51
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Advances in liposome-based delivery of RNA therapeutics for cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:177-218. [PMID: 38458738 DOI: 10.1016/bs.pmbts.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Liposomal drug delivery systems stand as versatile therapeutic platforms for precisely targeting related elements in cancerous tissues owing to their intrinsic passive and acquired active targeting capabilities and exceptional compatibility with physiologic environments. When the capacity of liposomes as nanocarriers is combined with the revolutionary potential of RNA therapies in affecting undruggable targets, the outcome would be promising drug candidates as game-changers in the cancer treatment arena. However, optimizing liposome composition, physicochemical properties, and surface chemistry is paramount to maximizing their pharmacokinetic and pharmacodynamic attributes. This review highlighted the potential of liposomes as nanovehicles for RNA therapeutics through a literature review and looked at the most recent preclinical and clinical advancements in utilizing liposomal RNA therapeutics for cancer management. Notably, the discovery of novel targets, advancements in liposome engineering, and organizing well-planned clinical trials would help uncover the incredible potential of these nanotherapeutics in cancer patients.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
52
|
Sharma M, Sudha Ambadipudi SSSS, Kumar Chouhan N, Lakshma Nayak V, Pabbaraja S, Balaji Andugulapati S, Sistla R. Design, synthesis and biological evaluation of novel cationic liposomes loaded with melphalan for the treatment of cancer. Bioorg Med Chem Lett 2024; 97:129549. [PMID: 37952597 DOI: 10.1016/j.bmcl.2023.129549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Therapeutically active lipids in drug delivery systems offer customization for enhanced pharmaceutical and biological effects, improving safety and efficacy. Biologically active N, N-didodecyl-3,4-dimethoxy-N-methylbenzenaminium lipid (Q) was synthesized and employed to create a liposome formulation (FQ) encapsulating melphalan (M) through a thin film hydration method. Synthesized cationic lipids and their liposomal formulation underwent characterization and assessment for additive anti-cancer effects on myeloma and melanoma cancer cell lines. These effects were evaluated through various studies, including cytotoxicity assessments, cell cycle arrest analysis, apoptosis measurements, mitochondrial membrane potential depolarization, DNA fragmentation, and a significant reduction in tumorigenic potential, as evidenced by a decrease in both the number and percentage area of cancer spheroids.
Collapse
Affiliation(s)
- Mani Sharma
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S S S S Sudha Ambadipudi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Neeraj Kumar Chouhan
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V Lakshma Nayak
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
53
|
Inagaki M. Cell Reprogramming and Differentiation Utilizing Messenger RNA for Regenerative Medicine. J Dev Biol 2023; 12:1. [PMID: 38535481 PMCID: PMC10971469 DOI: 10.3390/jdb12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 06/16/2024] Open
Abstract
The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.
Collapse
Affiliation(s)
- Masahito Inagaki
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
54
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
55
|
Pan P, Liu X, Fang M, Yang S, Zhang Y, Li M, Liu Y. Silk Fibroin-Modified Liposome/Gene Editing System Knocks out the PLK1 Gene to Suppress the Growth of Lung Cancer Cells. Pharmaceutics 2023; 15:2756. [PMID: 38140096 PMCID: PMC10747280 DOI: 10.3390/pharmaceutics15122756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Polo-like protein kinase 1 (PLK1) plays a key role in lung cancer cell mitosis. The knockout of PLK1 gene by the CRISPR-Cas9 system can effectively inhibit the proliferation of tumor cells, but there is no suitable vector for in vivo delivery. In this study, CRISPR-Cas9 gene knockout plasmids encoding sgRNA, Cas9 and green fluorescent protein were constructed. Then, the plasmids were packaged with liposome (Lip) and cholesterol-modified Antheraea pernyi silk fibroin (CASF) to obtain the CASF/Lip/pDNA ternary complex. The CASF/Lip/pDNA complex was transfected into lung cancer cells A549 to investigate the transfection efficiency, the PLK1 gene knockout effect and the inhibitory effect on lung cancer cells. The results showed that the transfection efficiency of the CASF/Lip/pDNA complex was significantly higher than that of the Lip/pDNA binary complex, and the expression of PLK1 in cells transfected with CASF/Lip/pDNA complexes was significantly lower than that in cells transfected with Lip/pDNA complexes. The CASF/Lip/pDNA complex significantly increased the apoptosis rate and decreased the proliferation activity of lung cancer cells compared with Lip/pDNA complexes. The cytotoxicity of the complexes was evaluated by coculture with the human bronchial epithelial cells BEAS2B. The results showed that CASF/Lip/pDNA complexes exhibited lower cytotoxicity than Lip/pDNA complexes. The fibroin-modified liposome/PLK1 gene knockout system not only effectively inhibited the growth of lung cancer cells but also showed no obvious toxicity to normal cells, showing potential for clinical application in lung cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (P.P.); (X.L.); (M.F.); (S.Y.); (Y.Z.)
| | - Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (P.P.); (X.L.); (M.F.); (S.Y.); (Y.Z.)
| |
Collapse
|
56
|
Tang B, Ma W, Lin Y. Emerging applications of anti-angiogenic nanomaterials in oncotherapy. J Control Release 2023; 364:61-78. [PMID: 37871753 DOI: 10.1016/j.jconrel.2023.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Angiogenesis is the process of generating new blood vessels from pre-existing vasculature. Under normal conditions, this process is delicately controlled by pro-angiogenic and anti-angiogenic factors. Tumor cells can produce plentiful pro-angiogenic molecules promoting pathological angiogenesis for uncontrollable growth. Therefore, anti-angiogenic therapy, which aims to inhibit tumor angiogenesis, has become an attractive approach for oncotherapy. However, classic anti-angiogenic agents have several limitations in clinical use, such as lack of specific targeting, low bioavailability, and poor therapeutic outcomes. Hence, alternative angiogenic inhibitors are highly desired. With the emergence of nanotechnology, various nanomaterials have been designed for anti-angiogenesis purposes, offering promising features like excellent targeting capabilities, reduced side effects, and enhanced therapeutic efficacy. In this review, we describe tumor vascular features, discuss current dilemma of traditional anti-angiogenic medicines in oncotherapy, and underline the potential of nanomaterials in tumor anti-angiogenic therapy. Moreover, we discuss the current challenges of anti-angiogenic cancer treatment. We expect that this summary of anti-angiogenic nanomaterials in oncotherapy will offer valuable insights, facilitating their extensive applications in the future.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
57
|
Stokes E, Zhuang Y, Toledano M, Vasquez J, Azouz G, Hui M, Tyler I, Shi X, Aoto J, Beier KT. Cationic peptides erase memories by removing synaptic AMPA receptors through endophilin-mediated endocytosis. RESEARCH SQUARE 2023:rs.3.rs-3559525. [PMID: 38045269 PMCID: PMC10690331 DOI: 10.21203/rs.3.rs-3559525/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Administration of the Zeta Inhibitory Peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP). However, mice lacking its putative target, the protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making ZIP's mechanism unclear. Here, we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone. This effect was fully blocked by drugs that block macropinocytosis and is dependent on endophilin A2 (endoA2)-mediated endocytosis. ZIP and other cationic peptides selectively removed newly inserted AMPAR nanoclusters, providing a mechanism by which these peptides erase memories without effects on basal synaptic function. Lastly, cationic peptides can be administered locally and/or systemically and can be combined with local microinjection of macropinocytosis inhibitors to modulate memories on local and brain-wide scales. Our findings have critical implications for an entire field of memory mechanisms and highlight a previously unappreciated mechanism by which memories can be lost.
Collapse
Affiliation(s)
- Eric Stokes
- Pharmacology Graduate Program, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Yinyin Zhuang
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Michael Toledano
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Jose Vasquez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Ghalia Azouz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Isabella Tyler
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Xiaoyu Shi
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA 92697-4560
| | - Jason Aoto
- Pharmacology Graduate Program, University of Colorado Anschutz, Aurora, CO 80045, USA
- University of Colorado Anschutz, Department of Pharmacology, Aurora, CO 80045, USA
| | - Kevin T. Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA 92697-4560
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA 92697-4560
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA 92697-4560
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA 92697-4560
| |
Collapse
|
58
|
Malfanti A, Sami H, Balasso A, Marostica G, Arpac B, Mastrotto F, Mantovani G, Cola E, Anton M, Caliceti P, Ogris M, Salmaso S. Control of cell penetration enhancer shielding and endosomal escape-kinetics crucial for efficient and biocompatible siRNA delivery. J Control Release 2023; 363:101-113. [PMID: 37722420 DOI: 10.1016/j.jconrel.2023.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Although cationic liposomes are efficient carriers for nucleic acid delivery, their toxicity often hampers the clinical translation. Polyethylene glycol (PEG) coating has been largely used to improve their stability and reduce toxicity. Nevertheless, it has been found to decrease the transfection process. In order to exploit the advantages of cationic liposomes and PEG decoration for nucleic acid delivery, liposomes decorated with tetraArg-[G-1]-distearoyl glycerol (Arg4-DAG) dendronic oligo-cationic lipid enhancer (OCE) and PEG-lipid have been investigated. Non decorated or OCE-decorated lipoplexes (OCEfree-LPX and OCE-LPX, respectively) were obtained by lipid film hydration using oligonucleotide (ON) solutions. PEG and OCE/PEG decorated lipoplexes (PEG-OCEfree-LPX and PEG-OCE-LPX, respectively) were obtained by post-insertion of 2 or 5 kDa PEG-DSPE on preformed lipoplexes. The OCE decoration yielded lipoplexes with size of about 240 nm, 84% loading efficiency at 10 N/P ratio, ten times higher than OCEfree-LPX, and prevented the ON release when incubated with physiological heparin concentration or with plasma. The PEG decoration reduced the zeta potential, enhanced the lipoplex stability in serum and decreased both hemolysis and cytotoxicity, while it did not affect the lipoplex size and ON loading. With respect to OCEfree-LPX, the OCE-LPX remarkably associated with cells and were taken up by different cancer cell lines (HeLa and MDA-MB-231). Interestingly, 2 or 5 kDa PEG decoration did not reduce either the cell interaction or the cell up-take of the cationic lipoplexes. With siRNA as a payload, OCE enabled efficient internalization, but endosomal release was hampered. Post-transfection treatment with the lysosomotropic drug chloroquine allowed to identify the optimal time point for endosomal escape. Chloroquine treatment after 12 to 20 h of LPX pre-incubation enabled siRNA mediated target knockdown indicating that this is the time window of endo-lysosomal processing. This indicates that OCE can protect siRNA from lysosomal degradation for up to 20 h, as shown by these rescue experiments.
Collapse
Affiliation(s)
- Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Haider Sami
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Giulia Marostica
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Busra Arpac
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | | | - Elisa Cola
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Martina Anton
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Manfred Ogris
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria.
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy.
| |
Collapse
|
59
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
60
|
Go EJ, Yang H, Park W, Lee SJ, Han JH, Kong SJ, Lee WS, Han DK, Chon HJ, Kim C. Systemic Delivery of a STING Agonist-Loaded Positively Charged Liposome Selectively Targets Tumor Immune Microenvironment and Suppresses Tumor Angiogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300544. [PMID: 37381624 DOI: 10.1002/smll.202300544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Although stimulator of interferon genes (STING) agonists has shown great promise in preclinical studies, the clinical development of STING agonist therapy is challenged by its limited systemic delivery. Here, positively charged fusogenic liposomes loaded with a STING agonist (PoSTING) are designed for systemic delivery and to preferentially target the tumor microenvironment. When PoSTING is administered intravenously, it selectively targets not only tumor cells but also immune and tumor endothelial cells (ECs). In particular, delivery of STING agonists to tumor ECs normalizes abnormal tumor vasculatures, induces intratumoral STING activation, and elicits robust anti-tumor T cell immunity within the tumor microenvironment. Therefore, PoSTING can be used as a systemic delivery platform to overcome the limitations of using STING agonists in clinical trials.
Collapse
Affiliation(s)
- Eun-Jin Go
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Hannah Yang
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seung Joon Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Jun-Hyeok Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - So Jung Kong
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Won Suk Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
- Laboratory of Translational Immuno-Oncology, CHA University School of Medicine, Seongnam, Gyeonggi, 13496, Republic of Korea
| |
Collapse
|
61
|
Wang Y, Palzhanov Y, Dang DT, Quaini A, Olshanskii M, Majd S. On Fusogenicity of Positively Charged Phased-Separated Lipid Vesicles: Experiments and Computational Simulations. Biomolecules 2023; 13:1473. [PMID: 37892155 PMCID: PMC10605210 DOI: 10.3390/biom13101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This paper studies the fusogenicity of cationic liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase separation to control this surface distribution. It is found that concentrating the cationic lipids into small surface patches on liposomes, through phase-separation, can enhance liposome's fusogenicity. Further concentrating these lipids into smaller patches on the surface of liposomes led to an increased level of fusogenicity. These experimental findings are supported by numerical simulations using a mathematical model for phase-separated charged liposomes. Findings of this study may be used for design and development of highly fusogenic liposomes with minimal level of toxicity.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.W.)
| | - Yerbol Palzhanov
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.P.); (M.O.)
| | - Dang T. Dang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.W.)
| | - Annalisa Quaini
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.P.); (M.O.)
| | - Maxim Olshanskii
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.P.); (M.O.)
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.W.)
| |
Collapse
|
62
|
He Y, Grandi DD, Chandradoss S, LuTheryn G, Cidonio G, Nunes Bastos R, Pereno V, Carugo D. Rapid Production of Nanoscale Liposomes Using a 3D-Printed Reactor-In-A-Centrifuge: Formulation, Characterisation, and Super-Resolution Imaging. MICROMACHINES 2023; 14:1763. [PMID: 37763926 PMCID: PMC10535575 DOI: 10.3390/mi14091763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Nanoscale liposomes have been extensively researched and employed clinically for the delivery of biologically active compounds, including chemotherapy drugs and vaccines, offering improved pharmacokinetic behaviour and therapeutic outcomes. Traditional laboratory-scale production methods often suffer from limited control over liposome properties (e.g., size and lamellarity) and rely on laborious multistep procedures, which may limit pre-clinical research developments and innovation in this area. The widespread adoption of alternative, more controllable microfluidic-based methods is often hindered by complexities and costs associated with device manufacturing and operation, as well as the short device lifetime and the relatively low liposome production rates in some cases. In this study, we demonstrated the production of liposomes comprising therapeutically relevant lipid formulations, using a cost-effective 3D-printed reactor-in-a-centrifuge (RIAC) device. By adjusting formulation- and production-related parameters, including the concentration of polyethylene glycol (PEG), temperature, centrifugation time and speed, and lipid concentration, the mean size of the produced liposomes could be tuned in the range of 140 to 200 nm. By combining selected experimental parameters, the method was capable of producing liposomes with a therapeutically relevant mean size of ~174 nm with narrow size distribution (polydispersity index, PDI ~0.1) at a production rate of >8 mg/min. The flow-through method proposed in this study has potential to become an effective and versatile laboratory-scale approach to simplify the synthesis of therapeutic liposomal formulations.
Collapse
Affiliation(s)
- Yongqing He
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Davide De Grandi
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
| | - Stanley Chandradoss
- Oxford Nanoimaging Limited (ONI), Oxford OX2 8TA, UK; (S.C.); (R.N.B.); (V.P.)
| | - Gareth LuTheryn
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7HE, UK;
| | - Gianluca Cidonio
- 3D Microfluidic Biofabrication Laboratory, Center for Life Nano- & Neuro-Science—CLN2S, Italian Institute of Technology (IIT), 00161 Rome, Italy;
| | | | - Valerio Pereno
- Oxford Nanoimaging Limited (ONI), Oxford OX2 8TA, UK; (S.C.); (R.N.B.); (V.P.)
| | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK;
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Windmill Road, Oxford OX3 7HE, UK;
| |
Collapse
|
63
|
Montaño-Samaniego M, Sánchez-Cedillo J, Lucas-González A, Bravo-Estupiñan DM, Alarcón-Hernández E, Rivera-Gutiérrez S, Balderas-López JA, Ibáñez-Hernández M. Targeted Expression to Liver of an antimiR-33 Sponge as a Gene Therapy Strategy against Hypercholesterolemia: In Vitro Study. Curr Issues Mol Biol 2023; 45:7043-7057. [PMID: 37754229 PMCID: PMC10527677 DOI: 10.3390/cimb45090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Atherosclerosis is the leading cause of cardiovascular diseases in Mexico and worldwide. The membrane transporters ABCA1 and ABCG1 are involved in the reverse transport of cholesterol and stimulate the HDL synthesis in hepatocytes, therefore the deficiency of these transporters promotes the acceleration of atherosclerosis. MicroRNA-33 (miR-33) plays an important role in lipid metabolism and exerts a negative regulation on the transporters ABCA1 and ABCG1. It is known that by inhibiting the function of miR-33 with antisense RNA, HDL levels increase and atherogenic risk decreases. Therefore, in this work, a genetic construct, pPEPCK-antimiR-33-IRES2-EGFP, containing a specific antimiR-33 sponge with two binding sites for miR-33 governed under the PEPCK promoter was designed, constructed, and characterized, the identity of which was confirmed by enzymatic restriction, PCR, and sequencing. Hep G2 and Hek 293 FT cell lines, as well as a mouse hepatocyte primary cell culture were transfected with this plasmid construction showing expression specificity of the PEPCK promoter in hepatic cells. An analysis of the relative expression of miR-33 target messengers showed that the antimiR-33 sponge indirectly induces the expression of its target messengers (ABCA1 and ABCG1). This strategy could open new specific therapeutic options for hypercholesterolemia and atherosclerosis, by blocking the miR-33 specifically in hepatocytes.
Collapse
Affiliation(s)
- Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
- Laboratorio de Técnicas Fototérmicas, Departamento de Ciencias Básicas, Unidad Politécnica Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Jorge Sánchez-Cedillo
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
| | - Amellalli Lucas-González
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
- Laboratorio de Quimiosensibilidad Tumoral, Facultad de Microbiología, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica
| | - Ernesto Alarcón-Hernández
- Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Sandra Rivera-Gutiérrez
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - José Abraham Balderas-López
- Laboratorio de Técnicas Fototérmicas, Departamento de Ciencias Básicas, Unidad Politécnica Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
| |
Collapse
|
64
|
Son JS, Chow R, Kim H, Lieu T, Xiao M, Kim S, Matuszewska K, Pereira M, Nguyen DL, Petrik J. Liposomal delivery of gene therapy for ovarian cancer: a systematic review. Reprod Biol Endocrinol 2023; 21:75. [PMID: 37612696 PMCID: PMC10464441 DOI: 10.1186/s12958-023-01125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE To systematically identify and narratively synthesize the evidence surrounding liposomal delivery of gene therapy and the outcome for ovarian cancer. METHODS An electronic database search of the Embase, MEDLINE and Web of Science from inception until July 7, 2023, was conducted to identify primary studies that investigated the effect of liposomal delivery of gene therapy on ovarian cancer outcomes. Retrieved studies were assessed against the eligibility criteria for inclusion. RESULTS The search yielded 564 studies, of which 75 met the inclusion criteria. Four major types of liposomes were identified: cationic, neutral, polymer-coated, and ligand-targeted liposomes. The liposome with the most evidence involved cationic liposomes which are characterized by their positively charged phospholipids (n = 37, 49.3%). Similarly, those with neutrally charged phospholipids, such as 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine, were highly researched as well (n = 25, 33.3%). Eight areas of gene therapy research were identified, evaluating either target proteins/transcripts or molecular pathways: microRNAs, ephrin type-A receptor 2 (EphA2), interleukins, mitogen-activated protein kinase (MAPK), human-telomerase reverse transcriptase/E1A (hTERT/EA1), suicide gene, p53, and multidrug resistance mutation 1 (MDR1). CONCLUSION Liposomal delivery of gene therapy for ovarian cancer shows promise in many in vivo studies. Emerging polymer-coated and ligand-targeted liposomes have been gaining interest as they have been shown to have more stability and specificity. We found that gene therapy involving microRNAs was the most frequently studied. Overall, liposomal genetic therapy has been shown to reduce tumor size and weight and improve survivability. More research involving the delivery and targets of gene therapy for ovarian cancer may be a promising avenue to improve patient outcomes.
Collapse
Affiliation(s)
- Jin Sung Son
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Ryan Chow
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Helena Kim
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Toney Lieu
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Maria Xiao
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Sunny Kim
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - David Le Nguyen
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jim Petrik
- Faculty of Health Sciences, University of McMaster, Hamilton, ON, Canada.
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
- Department of Obstetrics and Gynecology, University of McMaster, Hamilton, ON, Canada.
| |
Collapse
|
65
|
Vaidya S, Mohod A, Eedara AC, Andugulapati SB, Pabbaraja S. Synthesis and Characterization of a New Cationic Lipid: Efficient siRNA Delivery and Anticancer Activity of Survivin-siRNA Lipoplexes for the Treatment of Lung and Breast Cancers. ChemMedChem 2023; 18:e202300097. [PMID: 37306531 DOI: 10.1002/cmdc.202300097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Survivin has been shown to be widely expressed in most tumor cells, including lung and breast cancers. Due to limited siRNA delivery, it is more challenging to target survivin using knockdown-based techniques. Designing and developing new, bifunctional chemical molecules with both selective anti-proliferative activity and effective siRNA transfection capabilities by targeting a particular gene is important to treat aggressive tumors like triple-negative breast tumors (TNBC). The cationic lipids deliver small interfering RNA (siRNA) and also display inherent anti-cancer activities; therefore, cationic lipid therapies have become very popular for treating malignant cancers. In the current study, we attempted to synthesize a series of acid-containing cationic lipids, anthranilic acid-containing mef lipids, and indoleacetic acid-containing etodo lipids etc. Further, we elucidated their bi-functional activity for their anticancer activity and survivin siRNA-mediated anti-cancer activity. Our results showed that lipoplexes with siRNA-Etodo: Dotap (ED) and siRNA-Mef: Dotap (MD) exhibited homogeneous particle size and positive zeta potential. Further, biological investigations resulted in enhanced survivin siRNA delivery with high stability, improved transfection efficiency, and anti-cancer activity. Additionally, our findings showed that survivin siRNA lipoplexes (ED and MD) in A549 cells and 4T1 cells exhibited stronger survivin knockdown, enhanced apoptosis, and G1 or G2/M phase arrest in both cell types. In vivo results revealed that treatment with survivin complexed lipoplexes significantly reduced tumor growth and tumor weight compared to control. Thus, our novel quaternary amine-based liposome formulations are predicted to open up new possibilities in the development of a simple and widely utilized platform for siRNA delivery and anti-cancer activities.
Collapse
Affiliation(s)
- Sandeep Vaidya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Annie Mohod
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Abhisheik Chowdary Eedara
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
66
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
67
|
Kaboudin B, Aoyama H, Sugiyama A, Endo-Takahashi Y, Negishi Y. Organic Phase-Soluble Nanomagnetically Cationic Phospholipid: Synthesis, Characterization, and In Vitro Transfection Activity. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37410893 DOI: 10.1021/acsami.3c05685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The presented work describes the synthesis and characterization of a novel magnetic cationic phospholipid (MCP) system with a stable dopamine anchor as well as its transfection activity study. The synthesized architectural system increases the biocompatibility of iron oxide and promises applications of magnetic nanoparticles in living cells. The MCP system is soluble in organic solvents and can be easily adapted to prepare magnetic liposomes. We created complexes with liposomes containing MCP and other functional cationic lipids and pDNA as gene delivery tools, which possessed the ability to enhance the efficiency of transfection, particularly the process of interaction with cells by inducing a magnetic field. The MCP is able to create iron oxide nanoparticles and has the potential for the materials to prepare the system for site-specific gene delivery with the application of an external magnetic field.
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, Zanjan 45137-66731, Iran
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroshi Aoyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Sugiyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoko Endo-Takahashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
68
|
Chen C, Chen C, Li Y, Gu R, Yan X. Characterization of lipid-based nanomedicines at the single-particle level. FUNDAMENTAL RESEARCH 2023; 3:488-504. [PMID: 38933557 PMCID: PMC11197724 DOI: 10.1016/j.fmre.2022.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
69
|
Moholkar DN, Kandimalla R, Gupta RC, Aqil F. Advances in lipid-based carriers for cancer therapeutics: Liposomes, exosomes and hybrid exosomes. Cancer Lett 2023; 565:216220. [PMID: 37209944 PMCID: PMC10325927 DOI: 10.1016/j.canlet.2023.216220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cancer has recently surpassed heart disease as the leading cause of deaths worldwide for the age group 45-65 and has been the primary focus for biomedical researchers. Presently, the drugs involved in the first-line cancer therapy are raising concerns due to high toxicity and lack of selectivity to cancer cells. There has been a significant increase in research with innovative nano formulations to entrap the therapeutic payload to enhance efficacy and eliminate or minimize toxic effects. Lipid-based carriers stand out due to their unique structural properties and biocompatible nature. The two main leaders of lipid-based drug carriers: long known liposomes and comparatively new exosomes have been well-researched. The similarity between the two lipid-based carriers is the vesicular structure with the core's capability to carry the payload. While liposomes utilize chemically derived and altered phospholipid components, the exosomes are naturally occurring vesicles with inherent lipids, proteins, and nucleic acids. More recently, researchers have focused on developing hybrid exosomes by fusing liposomes and exosomes. Combining these two types of vesicles may offer some advantages such as high drug loading, targeted cellular uptake, biocompatibility, controlled release, stability in harsh conditions and low immunogenicity.
Collapse
Affiliation(s)
- Disha N Moholkar
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Raghuram Kandimalla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
70
|
Granot-Matok Y, Ezra A, Ramishetti S, Sharma P, Naidu GS, Benhar I, Peer D. Lipid nanoparticles-loaded with toxin mRNA represents a new strategy for the treatment of solid tumors. Theranostics 2023; 13:3497-3508. [PMID: 37441597 PMCID: PMC10334842 DOI: 10.7150/thno.82228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/20/2023] [Indexed: 07/15/2023] Open
Abstract
Background and rationale: Cancer therapy have evolved remarkably over the past decade, providing new strategies to inhibit cancer cell growth using immune modulation, with or without gene therapy. Specifically, suicide gene therapies and immunotoxins have been investigated for the treatment of tumors by direct cancer cell cytotoxicity. Recent advances in mRNA delivery also demonstrated the potential of mRNA-based vaccines and immune-modulators for cancer therapeutics by utilizing nanocarriers for mRNA delivery. Methods: We designed a bacterial toxin-encoding modified mRNA, delivered by lipid nanoparticles into a B16-melanoma mouse model. Results: We showed that local administration of LNPs entrapping a modified mRNA that encodes for a bacterial toxin, induced significant anti-tumor effects and improved overall survival of treated mice. Conclusions: We propose mmRNA-loaded LNPs as a new class of anti-tumoral, toxin-based therapy.
Collapse
Affiliation(s)
- Yasmin Granot-Matok
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Assaf Ezra
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Preeti Sharma
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gonna Somu Naidu
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itai Benhar
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
- Laboratory of Antibody Engineering, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
71
|
Duskunovic N, Im SH, Lee J, Chung HJ. Effective mRNA Delivery by Condensation with Cationic Nanogels Incorporated into Liposomes. Mol Pharm 2023; 20:3088-3099. [PMID: 37184833 DOI: 10.1021/acs.molpharmaceut.3c00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The challenge in effective delivery of mRNA has been a major hurdle in their development as therapeutics. Herein, we present that the incorporation of cationic nanogels as the condensing material for mRNA into liposomes enables stable and enhanced mRNA delivery to cells in vitro. We prepared dextran-based nanogel particles, which were surface functionalized with oligoarginine peptide (DNPR9) and complexed with mRNA for incorporation into liposomes (LipoDNPR9). The use of DNPR9 with the liposomes resulted in enhanced internalization, as well as a 4-fold increase in transfection of luciferase mRNA when treated with A549 cells in vitro, compared to control liposomes. The enhancement in transfection efficiency was also observed in various cell lines while causing low cytotoxicity. The versatility of the strategy was also investigated by applying DNPR9 for mRNA condensation to ionizable lipid particles, which resulted in an ∼55% increase in transfection. The current development based on nanogel-incorporated liposomes introduces an effective platform for mRNA delivery, while the condensation strategy using DNPR9 can be widely applied for various lipid-based formulations to enhance their efficacy.
Collapse
Affiliation(s)
- Nevena Duskunovic
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Juhee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
72
|
Yuan P, Min Y, Zhao Z. Multifunctional nanoparticles for the treatment and diagnosis of osteosarcoma. BIOMATERIALS ADVANCES 2023; 151:213466. [PMID: 37229927 DOI: 10.1016/j.bioadv.2023.213466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor in adolescents. Currently, the commonly used treatment strategies for OS include surgery, chemotherapy and radiotherapy. However, these methods have some problems that cannot be ignored, such as postoperative sequelae and severe side effects. Therefore, in recent years, researchers have been looking for other means to improve the treatment or diagnosis effect of OS and increase the overall survival rate of patients. With the development of nanotechnology, nanoparticles (NPs) have presented excellent properties in improving the therapeutic efficacy of drugs for OS. Nanotechnology makes it possible for NPs to combine various functional molecules and drugs to achieve multiple therapeutic effects. This review presents the important properties of multifunctional NPs for the treatment and diagnosis of OS and focuses on the research progress of common NPs applied for drug or gene delivery, phototherapy and diagnosis of OS, such as carbon-based quantum dots, metal, chitosan and liposome NPs. Finally, the promising prospects and challenges of developing multifunctional NPs with enhanced efficacy are discussed, which lays the foundation and direction for improving the future therapeutic and diagnostic methods of OS.
Collapse
Affiliation(s)
- Ping Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yajun Min
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
73
|
Balgobind A, Daniels A, Ariatti M, Singh M. HER2/neu Oncogene Silencing in a Breast Cancer Cell Model Using Cationic Lipid-Based Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041190. [PMID: 37111675 PMCID: PMC10142055 DOI: 10.3390/pharmaceutics15041190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The overexpression of the human epidermal growth factor 2 (HER2/neu) oncogene is predictive of adverse breast cancer prognosis. Silencing the HER2/neu overexpression using siRNA may be an effective treatment strategy. Major requirements for siRNA-based therapy are safe, stable, and efficient delivery systems to channel siRNA into target cells. This study assessed the efficacy of cationic lipid-based systems for the delivery of siRNA. Cationic liposomes were formulated with equimolar ratios of the respective cholesteryl cytofectins, 3β-N-(N', N'-dimethylaminopropyl)-carbamoyl cholesterol (Chol-T) or N, N-dimethylaminopropylaminylsuccinylcholesterylformylhydrazide (MS09), with the neutral helper lipid, dioleoylphosphatidylethanolamine (DOPE), with and without a polyethylene glycol stabilizer. All cationic liposomes efficiently bound, compacted, and protected the therapeutic siRNA against nuclease degradation. Liposomes and siRNA lipoplexes were spherical, <200 nm in size, with moderate particle size distributions (PDI < 0.4). The siRNA lipoplexes exhibited minimal dose-dependent cytotoxicity and effective HER2/neu siRNA transfection in the HER2/neu overexpressing SKBR-3 cells. The non-PEGylated Chol-T-siRNA lipoplexes induced the highest HER2/neu silencing at the mRNA (10000-fold decrease) and protein levels (>111.6-fold decrease), surpassing that of commercially available Lipofectamine 3000 (4.1-fold reduction in mRNA expression). These cationic liposomes are suitable carriers of HER2/neu siRNA for gene silencing in breast cancer.
Collapse
Affiliation(s)
- Adhika Balgobind
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mario Ariatti
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
74
|
Abuhelal S, Centelles MN, Wright M, Mason AJ, Thanou M. Development of Cationic Lipid LAH4-L1 siRNA Complexes for Focused Ultrasound Enhanced Tumor Uptake. Mol Pharm 2023; 20:2341-2351. [PMID: 36989421 PMCID: PMC10155207 DOI: 10.1021/acs.molpharmaceut.2c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
RNAi has considerable potential as a cancer therapeutic approach, but effective and efficient delivery of short interfering RNA (siRNA) to tumors remains a major hurdle. It remains a challenge to prepare a functional siRNA complex, target enough dose to the tumor, and stimulate its internalization into tumor cells and its release to the cytoplasm. Here, we show how these key barriers to siRNA delivery can be overcome with a complex─comprising siRNA, cationic lipids, and pH-responsive peptides─that is suited to tumor uptake enhancement via focused ultrasound (FUS). The complex provides effective nucleic acid encapsulation, nuclease protection, and endosomal escape such that gene silencing in cells is substantially more effective than that obtained with either equivalent lipoplexes or commercial reagents. In mice bearing MDA-MB-231 breast cancer xenografts, both lipid and ternary, lipid:peptide:siRNA complexes, prepared with near-infrared fluorescently labeled siRNA, accumulate in tumors following FUS treatments. Therefore, combining a well-designed lipid:peptide:siRNA complex with FUS tumor treatments is a promising route to achieve robust in vivo gene delivery.
Collapse
Affiliation(s)
- Shahd Abuhelal
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Miguel N Centelles
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Michael Wright
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Maya Thanou
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
75
|
Cardador CM, Muehlmann LA, Coelho CM, Silva LP, Garay AV, Carvalho AMDS, Bastos IMD, Longo JPF. Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications. Pharmaceutics 2023; 15:873. [PMID: 36986734 PMCID: PMC10056227 DOI: 10.3390/pharmaceutics15030873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The use of nucleotides for biomedical applications is an old desire in the scientific community. As we will present here, there are references published over the past 40 years with this intended use. The main problem is that, as unstable molecules, nucleotides require some additional protection to extend their shelf life in the biological environment. Among the different nucleotide carriers, the nano-sized liposomes proved to be an effective strategic tool to overcome all these drawbacks related to the nucleotide high instability. Moreover, due to their low immunogenicity and easy preparation, the liposomes were selected as the main strategy for delivery of the mRNA developed for COVID-19 immunization. For sure this is the most important and relevant example of nucleotide application for human biomedical conditions. In addition, the use of mRNA vaccines for COVID-19 has increased interest in the application of this type of technology to other health conditions. For this review article, we will present some of these examples, especially focused on the use of liposomes to protect and deliver nucleotides for cancer therapy, immunostimulatory activities, enzymatic diagnostic applications, some examples for veterinarian use, and the treatment of neglected tropical disease.
Collapse
Affiliation(s)
- Camila Magalhães Cardador
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| | | | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| | - Luciano Paulino Silva
- Laboratório de Nanobiotecnologia (LNANO), Embrapa Recursos Genéticos e Biotecnologia, Brasilia 70770-917, DF, Brazil
| | - Aisel Valle Garay
- Molecular Biophysics Laboratory, Department of Cell Biology, Institute of Biological Science, University of Brasília (UnB), Brasília 70910-900, DF, Brazil
| | | | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - João Paulo Figueiró Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| |
Collapse
|
76
|
Lores S, Gámez-Chiachio M, Cascallar M, Ramos-Nebot C, Hurtado P, Alijas S, López López R, Piñeiro R, Moreno-Bueno G, de la Fuente M. Effectiveness of a novel gene nanotherapy based on putrescine for cancer treatment. Biomater Sci 2023. [PMID: 36790445 DOI: 10.1039/d2bm01456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Gene therapy has long been proposed for cancer treatment. However, the use of therapeutic nucleic acids presents several limitations such as enzymatic degradation, rapid clearance, and poor cellular uptake and efficiency. In this work we propose the use of putrescine, a precursor for higher polyamine biosynthesis for the preparation of cationic nanosystems for cancer gene therapy. We have formulated and characterized putrescine-sphingomyelin nanosystems (PSN) and studied their endocytic pathway and intracellular trafficking in cancer cells. After loading a plasmid DNA (pDNA) encoding the apoptotic Fas Ligand (FasL), we proved their therapeutic activity by measuring the cell death rate after treatment of MDA-MB-231 cells. We have also used xenografted zebrafish embryos as a first in vivo approach to demonstrate the efficacy of the proposed PSN-pDNA formulation in a more complex model. Finally, intratumoral and intraperitoneal administration to mice-bearing MDA-MB-231 xenografts resulted in a significant decrease in tumour cell growth, highlighting the potential of the developed gene therapy nanoformulation for the treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain
| | - Manuel Gámez-Chiachio
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - María Cascallar
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Carmen Ramos-Nebot
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Pablo Hurtado
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Rafael López López
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Roberto Piñeiro
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Gema Moreno-Bueno
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,MD Anderson International Foundation, Gómez Hemans s/n, 28033 Madrid, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,DIVERSA Technologies SL, Edificio Emprendia, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
77
|
A Review of Different Types of Liposomes and Their Advancements as a Form of Gene Therapy Treatment for Breast Cancer. Molecules 2023; 28:molecules28031498. [PMID: 36771161 PMCID: PMC9920768 DOI: 10.3390/molecules28031498] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 02/09/2023] Open
Abstract
Breast cancer incidence and mortality rates have increased exponentially during the last decade, particularly among female patients. Current therapies, including surgery and chemotherapy, have significant negative physical and mental impacts on patients. As a safer alternative, gene therapy utilising a therapeutic gene with the potential to treat various ailments is being considered. Delivery of the gene generally utilises viral vectors. However, immunological reactions and even mortality have been recorded as side effects. As a result, non-viral vectors, such as liposomes, a system composed of lipid bilayers formed into nanoparticles, are being studied. Liposomes have demonstrated tremendous potential due to their limitless ability to combine many functions into a system with desirable characteristics and functionality. This article discusses cationic, anionic, and neutral liposomes with their stability, cytotoxicity, transfection ability, cellular uptake, and limitation as a gene carrier suitable for gene therapy specifically for cancer. Due to the more practical approach of employing electrostatic contact with the negatively charged nucleic acid and the cell membrane for absorption purposes, cationic liposomes appear to be more suited for formulation for gene delivery and therapy for breast cancer treatment. As the other alternatives have numerous complicated additional modifications, attachments need to be made to achieve a functional gene therapy system for breast cancer treatment, which were also discussed in this review. This review aimed to increase understanding and build a viable breast cancer gene therapy treatment strategy.
Collapse
|
78
|
Ribaux P, Wuillemin C, Petignat P, Delie F, Cohen M. NANO-SBT-PEDF delivery system: A promising approach against ovarian cancer? Heliyon 2023; 9:e13676. [PMID: 36873150 PMCID: PMC9975102 DOI: 10.1016/j.heliyon.2023.e13676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein involved in various biological processes. Its expression declines during ovarian carcinogenesis where it could decrease macrophages polarization, inhibit angiogenesis and induce apoptosis. Altogether, PEDF represents an ideal anti-cancer agent against ovarian cancer. We previously proposed the non-viral Sleeping Beauty transposon (SBT) system to stably integrate the PEDF transgene into ovarian cancer cells. Here, we report the development of liposomes and lipid nanoparticles for SBT-PEDF gene therapy. We determined that the SBT-PEDF nanolipid delivery system was the best system to increase the expression of PEDF in ovarian cancer spheroids. We also developed an ex vivo model of ovarian tumors which allowed us to show that nanolipoplexe in combination to paclitaxel exhibits synergistic and effective anti-tumor efficacy on ovarian tumors. These findings demonstrate that lipid nanoparticle for SBT-PEDF gene therapy may be a promising therapeutic approach for ovarian cancer.
Collapse
Affiliation(s)
- Pascale Ribaux
- Translational Research Centre in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Department of Pediatric, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Christine Wuillemin
- Translational Research Centre in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Department of Pediatric, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Patrick Petignat
- Department of Pediatric, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Florence Delie
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Marie Cohen
- Translational Research Centre in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Department of Pediatric, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
79
|
Kar S, Singh SK. Cationic nanoliposomes of carvedilol for intranasal application: In vitro, in vivo and in silico studies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
80
|
Sadeqi Nezhad M. Poly (beta-amino ester) as an in vivo nanocarrier for therapeutic nucleic acids. Biotechnol Bioeng 2023; 120:95-113. [PMID: 36266918 DOI: 10.1002/bit.28269] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Therapeutic nucleic acids are an emerging class of therapy for treating various diseases through immunomodulation, protein replacement, gene editing, and genetic engineering. However, they need a vector to effectively and safely reach the target cells. Most gene and cell therapies rely on ex vivo gene delivery, which is laborious, time-consuming, and costly; therefore, devising a systematic vector for effective and safe in vivo delivery of therapeutic nucleic acids is required to target the cells of interest in an efficient manner. Synthetic nanoparticle vector poly beta amino ester (PBAE), a class of degradable polymer, is a promising candidate for in vivo gene delivery. PBAE is considered the most potent in vivo vector due to its excellent transfection performance and biodegradability. PBAE nanoparticles showed tunable charge density, diverse structural characteristics, excellent encapsulation capacity, high stability, stimuli-responsive release, site-specific delivery, potent binding to nucleic acids, flexible binding ability to various conjugates, and effective endosomal escape. These unique properties of PBAE are an essential contribution to in vivo gene delivery. The current review discusses each of the components used for PBAE synthesis and the impact of various environmental and physicochemical factors of the body on PBAE nanocarrier.
Collapse
Affiliation(s)
- Muhammad Sadeqi Nezhad
- Clinical and Translational Science Institute, Translational Biomedical Science Department, University of Rochester Medical Center, Rochester, New York, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA.,Department of Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
81
|
Askarizadeh A, Mashreghi M, Mirhadi E, Mirzavi F, Shargh VH, Badiee A, Alavizadeh SH, Arabi L, Jaafari MR. Doxorubicin-loaded liposomes surface engineered with the matrix metalloproteinase-2 cleavable polyethylene glycol conjugate for cancer therapy. Cancer Nanotechnol 2023; 14:18. [PMID: 36910721 PMCID: PMC9988605 DOI: 10.1186/s12645-023-00169-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Background Colorectal cancer is one of the prominent leading causes of fatality worldwide. Despite recent advancements within the field of cancer therapy, the cure rates and long-term survivals of patients suffering from colorectal cancer have changed little. The application of conventional chemotherapeutic agents like doxorubicin is limited by some drawbacks such as cardiotoxicity and hematotoxicity. Therefore, nanotechnology has been exploited as a promising solution to address these problems. In this study, we synthesized and compared the anticancer efficacy of doxorubicin-loaded liposomes that were surface engineered with the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-matrix metalloproteinase-2 (MMP-2) cleavable peptide-polyethylene glycol (PEG) conjugate. The peptide linker was used to cleave in response to the upregulated MMP-2 in the tumor microenvironment, thus exposing a positive charge via PEG-deshielding and enhancing liposomal uptake by tumor cells/vasculature. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell binding and uptake, and cytotoxicity. Results The formulations had particle sizes of ~ 100-170 nm, narrow distribution (PDI ˂ 0.2), and various surface charges (- 10.2 mV to + 17.6 mV). MMP-2 overexpression was shown in several cancer cell lines (C26, 4T1, and B16F10) as compared to the normal NIH-3T3 fibroblast cells by gelatin zymography and qRT-PCR. In vitro results demonstrated enhanced antitumor efficacy of the PEG-cleavable cationic liposomes (CLs) as compared to the commercial Caelyx® (up to fivefold) and the chick chorioallantoic membrane assay showed their great antiangiogenesis potential to target and suppress tumor neovascularization. The pharmacokinetics and efficacy studies also indicated higher tumor accumulation and extended survival rates in C26 tumor-bearing mice treated with the MMP-2 cleavable CLs as compared to the non-cleavable CLs with no remarkable sign of toxicity in healthy tissues. Conclusion Altogether, the MMP-2-cleavable CLs have great potency to improve tumor-targeted drug delivery and cellular/tumor-vasculature uptake which merits further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12645-023-00169-8.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Vahid Heravi Shargh
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
82
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
83
|
Non-viral inducible caspase 9 mRNA delivery using lipid nanoparticles against breast cancer: An in vitro study. Biochem Biophys Res Commun 2022; 635:144-153. [DOI: 10.1016/j.bbrc.2022.09.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
|
84
|
Hohokabe M, Higashi K, Yamada Y, Fujimoto T, Tokumoto T, Imamura H, Morita T, Ueda K, Limwikrant W, Moribe K. Modification of liposomes composed of a cationic lipid TMAG and an anionic lipid DSPG with a PEGylated lipid based on the investigation of lipid structures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
85
|
Kuznetsova DA, Kuznetsov DM, Vasileva LA, Amerhanova SK, Valeeva DN, Salakhieva DV, Nikolaeva VA, Nizameev IR, Islamov DR, Usachev KS, Voloshina AD, Zakharova LY. Complexation of Oligo- and Polynucleotides with Methoxyphenyl-Functionalized Imidazolium Surfactants. Pharmaceutics 2022; 14:pharmaceutics14122685. [PMID: 36559178 PMCID: PMC9782993 DOI: 10.3390/pharmaceutics14122685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Interaction between cationic surfactants and nucleic acids attracts much attention due to the possibility of using such systems for gene delivery. Herein, the lipoplexes based on cationic surfactants with imidazolium head group bearing methoxyphenyl fragment (MPI-n, n = 10, 12, 14, 16) and nucleic acids (oligonucleotide and plasmid DNA) were explored. The complex formation was confirmed by dynamic/electrophoretic light scattering, transmission electron microscopy, fluorescence spectroscopy, circular dichroism, and gel electrophoresis. The nanosized lipoplex formation (of about 100-200 nm), contributed by electrostatic, hydrophobic interactions, and intercalation mechanism, has been shown. Significant effects of the hydrocarbon tail length of surfactant and the type of nucleic acid on their interaction was revealed. The cytotoxic effect and transfection ability of lipoplexes studied were determined using M-HeLa, A549 cancer cell lines, and normal Chang liver cells. A selective reduced cytotoxic effect of the complexes on M-HeLa cancer cells was established, as well as a high ability of the systems to be transfected into cancer cells. MPI-n/DNA complexes showed a pronounced transfection activity equal to the commercial preparation Lipofectamine 3000. Thus, it has been shown that MPI-n surfactants are effective agents for nucleic acid condensation and can be considered as potential non-viral vectors for gene delivery.
Collapse
Affiliation(s)
- Darya A. Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
- Correspondence:
| | - Denis M. Kuznetsov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Leysan A. Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Dilyara N. Valeeva
- Institute of Innovation Management, Kazan National Research Technological University, Karl Marx Str. 68, 420015 Kazan, Russia
| | - Diana V. Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Viktoriia A. Nikolaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Irek R. Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Daut R. Islamov
- FRC Kazan Scientific Center of RAS, Russian Academy of Sciences, Lobachevsky Street 2/31, 420111 Kazan, Russia
| | - Konstantin S. Usachev
- FRC Kazan Scientific Center of RAS, Russian Academy of Sciences, Lobachevsky Street 2/31, 420111 Kazan, Russia
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Lucia Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| |
Collapse
|
86
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
87
|
Enhanced Efficacy of Radiopharmaceuticals When Using Technetium-99m-Labeled Liposomal Agents: Synthesis and Pharmacokinetic Properties. Biomedicines 2022; 10:biomedicines10112994. [PMID: 36428563 PMCID: PMC9687670 DOI: 10.3390/biomedicines10112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Challenges posed by the retention of radiopharmaceuticals in unintended organs affect the quality of patient procedures when undergoing diagnostics and therapeutics. The aim of this study was to formulate a suitable tracer encapsulated in liposomes using different techniques and compounds to enhance the stability, uptake, clearance, and cytotoxic effect of the radiopharmaceutical. Cationic liposomes were prepared by a thin-film method using dipalmitoyl phosphatidylcholine (DPPC) and cholesterol. Whole-body gamma camera images were acquired of intravenously injected New Zealand rabbits. Additionally, liposomes were assessed using stability, toxicity, zeta potential, and particle size tests. In the control cases, Technetium-99m (99mTc)-sestamibi exhibited the lowest heart uptake the blood pool and delayed images compared to both 99mTc-liposomal agents. Liver and spleen uptake in the control samples with 99mTc-sestamibi increased in 1-h-delayed images, unlike with 99mTc-liposomal agents, which were decreased in delayed images. The mean maximum count in the bladder for 99mTc-sestamibi loaded liposomes 1 h post-injection was 2354.6 (±2.6%) compared to 178.4 (±0.54%) for 99mTc-sestamibi without liposomes. Liposomal encapsulation reduced the cytotoxic effect of the sestamibi. 99mTc-MIBI-cationic liposomes exhibited excellent early uptake and clearance compared to 99mTc-MIBI without liposomes. Adding cholesterol during liposome formation enhanced the stability and specificity of the targeted organs.
Collapse
|
88
|
Saad MA, Hasan T. Spotlight on Photoactivatable Liposomes beyond Drug Delivery: An Enabler of Multitargeting of Molecular Pathways. Bioconjug Chem 2022; 33:2041-2064. [PMID: 36197738 DOI: 10.1021/acs.bioconjchem.2c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of photoactivating certain molecules, photosensitizers (PS), resulting in photochemical processes, has long been realized in the form of photodynamic therapy (PDT) for the management of several cancerous and noncancerous pathologies. With an improved understanding of the photoactivation process and its broader implications, efforts are being made to exploit the various facets of photoactivation, PDT, and the associated phenomenon of photodynamic priming in enhancing treatment outcomes, specifically in cancer therapeutics. The parallel emergence of nanomedicine, specifically liposome-based nanoformulations, and the convergence of the two fields of liposome-based drug delivery and PDT have led to the development of unique hybrid systems, which combine the exciting features of liposomes with adequate complementation through the photoactivation process. While initially liposomes carrying photosensitizers (PSs) were developed for enhancing the pharmacokinetics and the general applicability of PSs, more recently, PS-loaded liposomes, apart from their utility in PDT, have found several applications including enhanced targeting of drugs, coloading multiple therapeutic agents to enhance synergistic effects, imaging, priming, triggering drug release, and facilitating the escape of therapeutic agents from the endolysosomal complex. This review discusses the design strategies, potential, and unique attributes of these hybrid systems, with not only photoactivation as an attribute but also the ability to encapsulate multiple agents for imaging, biomodulation, priming, and therapy referred to as photoactivatable multiagent/inhibitor liposomes (PMILS) and their targeted versions─targeted PMILS (TPMILS). While liposomes have formed their own niche in nanotechnology and nanomedicine with several clinically approved formulations, we try to highlight how using PS-loaded liposomes could address some of the limitations and concerns usually associated with liposomes to overcome them and enhance their preclinical and clinical utility in the future.
Collapse
Affiliation(s)
- Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
89
|
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14102195. [PMID: 36297630 PMCID: PMC9608678 DOI: 10.3390/pharmaceutics14102195] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Liposomes are well-known nanoparticles with a non-toxic nature and the ability to incorporate both hydrophilic and hydrophobic drugs simultaneously. As modern drug delivery formulations are produced by emerging technologies, numerous advantages of liposomal drug delivery systems over conventional liposomes or free drug treatment of cancer have been reported. Recently, liposome nanocarriers have exhibited high drug loading capacity, drug protection, improved bioavailability, enhanced intercellular delivery, and better therapeutic effect because of resounding success in targeting delivery. The site targeting of smart responsive liposomes, achieved through changes in their physicochemical and morphological properties, allows for the controlled release of active compounds under certain endogenous or exogenous stimuli. In that way, the multifunctional and stimuli-responsive nanocarriers for the drug delivery of cancer therapeutics enhance the efficacy of treatment prevention and fighting over metastases, while limiting the systemic side effects on healthy tissues and organs. Since liposomes constitute promising nanocarriers for site-targeted and controlled anticancer drug release, this review focuses on the recent progress of smart liposome achievements for anticancer drug delivery applications.
Collapse
|
90
|
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022; 14:pharmaceutics14091861. [PMID: 36145609 PMCID: PMC9503848 DOI: 10.3390/pharmaceutics14091861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in using nucleic acids for therapeutic applications has been increasing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, to directly kill cancer cells. The progress and promising results reported in animal models in recent years have led to interesting clinical results. These DNA strategies are expected to be approved for cancer treatment in the near future. This review discusses the main strategies, challenges, and future perspectives of using plasmid DNA for cancer treatment.
Collapse
Affiliation(s)
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey 64720, Mexico
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| | - María de Jesús Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| |
Collapse
|
91
|
Maxwell A, Chaudhari BB, Chaudhari P, Ananthamurthy K, Aranjani J, Moorkoth S, Ghate V, Lewis S. In vitro antibacterial activity and in vivo pharmacokinetics of intravenously administered Amikacin-loaded Liposomes for the management of bacterial septicaemia. Colloids Surf B Biointerfaces 2022; 220:112892. [DOI: 10.1016/j.colsurfb.2022.112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/28/2022] [Indexed: 10/14/2022]
|
92
|
Yadav D, Wairagu PM, Kwak M, Jin JO, Jin JO. Nanoparticle-Based Inhalation Therapy for Pulmonary Diseases. Curr Drug Metab 2022; 23:882-896. [PMID: 35927812 DOI: 10.2174/1389200223666220803103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023]
Abstract
The lung is exposed to various pollutants and is the primary site for the onset of various diseases, including infections, allergies, and cancers. One possible treatment approach for such pulmonary diseases involves direct administration of therapeutics to the lung so as to maintain the topical concentration of the drug. Particles with nanoscale diameters tend to reach the pulmonary region. Nanoparticles (NPs) have garnered significant interest for applications in biomedical and pharmaceutical industries because of their unique physicochemical properties and biological activities. In this article, we describe the biological and pharmacological activities of NPs as well as summarize their potential in the formulation of drugs employed to treat pulmonary diseases. Recent advances in the use of NPs in inhalation chemotherapy for the treatment of lung diseases have also been highlighted.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, South Korea
| | - Peninah M Wairagu
- Department of Biochemistry and Biotechnology, The Technical University of Kenya, Nairobi, Kenya
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jun-O Jin
- Department of Biotechnology, ITM University, Gwalior, Madhya Pradesh, 474011, India.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
93
|
Tsakiri M, Zivko C, Demetzos C, Mahairaki V. Lipid-based nanoparticles and RNA as innovative neuro-therapeutics. Front Pharmacol 2022; 13:900610. [PMID: 36016560 PMCID: PMC9395673 DOI: 10.3389/fphar.2022.900610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-delivery is a promising tool to develop therapies for difficult to treat diseases such as neurological disorders, by silencing pathological genes or expressing therapeutic proteins. However, in many cases RNA delivery requires a vesicle that could effectively protect the molecule from bio-degradation, bypass barriers i.e., the blood brain barrier, transfer it to a targeted tissue and efficiently release the RNA inside the cells. Many vesicles such as viral vectors, and polymeric nanoparticles have been mentioned in literature. In this review, we focus in the discussion of lipid-based advanced RNA-delivery platforms. Liposomes and lipoplexes, solid lipid nanoparticles and lipid nanoparticles are the main categories of lipidic platforms for RNA-delivery to the central nervous systems (CNS). A variety of surface particles' modifications and routes of administration have been studied to target CNS providing encouraging results in vivo. It is concluded that lipid-based nanoplatforms will play a key role in the development of RNA neuro-therapies.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Cristina Zivko
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Mahairaki
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
94
|
Chen H, Fang Z, Song M, Liu K. Mitochondrial targeted hierarchical drug delivery system based on HA-modified liposomes for cancer therapy. Eur J Med Chem 2022; 241:114648. [DOI: 10.1016/j.ejmech.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
|
95
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
96
|
Triantafyllopoulou E, Pippa N, Demetzos C. Protein-liposome interactions: the impact of surface charge and fluidisation effect on protein binding. J Liposome Res 2022; 33:77-88. [PMID: 35730463 DOI: 10.1080/08982104.2022.2071296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
At the dawn of a new nanotechnological era in the pharmaceutical field, it is very important to examine and understand all the aspects that influence in vivo behaviour of nanoparticles. In this point of view, the interactions between serum proteins and liposomes with incorporated anionic, cationic, and/or PEGylated lipids were investigated to elucidate the role of surface charge and bilayer fluidity in protein corona's formation. 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC), hydrogenated soybean phosphatidylcholine (HSPC), and 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes with the presence or absence of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (chloride salt) (DOTAP), and/or 1,2-dipalmitoylsn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (DPPE-PEG 5000) lipids were prepared by the thin-film hydration method. The evaluation of their biophysical characteristics was enabled by differential scanning calorimetry and dynamic and electrophoretic light scattering. The physicochemical characteristics of mixed liposomes were compared before and after exposure to foetal bovine serum (FBS) and were correlated to calorimetric data. Our results indicate protein binding to all liposomal formulations. However, it is highlighted the importance of surface charge and fluidisation effect to the extent of protein adsorption. Additionally, considering the extensive use of cationic lipids for innovative delivery platforms, we deem PEGylation a key parameter, because even in a small proportion can reduce protein binding, and thus fast clearance and extreme toxicity without affecting positive charge. This study is a continuation of our previous work about protein-liposome interactions and fraction of stealthiness (Fs) parameter, and hopefully a design road map for drug and gene delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
97
|
Ezra Manicum AL, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
98
|
Wu S, Liu M, Hu X, He C, Zhao C, Xiang S, Zeng Y. Evaluation of pentaerythritol-based and trimethylolpropane-based cationic lipidic materials for gene delivery. Bioorg Med Chem Lett 2022; 62:128635. [PMID: 35202809 DOI: 10.1016/j.bmcl.2022.128635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
The chemical and physical structure of cationic liposomes pays an important effect on their gene transfection efficiency. Investigation on the structure-function relationship of cationic liposomes will guide the design of novel cationic liposomes with high transfection efficiency and biosafety. In this paper, two novel series of lipids based on the backbone of pentaerythritol and trimethylolpropane were discovered, and their gene transfection efficiencies were assayed in vitro. The four lipids 8c, 9c, 14b, and 15b, exhibited much better transfection efficiency in the HEK293 cell lines compared with Lipo2000, lipid 9c also showed good transfection efficiency in the SW480 cell lines. And the structure-efficiency relationship revealed that a hydroxyethyl polar head group boosted transfer potency in trimethylolpropane-type lipids, but reduced in pentaerythritol-type lipids.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Meiyan Liu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Chengxi He
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Chunyan Zhao
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Youlin Zeng
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
99
|
Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:415-426. [PMID: 35369363 PMCID: PMC8960215 DOI: 10.1007/s40005-022-00569-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/13/2022] [Indexed: 12/14/2022]
Abstract
Background Cancer remains a serious health concern worldwide, and different approaches are being developed for its treatment. The strategy to use the immune system as an approach for treating cancer has recently gained momentum. Messenger RNA (mRNA) has been assessed as an up-and-coming resource for the evolution of advanced cancer immunotherapies over the past decades. However, degradation in extracellular compartments and during endosomal escape remain obstacles for efficient mRNA delivery and limit the therapeutic applications of this approach. Area covered Lipid-based nanocarriers are gaining significant attention as non-viral mRNA vectors. Various lipid-based nanocarrier types have been developed to enhance the stability of mRNA molecules, facilitate their transfection, and ensure delivery to an intracellular compartment suitable for further processing. This review discusses the development of novel mRNA delivery systems using lipids for effective cancer immunotherapy. Expert opinion mRNAs are superior to other biomolecules for developing therapeutic drugs and vaccines with multiple medical applications that are currently being explored by researchers in various biomedical fields. Lipid-based mRNA nanoparticles can improve the potency of the mRNA by enhancing its stability, enabling its cellular uptake, and facilitating its endosomal escape. Targetability of these therapeutics can be increased by conjugating their surface with the desired ligands or targeting agents. Lipid–mRNA nanoparticles are increasingly being incorporated in cancer immunotherapy applications, including vaccines, monoclonal antibodies, and chimeric antigen receptor T-cell treatment, and several such nanoparticles are being assessed in clinical trials. Further research that assesses key variables for transfection efficiency of lipid–mRNA nanoparticles will expedite the development of improved therapeutics.
Collapse
|
100
|
Apiratikul N, Sriklung K, Dolsophon K, Thamvapee P, Watanapokasin R, Yingyongnarongkul B, Niyomtham N, Bremner JB, Watanavetch P, Samosorn S. Enhancing Anticancer Potency of a 13-Substituted Berberine Derivative with Cationic Liposomes. Chem Pharm Bull (Tokyo) 2022; 70:420-426. [PMID: 35342147 DOI: 10.1248/cpb.c21-01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cationic liposomal formulations of the telomeric G-quadruplex stabilizing ligand, 13-(2-naphthylmethoxy)berberine bromide (1), have been developed with the purpose of delivering 1 into the nucleus of cancer cells for potential telomere targeting. Berberine derivative 1 was encapsulated in various cationic lipids 2-4 by the thin film evaporation method; these lipids are cationic after amine protonation. The most appropriate liposomal berberine formulation was that of 1 and the cholesterol derived cationic lipid 4 in a weight ratio of 1:20 with 76.5% encapsulation efficiency of 1. Cellular uptake studies in the HeLa and HT-29 cancer cells line showed that the liposomal berberine derivative uptake in the cells was higher and more stable than for berberine derivative 1 alone while free 1 was completely decomposed in the cells within 60 min exposure to the cells. Anticancer activity of the liposomal berberine derivative 1 based on 4 was greater than that for the free berberine derivative 1 in the MCF-7, HeLa and HT-29 cell line by 2.3-, 4.9- and 5.3-fold, respectively, and also, interestingly, superior to the anticancer drug doxorubicin against the HT29 cancer cell line.
Collapse
Affiliation(s)
- Nuttapon Apiratikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| | - Kanlayanee Sriklung
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University
| | - Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| | | | | | - Boonek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaenng University
| | | | - John B Bremner
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong
| | - Petcharat Watanavetch
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University
| |
Collapse
|