exome sequencing identifies Laing distal myopathy MYH7 mutation in a Roma family previously diagnosed with distal neuronopathy. Neuromuscul Disord 2014; 24:156-61. [DOI: 10.1016/j.nmd.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 11/22/2022]
|
58
|
Limongelli G, D’Alessandro R, Maddaloni V, Rea A, Sarkozy A, McKenna WJ. Skeletal muscle involvement in cardiomyopathies. J Cardiovasc Med (Hagerstown) 2013; 14:837-61. [DOI: 10.2459/jcm.0b013e3283641c69] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
59
|
Chauveau C, Bonnemann CG, Julien C, Kho AL, Marks H, Talim B, Maury P, Arne-Bes MC, Uro-Coste E, Alexandrovich A, Vihola A, Schafer S, Kaufmann B, Medne L, Hübner N, Foley AR, Santi M, Udd B, Topaloglu H, Moore SA, Gotthardt M, Samuels ME, Gautel M, Ferreiro A. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum Mol Genet 2013; 23:980-91. [PMID: 24105469 DOI: 10.1093/hmg/ddt494] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Core myopathies (CM), the main non-dystrophic myopathies in childhood, remain genetically unexplained in many cases. Heart disease is not considered part of the typical CM spectrum. No congenital heart defect has been reported, and childhood-onset cardiomyopathy has been documented in only two CM families with homozygous mutations of the TTN gene. TTN encodes titin, a giant protein of striated muscles. Recently, heterozygous TTN truncating mutations have also been reported as a major cause of dominant dilated cardiomyopathy. However, relatively few TTN mutations and phenotypes are known, and titin pathophysiological role in cardiac and skeletal muscle conditions is incompletely understood. We analyzed a series of 23 families with congenital CM and primary heart disease using TTN M-line-targeted sequencing followed in selected patients by whole-exome sequencing and functional studies. We identified seven novel homozygous or compound heterozygous TTN mutations (five in the M-line, five truncating) in 17% patients. Heterozygous parents were healthy. Phenotype analysis identified four novel titinopathies, including cardiac septal defects, left ventricular non-compaction, Emery-Dreifuss muscular dystrophy or arthrogryposis. Additionally, in vitro studies documented the first-reported absence of a functional titin kinase domain in humans, leading to a severe antenatal phenotype. We establish that CM are associated with a large range of heart conditions of which TTN mutations are a major cause, thereby expanding the TTN mutational and phenotypic spectrum. Additionally, our results suggest titin kinase implication in cardiac morphogenesis and demonstrate that heterozygous TTN truncating mutations may not manifest unless associated with a second mutation, reassessing the paradigm of their dominant expression.
Collapse
Affiliation(s)
- Claire Chauveau
- Inserm, U787 Myology group, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Roadmap to determine the point mutations involved in cardiomyopathy disorder: A Bayesian approach. Gene 2013; 519:34-40. [DOI: 10.1016/j.gene.2013.01.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/31/2012] [Accepted: 01/27/2013] [Indexed: 11/18/2022]
|
61
|
Clarke NF, Amburgey K, Teener J, Camelo-Piragua S, Kesari A, Punetha J, Waddell LB, Davis M, Laing NG, Monnier N, North KN, Hoffman EP, Dowling JJ. A novel mutation expands the genetic and clinical spectrum of MYH7-related myopathies. Neuromuscul Disord 2013; 23:432-6. [PMID: 23478172 DOI: 10.1016/j.nmd.2013.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 01/16/2023]
Abstract
MYH7 mutations are an established cause of Laing distal myopathy, myosin storage myopathy, and cardiomyopathy, as well as additional myopathy subtypes. We report a novel MYH7 mutation (p.Leu1597Arg) that arose de novo in two unrelated probands. Proband 1 has a myopathy characterized by distal weakness and prominent contractures and histopathology typical of multi-minicore disease. Proband 2 has an axial myopathy and histopathology consistent with congenital fiber type disproportion. These cases highlight the broad spectrum of clinical and histological patterns associated with MYH7 mutations, and provide further evidence that MYH7 is likely responsible for a greater proportion of congenital myopathies than currently appreciated.
Collapse
Affiliation(s)
- Nigel F Clarke
- INMR, The Children's Hospital at Westmead & Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|