51
|
Regulation of Nociceptive Plasticity Threshold and DARPP-32 Phosphorylation in Spinal Dorsal Horn Neurons by Convergent Dopamine and Glutamate Inputs. PLoS One 2016; 11:e0162416. [PMID: 27610622 PMCID: PMC5017751 DOI: 10.1371/journal.pone.0162416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/22/2016] [Indexed: 01/19/2023] Open
Abstract
Dopamine can influence NMDA receptor function and regulate glutamate-triggered long-term changes in synaptic strength in several regions of the CNS. In spinal cord, regulation of the threshold of synaptic plasticity may determine the proneness to undergo sensitization and hyperresponsiveness to noxious input. In the current study, we increased endogenous dopamine levels in the dorsal horn by using re-uptake inhibitor GBR 12935. During the so-induced hyperdopaminergic transmission, conditioning low-frequency (1 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn neurons. The magnitude of LTP was attenuated by blockade of either dopamine D1-like receptors (D1LRs) by with SCH 23390 or NMDA receptor subunit NR2B with antagonist Ro25-6981. Conditioning LFS during GBR 12935 administration increased phosphorylation of dopamine- and cAMP-regulated phosphoprotein of Mr 32kDa (DARPP-32) at threonine 34 residue in synaptosomal (P3) fraction of dorsal horn homogenates, as assessed by Western blot analysis, which was partially prevented by NR2B blockade prior to conditioning stimulation. Conditioning LFS also was followed by higher co-localization of phosphorylated form of NR2B at tyrosine 1472 and pDARPP-32Thr34- with postsynaptic marker PSD-95 in transverse L5 dorsal horn sections. Such increase could be significantly attenuated by D1LR blockade with SCH 23390. The current results support that coincidental endogenous recruitment of D1LRs and NR2B in dorsal horn synapses plays a role in regulating afferent-induced nociceptive plasticity. Parallel increases in DARPP-32 phosphorylation upon LTP induction suggests a role for this phosphoprotein as intracellular detector of convergent D1L- and NMDA receptor activation.
Collapse
|
52
|
Wang N, Shen X, Bao S, Feng SW, Wang W, Liu Y, Wang Y, Wang X, Guo X, Shen R, Wu H, Lei L, Xu S, Wang F. Dopaminergic inhibition by G9a/Glp complex on tyrosine hydroxylase in nerve injury-induced hypersensitivity. Mol Pain 2016; 12:12/0/1744806916663731. [PMID: 27562335 PMCID: PMC5006299 DOI: 10.1177/1744806916663731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/18/2016] [Indexed: 12/24/2022] Open
Abstract
The neural balance between facilitation and inhibition determines the final tendency of central sensitization. Nerve injury-induced hypersensitivity was considered as the results from the enhanced ascending facilitation and the diminished descending inhibition. The role of dopaminergic transmission in the descending inhibition has been well documented, but its underlying molecular mechanisms are unclear. Previous studies demonstrated that the lysine dimethyltransferase G9a/G9a-like protein (Glp) complex plays a critical role in cocaine-induced central plasticity, and given cocaine’s role in the nerve system is relied on its function on dopamine system, we herein proposed that the reduced inhibition of dopaminergic transmission was from the downregulation of tyrosine hydroxylase expression by G9a/Glp complex through methylating its gene Th. After approval by the Animal Care and Use Committee, C57BL/6 mice were used for pain behavior using von Frey after spared nerve injury, and Th CpG islands methylation was measured using bisulfite sequencing at different nerve areas. The inhibitor of G9a/Glp, BIX 01294, was administered intraventricularly daily with bolus injection. The protein levels of G9a, Glp, and tyrosine hydroxylase were measured with immunoblotting. Dopamine levels were detected using high-performance liquid chromatography. The expression of G9a but not Glp was upregulated in ventral tegmental area at post-injury day 4 till day 49 (the last day of the behavioral test). Correspondingly, the Th CpG methylation is increased, but the tyrosine hydroxylase expression was downregulated and the dopamine level was decreased. After the intracerebroventriclar injection of BIX 01294 since the post-injury days 7 and 14 for consecutive three days, three weeks, and six weeks, the expression of tyrosine hydroxylase was upregulated with a significant decrease in Th methylation and increase in dopamine level. Moreover, the pain after G9a/Glp inhibitor was attenuated significantly. In sum, methytransferase G9a/Glp complex partially controls dopaminergic transmission by methylating Th in peripheral nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Nan Wang
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Xiaofeng Shen
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Senzhu Bao
- Department of Stomatology, Affiliated Hospital of Qinghai University, China
| | - Shan-Wu Feng
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Wei Wang
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Yusheng Liu
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Yiquan Wang
- Internal Medicine, Shanghai Municipal Hospital of TCM, Shanghai TCM University, China
| | - Xian Wang
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Xirong Guo
- Institute of Pediatrics, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Rong Shen
- Institute of Pediatrics, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Haibo Wu
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Liming Lei
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Shiqin Xu
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China
| | - Fuzhou Wang
- Department of Anesthesiology, Affiliated Hospital of Obstetrics and Gynecology, Nanjing Medical University, China Division of Neuroscience, The Bonoi Academy of Science & Education, USA
| |
Collapse
|
53
|
Differential Activation of TRP Channels in the Adult Rat Spinal Substantia Gelatinosa by Stereoisomers of Plant-Derived Chemicals. Pharmaceuticals (Basel) 2016; 9:ph9030046. [PMID: 27483289 PMCID: PMC5039499 DOI: 10.3390/ph9030046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/19/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Activation of TRPV1, TRPA1 or TRPM8 channel expressed in the central terminal of dorsal root ganglion (DRG) neuron increases the spontaneous release of l-glutamate onto spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons which play a pivotal role in regulating nociceptive transmission. The TRP channels are activated by various plant-derived chemicals. Although stereoisomers activate or modulate ion channels in a distinct manner, this phenomenon is not fully addressed for TRP channels. By applying the whole-cell patch-clamp technique to SG neurons of adult rat spinal cord slices, we found out that all of plant-derived chemicals, carvacrol, thymol, carvone and cineole, increase the frequency of spontaneous excitatory postsynaptic current, a measure of the spontaneous release of l-glutamate from nerve terminals, by activating TRP channels. The presynaptic activities were different between stereoisomers (carvacrol and thymol; (-)-carvone and (+)-carvone; 1,8-cineole and 1,4-cineole) in the extent or the types of TRP channels activated, indicating that TRP channels in the SG are activated by stereoisomers in a distinct manner. This result could serve to know the properties of the central terminal TRP channels that are targets of drugs for alleviating pain.
Collapse
|
54
|
Aira Z, Barrenetxea T, Buesa I, Martínez E, Azkue JJ. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889. Neurosci Lett 2016; 618:152-158. [PMID: 26957228 DOI: 10.1016/j.neulet.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Activation of the N-methyl-d-aspartate receptor (NMDAR) in dorsal horn neurons is recognized as a fundamental mechanism of central sensitization and pathologic pain. This study assessed the influence of dopaminergic, D1-like receptor-mediated input to the spinal dorsal horn on NMDAR function. Spinal superfusion with selective NMDAR agonist cis-ACPD significantly increased C-fiber-evoked field potentials in rats subjected to spinal nerve ligation (SNL), but not in sham-operated rats. Simultaneous application of D1LR antagonist SCH 23390 dramatically reduced hyperexcitability induced by cis-ACPD. Furthermore, cis-ACPD-induced hyperexcitability seen in nerve-ligated rats could be mimicked in unin-jured rats during stimulation of D1LRs by agonist SKF 38393 at subthreshold concentration. Phosphorylation of NMDAR subunit NR1 at serine 889 at postsynaptic sites was found to be increased in dorsal horn neurons 90 min after SNL, as assessed by increased co-localization with postsynaptic marker PSD-95. Increased NR1 phosphorylation was attenuated in the presence of SCH 23390 in the spinal superfusate. The present results support that D1LRs regulate most basic determinants of NMDAR function in dorsal horn neurons, suggesting a potential mechanism whereby dopaminergic input to the dorsal horn can modulate central sensitization and pathologic pain.
Collapse
Affiliation(s)
- Zigor Aira
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Teresa Barrenetxea
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Itsaso Buesa
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Endika Martínez
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Jon Jatsu Azkue
- Department of Neurosciences, School of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
55
|
Dieb W, Ouachikh O, Alves S, Boucher Y, Durif F, Hafidi A. Nigrostriatal dopaminergic depletion increases static orofacial allodynia. J Headache Pain 2016; 17:11. [PMID: 26885825 PMCID: PMC4757596 DOI: 10.1186/s10194-016-0607-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/12/2016] [Indexed: 01/05/2023] Open
Abstract
Background This study investigated mesencephalic dopamine depletion effects on static mechanical allodynia (SMA) elicited by chronic constriction of the infraorbitary nerve (CCI-IoN). Methods Dopamine depletion (6-OHDA administration into the medial forebrain bundle) effects on CCI-IoN-induced SMA were explored using behavioral (nocifensive behavior score upon non-noxious stimuli using von Frey filament), pharmacological (bromocriptine injections) and immunohistochemical (PKCγ and pERK1/2) techniques. Results The central dopamine depletion increased significantly the SMA score. Intraperitoneal and intracisternal injections of bromocriptine alleviated the allodynic behavior observed in both CCI-IoN and CCI-IoN + 6-OHDA animal groups. At the cellular level, dopamine depletion induced a significant increase in PKCγ expression in the medullary dorsal horn (MDH) in rat with CCI-IoN + 6-OHDA when compared to sham animals (CCI-IoN only). Similarly, after static non-noxious stimuli, the expression of pain marker proteins pERK1/2 within the MDH revealed significantly a higher number of positive cells in CCI-IoN + 6-OHDA rats when compared to the CCI-IoN group. Conclusion This study demonstrates that nigrostriatal dopamine depletion exacerbates the neuropathic pain resulting from CCI-IoN. This effect is probably due to an action through descending pain inhibitory systems which increased pain sensitization at the MDH level. It demonstrates also an analgesic effect elicited by D2R activation at the segmental level. Electronic supplementary material The online version of this article (doi:10.1186/s10194-016-0607-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wisam Dieb
- UFR Odontologie, Université Paris Diderot, Paris, France. .,Centre de Psychiatrie et Neurosciences, INSERM U894, Paris, France. .,Clermont Université, Université d'Auvergne, EA7280, Clermont-Ferrand, France.
| | - Omar Ouachikh
- Clermont Université, Université d'Auvergne, EA7280, Clermont-Ferrand, France.
| | - Sofia Alves
- Clermont Université, Université d'Auvergne, EA7280, Clermont-Ferrand, France.
| | - Yves Boucher
- UFR Odontologie, Université Paris Diderot, Paris, France. .,Centre de Psychiatrie et Neurosciences, INSERM U894, Paris, France.
| | - Franck Durif
- Clermont Université, Université d'Auvergne, EA7280, Clermont-Ferrand, France. .,CHU Clermont-Ferrand, Service de Neurologie, 63000, Clermont-Ferrand, France.
| | - Aziz Hafidi
- Clermont Université, Université d'Auvergne, EA7280, Clermont-Ferrand, France.
| |
Collapse
|
56
|
Sumie M, Shiokawa H, Yamaura K, Karashima Y, Hoka S, Yoshimura M. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses. PLoS One 2016; 11:e0147339. [PMID: 26771515 PMCID: PMC4714899 DOI: 10.1371/journal.pone.0147339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/01/2016] [Indexed: 11/19/2022] Open
Abstract
Background Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord. Methods We made patch-clamp recordings from substantia gelatinosa (SG) neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli. Results Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs) evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs) were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine. Conclusions We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal and intravenous administrations.
Collapse
Affiliation(s)
- Makoto Sumie
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Shiokawa
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
- * E-mail:
| | - Ken Yamaura
- Department of Anesthesiology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yuji Karashima
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sumio Hoka
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Megumu Yoshimura
- Division of Health Sciences, Graduate School of Health Sciences, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
57
|
Chakraborty S, Rebecchi M, Kaczocha M, Puopolo M. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons. J Physiol 2016; 594:1627-42. [PMID: 26563747 DOI: 10.1113/jp271198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023] Open
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin-activated current. Inhibition of the capsaicin-activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin-activated current was not affected when the protein kinase A (PKA) activity was blocked with H89, or when the protein kinase C (PKC) activity was blocked with bisindolylmaleimide II (BIM). In contrast, when the calcium-calmodulin-dependent protein kinase II (CaMKII) was blocked with KN-93, the inhibitory effect of SKF 81297 on the capsaicin-activated current was greatly reduced, suggesting that activation of D1/D5 dopamine receptors may be preferentially linked to CaMKII activity. We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Mario Rebecchi
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| |
Collapse
|
58
|
Hou S, Carson DM, Wu D, Klaw MC, Houlé JD, Tom VJ. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury. Exp Neurol 2015; 285:136-146. [PMID: 26655672 DOI: 10.1016/j.expneurol.2015.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/29/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)+ neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)- and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH+ neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH+ neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH+ cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH+ neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Choline O-Acetyltransferase/metabolism
- Disease Models, Animal
- Dopamine/analogs & derivatives
- Dopamine/metabolism
- Dopamine Agents/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Female
- Ganglia, Parasympathetic/pathology
- Ganglia, Sympathetic/pathology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Herpesvirus 1, Suid/genetics
- Herpesvirus 1, Suid/metabolism
- Neurons/metabolism
- Oxidopamine/toxicity
- Rats
- Rats, Inbred F344
- Rats, Sprague-Dawley
- Rats, Wistar
- Reflex/physiology
- Spinal Cord/metabolism
- Spinal Cord/physiopathology
- Spinal Cord Injuries/chemically induced
- Spinal Cord Injuries/pathology
- Spinal Cord Injuries/physiopathology
- Stilbamidines/pharmacokinetics
- Thiocarbamates/metabolism
- Transduction, Genetic
- Tyrosine 3-Monooxygenase/metabolism
- Urinary Bladder/innervation
- Urinary Bladder/physiopathology
Collapse
Affiliation(s)
- Shaoping Hou
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| | - David M Carson
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Di Wu
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Michelle C Klaw
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - John D Houlé
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Veronica J Tom
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
59
|
GABAAergic inhibition or dopamine denervation of the A11 hypothalamic nucleus induces trigeminal analgesia. Pain 2015; 156:644-655. [PMID: 25790455 DOI: 10.1097/j.pain.0000000000000091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Descending pain-modulatory systems, either inhibitory or facilitatory, play a critical role in both acute and chronic pain. Compared with serotonin and norepinephrine, little is known about the function of dopamine (DA). We characterized the anatomical organization of descending DA pathways from hypothalamic A11 nuclei to the medullary dorsal horn (MDH) and investigated their role in trigeminal pain. Immunochemistry analysis reveals that A11 is a heterogeneous nucleus that contains at least 3 neuronal phenotypes, DA, GABA, and alpha-calcitonin gene-related peptide (α-CGRP) neurons, exhibiting different distribution patterns, with a large proportion of GABA relative to DA neurons. Using fluorogold, we show that descending pathways from A11 nuclei to MDH originate mainly from DA neurons and are bilateral. Facial nociceptive stimulation elevates Fos immunoreactivity in both ipsilateral and contralateral A11 nuclei. Fos immunoreactivity is not detected in DA or projecting neurons but, interestingly, in GABA neurons. Finally, inactivating A11, using muscimol, or partially lesioning A11 DA neurons, using the neurotoxin 6-hydroxydopamine, inhibits trigeminal pain behavior. These results show that A11 nuclei are involved in pain processing. Interestingly, however, pain seems to activate GABAergic neurons within A11 nuclei, which suggests that pain inhibits rather than activates descending DA controls. We show that such inhibition produces an antinociceptive effect. Pain-induced inhibition of descending DA controls and the resulting reduced DA concentration within the dorsal horn may inhibit the transfer of nociceptive information to higher brain centers through preferential activation of dorsal horn D2-like receptors.
Collapse
|
60
|
Lee DW, Cho PS, Lee HK, Lee SH, Jung SJ, Oh SB. Trans-activation of TRPV1 by D1R in mouse dorsal root ganglion neurons. Biochem Biophys Res Commun 2015; 465:832-7. [DOI: 10.1016/j.bbrc.2015.08.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
|
61
|
A D2-like receptor family agonist produces analgesia in mechanonociception but not in thermonociception at the spinal cord level in rats. Pharmacol Biochem Behav 2015; 137:119-25. [PMID: 26303304 DOI: 10.1016/j.pbb.2015.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/21/2022]
Abstract
The administration of dopaminergic drugs produces analgesia in individuals experiencing different types of pain. Analgesia induced by these drugs at the spinal cord level is mediated by D2-like agonists, which specifically inhibit the detection of nociceptive stimuli by sensory afferents. The extent of the analgesia provided by spinal dopamine agonists remains controversial, and the cellular mechanism of this analgesic process is poorly understood. The objective of this study was to evaluate the analgesic effect of quinpirole, a D2-like agonist, based on two nociceptive tests and at various doses that were selected to specifically activate dopamine receptors. We found that intrathecal quinpirole administration produces analgesia of mechanical but not thermal nociception and that the analgesic effect of quinpirole is reversed by a mix of D2, D3, and D4 receptor-specific antagonists, suggesting that the activation of all D2-like receptors is involved in the analgesia produced by intrathecal quinpirole. The differential effect on thermal and mechanical nociception was also tested upon the activation of μ-opioid receptors. As reported previously, low doses of the μ-opioid receptor agonist DAMGO produced analgesia of only thermonociception. This evidence shows that a D2-like receptor agonist administered at the spinal cord level produces analgesia specific to mechanonociception but not thermonociception.
Collapse
|
62
|
Spinal dopaminergic projections control the transition to pathological pain plasticity via a D1/D5-mediated mechanism. J Neurosci 2015; 35:6307-17. [PMID: 25904784 DOI: 10.1523/jneurosci.3481-14.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanisms that lead to the maintenance of chronic pain states are poorly understood, but their elucidation could lead to new insights into how pain becomes chronic and how it can potentially be reversed. We investigated the role of spinal dorsal horn neurons and descending circuitry in plasticity mediating a transition to pathological pain plasticity suggesting the presence of a chronic pain state using hyperalgesic priming. We found that when dorsal horn neurokinin 1 receptor-positive neurons or descending serotonergic neurons were ablated before hyperalgesic priming, IL-6- and carrageenan-induced mechanical hypersensitivity was impaired, and subsequent prostaglandin E2 (PGE2) response was blunted. However, when these neurons were lesioned after the induction of priming, they had no effect on the PGE2 response, reflecting differential mechanisms driving plasticity in a primed state. In stark contrast, animals with a spinally applied dopaminergic lesion showed intact IL-6- and carrageenan-induced mechanical hypersensitivity, but the subsequent PGE2 injection failed to cause mechanical hypersensitivity. Moreover, ablating spinally projecting dopaminergic neurons after the resolution of the IL-6- or carrageenan-induced response also reversed the maintenance of priming as assessed through mechanical hypersensitivity and the mouse grimace scale. Pharmacological antagonism of spinal dopamine D1/D5 receptors reversed priming, whereas D1/D5 agonists induced mechanical hypersensitivity exclusively in primed mice. Strikingly, engagement of D1/D5 coupled with anisomycin in primed animals reversed a chronic pain state, consistent with reconsolidation-like effects in the spinal dorsal horn. These findings demonstrate a novel role for descending dopaminergic neurons in the maintenance of pathological pain plasticity.
Collapse
|
63
|
Kirkpatrick DR, McEntire DM, Hambsch ZJ, Kerfeld MJ, Smith TA, Reisbig MD, Youngblood CF, Agrawal DK. Therapeutic Basis of Clinical Pain Modulation. Clin Transl Sci 2015; 8:848-56. [PMID: 25962969 DOI: 10.1111/cts.12282] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pain is a hallmark of almost all bodily ailments and can be modulated by agents, including analgesics and anesthetics that suppress pain signals in the central nervous system. Defects in the modulatory systems, including the endogenous pain-inhibitory pathways, are a major factor in the initiation and chronicity of pain. Thus, pain modulation is particularly applicable to the practice of medicine. This review summarizes the existing literature on pain modulation. Here, we critically reviewed the literature from PubMed on pain modulation published primarily within the past 5 years in high impact journals. Specifically, we have discussed important anatomical landmarks of pain modulation and outlined the endogenous networks and underlying mechanisms of clinically relevant pain modulatory methods. The Gate Control Theory is briefly presented with discussion on the capacity of pain modulation to cause both hyper- and hypoalgesia. An emphasis has been given to highlight key areas in pain research that, because of unanswered questions or therapeutic potential, merit additional scientific scrutiny. The information presented in this paper would be helpful in developing novel therapies, metrics, and interventions for improved patient management.
Collapse
Affiliation(s)
- Daniel R Kirkpatrick
- Center for Clinical & Translational Science and Department of Anesthesiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Dan M McEntire
- Center for Clinical & Translational Science and Department of Anesthesiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Zakary J Hambsch
- Center for Clinical & Translational Science and Department of Anesthesiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Mitchell J Kerfeld
- Center for Clinical & Translational Science and Department of Anesthesiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Tyler A Smith
- Center for Clinical & Translational Science and Department of Anesthesiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Mark D Reisbig
- Center for Clinical & Translational Science and Department of Anesthesiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Charles F Youngblood
- Center for Clinical & Translational Science and Department of Anesthesiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Devendra K Agrawal
- Center for Clinical & Translational Science and Department of Anesthesiology, Creighton University School of Medicine, Omaha, Nebraska, USA
| |
Collapse
|
64
|
Austin PJ, Bembrick AL, Denyer GS, Keay KA. Injury-Dependent and Disability-Specific Lumbar Spinal Gene Regulation following Sciatic Nerve Injury in the Rat. PLoS One 2015; 10:e0124755. [PMID: 25905723 PMCID: PMC4408097 DOI: 10.1371/journal.pone.0124755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/06/2015] [Indexed: 12/23/2022] Open
Abstract
Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four ‘disability-specific’ genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure, transcription or translation). We suggest that these patterns of gene expression lead to either the expression of disability, or to resilience and recovery, by modifying local spinal circuitry at the origin of ascending supraspinal pathways.
Collapse
Affiliation(s)
- Paul J. Austin
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
| | - Alison L. Bembrick
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
| | - Gareth S. Denyer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | - Kevin A. Keay
- School of Medical Sciences (Anatomy & Histology), The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
65
|
Yamanaka M, Taniguchi W, Nishio N, Hashizume H, Yamada H, Yoshida M, Nakatsuka T. In vivo patch-clamp analysis of the antinociceptive actions of TRPA1 activation in the spinal dorsal horn. Mol Pain 2015; 11:20. [PMID: 25896791 PMCID: PMC4422151 DOI: 10.1186/s12990-015-0021-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/10/2015] [Indexed: 01/24/2023] Open
Abstract
Background Transient receptor potential (TRP) channels are nonselective cation channels expressed in a variety of sensory structures, and are important molecular mediators of thermal, mechanical, cellular and chemical signals. We investigated the function of one key member of the TRP superfamily, TRPA1, in the spinal dorsal horn using in vivo patch-clamp recordings. Results The application of allyl isothiocyanate (AITC), a TRPA1 agonist, significantly increased the frequency and amplitude of inhibitory postsynaptic currents (IPSCs; holding potential (VH) = 0 mV) as well as excitatory postsynaptic currents (EPSCs; VH = −70 mV) in substantia gelatinosa (SG) neurons. The AITC-induced increases in EPSC frequency and amplitude were resistant to the Na+ channel blocker tetrodotoxin (TTX). In the presence of the glutamate receptor antagonists CNQX and AP5, AITC did not generate any synaptic activity. The AITC-induced increases in IPSC frequency and amplitude were abolished by TTX or glutamate receptor antagonists. Moreover, the duration of IPSCs enhanced by TRPA1 activation were significantly longer than those of EPSCs enhanced by activation of this channel in the spinal dorsal horn. AITC induced hyperpolarization of the membrane potential of SG neurons in the spinal cord but depolarized the membrane potential in the presence of TTX. Furthermore, we examined the effects of mechanical stimuli to the skin during TRPA1 activation in the spinal dorsal horn in normal rats in both voltage-clamp and current-clamp modes. In the peripheral tissue stimuli test, AITC significantly suppressed EPSCs evoked by pinch or air puff stimulation of the skin. In current-clamp mode, AITC significantly suppressed excitatory postsynaptic potentials (EPSPs) evoked by pinch stimuli. Conclusions TRPA1 appears to be localized not only at presynaptic terminals on SG neurons, enhancing glutamate release, but also in the terminals of primary afferents innervating spinal inhibitory interneurons, which have synaptic interactions with SG neurons. This study offers further insight into the mechanisms underlying the possible antinociceptive actions of TRPA1 activation in the spinal dorsal horn. Our findings suggest that pharmacological activation of spinal TRPA1 channels may have therapeutic potential for the treatment of pain.
Collapse
Affiliation(s)
- Manabu Yamanaka
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan.
| | - Wataru Taniguchi
- Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka, 590-0482, Japan.
| | - Naoko Nishio
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan. .,Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka, 590-0482, Japan.
| | - Hiroshi Hashizume
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan.
| | - Hiroshi Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan.
| | - Munehito Yoshida
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan.
| | - Terumasa Nakatsuka
- Pain Research Center, Kansai University of Health Sciences, Kumatori, Osaka, 590-0482, Japan.
| |
Collapse
|
66
|
Hoshino H, Obata H, Nakajima K, Mieda R, Saito S. The antihyperalgesic effects of intrathecal bupropion, a dopamine and noradrenaline reuptake inhibitor, in a rat model of neuropathic pain. Anesth Analg 2015; 120:460-6. [PMID: 25427287 DOI: 10.1213/ane.0000000000000540] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Antidepressants are often used for the treatment of neuropathic pain, and their analgesic effects rely on increased noradrenaline and serotonin levels in the spinal cord. Clinical studies have also shown that bupropion, a dopamine and noradrenaline reuptake inhibitor, has strong efficacy in neuropathic pain; however, the role of spinal cord dopamine in neuropathic pain is unknown. We hypothesized that bupropion inhibits neuropathic pain by increasing noradrenaline and dopamine in the spinal cord. In the present study, we determined the efficacy and underlying mechanisms of intrathecal administration of bupropion in a rat model of neuropathic pain. METHODS Male Sprague-Dawley rats were anesthetized, and right L5 spinal nerve ligation (SNL) was performed to produce mechanical hyperalgesia of the hindpaw. Withdrawal threshold to a paw pressure test was measured before and after intrathecal administration of bupropion, without or with intrathecal antagonists for α2-adrenoceptors and dopamine D2 receptors. In vivo microdialysis was performed in the dorsal horn of the lumbar spinal cord to measure noradrenaline and dopamine concentrations after intrathecal injection of bupropion. We also measured the noradrenaline and dopamine contents in the ipsilateral dorsal lumbar spinal cord in normal rats and in rats 2, 3, and 4 weeks after SNL. RESULTS Intrathecal injection of bupropion produced a dose-dependent antihyperalgesic effect (3, 10, 30, and 100 μg, P < 0.001). The effect (30 μg) was dose-dependently reversed by intrathecal pretreatment (15 minutes before bupropion injection) with the α2-adrenoceptor antagonist idazoxan (3, 10, and 30 μg, P < 0.001) and D2 receptor antagonist sulpiride (3, 10, and 30 μg, P < 0.001). Microdialysis revealed that noradrenaline and dopamine concentrations in the spinal dorsal horn were increased after intrathecal injection of bupropion (30 μg, P < 0.001 and P = 0.001, respectively). Furthermore, the noradrenaline and dopamine contents in the spinal dorsal horn were increased 2 weeks after SNL (P < 0.001 and P = 0.044, respectively) and then decreased gradually. CONCLUSIONS These findings suggest that plasticity of descending inhibitory pathways such as the noradrenaline and dopamine systems contributes to the maintenance of neuropathic pain and that spinal cord noradrenaline and dopamine both play an inhibitory role in neuropathic pain.
Collapse
Affiliation(s)
- Hajime Hoshino
- From the Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | | | | | | |
Collapse
|
67
|
Ogata M, Noda K, Akita H, Ishibashi H. Characterization of nociceptive response to chemical, mechanical, and thermal stimuli in adolescent rats with neonatal dopamine depletion. Neuroscience 2015; 289:43-55. [DOI: 10.1016/j.neuroscience.2015.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/27/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022]
|
68
|
Matsumura S, Taniguchi W, Nishida K, Nakatsuka T, Ito S. In vivotwo-photon imaging of structural dynamics in the spinal dorsal horn in an inflammatory pain model. Eur J Neurosci 2015; 41:989-97. [DOI: 10.1111/ejn.12837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/21/2014] [Accepted: 12/19/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Shinji Matsumura
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Wataru Taniguchi
- Pain Research Center; Kansai University of Health Sciences; Kumatori Japan
| | - Kazuhiko Nishida
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Terumasa Nakatsuka
- Pain Research Center; Kansai University of Health Sciences; Kumatori Japan
| | - Seiji Ito
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| |
Collapse
|
69
|
Hong JM, Cho AR, Choi SA. Accidental intrathecal injection of dopamine hydrochloride resulting in analgesic effects. Korean J Anesthesiol 2015; 67:S49-50. [PMID: 25598904 PMCID: PMC4295978 DOI: 10.4097/kjae.2014.67.s.s49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jeong-Min Hong
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
| | - Ah-Reum Cho
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
| | - Sun-A Choi
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
70
|
Synaptic upregulation and superadditive interaction of dopamine D2- and μ-opioid receptors after peripheral nerve injury. Pain 2014; 155:2526-2533. [DOI: 10.1016/j.pain.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022]
|
71
|
Miyakawa T, Terashima Y, Takebayashi T, Tanimoto K, Iwase T, Ogon I, Kobayashi T, Tohse N, Yamashita T. Transient receptor potential ankyrin 1 in spinal cord dorsal horn is involved in neuropathic pain in nerve root constriction rats. Mol Pain 2014; 10:58. [PMID: 25192906 PMCID: PMC4163170 DOI: 10.1186/1744-8069-10-58] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/02/2014] [Indexed: 12/26/2022] Open
Abstract
Background Lumbar radicular pain is categorized as a type of neuropathic pain, but its pathophysiological mechanisms are not fully understood. The substantia gelatinosa (SG) in the spinal cord dorsal horn receives primary afferent inputs and is considered to be a therapeutic target for treating neuropathic pain. In vivo patch-clamp recording is a useful procedure for analyzing the functional properties of synaptic transmission in SG neurons. Transient receptor potential ankyrin 1 (TRPA1) has been widely identified in the central and peripheral nervous systems, such as in the peripheral nociceptor, dorsal root ganglion, and spinal cord dorsal horn and is involved in synaptic transmission of pain. However, its functional role and mechanism of pain transmission in the spinal cord dorsal horn are not well understood. The purpose of this study was to use in vivo patch-clamp analysis to examine changes in the excitatory synaptic transmission of SG neurons treated with TRPA1 antagonist and to clarify the potential role of TRPA1 in the rat spinal cord dorsal horn. Results The rats with root constriction (RC) showed mechanical hypersensitivity, hyperalgesia, and thermal hyperalgesia. In addition, pin pricks elicited pain-related behavior even in the sham and naïve rats. These pain-related behaviors were significantly attenuated by intrathecal injection of a TRPA1 antagonist. The degrees of intrathecal injection efficacy were equivalent among the 3 groups (RC, sham, and naïve groups). In an electrophysiological study, the frequencies and amplitudes of excitatory postsynaptic currents (EPSCs) were significantly increased in the RC rats compared with those in the sham and naïve rats. Spontaneous EPSCs and evoked-EPSCs by non-noxious and noxious stimuli were significantly decreased by TRPA1 antagonist. As in the behavioral study, there were no statistically significant differences among the 3 groups. Conclusion These data showed that the TRPA1 antagonist had an inhibitory effect on mechanical hypersensitivity and hyperalgesia as well as on physiological pain transmission in the spinal cord dorsal horn. This suggests that TRPA1 is consistently involved in excitatory synaptic transmission even in the physiological state and has a role in coordinating pain transmission.
Collapse
Affiliation(s)
- Tsuyoshi Miyakawa
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, S1 W16, Sapporo, Hokkaido 060-8543, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Cobacho N, de la Calle JL, Paíno CL. Dopaminergic modulation of neuropathic pain: analgesia in rats by a D2-type receptor agonist. Brain Res Bull 2014; 106:62-71. [PMID: 24959942 DOI: 10.1016/j.brainresbull.2014.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Abstract
Experimental studies have shown that dopaminergic mechanisms can modulate both nociception and chronic pain perception, but such property is not exploited pharmacologically at the clinical level. We have previously shown that levodopa produces D2-receptor-mediated antiallodynic effects in rats with peripheral mononeuropathy. Here, we test the effects of a D2-type receptor (D2R) agonist, quinpirole, on neuropathic pain in rats. Allodynic responses to cooling and light touch were measured in the hind limbs of rats with chronic constriction injury of one sciatic nerve. Single intraperitoneal injection of quinpirole (1 mg/kg) totally inhibited cold and tactile allodynic responses for over 3 and 48 h, respectively. At that dose, quinpirole had no effect on nocifensive responses to heat. Lumbar intrathecal injection of quinpirole produced short-term inhibition of the responses to cold and tactile stimuli, suggesting that spinal mechanisms may contribute to the antiallodynic activity of quinpirole. Chronic subcutaneous infusion of quinpirole by implanted Alzet pumps (0.025 mg/kg·day) provided a slowly progressing inhibition of cold and tactile allodynic responses, which re-emerged after the pumps were removed. These experiments show the involvement of dopaminergic systems in the modulation of chronic allodynias and provide experimental support for proposing the use of D2R agonists for neuropathic pain relief.
Collapse
Affiliation(s)
- Nuria Cobacho
- Service of Neurobiology-Research, IRYCIS, Hospital Ramón y Cajal, Carretera de Colmenar km 9, 28034 Madrid, Spain
| | | | - Carlos Luis Paíno
- Service of Neurobiology-Research, IRYCIS, Hospital Ramón y Cajal, Carretera de Colmenar km 9, 28034 Madrid, Spain.
| |
Collapse
|
73
|
Reisi Z, Haghparast A, Pahlevani P, Shamsizadeh A, Haghparast A. Interaction between the dopaminergic and opioidergic systems in dorsal hippocampus in modulation of formalin-induced orofacial pain in rats. Pharmacol Biochem Behav 2014; 124:220-5. [PMID: 24955867 DOI: 10.1016/j.pbb.2014.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 11/19/2022]
Abstract
The hippocampus is a region of the brain that serves several functions. The dopaminergic system acts through D1- and D2-like receptors to interfere in pain modulation and the opioid receptors play major roles in analgesic processes and there are obvious overlaps between these two systems. The present study investigated the interaction between the opioidergic and dopaminergic systems in the dorsal hippocampus (CA1) region for formalin-induced orofacial pain. Two guide cannulae were stereotaxically implanted in the CA1 region and morphine (0.5, 1, 2 and 4 μg/0.5 μl saline) and naloxone (0.3, 1 and 3 μg/0.5 μl saline) were used as the opioid receptor agonist and antagonist, respectively. SKF-38393 (1 μg/0.5 μl saline) was used as a D1-like receptor agonist, quinpirole (2 μg/0.5 μl saline) as a D2-like receptor agonist, SCH-23390 (0.5 μg/0.5 μl saline) as a D1-like receptor antagonist and sulpiride (3 μg/0.5 μl DMSO) as a D2-like receptor antagonist. To induce orofacial pain, 50 μl of 1% formalin was subcutaneously injected into the left side of the upper lip. Our results showed that different doses of morphine significantly reduced orofacial pain in both phases induced by formalin. Naloxone (1 and 3 μg) reversed morphine induced analgesia in CA1. SKF-38393 and quinpirole with naloxone (1 μg) significantly decreased formalin-induced orofacial pain in both phases. SCH-23390 had no effect on the antinociceptive response of morphine in both phases of orofacial pain. Sulpiride reversed the antinociceptive effects of morphine only in the first phase, but this result was not significant. Our findings suggest that there is cross-talk between the opioidergic and dopaminergic systems. Opioidergic neurons also exerted antinociceptive effects by modulation of the dopaminergic system in the CA1 region of the brain.
Collapse
Affiliation(s)
- Zahra Reisi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran; Faculty of Dentistry, International Branch of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pouyan Pahlevani
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran.
| |
Collapse
|
74
|
Jiang CY, Fujita T, Kumamoto E. Synaptic modulation and inward current produced by oxytocin in substantia gelatinosa neurons of adult rat spinal cord slices. J Neurophysiol 2014; 111:991-1007. [DOI: 10.1152/jn.00609.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular mechanisms for antinociception produced by oxytocin in the spinal dorsal horn have not yet been investigated thoroughly. We examined how oxytocin affects synaptic transmission in substantia gelatinosa neurons, which play a pivotal role in regulating nociceptive transmission, by applying the whole-cell patch-clamp technique to the substantia gelatinosa neurons of adult rat spinal cord slices. Bath-applied oxytocin did not affect glutamatergic spontaneous, monosynaptically-evoked primary-afferent Aδ-fiber and C-fiber excitatory transmissions. On the other hand, oxytocin produced an inward current at −70 mV and enhanced GABAergic and glycinergic spontaneous inhibitory transmissions. These activities were repeated with a slow recovery from desensitization, concentration-dependent and mimicked by oxytocin-receptor agonist. The oxytocin current was inhibited by oxytocin-receptor antagonist, intracellular GDPβS, U-73122, 2-aminoethoxydiphenyl borate, but not dantrolene, chelerythrine, dibutyryl cyclic-AMP, CNQX, Ca2+-free and tetrodotoxin, while the spontaneous inhibitory transmission enhancements were depressed by tetrodotoxin. Current-voltage relation for the oxytocin current reversed at negative potentials more than the equilibrium potential for K+, or around 0 mV. The oxytocin current was depressed in high-K+, low-Na+ or Ba2+-containing solution. Vasopressin V1A-receptor antagonist inhibited the oxytocin current, but there was no correlation in amplitude between a vasopressin-receptor agonist [Arg8]vasopressin and oxytocin responses. It is concluded that oxytocin produces a membrane depolarization mediated by oxytocin but not vasopressin-V1A receptors, which increases neuronal activity, resulting in the enhancement of inhibitory transmission, a possible mechanism for antinociception. This depolarization is due to a change in membrane permeabilities to K+ and/or Na+, which is possibly mediated by phospholipase C and inositol 1,4,5-triphosphate-induced Ca2+-release.
Collapse
Affiliation(s)
- Chang-Yu Jiang
- Department of Physiology, Saga Medical School, Saga, Japan
| | - Tsugumi Fujita
- Department of Physiology, Saga Medical School, Saga, Japan
| | | |
Collapse
|
75
|
Response to Letter to the Editor. Pain 2014; 155:200-201. [DOI: 10.1016/j.pain.2013.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/22/2022]
|
76
|
Galbavy W, Safaie E, Rebecchi MJ, Puopolo M. Inhibition of tetrodotoxin-resistant sodium current in dorsal root ganglia neurons mediated by D1/D5 dopamine receptors. Mol Pain 2013; 9:60. [PMID: 24283218 PMCID: PMC4220807 DOI: 10.1186/1744-8069-9-60] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/22/2013] [Indexed: 12/25/2022] Open
Abstract
Background Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood. Results The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297. Conclusions We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia may serve to adjust the sensitivity of nociceptors to noxious stimuli.
Collapse
Affiliation(s)
| | | | | | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
77
|
Becker S, Ceko M, Louis-Foster M, Elfassy NM, Leyton M, Shir Y, Schweinhardt P. Dopamine and pain sensitivity: neither sulpiride nor acute phenylalanine and tyrosine depletion have effects on thermal pain sensations in healthy volunteers. PLoS One 2013; 8:e80766. [PMID: 24236199 PMCID: PMC3827462 DOI: 10.1371/journal.pone.0080766] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022] Open
Abstract
Based on animal studies and some indirect clinical evidence, dopamine has been suggested to have anti-nociceptive effects. Here, we investigated directly the effects of increased and decreased availability of extracellular dopamine on pain perception in healthy volunteers. In Study 1, participants ingested, in separate sessions, a placebo and a low dose of the centrally acting D2-receptor antagonist sulpiride, intended to increase synaptic dopamine via predominant pre-synaptic blockade. No effects were seen on thermal pain thresholds, tolerance, or temporal summation. Study 2 used the acute phenylalanine and tyrosine depletion (APTD) method to transiently decrease dopamine availability. In one session participants ingested a mixture that depletes the dopamine amino acid precursors, phenylalanine and tyrosine. In the other session they ingested a nutritionally balanced control mixture. APTD led to a small mood-lowering response following aversive thermal stimulation, but had no effects on the perception of cold, warm, or pain stimuli. In both studies the experimental manipulation of dopaminergic neurotransmission was successful as indicated by manipulation checks. The results contradict proposals that dopamine has direct anti-nociceptive effects in acute experimental pain. Based on dopamine's well-known role in reward processing, we hypothesize that also in the context of pain, dopamine acts on stimulus salience and might play a role in the initiation of avoidance behavior rather than having direct antinociceptive effects in acute experimental pain.
Collapse
Affiliation(s)
- Susanne Becker
- Alan Edwards Centre for Research on Pain and Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marta Ceko
- National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mytsumi Louis-Foster
- Alan Edwards Centre for Research on Pain and Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Nathaniel M. Elfassy
- Alan Edwards Centre for Research on Pain and Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Marco Leyton
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - Yoram Shir
- Alan Edwards Pain Management Unit, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Petra Schweinhardt
- Alan Edwards Centre for Research on Pain and Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
78
|
Abdallah K, Artola A, Monconduit L, Dallel R, Luccarini P. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats. PLoS One 2013; 8:e73022. [PMID: 23951340 PMCID: PMC3737186 DOI: 10.1371/journal.pone.0073022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C) remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG), into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project) than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project). These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.
Collapse
Affiliation(s)
- Khaled Abdallah
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
| | - Alain Artola
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
| | - Lénaic Monconduit
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
| | - Radhouane Dallel
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
- * E-mail: (RD) (PL)
| | - Philippe Luccarini
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
- * E-mail: (RD) (PL)
| |
Collapse
|
79
|
Stiasny-Kolster K, Pfau DB, Oertel WH, Treede RD, Magerl W. Hyperalgesia and functional sensory loss in restless legs syndrome. Pain 2013; 154:1457-63. [DOI: 10.1016/j.pain.2013.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/19/2013] [Accepted: 05/03/2013] [Indexed: 11/17/2022]
|
80
|
The conserved dopaminergic diencephalospinal tract mediates vertebrate locomotor development in zebrafish larvae. J Neurosci 2012; 32:13488-500. [PMID: 23015438 DOI: 10.1523/jneurosci.1638-12.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The most conserved part of the vertebrate dopaminergic system is the orthopedia (otp)-expressing diencephalic neuronal population that constitutes the dopaminergic diencephalospinal tract (DDT). Although studies in the neonatal murine spinal cord in vitro suggest an early locomotor role of the DDT, the function of the DDT in developing vertebrates in vivo remains unknown. Here, we investigated the role of the DDT in the locomotor development of zebrafish larvae. To assess the development of the behavioral and neural locomotor pattern, we used high-throughput video tracking in combination with peripheral nerve recordings. We found a behavioral and neural correspondence in the developmental switch from an immature to mature locomotor pattern. Blocking endogenous dopamine receptor 4 (D(4)R) signaling in vivo either before or after the developmental switch prevented or reversed the switch, respectively. Spinal transections of post-switch larvae reestablished the immature locomotor pattern, which was rescued to a mature-like pattern via spinal D(4)R agonism. Selective chemogenetic ablation of otp b (otpb) neurons that contribute to the DDT perpetuated the immature locomotor pattern in vivo. This phenotype was recapitulated by diencephalic transections that removed the dopaminergic otpb population and was rescued to a mature-like locomotor pattern by D(4)R agonism. We conclude that the dopaminergic otpb population, via the DDT, is responsible for spinal D(4)R signaling to mediate the developmental switch to the mature locomotor pattern of zebrafish. These results, integrated with the mammalian literature, suggest that the DDT represents an evolutionarily conserved neuromodulatory system that is necessary for normal vertebrate locomotor development.
Collapse
|
81
|
Keeler BE, Baran CA, Brewer KL, Clemens S. Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse. Exp Neurol 2012; 238:273-83. [DOI: 10.1016/j.expneurol.2012.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/22/2012] [Accepted: 09/09/2012] [Indexed: 12/29/2022]
|
82
|
Viisanen H, Ansah OB, Pertovaara A. The role of the dopamine D2 receptor in descending control of pain induced by motor cortex stimulation in the neuropathic rat. Brain Res Bull 2012; 89:133-43. [DOI: 10.1016/j.brainresbull.2012.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
|
83
|
Kawamoto K, Otsuguro K, Ishizuka M, Ito S. Inhibitory effects of dopamine on spinal synaptic transmission via dopamine D1-like receptors in neonatal rats. Br J Pharmacol 2012; 166:788-800. [PMID: 22168428 DOI: 10.1111/j.1476-5381.2011.01815.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Dopamine released from the endings of descending dopaminergic nerve fibres in the spinal cord may be involved in modulating functions such as locomotion and nociception. Here, we examined the effects of dopamine on spinal synaptic transmissions in rats. EXPERIMENTAL APPROACH Spinal reflex potentials, monosynaptic reflex potential (MSR) and slow ventral root potential (sVRP), were measured in the isolated spinal cord of the neonatal rat. Dopamine release was measured by HPLC. KEY RESULTS Dopamine at lower concentrations (<1 µM) depressed sVRP, which is a C fibre-evoked polysynaptic response and believed to reflect nociceptive transmission. At higher concentrations (>1 µM), in addition to a potent sVRP depression, dopamine depolarized baseline potential and slightly depressed MSR. Depression of sVRP by dopamine was partially reversed by dopamine D(1) -like but not by D(2) -like receptor antagonists. SKF83959 and SKF81297, D(1) -like receptor agonists, and methamphetamine, an endogenous dopamine releaser, also caused the inhibition of sVRP. Methamphetamine also depressed MSR, which was inhibited by ketanserin, a 5-HT(2A/2C) receptor antagonist. Methamphetamine induced the release of dopamine and 5-HT from spinal cords, indicating that the release of endogenous dopamine and 5-HT depresses sVRP and MSR respectively. CONCLUSION AND IMPLICATIONS These results suggested that dopamine at lower concentrations preferentially inhibited sVRP, which is mediated via dopamine D(1) -like and other unidentified receptors. The dopamine-evoked depression is involved in modulating the spinal functions by the descending dopaminergic pathways.
Collapse
Affiliation(s)
- K Kawamoto
- Laboratories of Pharmacology Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
84
|
Takiguchi N, Yoshida M, Taniguchi W, Hashizume H, Yamada H, Miyazaki N, Nishio N, Nakatsuka T. Distinct degree of radiculopathy at different levels of peripheral nerve injury. Mol Pain 2012; 8:31. [PMID: 22537715 PMCID: PMC3443045 DOI: 10.1186/1744-8069-8-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/06/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lumbar radiculopathy is a common clinical problem, characterized by dorsal root ganglion (DRG) injury and neural hyperactivity causing intense pain. However, the mechanisms involved in DRG injury have not been fully elucidated. Furthermore, little is known about the degree of radiculopathy at the various levels of nerve injury. The purpose of this study is to compare the degree of radiculopathy injury at the DRG and radiculopathy injury proximal or distal to the DRG. RESULTS The lumbar radiculopathy rat model was created by ligating the L5 nerve root 2 mm proximal to the DRG or 2 mm distal to the DRG with 6.0 silk. We examined the degree of the radiculopathy using different points of mechanical sensitivity, immunohistochemistry and in vivo patch-clamp recordings, 7 days after surgery. The rats injured distal to the DRG were more sensitive than those rats injured proximal to the DRG in the behavioral study. The number of activated microglia in laminas I-II of the L5 segmental level was significantly increased in rats injured distal to the DRG when compared with rats injured proximal to the DRG. The amplitudes and frequencies of EPSC in the rats injured distal to the DRG were higher than those injured proximal to the DRG. The results indicated that there is a different degree of radiculopathy at the distal level of nerve injury. CONCLUSIONS Our study examined the degree of radiculopathy at different levels of nerve injury. Severe radiculopathy occurred in rats injured distal to the DRG when compared with rats injured proximal to the DRG. This finding helps to correctly diagnose a radiculopathy.
Collapse
Affiliation(s)
- Noboru Takiguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, 811-1Kimiidera, Wakayama 641-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Tonic and phasic descending dopaminergic controls of nociceptive transmission in the medullary dorsal horn. Pain 2011; 152:1821-1831. [DOI: 10.1016/j.pain.2011.03.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/27/2022]
|
86
|
Thorpe AJ, Clair A, Hochman S, Clemens S. Possible Sites of Therapeutic Action in Restless Legs Syndrome: Focus on Dopamine and α 2δ Ligands. Eur Neurol 2011; 66:18-29. [DOI: 10.1159/000328431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/11/2011] [Indexed: 01/01/2023]
|