51
|
Cortese E, Carraretto L, Baldan B, Navazio L. Arabidopsis Photosynthetic and Heterotrophic Cell Suspension Cultures. Methods Mol Biol 2020; 2200:167-185. [PMID: 33175378 DOI: 10.1007/978-1-0716-0880-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cell suspension cultures represent a widely used experimental tool suitable to perform a variety of structural and physiological studies in a more simplified system compared to the organism in toto. In this chapter we describe the methods routinely used in our laboratory to establish and maintain Arabidopsis photosynthetic and heterotrophic cell suspension cultures, containing either chloroplasts or amyloplasts, respectively. The use of these in vitro systems may allow to obtain insights into the unique features of chloroplasts versus non-green plastids, as well as their integration in the structural and metabolic compartmentalization of the plant cell.
Collapse
Affiliation(s)
- Enrico Cortese
- Department of Biology, University of Padova, Padova, Italy
| | | | - Barbara Baldan
- Department of Biology, University of Padova, Padova, Italy.,Botanical Garden, University of Padova, Padova, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy. .,Botanical Garden, University of Padova, Padova, Italy.
| |
Collapse
|
52
|
Spatial and Temporal Dynamics of Electrical and Photosynthetic Activity and the Content of Phytohormones Induced by Local Stimulation of Pea Plants. PLANTS 2020; 9:plants9101364. [PMID: 33076246 PMCID: PMC7602463 DOI: 10.3390/plants9101364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
A local leaf burning causes variation potential (VP) propagation, a decrease in photosynthesis activity, and changes in the content of phytohormones in unstimulated leaves in pea plants. The VP-induced photosynthesis response develops in two phases: fast inactivation and long-term inactivation. Along with a decrease in photosynthetic activity, there is a transpiration suppression in unstimulated pea leaves, which corresponds to the long-term phase of photosynthesis response. Phytohormone level analysis showed an increase in the concentration of jasmonic acid (JA) preceding a transpiration suppression and a long-term phase of the photosynthesis response. Analysis of the spatial and temporal dynamics of electrical signals, phytohormone levels, photosynthesis, and transpiration activity showed the most pronounced changes in the more distant leaf from the area of local stimulation. The established features are related to the architecture of the vascular bundles in the pea stem.
Collapse
|
53
|
Li M, Wang F, Li S, Yu G, Wang L, Li Q, Zhu X, Li Z, Yuan L, Liu P. Importers Drive Leaf-to-Leaf Jasmonic Acid Transmission in Wound-Induced Systemic Immunity. MOLECULAR PLANT 2020; 13:1485-1498. [PMID: 32889174 DOI: 10.1016/j.molp.2020.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/06/2020] [Accepted: 08/29/2020] [Indexed: 05/22/2023]
Abstract
The transmission of mobile wound signals along the phloem pathway is essential to the activation of wound-induced systemic response/resistance, which requires an upsurge of jasmonic acid (JA) in the distal undamaged leaves. Among these mobile signals, the electrical signal mediated by the glutamate-dependent activation of several clade three GLUTAMATE RECEPTOR-LIKE (GLR3) proteins is involved in the stimulation of JA production in distal leaves. However, whether JA acts as a mobile wound signal and, if so, how it is transmitted and interacts with the electrical signal remain unclear. Here, we show that JA was translocated from the local to distal leaves in Arabidopsis, and this process was predominantly regulated by two phloem-expressed and plasma membrane-localized jasmonate transporters, AtJAT3 and AtJAT4. In addition to the cooperation between AtJAT3/4 and GLR3.3 in the regulation of long-distance JA translocation, our findings indicate that importer-mediated cell-cell JA transport is important for driving the loading and translocation of JA in the phloem pathway in a self-propagating manner.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Feifei Wang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Shuangzhang Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lijian Wang
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Qingqing Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Xiangyu Zhu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Lixing Yuan
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
54
|
Kopczewski T, Kuźniak E, Kornaś A, Rut G, Nosek M, Ciereszko I, Szczepaniak L. Local and Systemic Changes in Photosynthetic Parameters and Antioxidant Activity in Cucumber Challenged with Pseudomonas syringae pv lachrymans. Int J Mol Sci 2020; 21:E6378. [PMID: 32887449 PMCID: PMC7504232 DOI: 10.3390/ijms21176378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
We studied changes in gas exchange, photochemical activity and the antioxidant system in cucumber leaves locally infected with Pseudomonas syringae pv lachrymans and in uninfected systemic ones. Infection-induced declined net photosynthesis rate and the related changes in transpiration rate, the intracellular CO2 concentration, and prolonged reduction in maximal PSII quantum yield (Fv/Fm), accompanied by an increase in non-photochemical quenching (NPQ), were observed only in the infected leaves, along with full disease symptom development. Infection severely affected the ROS/redox homeostasis at the cellular level and in chloroplasts. Superoxide dismutase, ascorbate, and tocopherol were preferentially induced at the early stage of pathogenesis, whereas catalase, glutathione, and the ascorbate-glutathione cycle enzymes were activated later. Systemic leaves retained their net photosynthesis rate and the changes in the antioxidant system were partly like those in the infected leaves, although they occurred later and were less intense. Re-balancing of ascorbate and glutathione in systemic leaves generated a specific redox signature in chloroplasts. We suggest that it could be a regulatory element playing a role in integrating photosynthesis and redox regulation of stress, aimed at increasing the defense capacity and maintaining the growth of the infected plant.
Collapse
Affiliation(s)
- Tomasz Kopczewski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland; (A.K.); (G.R.); (M.N.)
| | - Grzegorz Rut
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland; (A.K.); (G.R.); (M.N.)
| | - Michał Nosek
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland; (A.K.); (G.R.); (M.N.)
| | - Iwona Ciereszko
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Lech Szczepaniak
- Department of Environmental Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| |
Collapse
|
55
|
Tian W, Wang C, Gao Q, Li L, Luan S. Calcium spikes, waves and oscillations in plant development and biotic interactions. NATURE PLANTS 2020; 6:750-759. [PMID: 32601423 DOI: 10.1038/s41477-020-0667-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/15/2020] [Indexed: 05/08/2023]
Abstract
The calcium ion (Ca2+) is a universal signal in all eukaryotic cells. A fundamental question is how Ca2+, a simple cation, encodes complex information with high specificity. Extensive research has established a two-step process (encoding and decoding) that governs the specificity of Ca2+ signals. While the encoding mechanism entails a complex array of channels and transporters, the decoding process features a number of Ca2+ sensors and effectors that convert Ca2+ signals into cellular effects. Along this general paradigm, some signalling components may be highly conserved, but others are divergent among different organisms. In plant cells, Ca2+ participates in numerous signalling processes, and here we focus on the latest discoveries on Ca2+-encoding mechanisms in development and biotic interactions. In particular, we use examples such as polarized cell growth of pollen tube and root hair in which tip-focused Ca2+ oscillations specify the signalling events for rapid cell elongation. In plant-microbe interactions, Ca2+ spiking and oscillations hold the key to signalling specificity: while pathogens elicit cytoplasmic spiking, symbiotic microorganisms trigger nuclear Ca2+ oscillations. Herbivore attacks or mechanical wounding can trigger Ca2+ waves traveling a long distance to transmit and convert the local signal to a systemic defence program in the whole plant. What channels and transporters work together to carve out the spatial and temporal patterns of the Ca2+ fluctuations? This question has remained enigmatic for decades until recent studies uncovered Ca2+ channels that orchestrate specific Ca2+ signatures in each of these processes. Future work will further expand the toolkit for Ca2+-encoding mechanisms and place Ca2+ signalling steps into larger signalling networks.
Collapse
Affiliation(s)
- Wang Tian
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- School of Life Sciences, Northwest University, Xi'an, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Qifei Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- School of Life Sciences, Northwest University, Xi'an, China
| | - Legong Li
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
56
|
Correa LDJ, Maciel OVB, Bücker-Neto L, Pilati L, Morozini AM, Faria MV, Da-Silva PR. A Comprehensive Analysis of Wheat Resistance to Rhopalosiphum padi (Hemiptera: Aphididae) in Brazilian Wheat Cultivars. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1493-1503. [PMID: 32249292 DOI: 10.1093/jee/toaa059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 05/19/2023]
Abstract
Rhopalosiphum padi L. is one of the predominant aphids affecting wheat crops worldwide. Therefore, the identification of resistant genotypes and the understanding of molecular response mechanisms involved in wheat resistance to this aphid may contribute to the development of new breeding strategies. In this study, we evaluated the resistance of 15 wheat cultivars to R. padi and performed morpho-histological and gene expression analyses of two wheat cultivars (BRS Timbaúva, resistant and Embrapa 16, susceptible) challenged and unchallenged by R. padi. The main findings of our work are as follows: 1) most Brazilian wheat cultivars recently released are resistant to R. padi; 2) Green leaf volatiles are probably involved in the resistance of the BRS Timbaúva cultivar to the aphid; 3) trichomes were more abundant and larger in the resistant cultivar; 4) the internal morphology did not show differences between cultivars; 5) the lipoxygenase-encoding gene was downregulated in the susceptible cultivar and basal expression remained level in the resistant cultivar; and 6) the expression of resistance-related proteins was induced in the resistant but not in the susceptible cultivar. Lipoxygenase is the first enzyme in the octadecanoic pathway, a well-known route for the synthesis of signaling molecules involved in the activation of plant defense. The overall analyses suggest that the key steps in BRS Timbaúva resistance to R. padi may be presence or absence of green leaf volatiles decreasing the aphid preference and the action of nonglandular trichome as a physical barrier, which allows continuous lipoxygenase-encoding gene expression.
Collapse
Affiliation(s)
- Leia de Jesus Correa
- Plant Genetics and Molecular Biology Laboratory, Graduate Program in Agronomy, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, PR, Brazil
| | - Orlando Vilas Boas Maciel
- Plant Genetics and Molecular Biology Laboratory, Graduate Program in Agronomy, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, PR, Brazil
| | - Lauro Bücker-Neto
- Department of Biological Sciences, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, Paraná, Brazil
| | - Laura Pilati
- Department of Biological Sciences, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, Paraná, Brazil
| | - Ana Maria Morozini
- Department of Biological Sciences, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, Paraná, Brazil
| | - Marcos Ventura Faria
- Plant Genetics and Molecular Biology Laboratory, Graduate Program in Agronomy, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, PR, Brazil
| | - Paulo Roberto Da-Silva
- Plant Genetics and Molecular Biology Laboratory, Graduate Program in Agronomy, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, PR, Brazil
- Department of Biological Sciences, Universidade Estadual do Centro-Oeste, UNICENTRO, Guarapuava, Paraná, Brazil
| |
Collapse
|
57
|
Bergès SE, Vasseur F, Bediée A, Rolland G, Masclef D, Dauzat M, van Munster M, Vile D. Natural variation of Arabidopsis thaliana responses to Cauliflower mosaic virus infection upon water deficit. PLoS Pathog 2020; 16:e1008557. [PMID: 32413076 PMCID: PMC7255604 DOI: 10.1371/journal.ppat.1008557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Plant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens. Here, we investigated the vegetative and reproductive performance of 44 natural accessions of A. thaliana originating from the Iberian Peninsula upon simultaneous exposure to soil water deficit and viral infection by the Cauliflower mosaic virus (CaMV). Following the predictions of Grime's CSR theory, we tested the hypothesis that the ruderal character of a plant genotype is positively related to its tolerance to virus infection regardless of soil water availability. Our results showed that CaMV infection decreased plant vegetative performance and annihilated reproductive success of all accessions. In general, water deficit decreased plant performance, but, despite differences in behavior, ranking of accessions tolerance to CaMV was conserved under water deficit. Ruderality, quantified from leaf traits following a previously published procedure, varied significantly among accessions, and was positively correlated with tolerance to viral infection under both well-watered and water deficit conditions, although the latter to a lesser extent. Also, in accordance with the ruderal character of the accession and previous findings, our results suggest that accession tolerance to CaMV infection is positively correlated with early flowering. Finally, plant survival to CaMV infection increased under water deficit. The complex interactions between plant, virus and abiotic environment are discussed in terms of the variation in plant ecological strategies at the intraspecific level.
Collapse
Affiliation(s)
- Sandy E. Bergès
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - François Vasseur
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Alexis Bediée
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Diane Masclef
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
58
|
Dourmap C, Roque S, Morin A, Caubrière D, Kerdiles M, Béguin K, Perdoux R, Reynoud N, Bourdet L, Audebert PA, Moullec JL, Couée I. Stress signalling dynamics of the mitochondrial electron transport chain and oxidative phosphorylation system in higher plants. ANNALS OF BOTANY 2020; 125:721-736. [PMID: 31711195 PMCID: PMC7182585 DOI: 10.1093/aob/mcz184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/07/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Mitochondria play a diversity of physiological and metabolic roles under conditions of abiotic or biotic stress. They may be directly subjected to physico-chemical constraints, and they are also involved in integrative responses to environmental stresses through their central position in cell nutrition, respiration, energy balance and biosyntheses. In plant cells, mitochondria present various biochemical peculiarities, such as cyanide-insensitive alternative respiration, and, besides integration with ubiquitous eukaryotic compartments, their functioning must be coupled with plastid functioning. Moreover, given the sessile lifestyle of plants, their relative lack of protective barriers and present threats of climate change, the plant cell is an attractive model to understand the mechanisms of stress/organelle/cell integration in the context of environmental stress responses. SCOPE The involvement of mitochondria in this integration entails a complex network of signalling, which has not been fully elucidated, because of the great diversity of mitochondrial constituents (metabolites, reactive molecular species and structural and regulatory biomolecules) that are linked to stress signalling pathways. The present review analyses the complexity of stress signalling connexions that are related to the mitochondrial electron transport chain and oxidative phosphorylation system, and how they can be involved in stress perception and transduction, signal amplification or cell stress response modulation. CONCLUSIONS Plant mitochondria are endowed with a diversity of multi-directional hubs of stress signalling that lead to regulatory loops and regulatory rheostats, whose functioning can amplify and diversify some signals or, conversely, dampen and reduce other signals. Involvement in a wide range of abiotic and biotic responses also implies that mitochondrial stress signalling could result in synergistic or conflicting outcomes during acclimation to multiple and complex stresses, such as those arising from climate change.
Collapse
Affiliation(s)
- Corentin Dourmap
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Solène Roque
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Amélie Morin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Damien Caubrière
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Margaux Kerdiles
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Kyllian Béguin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Romain Perdoux
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Nicolas Reynoud
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Lucile Bourdet
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Pierre-Alexandre Audebert
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Julien Le Moullec
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Ivan Couée
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| |
Collapse
|
59
|
Sukhova E, Yudina L, Gromova E, Nerush V, Vodeneev V, Sukhov V. Burning-induced electrical signals influence broadband reflectance indices and water index in pea leaves. PLANT SIGNALING & BEHAVIOR 2020; 15:1737786. [PMID: 32149565 PMCID: PMC7194382 DOI: 10.1080/15592324.2020.1737786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 05/21/2023]
Abstract
Electrical signals (ESs) can be induced by local action of stressors in plants; they influence numerous physiological processes (photosynthesis, transpiration, respiration, genes expression, synthesis of phytohormones, etc.) and, thereby, induce a systemic adaptation response. Development of optical methods of a remote sensing of this response can be important for agricultural and ecological monitoring. Preliminarily, we showed (Sukhova et al., Plant Sign Behav 2019; 14:e1610301) that burning-induced ESs induced changes in leaf reflectance at broad spectral bands (400-500, 500-600, 600-700, and 700-800 nm). The aims of the present work were (i) investigation of ESs influence on difference reflectance indices (RIs) calculated on the basis of these broad spectral bands and (ii) analysis of connection of the indices with water content in plants. Pea seedlings were investigated. ESs were induced by burning of the first mature leaf; ESs had high amplitudes in the second leaf and had low amplitudes in the fourth leaf. It was shown that ESs induced significant changes in RIs, which were calculated on basis of intensities of the reflected light at (i) 400-500 and 600-700 nm, (ii) 500-600 and 700-800 nm, and (iii) 600-700 and 700-800 nm. The effect was strong in the second leaf and weak in the fourth leaf; that is, the response was dependent on the magnitude of ESs. ESs-induced changes in RI were strongly connected with ESs-induced decrease of leaf water content which was estimated on basis of decrease of water index. Thus, broadband RIs can be used for revealing the ESs-induced systemic stress response in plants.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Lyubov Yudina
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina Gromova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Nerush
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
60
|
Zhou Q, Zhao S, Zhu J, Li F, Tong W, Liu S, Wei C. Transcriptomic analyses reveal a systemic defense role of the uninfested adjacent leaf in tea plant (Camellia sinensis) attacked by tea geometrids (Ectropis obliqua). Genomics 2020; 112:3658-3667. [PMID: 32169501 DOI: 10.1016/j.ygeno.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/28/2022]
Abstract
To get a more detailed understanding of the interaction between tea plant (Camellia sinensis) and tea geometrids (Ectropis obliqua), transcriptomic profile in undamaged adjacent leaf (TGL) of tea geometrids fed local leaves (LL) was investigated for the first time. Here, approximately 245 million clean reads contained 39.39 Gb of sequence data were obtained from TGL. Further analysis revealed that systemic response was induced in TGL after tea geometrids feeding on LL, although the defense response was weaker than that in LL. The differentially expressed genes (DEGs) identification analysis showed little overlap of DEGs between TGL and LL. Comparative transcriptome analysis suggested that JA signal regulated resistant pathway was induced in LL; whereas primary metabolism pathway was activated in TGL in response to tea geometrids feeding. This study reveals a novel resistance mechanism of TGL to tea geometrids feeding.
Collapse
Affiliation(s)
- Qiying Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China; Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China; Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
61
|
Chen G, Kim HK, Klinkhamer PG, Escobar-Bravo R. Site-dependent induction of jasmonic acid-associated chemical defenses against western flower thrips in Chrysanthemum. PLANTA 2019; 251:8. [PMID: 31776674 DOI: 10.1007/s00425-019-03292-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Local and systemic induction of JA-associated chemical defenses and resistance to western flower thrips in Chrysanthemum are spatially variable and dependent on the site of the JA application. Plants have evolved numerous inducible defense traits to resist or tolerate herbivory, which can be activated locally at the site of the damage, or systemically through the whole plant. Here we investigated how activation of local and systemic chemical responses upon exogenous application of the phytohormone jasmonic acid (JA) varies along the plant canopy in Chrysanthemum, and how these responses correlate with resistance to thrips. Our results showed that JA application reduced thrips damage per plant when applied to all the plant leaves or when locally applied to apical leaves, but not when only basal leaves were locally treated. Local application of JA to apical leaves resulted in a strong reduction in thrips damage in new leaves developed after the JA application. Yet, activation of a JA-associated defensive protein marker, polyphenol oxidase, was only locally induced. Untargeted metabolomic analysis further showed that JA increased the concentrations of sugars, phenylpropanoids, flavonoids and some amino acids in locally induced basal and apical leaves. However, local application of JA to basal leaves marginally affected the metabolomic profiles of systemic non-treated apical leaves, and vice versa. Our results suggest that JA-mediated activation of systemic chemical defense responses is spatially variable and depends on the site of the application of the hormone in Chrysanthemum.
Collapse
Affiliation(s)
- Gang Chen
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands.
- College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Hye Kyong Kim
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Peter Gl Klinkhamer
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Rocío Escobar-Bravo
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
62
|
Zhu J, He Y, Yan X, Liu L, Guo R, Xia X, Cheng D, Mi X, Samarina L, Liu S, Xia E, Wei C. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant ( Camellia sinensis). HORTICULTURE RESEARCH 2019; 6:126. [PMID: 31754433 PMCID: PMC6856355 DOI: 10.1038/s41438-019-0208-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 05/30/2023]
Abstract
Kunitz protease inhibitors (KPIs) are ubiquitous in plants and act as crucial compounds in defense responses against insect attack and pathogen infection. However, the influence of gene duplication on the postdivergence of the CsKPI genes involved in biotic stresses in tea plant is not well known. Here, we identified three CsKPI genes from tea plant (Camellia sinensis) and characterized their expression and evolutionary patterns among plant species. We found that CsKPI1, CsKPI2, and CsKPI3 diverged from their common ancestor 72.94 million years ago (MYA), and the tandem duplication of CsKPI2 and CsKPI3 occurred 26.78 MYA. An in vitro protein assay showed that the three CsKPI proteins were functional and inhibited the production of p-nitroanilide (PNA) from an artificial substrate. The three CsKPI-GFP fusion proteins localized to the cytoplasm. We showed that salicylic acid (SA) and transcripts of CsKPI2 and CsKPI3 significantly accumulated after infection with Glomerella cingulata. The application of exogenous SA stimulated the high expression of both CsKPI2 and CsKPI3 by activating cis-elements within their promoters. Under Ectropis oblique attack, CsKPI1 expression and jasmonic acid (JA) levels were more abundant in both insect-damaged leaf tissues and undamaged neighboring leaves. The application of jasmonic acid methyl ester elicited high expression levels of CsKPI1, suggesting that CsKPI1 accumulation requires JA production in tea plant. The overall findings suggest that the transcriptional divergence of KPI genes after duplication led to the specialized role of CsKPI1 in the physiological response to insect stress; the functional conservation between CsKPI2 and CsKPI3 confers resistance to pathogen infection in tea plant.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Yaxian He
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Daojie Cheng
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Lidiia Samarina
- Russian Research Institute of Floriculture and Subtropical Crops, 354002 Yana Fabritsiusa st. 2/28, Sochi, Russian Federation
| | - Shenrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036 Anhui People’s Republic of China
| |
Collapse
|
63
|
Takahashi F, Hanada K, Kondo T, Shinozaki K. Hormone-like peptides and small coding genes in plant stress signaling and development. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:88-95. [PMID: 31265991 DOI: 10.1016/j.pbi.2019.05.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 05/27/2019] [Indexed: 05/06/2023]
Abstract
Recent works have shed light on the long-distance interorgan signaling by which hormone-like peptides precisely regulate physiological effects in a manner similar to phytohormones. Many such peptides have already been identified in the primary model plant, Arabidopsis thaliana. In addition, Arabidopsis genome reanalysis revealed over 7000 novel candidate small coding genes, some of which are likely to be associated with hormone-like peptides. Hormone-like peptides have also been reported to play critical roles in interorgan communications during morphogenesis and stress responses. In this review, we focus on the functional roles of hormone-like peptides and small coding genes in cell-to-cell and/or long-distance communications during plant stress signaling and development and discuss the evolutionary conservation of these peptides among plants.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| | - Takayuki Kondo
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
64
|
Abstract
Diverse molecular processes regulate the interactions between plants and insect herbivores. Here, we review genes and proteins that are involved in plant-herbivore interactions and discuss how their discovery has structured the current standard model of plant-herbivore interactions. Plants perceive damage-associated and, possibly, herbivore-associated molecular patterns via receptors that activate early signaling components such as Ca2+, reactive oxygen species, and MAP kinases. Specific defense reprogramming proceeds via signaling networks that include phytohormones, secondary metabolites, and transcription factors. Local and systemic regulation of toxins, defense proteins, physical barriers, and tolerance traits protect plants against herbivores. Herbivores counteract plant defenses through biochemical defense deactivation, effector-mediated suppression of defense signaling, and chemically controlled behavioral changes. The molecular basis of plant-herbivore interactions is now well established for model systems. Expanding molecular approaches to unexplored dimensions of plant-insect interactions should be a future priority.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, 3000 Bern, Switzerland;
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
65
|
Sukhov V, Sukhova E, Gromova E, Surova L, Nerush V, Vodeneev V. The electrical signal-induced systemic photosynthetic response is accompanied by changes in the photochemical reflectance index in pea. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:328-338. [PMID: 32172742 DOI: 10.1071/fp18224] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/23/2018] [Indexed: 06/10/2023]
Abstract
Plants can be affected by numerous environmental stressors with spatially heterogeneous actions on their bodies. A fast systemic photosynthetic response, which is connected with long-distance electrical signalling, plays an important role in the adaptation of higher plants to the action of stressors. Potentially, measurement of the response by using a photochemical reflectance index (PRI) could be the basis of monitoring photosynthesis under spatially heterogeneous stressors; however, the method has not been previously used for investigating the systemic photosynthetic response. We investigated changes in PRI and photosynthetic parameters (quantum yields of PSI and PSII and nonphotochemical quenching) in intact leaves of pea (Pisum sativum L.) after local heating of another leaf and the propagation of electrical signals through the plant body. We showed that electrical signals decreased the quantum yields of PSI and PSII and increased the nonphotochemical quenching of intact leaves in times ranging from minutes to tens of minutes; the changes were strongly connected with changes in PRI. Additional analysis showed that changes in PRI were caused by an increase of the energy-dependent quenching induced by electrical signals. Thus PRI can be potentially used for monitoring the systemic photosynthetic response connected with long-distance electrical signalling.
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Ekaterina Gromova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Lyubov Surova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Vladimir Nerush
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
66
|
Hake K, Romeis T. Protein kinase-mediated signalling in priming: Immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. PLANT, CELL & ENVIRONMENT 2019; 42:904-917. [PMID: 30151921 DOI: 10.1111/pce.13429] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 05/03/2023]
Abstract
"Priming" in plant phytopathology describes a phenomenon where the "experience" of primary infection by microbial pathogens leads to enhanced and beneficial protection of the plant against secondary infection. The plant is able to establish an immune memory, a state of systemic acquired resistance (SAR), in which the information of "having been attacked" is integrated with the action of "being prepared to defend when it happens again." Accordingly, primed plants are often characterized by faster and stronger activation of immune reactions that ultimately result in a reduction of pathogen spread and growth. Prerequisites for SAR are (a) the initiation of immune signalling subsequent to pathogen recognition, (b) a rapid defence signal propagation from a primary infected local site to uninfected distal parts of the plant, and (c) a switch into an immune signal-dependent establishment and subsequent long-lasting maintenance of phytohormone salicylic acid-based systemic immunity. Here, we provide a summary on protein kinases that contribute to these three conceptual aspects of "priming" in plant phytopathology, complemented by data addressing the role of protein kinases crucial for immune signal initiation also for signal propagation and SAR.
Collapse
Affiliation(s)
- Katharina Hake
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
67
|
Doménech-Carbó A, Cervelló-Bulls P, González JM, Soriano P, Estrelles E, Montoya N. Electrochemical monitoring of ROS influence on seedlings and germination response to salinity stress of three species of the tribe Inuleae. RSC Adv 2019; 9:17856-17867. [PMID: 35520594 PMCID: PMC9064681 DOI: 10.1039/c9ra02556a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/28/2019] [Indexed: 01/22/2023] Open
Abstract
Voltammetric data of extracts from inula leaves provide kinetic information on the reactivity of plant components with ROS.
Collapse
Affiliation(s)
| | | | | | - Pilar Soriano
- ICBiBE-Botanic Garden of the University of Valencia
- Valencia
- Spain
| | - Elena Estrelles
- ICBiBE-Botanic Garden of the University of Valencia
- Valencia
- Spain
| | - Noemí Montoya
- Department of Analytical Chemistry
- University of Valencia
- Valencia
- Spain
| |
Collapse
|
68
|
Fraudentali I, Rodrigues-Pousada RA, Volpini A, Tavladoraki P, Angelini R, Cona A. Stress-Triggered Long-Distance Communication Leads to Phenotypic Plasticity: The Case of the Early Root Protoxylem Maturation Induced by Leaf Wounding in Arabidopsis. PLANTS 2018; 7:plants7040107. [PMID: 30518030 PMCID: PMC6313916 DOI: 10.3390/plants7040107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Abstract
Root architecture and xylem phenotypic plasticity influence crop productivity by affecting water and nutrient uptake, especially under those environmental stress, which limit water supply or imply excessive water losses. Xylem maturation depends on coordinated events of cell wall lignification and developmental programmed cell death (PCD), which could both be triggered by developmental- and/or stress-driven hydrogen peroxide (H2O2) production. Here, the effect of wounding of the cotyledonary leaf on root protoxylem maturation was explored in Arabidopsis thaliana by analysis under Laser Scanning Confocal Microscope (LSCM). Leaf wounding induced early root protoxylem maturation within 3 days from the injury, as after this time protoxylem position was found closer to the tip. The effect of leaf wounding on protoxylem maturation was independent from root growth or meristem size, that did not change after wounding. A strong H2O2 accumulation was detected in root protoxylem 6 h after leaf wounding. Furthermore, the H2O2 trap N,N1-dimethylthiourea (DMTU) reversed wound-induced early protoxylem maturation, confirming the need for H2O2 production in this signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Alessandra Cona
- Department of Science, University "Roma Tre", 00146 Rome, Italy.
| |
Collapse
|
69
|
Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:63-84. [PMID: 30508537 DOI: 10.1016/j.pbiomolbio.2018.11.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/27/2022]
Abstract
Our review is devoted to the analysis of the role of long-distance electrical signals in the development of the fast systemic physiological responses in higher plants. The characteristics and mechanisms of basic electrical signals (variation potential, action potential and system potential) are analyzed, and a potential schema of the generation and propagation of the system potential is proposed. The review summarizes the physiological changes induced by the variation potential, action potential and system potential in higher plants, including changes in gene expressions, the production of phytohormones, photosynthesis, phloem mass-flow, respiration, ATP content, transpiration and plant growth. Potential mechanisms of the changes are analyzed. Finally, a hypothetical schema, which describes a hierarchy of the variation potential, action potential and system potential, in the development of the fast systemic non-specific adaptation of plants to stressors, is proposed.
Collapse
|
70
|
Oelmüller R. Sensing environmental and developmental signals via cellooligomers. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:1-6. [PMID: 30005268 DOI: 10.1016/j.jplph.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Roots respond to a cocktail of chemicals from microbes in the rhizosphere. Infochemicals in nmol concentrations activate receptor-mediated signal pathways, which reprogram the plant responses to environmental changes. The microbial signals have to pass the cell wall to activate pattern recognition receptors at the surface of the plant plasma membrane. The structure of the cell wall is not only a barrier for the signaling molecules, but also changes permanently during growth and development, as well as in response to microbial attacks or abiotic stress. Recently, cellooligomers (COMs) were identified as novel chemical mediators in Arabidopsis thaliana, which inform the cell about the alterations in and around the cell wall. They can be of microbial and plant origin and represent novel invasion patterns (Cook et al., 2015). COMs initiate Ca2+-dependent signaling events that reprogram the cell and adjust the expression and metabolite profiles as well as innate immunity in response to changes in their rhizosphere environment and the state of the cell wall. COMs operate synergistically with other signals or their recognition machineries and activates local and systemic responses in the entire plant. They also adjust the performance of the areal parts of the plant to signals perceived by the roots. Here, I summarize our current knowledge about COMs and propose strategies for future investigations.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| |
Collapse
|
71
|
Holbrook NM, Knoblauch M. Editorial overview: Physiology and metabolism: Phloem: a supracellular highway for the transport of sugars, signals, and pathogens. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:iii-vii. [PMID: 29853282 DOI: 10.1016/j.pbi.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA.
| |
Collapse
|